library(data.table)
library(dplyr)
library(readr)
library(forcats)

rg2013.dt <- fread("FrenchOpen-men-2013.csv")
rg2013.dt

rg2013.df <- read.table("FrenchOpen-men-2013.csv",sep=",",header=TRUE)
rg2013.tb <- tibble(rg2013.dt)

rg2013.tb <- read_csv("FrenchOpen-men-2013.csv")

rg2013.tb |>
  filter(Round==6) |>
  select(Player1,Player2)

rg2013.tb |>
  filter(Player1=='Roger Federer' | Player2=='Roger Federer')

rg2013.tb |>
  distinct(Player2)

rg2013.tb |>
  mutate(nb_points=TPW.1+TPW.2) |>
  summarise(nb_points_moy=mean(nb_points))

rg2013.tb |>
  mutate(nb_points=TPW.1+TPW.2) |>
  select(Player1,Player2,nb_points)

rg2013.tb |> mutate(nb_ace=ACE.1+ACE.2) |>
  group_by(Round) |>
  summarise(min=min(nb_ace),max=max(nb_ace),moy=mean(nb_ace))

rg2013.tb |> mutate(dbf=DBF.1+DBF.2) |>
  summarize(tot.df=sum(dbf,na.rm=TRUE))

rg2013.tb |> mutate(dbf=DBF.1+DBF.2) |>
  ggplot() +
  aes(x=dbf) +
  geom_histogram(bins=10) +
  theme_classic()

rg2013.tb |>
  mutate(dbf=DBF.1+DBF.2) |>
  group_by(Round) |>
  summarize(dbf=mean(dbf,na.rm=TRUE)) |>
  ggplot() +
  aes(x=Round,y=dbf) +
  geom_bar(stat="identity",fill="red") +
  theme_classic()

rg2013.tb |>
  select(Result, FSP.1, FSP.2) |>
  pivot_longer(cols = c(FSP.1, FSP.2), names_to = "Player", values_to = "FSP") |>
  mutate(Result = as.character((Result == 1 & Player == "FSP.1") | (Result == 0 & Player == "FSP.2"))) |>
  mutate(Result = fct_recode(Result, vic = "TRUE", def = "FALSE")) |>
  ggplot() +
  aes(x = Result, y = FSP) +
  geom_boxplot() +
  theme_classic()

Modifié le: lundi 10 mars 2025, 16:24