Structural Properties of Plane Graphs Without Adjacent Triangles and an Application to 3-Colorings

O. V. Borodin*

INSTITUTE OF MATHEMATICS
RUSSIAN ACADEMY OF SCIENCE
NOVOSIBIRSK 630090, RUSSIA
e-mail: brdnoleg@math.nsk.su

ABSTRACT

If in a plane graph with minimum degree \(\geq 3 \) no two triangles have an edge in common, then: (1) there are two adjacent vertices with degree sum at most 9, and (2) there is a face of size between 4 and 9 or a 10-face incident with ten 3-vertices. It follows that every planar graph without cycles between 4 and 9 is 3-colorable. © 1996 John Wiley & Sons, Inc.

1. INTRODUCTION

In 1959, Grötsch [5] proved that every planar graph without 3-cycles is 3-colorable. In 1976, Steinberg (see [7, p. 229]) conjectured that every planar graph without 4- and 5-cycles is 3-colorable. (Both 4-cycles and 5-cycles must be excluded as shown by \(K_4 \) and a graph due to Havel [4, Fig. 2]) In 1990, Erdős (see [7, p. 229]) suggested the following relaxation of Steinberg’s conjecture: Is there an integer \(k \geq 5 \) such that every planar graph without \(i \)-cycles, \(4 \leq i \leq k \), is 3-colorable? Abbott and Zhou [1] proved that \(k = 11 \) is suitable. In [2], I strengthened this to \(k = 10 \) and now one more step is done:

*This research was completed while the author was visiting Nottingham University under grants from the SERC and the Royal Society. Partial support from the Soros Foundation and the Russian Foundation for Advanced Studies, Grant no 93-011-1486, is also acknowledged.

© 1996 John Wiley & Sons, Inc.

CCC 0364-9024/96/020183-04
Theorem 1. If G is a planar graph without i-cycles, $4 \leq i \leq 9$, then G is 3-colorable.

This result was announced in Chapter 2 of a forthcoming monograph by Jensen and Toft [6]. The proof is based on a structural property of plane graphs without adjacent triangles. Denote the minimum degree of a graph by $\delta(G)$, the degree of a vertex v by $d(v)$, and the size of a face f by $s(f)$.

Theorem 2. Let G be a plane graph without two triangles sharing an edge. Then the following statements are valid in which all numerical parameters are best possible:

(a) $\delta(G) \leq 4$;
(b) if $\delta(G) \geq 3$, then there are adjacent vertices x, y such that $d(x) + d(y) \leq 9$;
(c) if $\delta(G) \geq 3$, then there is either an i-face where $4 \leq i \leq 9$ or 10-face incident with ten 3-vertices and adjacent to five triangles.

Proof of Theorem 1. Let G be a counterexample minimum on the number of vertices. It has $\delta(G) \geq 3$ and by (c) of Theorem 2 has a 10-face, f, with all incident vertices having degree 3. The graph obtained from G by removing all the vertices incident with f is 3-colorable. Take such a coloring and extend it to G: since for every vertex on the boundary of f two colors are admissible, and since $s(f)$ is even, this can be done. This contradiction completes the proof.

Proof of Theorem 2. To show the parameters in (a), (b), and (c) are the best possible, take: (a) the line graph of the cube; (b) the graph on Fig. 1 in [3]; (c) the dodecahedron and saw all its corners off.

Clearly, (b) implies (a). Assume G is a connected plane graph with $\delta(G) \geq 3$ and without two triangles having an edge in common. If V and F denote the set of vertices and faces of G, respectively, then it follows from Euler's formula that

$$\sum_{v \in V} (d(v) - 4) + \sum_{f \in F} (s(f) - 4) = -8 = \sum_{x \in V \cup F} z(x).$$

Let $z(x)$ above be a charge assigned to $x \in V \cup F$. To prove (b) and (c), we introduce rules R_b and R_c, respectively, of modifying z to a new charge z^* such that

$$\sum_{x \in V \cup F} z^*(x) = \sum_{x \in V \cup F} z(x) = -8. \quad (*)$$

In both cases, as we shall verify, $z^*(x) \geq 0$ for every $x \in V \cup F$, which contradicts $(*)$. Now the proof divides.

Proof of (b). Assume the contrary, and construct z^* according to the following rules:

(Rb1) For every edge $e = (x, y)$ where $d(x) \leq 4$, transfer from y to x the following charge:
- 1/2 if $d(x) = 3$, and e is incident with a triangle;
- 1/3 if $d(x) = 3$, but e is not incident with a triangle;
- 1/6 if $d(x) = 4$, and e is not incident with a triangle.

(Rb2) Every vertex transfers 1/3 to every incident triangle.

Clearly, $z^*(f) \geq 0$ where $f \in F$, for if $s(f) = 3$ then $z^*(f) = z(f) + 3 \cdot 1/3 = 3 - 4 + 1 = 0$ and if $s(f) \geq 4$, $z^*(f) = z(f) = s(f) - 4 \geq 0$.

Assume $v \in V$; if $d(v) \leq 4$, then it is easily seen that in all five cases $z^*(v) = 0$. If $d(v) = 5$, then v is not adjacent to 3- or 4-vertices and $z^*(v) \geq 5 - 4 - 2 \cdot 1/3 \geq 0$. (Here,
and in the sequel, we make use of the fact that the number, \(t(v) \), of triangles incident with \(v \) is at most \([d(v)/2] \).

If \(d(v) = 6 \) then \(v \) is not adjacent to 3-vertices. Therefore it transfers at most \(6 \cdot 1/6 = 1 \) to adjacent vertices and at most \(3 \cdot 1/3 = 1 \) to incident triangles, i.e., \(z^*(v) \geq 0 \).

Assume \(d(v) \geq 7 \). Then \(v \) transfers \(t(v)/3 \) to incident triangles, and at most \(t(v)/2 \) along the edges incident with triangles (because in a triangle \(uvw \), either \(d(u) \geq 4 \) or \(d(w) \geq 4 \)), and at most \((d(v) - 2t(v))/3 \) along the edges not incident with triangles. It follows, \(z^*(v) \geq d(v) - 4 - t(v)/2 - t(v)/3 - (d(v) - 2t(v))/3 = 2d(v)/3 - 4 - t(v)/6 = (4d(v) - 49/2 - d(v))/6 \geq 0 \).

Due to the above remark, this completes the proof of (b).

Proof of (c). Assume the contrary and construct \(z^* \) as follows:

(Rc1) Every nontriangular face \(f \) transfers to each incident vertex the following charge:

\[
\begin{align*}
2/3 & \quad \text{if } d(v) = 3, \text{ and } v \text{ is incident with a triangle;} \\
1/3 & \quad \text{if } d(v) = 3, \text{ but } v \text{ is not incident with a triangle, or if } d(v) = 4, \text{ and } v \text{ is incident with either two triangles or one triangle not adjacent to } f.
\end{align*}
\]

(Rc2) Every vertex transfers 1/3 to every incident triangle.

Let \(f \in F \). If \(s(f) = 3 \), then \(z^*(f) = 3 - 4 = 3 - 1/3 = 0 \). If \(s(f) \geq 12 \), then \(z^*(f) \geq s(f) - 4 - s(f) \cdot 2/3 = (s(f) - 12)/3 \geq 0 \). If \(r(f) = 11 \), then at least one vertex incident with \(f \) is not a 3-vertex incident with a triangle by parity. This vertex receives at most 1/3 from \(f \) which implies \(z^*(f) \geq 11 = 4 - 10 \cdot 2/3 - 1/3 = 0 \). If \(r(f) = 10 \), then \(f \) cannot be incident with ten vertices getting 2/3 each by assumption. On the other hand, if \(f \) is incident with more than one vertex receiving at most 1/3, then \(z^*(f) \leq 10 - 4 \cdot 2/3 - 2 \cdot 1/3 = 0 \). Thus it remains to consider the case when \(f \) is incident with precisely nine vertices of degree 3, each of which being incident with a triangle. But then the last vertex, \(v \), has \(d(v) \geq 3 \) and fails to receive 1/3 by Rc1; therefore \(z^*(f) = 10 - 4 - 9 \cdot 2/3 = 0 \).

Now assume \(v \in V \) and recall that \(t(v) \leq [d(v)/2] \). If \(d(v) \leq 4 \), we have five cases, and in each of them \(z^*(v) = 0 \). But if \(d(v) \geq 5 \), then \(z^*(v) \geq d(v) - 4 - [d(v)/2]/3 \geq d(v) - 25/6 - d(v)/6 = 5(d(v) - 5)/6 \geq 0 \).

This completes the proof of Theorem 2.

ACKNOWLEDGMENT

I am deeply grateful to Douglas Woodall for his thorough reading of an earlier version of the manuscript.

References

NOTE ADDED IN PROOF

I have been informed by the referees that Theorem 1 was also proved in "A Note on the Three Color Problem" by D.P. Sanders and Y. Zhao (submitted to Graphs and Combinatorics).

Received September 5, 1994