

Positionnement & Télédétection

LiDAR/Scan/øgram

Matthieu Ferry, matthieu.ferry@umontpellier.fr

Plan du cours

- Principes de topographie
 - MNE/MNT/MNS
 - Applications
- Mesure directe (télémétrie laser)
 - par temps de vol (LiDAR)
 - par déphasage (Scan)
- Mesure indirecte (photogrammétrie)
 - principes
 - capteur camera obscura (champ proche, aérien)
 - capteur pushbroom (satellite)
- Visualisation

Principes de topographie

- Mesure et représentation des altitudes
- Mesures éparses: nuage de points 3D
- Mesures exhaustives (ou éparses interpolées): matrice (raster)
- Méthode selon résolution/précision souhaitées
- Toujours réalisées dans un référentiel avec une origine des altitudes

Modèles numériques

- Modèle Numérique d'Elévation: tout
- Modèle Numérique de Terrain: MNE du sol
- Modèle Numérique de Surface: max(MNE)

MNS

MNT

Applications - Cartographie

CITS

Applications - Modélisation

7 10³ Pa

S., 103 Pa

77 105 Pa

S, 105 Pa

Modélisation d'écoulement de lave par le volcan Okmok

Modèle d'inondation par onde de tempête (b) et probabilité d'occurrence (c)

CITS

Application - Retrait de la côte

- Vitesse de retrait 0.1-0.5 m/an
- Photogrammétrie
 UAV

CITS

Projet Ricochet (ANR): Azur Drones, U. Caen, BRGM...

CITS

Mirijovsky & Langhammer, 2015

Ō

Plan du cours

- Principes de topographie
 - MNE/MNT/MNS
 - Applications
- Mesure directe (télémétrie laser)
 - par temps de vol (LiDAR)
 - par déphasage (Scan)
- Mesure indirecte (photogrammétrie)
 - principes
 - capteur camera obscura (champ proche, aérien)
 - capteur pushbroom (satellite)
- Visualisation

Télémétrie laser

- Mesure directe par faisceau laser
- 4 paramètres de mesure: angles V et H, temps, intensité
- (Colorisation RVB par photographie)

- Mesure du temps de vol » LiDAR (Light Detection and Ranging)
- Mesure du déphasage » Scan (laserscanning)
- Intensité fonction de distance, incidence, couleur et rugosité de la cible

LiDAR vs. Scan

	Lidar	Scan	
Distance	Temps de vol	Déphasage	
Signal	Impulsion	Continu	
Vitesse d'acquisition	100s-1000s pts/s	100000s pts/s	
Portée max.	qqs km	100s m	
Retours	Multiples	Unique	
T = 0 T = <i>t</i>	Transmitted Pulse	Phase-shift	aal 1 signal
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

CITS

1

LiDAR/Scan terrestre

- Implantation sur trépied (ev. topo)
- Occlusions par relief et végétation
- Mesure de très petits objets

3 (m)

4

5

6 2

Elevation (m)

CITS

- Travail sous canopée
- Un opérateur suffit
- Mesure à distance

Séisme du Teil (Ardèche), 11/2019

Scanner 3D Faro X330

- Emission d'un faisceau laser
- Distribution verticale par miroir rotatif (300°)
- Distribution horizontale par rotation du scanner (360°)
- Portée 330 m
- Résolution 1.5 mm à 10 m

Orientations

- Orientation interne
 - H (inclinomètre)
 - V (boussole)
 - $-\omega$ (calibration moteurs)

- Orientation externe
 - Centrale inertielle
 - GCPs

- Géoréférencement
 - Intégration de références dans le scan

Résolution

Cirs

LiDAR aéroporté

• Avion / hélicoptère

CITS

- Altitude de vol: 1000 3000 m
- Résolution max: 0.2 m

LiDAR sur UAV

- Poids: 1.5 kg
- Altitude de vol: 50 m
- Précision: 3 cm (XY), 10 cm (Z)
- ~70 k€

Hélicoptère vs. UAV

^{830440 830460 830480 830500 830520 830540 830560 830580 830600 830620 830640}

CITS

LiDAR topo-bathy

- Double faisceau rouge (surface) + vert (fond)
- Profondeur d'investigation qqs 10s m
- Résolution qqs m

CITS

Pré-traitement LiDAR/Scan

- Recollement
 - Assemblage des stations via références communes
 - Géoréférencement par positions des références

- Numérisation
 - Conversion coord. pol. vers cart. dans référentiel final

- Octree
 - Hiérarchisation du ndp

Identification des points aberrants

- Points isolés (oiseaux, artéfacts...)
 - Filtre de densité sur boîte glissante
 - Calcul de la distance moyenne entre un point et ses voisins

- Effets de bord
 - Filtre de densité dans la direction de scan

Séparation sol/sur-sol

- Classification par intensité
- Dernier écho (LiDAR)
- Filtres topologiques

Filtre CSF

Séparation sol/sur-sol

- Classification du nuage de points: sol, bâtiment, végétation haute, végétation basse
- Production MNS, MNT, hauteur de bâtiment, hauteur de végétation

MNS

MNT

Plan du cours

- Principes de topographie
 - MNE/MNT/MNS
 - Applications
- Mesure directe (télémétrie laser)
 - par temps de vol (LiDAR)
 - par déphasage (Scan)
- Mesure indirecte (photogrammétrie)
 - principes
 - capteur camera obscura (champ proche, aérien)
 - capteur pushbroom (satellite)
- Visualisation

Photogrammétrie

Toute technique de mesure qui permet de modéliser un espace 3D en utilisant des images 2D

CITS

Wild C2 (1925)

Paramètres optiques

- distance focale, la distance entre le centre optique de la lentille et le point de convergence (foyer image, Fi) des rayons parallèles à l'axe optique. Lorsque la mise au point est faite à l'infini, le centre optique et le fond de chambre sont distants de f
- format de capteur, la taille de la surface sensible (négatif film ou capteur CCD)
- **angle de champ**, le champ visuel embrassé par un objectif. Sa valeur numérique est donnée par l'angle défini par la portion de l'espace accessible par la diagonale du capteur
- distance principale, la distance entre le centre optique et le plan de mise au point. Lorsque la mise au point est à l'infini alors p=f

Principe de parallaxe

Changement apparent de position d'objets statiques avec la position d'observation

Hauteur d'un objet ha=H-b.f/Pa

H: altitude / plan de réf. b: base f: distance focale Pa: parallaxe (a1-a2)

Orientation interne

• Distorsion géométrique (optique)

- Distorsion du capteur (CCD/film)
- > Etalonnage régulier de la caméra

Orientation externe

Centrale inertielle, altimètre
Points d'appui au sol

Cirs

5

Anomalies géométriques

Nadir

Devers 1 D

Cirs

.

Devers + ombre

30

Points d'appui

- Points d'amer, d'ajustage, de calage, Ground Control Points
- Points de coordonnées précises connues mesurées sur le terrain et facilement identifiables dans les images
- Géoréférencement

• Points d'initiation précis

• Attention ! Distincts des points de validation

Résolution

- Résolution dans l'espace objet (terrain)
 - taille du pixel au sol (Ground Sampling Distance)
 - variable spatialement
- Identification
 - identification à partir de 3xR
 - interprétation à partir de 20xR

GSD 0.2 m

Géométrie d'acquisition

CINIS

B: base (distance entre deux photos)
L: longueur de la photo
Rc: recouvrement
H: altitude de vol (/sol)
B/H influence la
précision altimétrique
H/p: échelle

Plan de vol

- Assurer recouvrement longitudinal et latéral
- Assurer résolution en fonction de des objectifs (selon altitude de vol, focale et résolution du capteur)

Chrs

Capteur pushbroom

34

Capteur chambre noire

Traitement

- Corrections des paramètres d'orientation
 - CN: import de la calibration, identification des GCPs
 - PB: import des RPCs, identification des GCPs
 - Génération des images épipolaires
- Recherche des points analogues
 - Identification des points particuliers (contraste, SIFT)
 - Modélisation par blocs
- Triangulation

CINIS

- Stéréo / multi-vues
- Post-traitement

Post-traitement

- Multi-vues Structure-From-Motion→ nuage de points
- Multi-vues SFM + vues obliques \rightarrow 3D
- Séparation sol/sur-sol par filtre topologique (LiDAR) et classification colorimétrique en espace HSV
- Couple stéréo → raster
- Nuage de points \rightarrow rastérisation (z unique) avec interpolation

Photogrammétrie satellitaire

tri-stereo

Photogrammétrie SFM

- 211 photos géoréférencées
- Orthophoto à 5 cm
- DEM à 9 cm

CITS

• Moyens de calcul et d'affichage

Images d'origine Sensefly

Photogrammétrie SFM

- 211 photos géoréférencées
- Orthophoto à 5 cm
- DEM à 9 cm

CITS

• Moyens de calcul et d'affichage

Images d'origine Sensefly

Photogrammétrie terrestre

- MNS à très petite échelle
- Reconstruction d'objet 3D
- Réalisable sur un smartphone

LiDAR vs. Photogrammétrie

	LiDAR/Scan	Photogrammétrie
Résolution	mm - m	cm - m
Précision	mm	cm
Emprise	m² - km²	m² - >1000 km²
Tps déploiement	Aérien: variable Terrestre: immédiat	Aéroporté: qqs j Terrestre: immédiat
Tps traitement	hàj	hàj
Coût équipement	Aérien: 300 - 700 k€ Terrestre: 30 - 100 k€	Aérien: 50 - 100 k€ UAV: 2 - 20 k€ Terrestre: 1 k€
Coût déploiement	Aérien: qqs k€ / j Terrestre: 0.1 k / j	Aérien: qqs k€ / j Terrestre: 0.1 k / j

Chrs

Sources de données

- Vous
- IGN: RGEALTI 1 m, MNT+MNT sur zones inondables
- Observatoires: littoral, glissements de terrain, failles
- OpenTopography: entrepôt de données (ndp)

Visualisation

• Représentation en plan de la topographie

 Représentation de la forme par les altitudes, les pentes, les courbures et leurs dérivés

 Représentation interprétable par le cerveau humain

Relief ombré

Lidar Data Copyright Walks of Peace in the Soča Region Foundation

315° 🔿 45<u>×</u>

0

Relief ombré

- Facile à calculer et naturel à interpréter
- Disponible dans les logiciels de SIG

++

• Révèle de faibles reliefs en lumière rasante

- Saturation dans les zones d'éclairage/ombre forts
- Les structures linéaires parallèles à l'éclairage sont estompées

Ombrage composite en RVB

RGB 0°℃, 337,5°℃, 315°℃ ∠_45°

)

ACP de reliefs ombrés

- Réduction de l'information (analyse en composantes principales)
 - généralement, les 3 premières composantes contiennent plus de 99% de l'information
- Devereux et al. 2008. Antiquity.

16 reliefs ombrés (100 %)

Trois premières composantes (> 99 %)

ACP de reliefs ombrés - RVB

0

50 m

Modèle de relief local (LRM)

- Suppression du relief associé aux objets "régionaux"
 - Amplification des petits objets

 Soustractionde la valeur moyenne (médiane, gaussienne, etc...) sur une fenêtre glissante

280 m Modèle de relief local (LRM)

270 m

MNT intitial

Distribution gaussienne, fenêtre de 50 m

0

280 m 280 m

270 m

Tendance régionale

Distribution gaussienne, fenêtre de 50 m

0

Modèle de relief local (LRM)

-1 m

1 m

MNT final = initial - tendance

Distribution gaussienne, fenêtre de 50 m

Etudes de cas

cnrs

Exploitation minière

- Suivi des volumes excavés par photogrammétrie (UAV)
- Suivi des filons (mines à ciel ouvert)
- Gestion du stockage des granulats

CITS

Barrick Gold

Cartographie Géologique

CITS

Chen et al., 2015

55

Géologie en hauteur

- Construction de modèle
 3D précis et orienté
- Identification semiautomatique strati/failles
- Mesures structurales statistiques
- Mesures de points inaccessibles
- Construction de log continu

Suivi d'instabilités

- Cartographie de familles de joints
- Identification des fissures ouvertes/fermées

CITS

Danzi et al., 2012

Carto. glissements de terrain

CITS

- Glissement de Super-Sauze
- Photogrammétrie
 UAV
- Cartographie de détail des zones de déformation
- Etat initial pour suivi

Glissements de terrain

- Photogrammétrie UAV
- Suivi des déplacements par différence topo (V) et corrélation d'image (H)
- Déplacements de ~3 m sur une année

CITS

Surveillance de volcans

- Volcan de Colima (MX)
- 4 survols 2007-2011
- Densité 4-45 pts/m²

- Dôme excentré de 30m
- Perte de volume entre 2010 et 2011
- Formation de failles lors de l'évènement de juin 2011

CITS

James & Varley, 2012

Surveillance des glaciers

- Suivi de la fonte (réponse climatique)
- Variations saisonnières de la dynamique d'écoulement
- Alimentation des lacs de fonte et gestion de l'aléa GLOFs

