

Université de Montpellier - Faculté des Sciences

Année Universitaire 2017-2018

HLMA 206 Contrôle Continu du vendredi 23 mars 2018

Durée: 1h30

Questions de cours

Soit $f: \mathbb{K}^p \to \mathbb{K}^n$ une application linéaire et $\mathcal{A} = (u_1, \dots, u_q)$ une famille de q vecteurs de \mathbb{K}^p . On note $\mathcal{B} = (f(u_1), \dots, f(u_q))$ la famille image dans \mathbb{K}^n .

- 1. Donner les définitions d'une famille libre de \mathbb{K}^p et d'une famille génératrice de \mathbb{K}^p .
- 2. On suppose que la famille \mathcal{A} est libre et que f est injective. Montrer que la famille \mathcal{B} est libre dans \mathbb{K}^n .
- 3. On suppose que la famille \mathcal{A} est génératrice de \mathbb{K}^p et que f est surjective. Montrer que la famille \mathcal{B} est génératrice de \mathbb{K}^n .

Exercice 1

Soit $f:\mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie, pour tout $(x,y,z) \in \mathbb{R}^3$ par

$$f(x, y, z) = (y + z, -x - 2y - z, -x + y + 2z)$$

- 1. Déterminer $\ker(f)$ et $\operatorname{im}(f)$ et donner une base de chacun. Ces deux sous-espaces vectoriels sont-ils supplémentaires dans \mathbb{R}^3 ?
- 2. Soient $u_1 = (1, -1, 1)$, $u_2 = (1, -2, 1)$ et $u_3 = (1, -1, 2)$. Montrer que $\mathcal{A} = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 . Quelle est la matrice de passage de la base canonique \mathcal{C} vers \mathcal{A} ? Si $v = (x, y, z) \in \mathbb{R}^3$, quelles sont les coordonnées de v dans la base \mathcal{A} ?
- 3. On note $A = \operatorname{Mat}_{\mathcal{C}}(f)$ et $B = \operatorname{Mat}_{\mathcal{A}}(f)$. Déterminer A et B, et en déduire $\operatorname{Mat}_{\mathcal{C}}(f^n)$ pour tout $n \in \mathbb{N}$ (on pourra traiter séparément les cas où n est pair et impair).

Exercice 2

Soit $a \in \mathbb{C}$ et soit $f : \mathbb{C}^4 \to \mathbb{C}^4$ l'application linéaire dont la matrice dans la base canonique est donnée par

$$A = \begin{pmatrix} 3 & a & -2 & a-2 \\ -a & 1-a & a & 0 \\ 2 & a & -1 & a-2 \\ 2-a & 0 & a-2 & a-1 \end{pmatrix}$$

- 1. Déterminer les valeurs de a pour lesquelles f est un isomorphisme.
- 2. On suppose que f n'est pas un isomorphisme. Montrer que f est une projections sur un sous-espace E parallèlement à un sous-espace F (on ne demande pas de déterminer les sous-espaces E et F).