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Preface

Microeconomic Theory is intended to serve as the text for a first-year graduate
course in microcconomic theory. The original sources for much of the book’s material
are the lecture notes that we have provided over the years to students in the first-year
microeconomic theory course at Harvard. Starting from these notes, we have tried
to produce a text that covers in an accessible yet rigorous way the full range of topics
taught in a typical first-year course.

The nonlexicographic ordering of our names deserves some explanation. The
project was first planned and begun by the three of us in the spring of 1990.
However, in February 1992, after early versions of most of the book’s chapters had
been drafted, Jerry Green was selected to serve as Provost of Harvard University,
a position that forced him to suspend his involvement in the project. From this
point in time until the manuscript’s completion in June 1994, Andreu Mas-Colell
and Michacl Whinston assumed full responsibility for the project. With the conclusion
of Jerry Green’s service as Provost, the original three-person team was reunited for
the review of galley and page prools during the winter of 1994/1995.

The Organization of the Book

Microcconomic theory as a discipline begins by considering the behavior of individual
agents and builds from this foundation to a theory of aggregate economic outcomes.
Microeconomic Theory (the book) follows exactly this outline. It is divided into five
parts. Part T covers individual decision making. It opens with a general treatment of
individual choice and procecds to develop the classical theories of consumer and
producer behavior. It also provides an introduction to the theory of individual choice
under uncertainty. Part I covers game theory, the extension of the theory of
individual decision making to situations in which several decision makers interact.
Part 11 initiates the investigation of market equilibria. It begins with an introduction
to competitive equilibrium and the fundamental theorems of welfare economics in
the context of the Marshallian partial equilibrium model. It then explores the
possibilities for market failures in the presence of externalities, market power, and
asymmetric information. Part 1V substantially extends our previous study of
competitive markets to the general equilibrium context. The positive and normative
aspects of the theory are examined in detail, as are extensions of the theory to
cquilibrium under uncertainty and over time. Part V studies welfare economics. It
discusses the possibilities for aggregation of individual preferences into social
preferences both with and without interpersonal utility comparisons, as well as
the implementation of social choices in the presence of incomplete information
about agents’ preferences. A Mathematical Appendix provides an introduction to
most of the more advanced mathematics used in the book (e.g., concave/convex

xiii



PREFACE

functions, constrained optimization techniques, fixed point theorems, etc.) as well as
references for further reading.

The Style of the Book

In choosing the content of Microeconomic Theory we have tried to err on the side
of inclusion. Our aim has been to assure coverage of most topics that instructors in
a first-year graduate microeconomic theory course might want to teach. An inevitable
consequence of this choice is that the book covers more topics than any single
first-year course can discuss adequately. (We certainly have never taught all of it in
any one year.) Our hope is that the range of topics presented will allow instructors
the freedom to emphasize those they find most important.

We have sought a style of presentation that is accessible, yet also rigorous.
Wherever possible we give precise definitions and formal proofs of propositions. At
the same time, we accompany this analysis with extensive verbal discussion as well
as with numerous examples to illustrate key concepts. Where we have considered a
proof or topic cither too difficult or too peripheral we have put it into smaller type
to allow students to skip over it easily in a first reading.

Each chapter offers many exercises, ranging from easy to hard [graded from A
(easiest) to C (hardest)] to help students master the material. Some of these exercises
also appear within the text of the chapters so that students can check their
understanding along the way (almost all of these are level A exercises).

The mathematical prerequisites for use of the book are a basic knowledge of
calculus, some familiarity with linear algebra (although the use of vectors and
matrices is introduced gradually in Part I), and a grasp of the elementary aspects of
probability. Students also will find helpful some familiarity with microeconomics at
the level of an intermediate undergraduate course.

Teaching the Book

The material in this book may be taught in many different sequences. Typically we
have taught Parts I-I1l in the Fail semester and Parts IV and V in the Spring
(omitting some topics in each case). A very natural alternative to this sequence (one
used in a number of departments that we know of) might instead teach Parts I and IV
in the Fall, and Parts I1, 11, and V in the Spring.! The advantage of this alternative
scquence is that the study of general equilibrium analysis more closely follows the
study of individual behavior in competitive markets that is developed in Part 1. The
disadvantage, and the reason we have not used this sequence in our own course, is
that this makes for a more abstract first semester; our students have seemed happy
to have the change of pace offered by game theory, oligopoly, and asymmetric
information after studying Part I.

The chapters have been written to be relatively self-contained. As a result, they
can be shifted easily among the parts to accommodate many other course sequences.
For example, we have often opted to teach game theory on an “as needed” basis,

I. Obviously, some adjustment needs to be made by programs that operate on a quarter
system.
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breaking it up into segments that are discussed right before they are used (e.g.,
Chapter 7, Chapter 8, and Sections 9.A-B before studying oligopoly, Sections 9.C-D
before covering signaling). Some other possibilities include teaching the aggregation
of preferences (Chapter 21) immediately after individual decision making and
covering the principal-agent problem (Chapter 14), adverse selection, signaling, and
screcning (Chapter 13), and mechanism design (Chapter 23) together in a section of
the course focusing on information economics.

In addition, even within each part, the sequence of topics can often be altered
casily. For example, it has been common in many programs to teach the preference-
based theory of consumer demand before teaching the revealed preference, or
“choice-based,” theory. Although we think there are good reasons to reverse this
sequence as we have done in Part 1,2 we have made sure that the material on demand
can be covered in this more traditional way as well.?

On Mathematical Notation

For the most part, our use of mathematical notation is standard. Perhaps the most
important mathematical rule to keep straight regards matrix notation. Put simply,
vectors are always treated mathematically as column vectors, even though they are
often displayed within the written text as rows to conserve space. The transpose of
the (column) vector x is denoted by xT. When taking the inner product of two
(column) vectors x and y, we write x-y; it has the same meaning as xy. This and
other aspects of matrix notation are reviewed in greater detail in Section M.A of the
Mathematical Appendix.

To help highlight definitions and propositions we have chosen to display them
in a different typeface than is used elsewhere in the text. One perhaps unfortunate
consequence of this choice is that mathematical symbols sometimes appear slightly
differently there than in the rest of the text. With this warning, we hope that no
confusion will result. :

Summation symbols (3) are displayed in various ways throughout the text.

Somectimes they are written as
N

z

n=1
(usually only in displayed equations), but often to conserve space they appear as
3°¥_,» and in the many cases in which no confusion exists about the upper and lower

limit of the index in the summation, we typically write just 3°,. A similar point
applies to the product symbol [].

2. In particular, it is much easier to introduce and derive many properties of demand in the
choice-based theory than it is using the preference-based approach; and the choice-based theory
gives you almost all the properties of demand that follow from assuming the existence of rational
preferences.

3. To do this, one introduces the basics of the consumer’s problem using Sections 2.A-D and
3.A-D, discusses the properties of uncompensated and compensated demand functions, the indirect
utility (unction, and the expenditure function using Sections 3.D-1 and 2.E, and then studies revealed
preference theory using Sections 2.F and 3.J (and Chapter | for a more general overview of the
two approaches).
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Also described below are the meanings we attach to a few mathematical symbols
whose use is somewhat less uniform in the literature [in this list, x = (x,,..., xy)
and y = (¥,,. .., yy) are (column) vectors, while X and Y are sets]:

Symbol Meaning

x2y x, 2y, foralln=1,...,N.

xX»y x,>y,foralln=1,...,N.

XecVY weak set inclusion (x € X implies x e Y).

X\Y The set {x:xe X but x¢ Y}.

E.[f(x,y)] The expected value of the function f(-) over realizations of the

random variable x. (When the expectation is over all of the
arguments of the function we simply write E[ f(x, y)].)
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P ART O N E

Individual

Decision Making

A distinctive feature of microecconomic theory is that it aims to model economic
activity as an interaction of individual economic agents pursuing their private
interests. [t is therefore appropriate that we begin our study of microeconomic theory
with an analysis of individual decision making.

Chapter 1 is short and preliminary. It consists of an introduction to the theory
of individual decision making considered in an abstract setting. It introduces the
decision maker and her choice problem, and it describes two related approaches to
modeling her decisions. One, the preference-based approach, assumes that the decision
maker has a preference relation over her set of possible choices that satisfies certain
rationality axioms. The other, the choice-based approach, focuses directly on the
decision maker's choice behavior, imposing consistency restrictions that parallel the
rationality axioms of the preference-based approach.

The remaining chapters in Part One study individual decision making in explicitly
cconomic contexts. It is common in microeconomics texts—and this text is no
exception—to distinguish between two sets of agents in the economy: individual
consumers and firms. Because individual consumers own and run firms and therefore
ultimately determine a firm's actions, they are in a sense the more fundamental
clement of an economic model. Hence, we begin our review of the theory of economic
decision making with an examination of the consumption side of the economy.

Chapters 2 and 3 study the behavior of consumers in a market economy. Chapter 2
begins by describing the consumer's decision problem and then introduces the
concept of the consumer’s demand function. We then proceed to investigate the
implications for the demand function of several natural properties of consumer
demand. This investigation constitutes an analysis of consumer behavior in the spirit
of the choice-based approach introduced in Chapter 1.

In Chapter 3, we develop the classical preference-based approach to consumer
demand. Topics such as utility maximization, expenditure minimization, duality,
integrability, and the measurement of welfare changes are studied there. We also
discuss the relation between this theory and the choice-based approach studied in
Chapter 2.

In economic analysis, the aggregate behavior of consumers is often more
important than the behavior of any single consumer. In Chapter 4, we analyze the

3



4

PART (: INDIVIDUAL DECISION MAKING

extent to which the properties of individual demand discussed in Chapters 2 and 3
also hold for aggregate consumer demand.

In Chapter 5, we study the behavior of the firm. We begin by posing the firm’s
decision problem, introducing its technological constraints and the assumption of
profit maximization. A rich theory, paralleling that for consumer demand, emerges.
In an important sense, however, this analysis constitutes a first step because it takes
the objective of profit maximization as a maintained hypothesis. In the last section
of the chapter, we comment on the circumstances under which profit maximization
can be derived as the desired objective of the firm’s owners.

Chapter 6 introduces risk and uncertainty into the theory of individual decision
making. In most economic decision problems, an individual's or firm's choices do
not result in perfectly certain outcomes. The theory of decision making under
uncertainty developed in this chapter therefore has wide-ranging applications to
economic problems, many of which we discuss later in the book.

1.A

CHAPTEHR

Preference and Choice

Introduction

In this chapter, we begin our study of the theory of individual decision making by
considering it in a completely abstract setting. The remaining chapters in Part |
develop the analysis in the context of explicitly economic decisions.

The starting point for any individual decision problem is a set of possible (mutually
exclusive) alternatives from which the individual must choose. In the discussion that
follows, we denote this set of alternatives abstractly by X. For the moment, this set
can be anything. For example, when an individual confronts a decision of what career
path to follow, the aiternatives in X might be: {go to law school, go to graduate
school and study economics, go to business school, . ... become a rock star}. In
Chapters 2 and 3, when we consider the consumer’s decision problem, the elements
of the set X are the possible consumption choices.

There are two distinct approaches to modeling individual choice behavior. The
first, which we introduce in Section 1.B, treats the decision maker's tastes, as
summarized in her preference relation, as the primitive characteristic of the individual.
The theory is developed by first imposing rationality axioms on the decision maker’s
preferences and then analyzing the consequences of these preferences for her choice
behavior (i.c., on decisions made). This preference-based approach is the more
traditional of the two, and it is the one that we emphasize throughout the book.

The second approach, which we develop in Section 1.C, treats the individual's
choice behavior as the primitive feature and proceeds by making assumptions directly
concerning this behavior. A central assumption in this approach, the weak axiom of
revealed preference, imposes an clement of consistency on choice behavior, in a sense
parallcling the rationality assumptions of the preference-based approach. This
choice-based approach has several attractive features. It leaves room, in principle,
for more general forms of individual behavior than is possible with the preference-
based approach. It also makes assumptions about objects that are directly observable
(choice behavior), rather than about things that are not (preferences). Perhaps most
importantly, it makes clear that the theory of individual decision making need not
be based on a process of introspection but can be given an entirely behavioral
foundation.

s
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CHAPTER 1: PREFERENCE AND CHOICE

SECTION 1.8: PREFERENCE RELATIONS

1.B

Understanding the relationship between these two different approaches to
modeling individual behavior is of considerable interest. Section 1.D investigates this
question, examining first the implications of the preference-based approach for choice
behavior and then the conditions under which choice behavior is compatible with
the existence of underlying preferences. (This is an issue that also comes up in
Chapters 2 and 3 for the more restricted setting of consumer demand.)

For an in-depth, advanced treatment of the material of this chapter, sec Richter
(1971).

Preference Relations

In the preference-based approach, the objectives of the decision maker are summar-
ized in a preference relation, which we denote by . Technically, 2 is a binary
relation on the set of alternatives X, allowing the comparison of pairs of alternatives
x,y€ X. We read x 2 y as “x is at least as good as y." From X, we can derive two

other important relations on X:
(i) The strict preference relation, >, defined by
x>y < xZybutnoty>x
and read “x is preferred to y."!
(i) The indifference relation, ~, defined by
X~y< xzyand yZx
and read “x is indifferent to y.”

In much of microeconomic theory, individual preferences are assumed to be
rational. The hypothesis of rationality is embodied in two basic assumptions about
the preference relation 2: completeness and transitivity.?

Definition 1.B.1: The preference relation > is rational if it possesses the following two

properties:

(i) Completeness: for all x, y € X, we have that x 2y or y 2 x (or both).
(i) Transitivity: For all x,y,ze X, if x2y and y Z 2, then x = 2.

The assumption that > is complete says that the individual has a well-defined
preference between any two possible alternatives. The strength of the completeness
assumption should not be underestimated. Introspection quickly reveals how hard
it is to evaluate alternatives that are far from the realm of common experience. It takes
work and serious reflection to find out one’s own preferences. The completeness
axiom savs that this task has taken place: our decision makers make only meditated
choices.

Transitivity is also a strong assumption, and it goes to the heart of the concept of

1. The symbol < is read as “if and only il™ The literature sometimes speaks of x 2 v as “x
is weakly preferred to " and x>y as “x is strictly preferred to y." We shall adhere to the
terminology introduced above.

2. Note that there is no unified terminology in the literature; weak order and complete preorder
are common alternatives to the term rational preference relation. Also, in some presentations, the
assumption that > is reflexive (defined as x 2= x for all xe X) is added to the completeness and
transitivity assumptions. This property is, in fact, implied by completencss and so is redundant.

rationality. Transitivity implies that it is impossible to face the decision maker with
a sequence of pairwise choices in which her preferences appear to cycle: for example,
fecling that an apple is at least as good as a banana and that a banana is at least as
good as an orange but then also preferring an orange over an apple. Like the
completeness property, the transitivity assumption can be hard to satisfly when
evaluating alternatives far from common experience. As compared to the complete-
ness property, however, it is also more fundamental in the sense that substantial
portions of economic theory would not survive if economic agents could not be
assumed to have transitive preferences.

The assumption that the preference relation X is complete and transitive has
implications for the strict preference and indifference relations > and ~. These are
summarized in Proposition 1.B.1, whose proof we forgo. (After completing this
section, try to establish these properties yourself in Exercises 1.B.1 and 1.B.2))

Proposition 1.B.1: If X is rational then:

(i) > is both irreflexive (x > x never holds) and transitive (it x >y and y > 2,
then x > 2).
(i) ~ is reflexive (x ~ x for all x), transitive (it x ~y and y ~ 2, then x ~ 2),
and symmetric (if X ~ y, then y ~ x).
(iti) if x>y z, then x> 2.

The irreflexivity of > and the reflexivity and symmetry of ~ are sensible properties
for strict preference and indifference relations. A more important point in Proposition
1.B.1 is that rationality of 2 implies that both > and ~ are transitive. In addition,
a transitive-like property also holds for > when it is combined with an at-least-as-
good-as relation, 2.

An individual's preferences may fail to satisfy the transitivity property for a number of
reasons. One difficulty arises because of the problem of just perceptible differences. For
example, if we ask an individual to choose between two very similar shades of gray for painting
her room, she may be unable to tel} the difference between the colors and will therefore be
indifferent. Suppose now that we offer her a choice between the lighter of the two gray paints
and a slightly lighter shade. She may again be unable to tell the difference. If we continue in
this fashion, letting the paint colors get progressively lighter with each successive choice
experiment, she may express indifference at each step. Yet, if we offer her a choice between
the original (darkest) shade of gray and the final (almost white) color, she would be able to
distinguish between the colors and is likely to prefer one of them. This, however, violates
transitivity.

Another potential problem arises when the manner in which alternatives are presented
matters for choice. This is known as the framing problem. Consider the following example,
paraphrased from Kahneman and Tversky (1984):

Imagine that you are about to purchase a stereo for 125 dollars and a calculator for 15
dollars. The salesman tells you that the calculator is on sale for 5 dollars less at the other
branch of the store. lociated 20 minutes away. The stereo is the same price there. Would
you make the trip to the other store?

It turns out that the fraction of respondents saying that they would travel to the other store
for the 5 dollar discount is much higher than the fraction who say they would travel when the
question is changed so that the 5 doltar saving is on the stereo. This is so even though the
ultimate saving obtained by incurring the inconvenience of travel is the same in both
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cases.® Indeed, we would expect indifference to be the response to the following question:

Because of a stockout you must travel to the other store to get the two items, but you will
receive S dollars off on either item as compensation. Do you care on which item this 5
dollar rebate is given?

If so, however, the individual violates transitivity. To see this, denote

x = Travel to the other store and get a 5 dollar discount on the calculator.
y = Travel to the other store and get a 5 dollar discount on the sterco.
z = Buy both items at the first store.

The first two choices say that x > z and z > y, but the last choice reveals x ~ y. Many problems
of framing arise when individuals are faced with choices between alternatives that have
uncertain outcomes (the subject of Chapter 6). Kahneman and Tversky (1984) provide a
number of other interesting examples.

At the same time, it is often the case that apparently intransitive behavior can be explained
fruitfully as the result of the interaction of several more primitive rational (and thus transitive)
preferences. Consider the following two examples

(i) A household formed by Mom (M), Dad (D), and Child (C) makes decisions by majority
voting. The alternatives for Friday evening entertainment are attending an opera (0), a rock
concert (R), or an ice-skating show (I). The threc members of the household have the rational
individual preferences: 0 >y R >y I, 1 >p0 >p R, R>¢1 ¢ 0, where >y, >p, >¢ are the
transitive individual strict preference relations. Now imagine three majority-rule votes: O versus
R, R versus 1, and I versus O. The result of these votes (O will win the first, R the second, and
I the third) will make the houschold's preferences 2 have the intransitive form: 0 > R > I > 0.
(The intransitivity illustrated in this example is known as the Condorcet paradox, and it is
a centra!l difficulty for the theory of group decision making. For further discussion, sec
Chapter 21.)

(ii) Intransitive decisions may also sometimes be viewed as a manifestation of a change of
tastes. For example, a potential cigarette smoker may prefer smoking one cigarette a day to
not smoking and may prefer not smoking to smoking heavily. But once she is smoking one
cigarette a day, her tastes may change, and she may wish to increase the amount that she
smokes. Formally, letting y be abstinence, x be smoking one cigarette a day, and z be heavy
smoking, her initial situation is y, and her preferences in that initial situation are x> y > z.
But once x is chosen over y and z, and there is a change of the individual’s current situation
from y to x, her tastes change to z > x > ). Thus, we apparently have an intransitivity:
7> x > 2. This change-of-tastes model has an important theoretical bearing on the analysis
of addictive behavior. It also raises interesting issues related to commitment in decision making
[see Schelling (1979)]. A rational decision maker will anticipate the induced change of tastes
and will therefore attempt to tie her hand to her initial decision (Ulysses had himself tied to
the mast when approaching the island of the Sirens).

1 often happens that this change-of-tastes point of view gives us a well-structured way to
think about nonrational decisions. See Elster (1979) for philosophical discussions of this and
similar points.

Utility Functions

In economics, we often describe preference relations by means of a utility Junction.
A utility function u(x) assigns a numerical value to each element in X, ranking the

3. Kahneman and Tversky attribute this finding to individuals keeping “mental accounts™ in
which the savings are compared to the price of the item on which they are received.
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elements of X in accordance with the individual's preferences. This is stated more
precisely in Definition 1.B.2.

Definition 1.B.2: A function u:X — R is a utility function representing preference
relation > if, for all x, y e X,

xzy < u(x)zu(y).

Note that a utility function that represents a preference relation 2 is not unique.
For any strictly increasing function f: R - R, w(x) = f(u(x)) is a new utility function
representing the same preferences as u("); see Exercise 1.B.3. It is only the ranking
of alternatives that matters. Properties of utility functions that are invariant for any
strictly increasing transformation are called ordinal. Cardinal propertics are those not
preserved under all such transformations. Thus, the preference relation associated
with a utility function is an ordinal property. On the other hand, the numerical values
associated with the alternatives in X, and hence the magnitude of any differences in
the utility measure between alternatives, are cardinal properties.

The ability to represent preferences by a utility function is closely linked to the
assumption of rationality. In particular, we have the result shown in Proposition
1.B.2.

Proposition 1.B.2: A preference relation > can be represented by a utility function
only if it is rational.

Proof: To prove this proposition, we show that if there is a utility function that
represents preferences 2, then Z must be complete and transitive.

Completeness. Because u(-) is a real-valued function defined on X, it must be that
for any x, y € X, either u(x) = u(y)oru(y) = u(x). But because u(-) is a utility function
representing 2, this implies either that x > y or that y 2 x (recall Definition 1.B.2).
Hence, = must be complete.

Transitivity. Suppose that xz y and y 2 2. Because u(-) represents 2>, we must
have u(x) = u(y) and u(y) 2 u(z). Therefore, u(x) > u(z). Because u(-) represents z,
this implies x 2 z. Thus, we have shown that x > yand yx = imply x X z, and so

transitivity is established. =

At the same time, one might wonder, can any rational preference relation 2 be
described by some utility function? It turns out that, in general, the answer is no. An
example where it is not possible to do so will be discussed in Section 3.G. One case
in which we can always represent a rational preference relation with a utility function
arises when X is finite (see Exercise 1.B.5). More interesting utility representation
results (e.g., for sets of alternatives that are not finite) will be presented in later
chapters.

1.C Choice Rules

In the second approach to the theory of decision making, choice behavior itsell is
taken to be the primitive object of the theory. Formally, choice behavior is
represented by means of a choice structure. A choice structure (@, C(+)) consists of
two ingredicnts:

"
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(i) @ is a family (a set) of nonempty subsets of X; that is, every element of # is
a set B c X. By analogy with the consumer theory to be developed in Chapters 2
and 3, we call the clements B € 8 budget sets. The budget sets in @ should be thought
of as an exhaustive listing of all the choice experiments that the institutionally,
physically, or otherwise restricted social situation can conceivably pose to the decision
maker. It need not, however, include all possible subsets of X. Indeed, in the case of
consumer demand studied in later chapters, it wiil not.

(ii) C(-) is a choice rule (technically, it is a correspondence) that assigns a
nonempty set of chosen elements C(B) < B for every budget set B e #. When C(B)
contains a single element, that element is the individual’s choice from among the
alternatives in B. The set C(B) may, however, contain more than one element. When
it does, the elements of C(B) are the alternatives in B that the decision maker might
choose; that is, they are her acceptable alternatives in B. In this case, the set C(B)
can be thought of as containing those alternatives that we would actually see chosen
if the decision maker were repeatedly to face the problem of choosing an alternative
from set B.

Example 1.C.1: Suppose that X = {x, y, z} and & = {{x, y}, {x, y, z}}. Onec possible
choice structure is (@, C,(+)), where the choice rule C,(-) is: Cy({x, y}) = {x} and
C,({x, y, 2}) = {x}. In this case, we sec x chosen no matter what budget the decision
maker faces.

Another possible choice structure is (%, Cy()), where the choice rule Cy(*) is:
Co({x, y}) = {x} and Cy({x, y, z}) = {x, y}. In this case, we see x chosen whenever the
decision maker faces budget {x, y}, but we may see either x or y chosen when she
faces budget {x,y,z}. =

When using choice structures to model individual behavior, we may want to
impose some “reasonable™ restrictions regarding an individual's choice behavior. An
important assumption, the weak axiom of revealed preference [first suggested by
Samuelson; see Chapter 5 in Samuelson (1947)], reflects the expectation that an
individual's observed choices will display a certain amount of consistency. For
example, if an individual chooses alternative x (and only that) when faced with a
choice between x and y, we would be surprised to see her choose y when faced with
a decision among x, y, and a third alterative z. The idea is that the choice of x when
facing the alternatives {x, y} reveals a proclivity for choosing x over y that we should
expect to sce reflected in the individual’s behavior when faced with the alternatives
{x,y,z}.*

The weak axiom is stated {ormally in Definition 1.C.1.

Definition 1.C.1: The choice structure (#, C(-)) satisfies the weak axiom of revealed

preference if the following property hoids:

If for some B € # with x, y € 8 we have x € C(B), then for any B’ € # with
x,y€ B’ and ye C(B'), we must aiso have x e C(8').

In words, the weak axiom says that if x is ever chosen when y is available, then there
can be no budget set containing both alternatives for which y is chosen and x is not.

4. This proclivity might reflect some underlying “preference” for x over y but might also arise
in other ways. [t could, for example, be the result of some evolutionary process.
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Note how the assumption that choice behavior satisfies the weak axiom captures the
consistency idea: If C({x, y}) = {x}, then the weak axiom says that we cannot have
Cl{x,y,2}) = {y}*

A somewhat simpler statement of the weak axiom can be obtained by defining
a revealed preference relation =* from the observed choice behavior in C(*).

Definition 1.C.2: Given a choice structure (@, C(-)) the revealed preference relation

1.D

>* is defined by

x*y < there is some B € # such that x, y € B and xe C(B).

We read x >*y as “x is revealed at least as good as y." Note that the revealed
preference relation 2* need not be either complete or transitive. In particular, for
any pair of altcrnatives x and y to be comparable, it is necessary that, for some Be 4,
we have x, y € B and either x € C(B) or y € C(B), or both. ’

We might also informally say that “x is revealed preferred to y” if there is some
Be A such that x, y€ B, xe C(B), and y ¢ C(B), that is, i x is ever chosen over y
when both are feasible.

With this terminology, we can restate the weak axiom as follows: “If x is revealed
at least as good as y. then y cannot be revealed preferred to x.

Example 1.C.2: Do the two choice structures considered in Example 1.C.1 satisly the
weak axiom? Consider choice structure (4, C,(+)). With this choice structure, we have
x 2* yand x >* z, but there is no revealed preference relationship that can be inferred
between y and z. This choice structure satisfies the weak axiom because y and z are
never chosen.

Now consider choice structure (4, C,(-)). Because Co({x, y, 2}) = {x, y}, we have
y*x (as well as x Z*y, xz*z, and y x*2). But because Cy({x, y} = {x}, x is
revealed preferred 1o y. Therefore, the choice structure (@, C,) violates the weak
axiom. =

We should note that the weak axiom is not the only assumption concerning choice
behavior that we may want to impose in any particular setting. For example, in the
consumer demand setting discussed in Chapter 2, we impose further conditions that
arisc naturally in that context.

The weak axiom restricts choice behavior in a manner that parallels the use of
the rationality assumption for preference relations. This raises a question: What is
the precise relationship between the two approaches? In Section 1D, we explore
this matter.

The Relationship between Preference Relations and
Choice Rules

We now address two fundamental questions regarding the relationship between the
two approaches discussed so far:

5. n fact, it says more: We must have C({x., y.z}) = {x}, ={z}, or ={x.z}. You are asked to
show this in Exercise 1.C.1. See also Exercise 1.C.2.
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(i) If a decision maker has a rational preference ordering X, do her decisions
when facing choices from budget sets in & necessarily generate a choice
structure that satisfies the weak axiom?

(i) If an individual's choice behavior for a family of budget sets # is captured
by a choice structure (&, C(-)) satisfying the weak axiom, is there necessarily a
rational preference relation that is consistent with these choices?

As we shall see, the answers to these two questions are, respectively, “yes” and
“maybe™.

To answer the first question, suppose that an individual has a rational preference
relation > on X. If this individual faces a nonempty subset of alternatives B < X,
her preference-maximizing behavior is to choose any one of the elements in the set:

C*(B, =)= {xe B:xx yforevery ye B}
The elements of set C*(B, ) are the decision maker's most preferred alternatives in
B. In principle, we could have C*(B, %) = & for some B; but if X is finite, or if
suitable (continuity) conditions hold, then C*(B, ) will be nonempty.® From now
on, we will consider only preferences 2z and families of budget sets % such that
C*(B, ) is nonempty for all Be #. We say that the rational preference relation 2
generates the choice structure (#, C*(-, Z)).

The result in Proposition 1.D.1 tells us that any choice structure generated by
rational preferences necessarily satisfies the weak axiom.

Proposition 1.D.1: Suppose that X is a rational preference relation. Then the choice

structure generated by =, (4, C*(-, X)), satisfies the weak axiom.

Proof: Suppose that for some Bed, we have x,y€ B and xe C*(B, Z). By the
definition of C*(B, =), this implies x 2 y. To check whether the weak axiom holds,
suppose that for some B'€ # withx,y € B', we have y € C*(B', ). This implies that
y 2z for all z € B'. But we already know that x 2 y. Hence, by transitivity, x 2 z for
all ze B, and so x € C*(B’, ). This is preciscly the conclusion that the weak axiom
demands. =

Proposition 1.D.1 constitutes the “yes” answer to our first question. That is, if
behavior is generated by rational preferences then it satisfies the consistency
requircments embodied in the weak axiom.

In the other direction (from choice to preferences), the relationship is more subtle.
To answer this second question, it is useful to begin with a definition.

Definition 1.D.1: Given a choice structure {(#, C(')), we say that the rational prefer-
ence relation > rationalizes C(-) relative to # if

C(B)=C*8.2)
for all B € #, that is, if > generates the choice structure (#,C().

In words, the rational preference relation > rationalizes choice rule C(+) on #

~

if the optimal choices generated by 2 (captured by C*(-, ) coincide with C(*) for

6. Exercise 1.D.2 asks you to establish the nonemptiness of C*(B, ) for the case where X is
finite. For general results, Sce Section M.F of the Mathematical Appendix and Section 3.C for a
specific application.

alt budget sets in &. In a sense, preferences explain behavior; we can interpret the
decision maker’s choices as if she were a preference maximizer. Note that in general,
there may be more than one rationalizing preference relation X for a given choice
structure (@, C(+)) (see Exercise 1.D.1).

Proposition 1.D.1 implies that the weak axiom must be satisfied if there is to be
a rationalizing preference relation. In particular, since C*(*, ) satisfies the weak
axiom for any 3=, only a choice rule that satisfies the weak axiom can be rationalized.
It turns out, however, that the weak axiom is not sufficient to ensure the existence
of a rationalizing preference relation.

Example 1.D.1: Suppose that X = {x,y,z},# = {{x yh {3 2} {x 23} C(x, ¥ = {xh
c{y 2z} = {¥}, and C({x, z}) = {z}. This choice structure satisfies the weak axiom
(you should verify this). Nevertheless, we cannot have rationalizing preferences. To
see this, note that to rationalize the choices under {x, y} and {y, 2z} it would be
necessary for us to have x >y and y >z But, by transitivity, we would then have
x > z, which contradicts the choice behavior under {x, z}. Therefore, there can be no
rationalizing preference relation. =

To understand Example 1.D.1, note that the more budget sets there are in 4, the
more the weak axiom restricts choice behavior; there are simply more opportunities
for the decision maker's choices to contradict one another. In Example 1.D.1, the set
{x, y, 2} is not an element of 4. As it happens, this is crucial (see Exercises 1.D.3). As
we now show in Proposition 1.D.2, if the family of budget sets 4 includes enough
subsets of X, and if (@, C(+)) satisfics the weak axiom, then there exists a rational
preference relation that rationalizes C() relative to @ [this was first shown by Arrow
(1959)].

Proposition 1.D.2: If (&, C(+)) is a choice structure such that

(i) the weak axiom is satisfied,

(i) # includes all subsets of X of up to three elements,
then there is a rational preference reiation 2 that rationalizes C(-) relative to &,
that is, C(B) = C*(8, x) for all BeA. Furthermore, this rational preference
relation is the only preference relation that does so.

Proof: The natural candidate for a rationalizing preference relation is the revealed preference
relation >*. To prove the result, we must first show two things: (i) that X* is a rational
preference relation, and (ii) that 2* rationalizes C(-) on #. We then argue, as point (iii), that
Z* is the unique preference relation that does so.

(i) We first check that Z* is rational (i.e., that it satisfies completeness and transitivity).

Completeness By assumption (ii), {x, y} € #. Since either x or y must be an element of
C({x. y}), we must have x * v, or y X* x, or both. Hence 2* is complete.

Transitivity Let xz*y and yZ*z. Consider the budget set {x, y, z} € #. It suffices to
prove that x & C({x, y, 2}), since this implies by the definition of X* that x z*z. Because
C({x, v, z}) # Q. at least one of the alternatives x, y, or z must be an element of C({x, y, z}).
Supposc that y € C({x, y, z}). Since x Z*y, the weak axiom then yields x € C({x, y, z}), as we
want. Suppose instead that z € C({x, y, 2}); since y x* 2, the weak axiom yields y € C({x, y, z}).
and we are in the previous case.

(i) We now show that C(B)= C*(B, =*) for all Be #; that is, the revealed preference
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relation =* inferred from C(:) actually generates C(-). Intuitively, this scems sensible.
Formally, we show this in two steps. First, suppose that x € C(B). Then x z*y for all ye B;
so we have x € C*(B, =*). This means that C(B) < C*(B, Z*). Next, suppose that x € C*(B, Z*).
This implies that x 2* y for all y € B; and so for each y € B, there must exist some sct B, e #
such that x,ye B, and xe C(B,). Because C(B) # &, the weak axiom then implies that
x € C(B). Hence, C*(B, %*) = C(B). Together, these inclusion relations imply that C(8) =
CXB, Z*).

(iii) To establish uniqueness, simply note that because # includes all two-element subsets
of X, the choice behavior in C(+) completely determines the pairwise preference relations over
X of any rationalizing preference.

This completes the proof. =

We can therefore conclude from Proposition 1.D.2 that for the special case in
which choice is defined for all subsets of X, a theory based on choice satisfying the
weak axiom is completely equivalent to a theory of decision making based on rational
preferences. Unfortunately, this special case is too special for economics. For many
situations of economic interest, such as the theory of consumer demand, choice is
defined only for special kinds of budget sets. In these settings, the weak axiom does
not exhaust the choice implications of rational preferences. We shall see in Section 3.J,
however, that a strengthening of the weak axiom (which imposes more restrictions
on choice behavior) provides a necessary and sufficient condition for behavior to be
capable of being rationalized by preferences.

Definition 1.D.1 defines a rationalizing preference as one for which C(B) = C%(B, ). An
alternative notion of a rationalizing preference that appears in the literature requires only that
C(B) = C*(B, ); that is, X is said to rationalize C(-) on # if C(B) is a subset of the most
preferred choices generated by X, C*(B, ), for every budget Be &.

There are two reasons for the possible use of this alternative notion. The first is, in a sense,
philosophical. We might want to allow the decision maker to resolve her indifference in some
specific manner, rather than insisting that indifference means that anything might be picked.
The view embodied in Definition 1.D.1 (and implicitly in the weak axiom as well) is that if
she chooses in a specific manner then she is, de facto, not indifferent.

The second reason is empirical. If we are trying to determine from data whether an
individual’s choice is compatible with rational preference maximization, we will in practice
have only a finite number of observations on the choices made from any given budget set B.
If C(B) represents the set of choices made with this limited set of observations, then because
these limited observations might not reveal all the decision maker’s preference maximizing
choices, C(B) & C*(B, ) is the natural requirement to impose for a preference relationship
to rationalize observed choice data.

Two points are worth noting about the effects of using this alternative notion. First, it is
a weaker requirement. Whenever we can find a preference relation that rationalizes choice in
the sense of Definition 1.D.1, we have found one that does so in this other sense, too. Second,
in the abstract setting studied here, to find a rationalizing preference relation in this latter
sense is actually trivial: Preferences that have the individual indifferent among all elements of
X will rationalize any choice behavior in this sense. When this alternative notion is used in
the economics literature, there is always an insistence that the rationalizing preference relation
should satisfy some additional properties that are natural restrictions for the specific economic
context being studied.
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EXERCISES

1.B.1* Prove property (iii) of Proposition 1.B.1.
1.B.2* Prove properties (i) and (ii) of Proposition 1.B.1.

1.B.3% Show that if f: R — R is a strictly increasing function and u: X — Ris a utility function
representing preference refation 2, then the function v: X — R defined by v(x) = f(u(x)) is
also a utility function representing preference relation 2.

1.B4* Consider a rational preference relation 2. Show that if u(x) = u(y) implies x ~ y and
if u(x) > u(y) implies x > y. then u(*) is a utility function representing 2.

LLB.S®  Show that if X is finite and X is a rational preference relation on X, then there is a
utility function «: X - R that represents 2. [Hint: Consider first the case in which the
individual's ranking between any two elements of X is strict (i.e., there is never any indifference),
and construct a utility function representing these preferences; then extend your argument to
the general case.]
1.C.1# Consider the choice structure (4, C(+)) with 2 = ({x, y}, {x,y.z}) and C({x, y}) = 1x}.
Show that if (4. C(-)) satisfics the weak axiom, then we must have C({x, y, 2} = {x}. ={z},or
={xz}
L.C.2% Show that the weak axiom (Definition 1.C.1) is equivalent to the following property
holding:

Suppose that B, B’ € 4, that x,y€ B, and that x.ye B'. Then if xe C(B) and y € C(B'), we

must have {x, y} = C(B)and {x,y} < C(B').
1.C.3¢ Suppose that choice structure (#, C(+)} satisfies the weak axiom. Consider the following
two possible revealed preferred relations. >* and >**

x>*y < there is some Be 4 such that x, y € B, x € C(B), and y ¢ C(B)
X>*ty e xZ*ybutnot yXtx

where >* is the revealed at-least-as-good-as relation defined in Definition 1.C.2.

(a) Show that >* and >** give the same relation over X that is, for any x,ye X,
Xx>*yp = x>uls this still true if (4. C(-)) does not satisfy the weak axiom?

(b) Must >* be transitive?

(¢) Show that if 4 includes all three-element subsets of X, then >* is transitive.
1.D.1® Give an example of a choice structure that can be rationalized by several preference

relations. Note that if the family of budgets # includes all the two-element subsets of X, then
there can be al most one rationalizing preference relation.
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1.D.2* Show that if X is finite, then any rational preference refation gencrates a nonempty
choice rule; that is, C(B) # & for any B < X with B # .

1.D.3% Let X = {x, y.z}, and consider the choice structure (@, C(+)) with

B ={{x v} {0 2h{x 2l oy gl
and CUix, y}) = {x}, C({y. 2} = {y} and C({x, z}) = {z}, as in Example 1.D.1. Show that
(4, C(+)) must violate the weak axiom.

1.0.4% Show that a choice structure (#, C(+)) for which a rationalizing preference relation 2
exists satisfies the path-invariance property: For every pair B, B e # such that B, U B, e #
and C(B,) v C(B,) € #, we have C(B, v B,) = C(C(B,) u C(B,)), that is, the decision problem
can safely be subdivided. See Plott (1973) for further discussion.

1.D.5C Let X = {x.y.z} and # = {{x, ¥}, {3 2). {z, x}}. Suppose that choice is now stochastic
in the sense that, for every B e 4, C(B) is a {requency distribution over alternatives in B. For
example, if B = {x, y}, we write C(B) = (C,(B). C,(BY), where C,(B) and C,(B) are nonnegative
numbers with C(B) + C(B) = 1. We say that the stochastic choice function C(*) can be
rationalized by preferences if we can find a probability distribution Pr over the six possible
(strict) preference relations on X such that for every Be 4, C(B) is preciscly the frequency of
choices induced by Pr. For example, if B = {x, y}, then C(B) = Pr({>: x> y}). This concept
otiginates in Thurstone (1927), and it s of considerable econometric interest (indeed, it provides
a theory for the error term in observable choice).
(a) Show that the stochastic choice function C({x, y}) = Cly 2 = Clzx =G Dean
be rationalized by preferences.
(b) Show that the stochastic choice function Cllx, y}) = C({y 2 = C(=, x}) = Disnot
rationalizable by preferences.
(c) Determine the 0 < « < 1 at which C({x, W =Clrz)=Clzxp)=(xt -2 switches
from rationalizable to nonrationalizable.

2.A

2.B

C HAPTEHR

Consumer Choice

Introduction

The most fundamental decision unit of microeconomic theory is the consumer. In
this chapter, we begin our study of consumer demand in the context of a market
economy. By a market economy, we mean a setting in which the goods and services
that the consumer may acquirc are available for purchase at known prices (or,
equivaiently, are available for trade for other goods at known rates of exchange).

We begin, in Sections 2.B to 2.D, by describing the basic elements of the
consumer's decision problem. In Section 2.B, we introduce the concept of commodities,
the objects of choice for the consumer. Then, in Sections 2.C and 2.D, we consider
the physical and economic constraints that limit the consumer’s choices. The former
are captured in the consumption set, which we discuss in Section 2.C; the latter are
incorporated in Section 2.D into the consumer’s Walrasian budget set.

The consumer’s decision subject to these constraints is captured in the consumer's
Walrasian demand function. In terms of the choice-based approach to individual
decision making introduced in Section 1.C, the Walrasian demand function is the
consumer’s choice rule. We study this function and some of its basic properties in
Section 2.E. Among them are what we call comparative statics properties: the ways
in which consumer demand changes when economic constraints vary.

Finally, in Section 2.F, we consider the implications for the consumer’s demand
function of the weak axiom of revealed preference. The central conclusion we reach
is that in the consumer demand setting, the weak axiom is essentially equivalent to
the compensated law of demand, the postulate that prices and demanded quantities
move in opposite directions for price changes that leave real wealth unchanged.

Commodities

The decision problem faced by the consumer in a market economy is to choose
consumption levels of the various goods and services that are available for purchase
in the market. We call these goods and services commodities. For simplicity, we
assume that the number of commodities is finite and cqual to L (indexed by
t=1,...,L).

17
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As a general matter, a commodity vector (or commodity bundle) is a list of amounts )
of the different commodities, L“s“"’} I
Hours
X1 24
x=| 1, 3
x‘ Figure 2.C.1 (left)
L \ A consumption set.
and can be viewed as a point in R%, the commodity space.! b X
We can use commodity vectors to represent an individual's consumption levels. / Figure 2.C.2 {right)
The /th entry of the commodity vector stands for the amount of commodity ¢ 1 A consumption set
consumed. We then refer to the vector as a consumption vector or consumption bundle. where good 2 must be
Note that time (or, for that matter, location) can be built into the definition of > > consumed in integer
. . . . Bread X1 amounts.
a commodity. Rigorously, bread today and tomorrow should be viewed as distinct
commodities. In a similar vein, when we deal with decisions under uncertainty in
Chapter 6, viewing bread in different “states of nature™ as different commodities can Bread Slices of
be most helpful. in Brown Bread
New York
Although commodities consumed at different times should be vicwed rigorously as distinct at Noon X Figure 2.C.3 (teft)
commodities, in practice, economic models often involve some “time aggregation.” Thus, one 4 A consumption set
commodity might be “bread consumed in the month of February,” even though, in principle, : where only one good
bread consumed at each instant in February should be distinguished. A primary reason for X can be consumed.
such time aggregation is that the economic data to which the model is being applied are ’
aggregated in this way. The hope of the modeler is that the commodities being aggregated are Figure 2.C.4 (."gm)
sufficiently similar that little of economic interest is being lost. - — A consumption set
. . . Bread in 4 Slices of White  reflecting survival
We should also note that in some contexts it becomes convenient, and even necessary, to .
Washington at Noon Bread needs.

expand the set of commodities to include goods and services that may potentially be available
for purchase but are not actually so and even some that may be available by means other
than market exchange (say, the experience of “family togetherness™). For nearly all of what
follows here, however, the narrow construction introduced in this section suffices.

instant in Washington and in New York. [This example is borrowed from
Malinvaud (1978).]
(iv) Figure 2.C.4 represents a situation where the consumer requires a minimum
- of four slices of bread a day to survive and there are two types of bread,

2.C The Consumption Set brown and white.

In the four examples, the constraints are physical in a very literal sense. But the
constraints that we incorporate into the consumption set can also be institutional in
nature. For example, a law requiring that no one work more than 16 hours a day
would change the consumption set in Figure 2.C.1 to that in Figure 2.C.5.

To keep things as straightforward as possible, we pursue our discussion adopting
the simplest sort of consumption set:

X =R, ={xeR:x,20for/=1,...,L},

Consumption choices are typically limited by a number of physical constraints. The
simplest example is when it may be impossible for the individual to consume a
negative amount of a commodity such as bread or water.

Formally, the consumption set is a subset of the commodity space R%, denoted
by X < R*, whose elements are the consumption bundles that the individual can
conceivably consume given the physical constraints imposed by his environment.

Consider the following four examples for the case in which L = 2:

the set of all nonnegative bundles of commaodities. It is represented in Figure 2.C.6.

Whenever we consider any consumption set X other than R%, we shall be explicit
about it.

One special feature of the set R% is that it is convex. That is, if two consumption

P - L L - '

but the second is available only in nonnegative integer amounts. bundles x and x' are both elements of RY, then the bundle x” = ax + (I — a)x’ is

L . .
(iti) Figure 2.C.3 captures the fact that it is impossible to eat bread at the same also an .clemem of R+_ for any x€[0, l.] (see Section M.G. of the Mathe.maucal
- Appendix for the definition and properties of convex sets).? The consumption sets

(i) Figure 2.C.1 represents possible consumption levels of bread and leisure in
a day. Both levels must be nonnegative and, in addition, the consumption e
of more than 24 hours of leisure in a day is impossible.

(i) Figure 2.C.2 represents a situation in which the first good is perfectly divisible

1. Negative entries in commodity vectors wili often represent debits or net outflows of

goods. For example, in Chapter 5. the inpuls of a firm are measured as negative numbers. 2. Recall that x” = ax + (I — )" is a vector whose /th entry is x; = ax, + (1 — 2)x).
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2D

Leisure
Hours
2,1

X2

Bread ’ Xy

in Figures 2.C.1, 2.C.4, 2.C.5, and 2.C.6 are convex scts; those in Figures 2.C.2 and
2.C.3 are not.

Much of the theory to be developed applies for general convex consumption sets
as well as for R%. Some of the resuits, but not all, survive without the assumption
of convexity.?

Competitive Budgets

In addition to the physical constraints embodied in the consumption set, the
consumer faces an important economic constraint: his consumption choice is limited
1o those commodity bundles that he can afford.

To formalize this constraint, we introduce two assumptions. First, we suppose
that the L commodities are all traded in the market at dollar prices that are publicly
quoted (this is the principle of completeness, or universality, of markets). Formally,
these prices are represented by the price vector

(43

which gives the dollar cost for a unit of each of the L commodities. Observe that
there is nothing that logically requires prices to be positive. A negative price simply
means that a “buyer™ is actually paid to consume the commodity (which is not
illogical for commodities that are “bads,” such as pollution). Nevertheless, for
simplicity, here we always assume p » 0; that is, p, > 0 for every ¢.

Second, we assume that these prices are beyond the influence of the consumer.
This is the so-called price-taking assumption. Loosely speaking, this assumption is
likely to be valid when the consumer’s demand for any commodity represents only
a small fraction of the total demand for that good.

The affordability of a consumption bundle depends on two things: the market
prices p = (p,, . .., p,) and the consumer’s wealth level (in dollars) w. The consumption

3. Note that commodity aggregation can help convexify the consumption set. In the example
leading to Figure 2.C.3, the consumption set could reasonably be taken to be convex if the axes
were instead measuring bread consumption over a period of a month.

Figure 2.C.5 (lett)

A consumption sct
reflecting a legal limit
on the number of
hours worked.

Figure 2.C.6 (right)
The consumption set
L

re
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X3 X3

wip,

{xeRL: prx =w) —Byur b= (py P2} With 3 < py

Slope = ~(p,/p,)

wip, Xy X,

bundic x e RY is affordable if its total cost does not exceed the consumer's wealth
level w, that is, if*

prx=pXy+o+pxg Sw

This cconomic-affordability constraint, when combined with the requirement that
x lie in the consumption set RY, implies that the set of feasible consumption bundles
consists of the elements of the set {x e R%: p-x < w). This set is known as the
Walrasian , or competitive budget set (after Léon Walras).

Definition 2.D.1: The Walrasian, or compelitive budget set B, ,, = {x € R.:px < w}

is the set of all feasible consumption bundles for the consumer who faces market
prices p and has wealth w.

The consumer's problem, given prices p and wealth w, can thus be stated as follows:
Choose a consumption bundle x from B, .

A Walrasian budget sct B, , is depicted in Figure 2.D.1 for the case of L = 2. To
focus on the case in which the consumer has a nondegenerate choice problem, we
always assume w > 0 (otherwise the consumer can afford only x = 0).

The set {x € R*: p*x = w} is called the budget hyperplane (for the case L = 2, we
call it the budget line). It determines the upper boundary of the budget set. As Figure
2.D.1 indicates, the slope of the budget line when L = 2, —(p,/p,), captures the rate
of exchange between the two commodities. If the price of commodity 2 decreases
(with p, and w held fixed), say to §, < p,, the budget set grows larger because more
consumption bundles are affordable, and the budget line becomes steeper. This
change is shown in Figure 2.D.2.

Another way to see how the budget hyperplane reflects the relative terms of
exchange between commodities comes from examining its geometric relation to the
pricc vector p. The price vector p, drawn starting from any point X on the budget
hyperplane, must be orthogonal (perpendicular) to any vector starting at ¥ and lying

4. Often, this constraint is described in the literature as requiring that the cost of planned
purchases not exceed the consumer's income. In cither case, the idea is that the cost of purchases
not exceed the consumer’s available resources. We use the wealth terminology to emphasize that
the consumer’s actual problem may be intertemporal, with the commodities involving purchases
over time, and the resource constraint being one of lifetime income (ie., wealth) (see Exercise
2D,

Figure 2.D.1 (left)

A Walrasian budget
set.

Figure 2.D.2 {right)

The effect of a price
change on the
Walrasian budget set.

-y
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N

(X, +p1, %, + py)

Y

on the budget hyperplane, This is so because for any x’ that itself lics on the budget
hyperplane, we have p-x’ = p*x = w. Hence, p-Ax =0 for Ax = (x’ — x). Figurc
2.D.3 depicts this geometric relationship for the case L = 2.

The Walrasian budget set B, is a convex set: That is, if bundles x and x’
are both elements of B, ,, then the bundle x" = ax + (1 — a)x’' is also. To sec
this, note first that because both x and x’ are nonnegative, x” € R';. Second, since
p'x<wandp-x'<w,wehavep-x" = a(p-x) + (1 — a}(p-x') < w. Thus,x"e B, , =
{xeRs:px < w).

The convexity of B, plays a significant role in the development that follows.
Note that the convexity of B, depends on the convexity of the consumption set
RY,. With a more general consumption set X, B, , will be convex as long as X is.
(Sec Exercise 2.D.3.)

Although Walrasian budget sets are of central theoretical interest, they are by no means the
only type of budget set that a consumer might face in any actual situation. For example, a
more realistic description of the market trade-off between a consumption good and leisure,
involving taxes, subsidies, and several wage rates, is illustrated in Figure 2.D.4. In the figure,
the price of the consumption good is 1, and the consumer earns wage rate s per hour for the
first 8 hours of work and s' > s for additional (“overtime™) hours. He also faces a tax rate ¢

Consumption
Good Slope = —s'(1 1)

Slope = ~5'

Slope = —5

o

U Leisure
Hours

5. To draw the vector p starting from %, we draw a vector {rom point (%X, %,) lo point
(X, + p,. %, 4+ p,). Thus, when we draw the price vector in this diagram, we use the “units™ on the
axes 10 represent units of prices rather than goods.

Flgure 2.D.3

The geometric
relationship between
p and the budget
hyperplane.

Figure 2.D0.4

A more realistic
description of the

consumer's budget set.
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per dollar on labor income earned above amount M. Note that the budget set in Figure 2.D.4
is not convex (you are asked to show this in Exercise 2.D.4). More complicated examples can
readily be constructed and arise commonly in applied work. See Deaton and Muellbauer
(1980) and Burtless and Hausmann (1975) for more illustrations of this sort.

Demand Functions and Comparative Statics

The consumer’s Walrasian (or market, or ordinary) demand correspondence x(p, w)
assigns a set of chosen consumption bundles for each price-wealth pair (p, w). In
principle, this correspondence can be multivalued; that is, there may be more than
one possible consumption vector assigned for a given price-wealth pair (p, w). When
this is so, any x € x{p, w) might be chosen by the consumer when he faces price-wecalth
pair (p, w). When x(p, w) is single-valued, we refer to it as a demand function.

Throughout this chapter, we maintain two assumptions regarding the Walrasian
demand correspondence x(p, w): That it is homogeneous of degree zero and that it
satisfics Walras® law.

Definition 2.E.1: The Wairasian demand correspondence x(p, w) is homogeneous of

degree zero it x(ap, aw) = x(p, w) for any p, w and « > 0.

Homogeneity of degree zero says that if both prices and wealth change in the
same proportion, then the individual’s consumption choice does not change. To
understand this property, note that a change in prices and wealth from (p, w) to
(ap, aw) leads to no change in the consumer’s set of feasible consumption bundles;
that is, B, ,, = B,,,.. Homogeneity of degree zero says that the individual’s choice
depends only on the set of feasible points.

Definition 2.E.2: The Walrasian demand correspondence x{p, w) satisfies Walras’ law

if for every p » 0 and w > 0, we have p-x = w for all x € x(p, w).

Walras' law says that the consumer fully expends his wealth. Intuitively, this is
a reasonable assumption to make as long as there is some good that is clearly
desirable. Walras' law should be understood broadly: the consumer’s budget may
be an intertemporal one allowing for savings today to be used for purchases
tomorrow. What Walras' law says is that the consumer fully expends his resources
over his lifetime.

Exercise 2.E.1: Suppose L = 3, and consider the demand function x(p, w) defined by

w
xdpow)y= - Pa ] s
Pyt p2tpy iy
w
Xy{p.ow) = S B \
Pyt p2tpsp,
w
xy(p,w) = ——L— -
Pyt patpsps

Does this demand function satisly homogeneity of degree zero and Walras’ law when
f = 1?7 What about when ffe(0,1)?
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In Chapter 3, where the consumer’s demand x(p, w) is derived from the maximiza-
tion of preferences, these two properties (homogeneity of degree zero and satisfaction
of Walras' law) hold under very general circumstances. In the rest of this chapter,
however, we shall simply take them as assumptions about x(p, w) and explore their
consequences.

One convenient implication of x(p, w) being homogeneous of degree zero can be
noted immediately: Although x(p, w) formally has L + 1 arguments, we can, with no
loss of generality, fix (normalize) the level of one of the L + | independent variables
at an arbitrary level. One common normalization is p, = | for some £. Another is
w = 1% Hence, the effective number of arguments in x(p, ) is L.

For the remainder of this section, we assume that x(p, w) is always single-valued.
In this case, we can write the function x(p, w) in terms of commodity-specific demand
functions:

x(p,w)

stpow =|

x(p,w)

When convenient, we also assume x(p, w) to be continuous and differentiable.

The approach we take here and in Section 2.F can be viewed as an application of the
choice-based framework developed in Chapter 1. The family of Walrasian budget sets is
#" ={B,.:p>0,w> 0}. Morcover, by homogeneity of degree zero, x(p, w) depends only
on the budget st the consumer faces. Hence (48, x(*)) is a choicc structure, as defined in
Section 1.C. Note that the choice structure (£, x(-)) does not include all possible subsets of
X (e.g., it does not include all two- and three-element subsets of X ). This fact will be significant
for the relationship between the choice-based and preference-based approaches to consumer
demand.

Comparative Statics

We are often interested in analyzing how the consumer’s choice varies with changes
in his wealth and in prices. The examination of a change in outcome in response to
a change in underlying economic parameters is known as comparative statics analysis.

Wealth effects
For fixed prices j. the function of wealth x(j, w) is called the consumer's Engel

function. Its image in R, E; = {X(§,w):w > 0}, is known as the wealth expansion

path. Figure 2.E.1 depicts such an expansion path.
At any (p, w), the derivative éx,(p, w)/dw is known as the wealth effect for the /th
good.”

6. We use normalizations extensively in Part 1V.
7. Wt is also known as the income effect in the literature. Similarly, the wealth expansion path is
somelimes referred to as an income expansion path.
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X3
4 W>w>w
E
B;. .- ’
x(p,w")
B 1~
" x(p. w) ’
B,. I xx(p, w)

J—

X

A commodity / is normal at (p,w) if dx,(p, w)/ow = 0; that is, demand is
nondecreasing in wealth. If commodity ¢°s wealth effect is instead negative, then it
is called inferior at (p, w). If every commodity is normal at all (p, w), then we say that
demand is normal.

The assumption of normal demand makes sense if commodities are large
aggregates (e.g. food, shelter). But if they are very disaggregated (e.g., particular
kinds of shoes), then because of substitution to higher-quality goods as wealth
increases, goods that become inferior at some level of wealth may be the rule rather
than the exception.

In matrix notation, the wealth effects are represented as follows:

[[0xy(p. W]

ow

0x(p, w)
D,.x(p,w) = ow e RE.

ox.(p, w)
aw

Price effects
We can also ask how consumption levels of the various commodities change as prices
vary.

Consider first the case where L = 2, and suppose we keep wealth and price p,
fixed. Figure 2.E.2 represents the demand function for good 2 as a function of its
own price p, for various levels of the price of good 1, with wealth held constant at
amount w. Note that, as is customary in economics, the price variable, which here
is the independent variable, is measured on the vertical axis, and the quantity
demanded, the dependent variable, is measured on the horizontal axis. Another useful
representation of the consumers’ demand at different prices is the locus of points
demanded in R2 as we range over all possible values of p,. This is known as an offer
curve. An example is presented in Figure 2.E.3.

More generally, the derivative dx,(p, w)/dp, is known as the price effect of p.
the price of good k, on the demand for good {. Although it may be natural to think
that a fall in a good’s price will lead the consumer to purchase more of it (as in

Figure 2.E.1

The wealth expansion
path at prices p.
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P2 J X3
w/p;
PI<P <P
w/p}
x(py, P;- w)

x(Py, Py W)
X(P1y P2 W)

wip,

X2
wip %
xl} Figure 2.E.2 (top left)
wipy Py < Py<p; The demand for good
2 as a function of its
price (for various
o, levels of p,).
“'/P'1 x(py, Py W)
Figure 2.E.3 (top right)
L. An offer curve.
w/p, e x{(p) P73 W)
Figure 2.E.4 (bottom)
N . An offer curve where
py P2 ) good 2 is inferior at
wipy x (B, P2 W).

Figure 2.E.3), the reverse situation is not an economic impossibility. Good ¢ is said
to be a Giffen good at (p, w) if dx,(p, w)/dp, > 0. For the offer curve depicted in Figure
2.EA4, good 2 is a Giffen good at (p,, p5, w).

Low-quality goods may well be Giffen goods for consumers with low weaith
levels. For example, imagine that a poor consumer initially is fulfilling much of his
dietary requirements with potatoes because they are a low-cost way to avoid hunger.
If the price of potatoes falls, he can then afford to buy other, more desirable foods
that also keep him from being hungry. His consumption of potatoes may well fall
as a result. Note that the mechanism that leads to potatoes being a Giffen good in
this story involves a wealth consideration: When the price of potatoes falls, the
consumer is effectively wealthier (he can afford to purchase more generally), and so
he buys fewer potatoes. We will be investigating this interplay between price and
wealth effects more extensively in the rest of this chapter and in Chapter 3.

The price effects are conveniently represented in matrix form as follows:

3x,(p, w) . Ox,(p, w)
ap, op.
D,x(p,w) = .
ax(pw)  Oxp,w)
op, o,
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Implications of homogeneity and Walras’ law for price and wealth effects
Homogeneity and Walras’ law imply certain restrictions on the comparative statics
effects of consumer demand with respect to prices and wealth.

Consider, first, the implications of homogeneity of degree zero. We know that
x(ap, aw) — x(p, w) = 0 for all « > 0. Differentiating this expression with respect to «,
and evaluating the derivative at « = I, we get the results shown in Proposition 2.E.1
(the result is also a special case of Euler's formula; see Section M.B of the
Mathematical Appendix for details).

Proposition 2.E.1: If the Walrasian demand function x(p, w) is homogeneous of
degree zero, then for all p and w:

L d R 0 , W
ox,(p W)p +_cx/(p )W

M =0for{=1,...,L. (2.E.1)

k=1 Py ow

in matrix notation, this is expressed as
D,x(p, w)p + D x(p, Ww = 0. (2.E.2)

Thus, homogeneity of degree zero implies that the price and wealth derivatives
of demand for any good ¢, when weighted by these prices and wealth, sum to zero.
Intuitively, this weighting arises because when we increase all prices and wealth
proportionately, each of these variables changes in proportion to its initial level.

We can also restate equation (2.E.1) in terms of the elasticities of demand with
respect to prices and wealth. These are defined, respectively, by

oy = AP P
ope xdp.w)
and
_dxAp,w) W

e pow .
ulP ) ow  x/(p,w)

These elasticitics give the percentage change in demand for good / per (marginal)
percentage change in the price of good k or wealth; note that the expression for
&,.(*,*) can be read as (Ax/x)/(Aw/w). Elasticities arise very frequently in applied
work. Unlike the derivatives of demand, elasticities are independent of the units
chosen for measuring commodities and therefore provide a unit-free way of capturing
demand responsiveness.
Using clasticities, condition (2.E.1) takes the following form:

1.

Y enp.w) + e fpw)=0 forf=1,...,L (2.E.3)

k=1
This formulation very directly expresses the comparative statics implication of
homogeneity of degree zero: An equal percentage change in all prices and wealth
leads to no change in demand.

Walras’ law, on the other hand, has two implications for the price and wealth
effects of demand. By Walras' law, we know that p-x(p, w) = w for all p and w.
Differentiating this expression with respect to prices yields the first result, presented
in Proposition 2.E.2, :
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Proposition 2.E.2: If the Walrasian demand function x(p, w) satisfies Walras' law, then
for all p and w:
L

S b, x,(p, w)

Fxpw)=0 fork=1,...,L, (2.E.4)

= 0P«

or, written in matrix notion,®
p-D x(p. w) + x(p, w)T = 07. (2.E.5)

Similarly, diffcrentiating p-x(p, w) = w with respect to w, we get the second result,
shown in Proposition 2.E.3.

Proposition 2.E.3: If the Walrasian demand function x(p, w) satisfies Walras' iaw,
then for all p and w:

ox,(p, w
p, )y, (2.E.6)
/=1 ow
or, written in matrix notation,
pDyx(p,w)=1. (2.ET7)

The conditions derived in Propositions 2.E.2 and 2.E.3 are sometimes called the
properties of Cournot and Engel aggregation, respectively. They are simply the
differential versions of two facts: That total expenditure cannot change in response
to a change in prices and that total expenditure must change by an amount equal
to any wealth change.

Exercise 2.E.2: Show that equations (2.E4) and (2.E.6) lead to the foliowing two
elasticity formulas:

L
/): b p. wiealp.w) + blp,w) =0,
=1

and
L
/Z b(p.wie,p.w) =1,
=1

where b,(p, w) = p,x,(p, w)/w is the budget share of the consumer’s expenditure on
good ¢ given prices p and wealth w.

2.F The Weak Axiom of Revealed Preference and the
Law of Demand

In this section, we study the implications of the weak axiom of revealed preference
for consumer demand. Throughout the analysis, we continue to assume that x(p, w)
is single-valued, homogeneous of degree zero, and satisfies Walras™ law.®

The weak axiom was already introduced in Section 1.C as a consistency axiom
for the choice-based approach to decision theory. In this section, we explore its
implications for the demand behavior of a consumer. In the preference-based
approach to consumer behavior to be studied in Chapter 3, demand necessarily

8. Recall that 0T means a row vector of zeros.
9. For gencralizations to the case of multivalued choice, see Exercise 2.F.13.
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satisfies the weak axiom. Thus, the results presented in Chapter 3, when compared
with those in this section, will tell us how much more structure is imposed on
consumer demand by the preference-based approach beyond what is implied by the
weak axiom alone.'®

In the context of Walrasian demand functions, the weak axiom takes the form
stated in the Definition 2.F.1.

Definition 2.F.1: The Walrasian demand function x(p. w) satisties the weak axiom of
revealed preference (the WA) it the following property holds for any two price—
wealth situations {(p, w) and (p’, w'):.

fp-x(p.w)<sw and x(p,w')#x(p,w), then px(p, w) > w'.

If you have alrcady studied Chapter 1, you will recognize that this definition is
precisely the specialization of the general statement of the weak axiom presented in
Section 1.C to the context in which budget sets are Walrasian and x(p, w) specifies
a unique choice (sce Exercise 2.F.1).

In the consumer demand setting, the idea behind the weak axiom can be put as
follows: If p-x(p', w’) < w and x(p', w') # x(p, w), then we know that when facing
prices p and wealth w, the consumer chose consumption bundle x(p, w) even though
bundle x(p’, w') was also affordable. W& can interpret this choice as “revealing” a
preference for x(p, w) over x(p', w'). Now, we might reasonably expect the consumer
to display some consistency in his demand behavior. In particular, given his revealed
preference, we expect that he would choose x(p, w) over x(p’, w') whenever they are
both affordable. If so, bundle x(p, w) must not be affordable at the price-wealith
combination (p’, w') at which the consumer chooses bundle x(p', w'). That is, as
required by the weak axiom, we must have p’-x(p, w) > w'.

The restriction on demand behavior imposed by the weak axiom when L =2 is
illustrated in Figure 2.F.1. Each diagram shows two budget sets B, . and B, and
their corresponding choice x(p’, w') and x(p”, w"). The weak axiom tells us that we
cannot have both p’+x(p”,w") < w’ and p”-x(p', w') < w". Panels (a) to (c) depict
permissible situations, whereas demand in panels (d) and (e) violates the weak axiom.

Implications of the Weak Axiom

The weak axiom has significant implications for the effects of price changes on
demand. We need to concentrate, however, on a special kind of price change.

As the discussion of Giffen goods in Section 2.E suggested, price changes affect
the consumer in two ways. First, they alter the relative cost of different commodities.
But, second, they also change the consumer’s real wealth: An increase in the price
of a commodity impoverishes the consumers of that commadity. To study the
implications of the weak axiom, we need to isolate the first effect.

One way 1o accomplish this is to imagine a situation in which a change in prices
is accompanied by a change in the consumer’s wealth that makes his initial
consumption bundle just affordable at the new prices. That is, if the consumer is
originally facing prices p and wealth w and chooses consumption bundle x(p, w), then

10. Or, stated more properly, beyond what is implied by the weak axiom in conjunction with
homogeneity of degree zero and Walras' law.
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when prices change to p’, we imagine that the consumer’s wealth is adjusted to
w = p’-x(p, w). Thus, the wealth adjustment is Aw = Ap-x(p, w), where Ap = (p’' - p).
This kind of wealth adjustment is known as Slutsky wealth compensation. Fi igure 2.F.2
shows the change in the budget set when a reduction in the price of good I from Py to
Pt is accompanied by Slutsky wealth compensation. Geometrically, the restriction is
that the budget hyperplane corresponding to (p’, w') goes through the vector x(p, w).

We refer to price changes that are accompanied by such compensating wealth
changes as (Slutsky) compensated price changes.

In Proposition 2.F.1, we show that the weak axiom can be equivalently stated in
terms of the demand response to compensated price changes.

Proposition 2.F.1: Suppose that the Walrasian demand function x(p, w) is homogene-

ou§ of degree zero and satisfies Walras’ law. Then x(p, w) satisfies the weak
axiom if and only if the following property holds:

Figure 2.F.1

Demand in panels (a)
to (c) satisfies the
weak axiom; demand
in pancls (d) and (c)
does not.
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For any compensated price change from an initial situation (p, w) to a new
price-wealth pair (p’, w') = (p', p'-x(p, w)), we have

(p" = p)[x(p’. W) — x(p.w)] <0,
with strict inequality whenever x(p, w) # x(p’, w').

(2.F.1)

Proof: (i) The weak axiom implies inequality (2.F.1), with strict inequality if
x(p,w) # x(p',w’). The result is immediate if x(p’,w') = x(p,w), since then
(p'—p)[x(p’,w') — x(p, w)] = 0. So suppose that x(p’, w') # x(p, w). The left-hand
side of inequality (2.F.1) can be written as

(' = ) [x(p",w') = x(p, w)] = p"+[x(p", w') = x(p, w)] — p-[x(p’, w') — x(p, w)].
(2.F.2)

Consider the first term of (2.F.2). Because the change from p to p’ is a compensated
price change, we know that p’-x{p, w) = w'. In addition, Walras' law tells us that
w' = px(p’,w'). Hence

pefx(p’.w')— x(p,w)] =0. (2.F.3)

Now consider the second term of (2.F.2). Because p’-x(p, w) = w', x(p, w) is
affordable under price-wealth situation (p', w'). The weak axiom therefore implies
that x(p', w') must not be affordable under price~wealth situation (p, w). Thus, we
must have p-x(p’, w') > w. Since p-x(p, w) = w by Walras' law, this implies that

pr[x(p',w') — x(p,w)] > 0 (2.F.4)
Together, (2.F.2), (2.F.3) and (2.F .4) yield the result.

(ii) The weak axiom is implied by (2.F.1) holding for all compensated price changes,
with strict inequality if x(p, w) # x(p', w'). The argument for this direction of the proof
uses the following fact: The weak axiom holds if and only if it holds for all compensated
price changes. That is, the weak axiom holds if, for any two price~wealth pairs (p, w)
and (p’, w’), we have p'- x(p, w) > w’ whenever p-x(p’, w')=w and x(p’, ') # x(p, w).

To prove the fact stated in the preceding paragraph, we argue that if the weak axiom is
violated, then there must be a compensated price change for which it is violated. To see this,
suppose that we have a violation of the weak axiom, that is, two price~-wealth pairs (p’, w')
and (p”, w”) such that x(p’, w') # x(p", w”), p'*x(p", w") < ', and p"*x(p’, w') < w”. I one of
these two weak incqualities holds with equality, then this is actually a compensated price
change and we are done. So assume that, as shown in Figure 2.F.3, we have pex(pi,why < w
and p".x(p’,w') < w”.

AH w' = plen(pw)

X

Figure 2.F.2

A compensated price
change from (p, w) to
(p'ow).
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Now choose the value of z € (0,1) for which
(ap’ + (1 = )p")-x(p'ow') = (ap” + (1 — 2)p") x(p", w"),
and denote p=ap’ + (1 —a)p” and w=(xp' + (1 — 2)p")-x(p’, w'). This construction is
illustrated in Figure 2.F.3. We then have
aw’ + (1 —a)w” > apx(p’, w') + (! —a)p”-x(p’,w')
-
= p-x(p,w)
=ap"x(p,w) + (1 = 2)p" x(p, w).

Therefore, cither p'~x(p, w) < w' of p™*x(p, w) < w”. Suppose that the first possibility holds
(the argument is identical if it is the second that holds). Then we have x(p, w) # x(p',w'),
p-x(p’, w') = w, and p’-x(p, w) < w’, which constitutes a violation of the weak axiom for the
compensated price change from (p’, w') to (p, w).

Once we know that in order to test for the weak axiom it suffices to consider
only compensated price changes, the remaining reasoning is straightforward. If the
weak axiom does not hold, there exists a compensated price change from some
(p’, w') 1o some (p, w) such that x(p, w)#x(p’, w'), p-x(p’.w')=w, and p’-x(p, W) < w'.
But since x(-,-) satisfies Walras' law, these two inequalities imply

pelx(p,w)—x(p,w)]=0 and
Hence, we would have

(p' = p)[x(p'.w)—x(p,w)] 20  and

peLx(p’ W) — x(p,w)] 2 0.

x(p, w) # x(p', w'),

which is a contradiction to (2.F.1) holding for all compensated price changes [and
with strict irequality when x(p, w) # x(p’,w')]. =

The inequality (2.F.1) can be written in shorthand as Ap- Ax <0, where Ap=(p’—p)
and Ax = [x(p’, w') — x(p, w)]. It can be interpreted as a form of the law of demand:
Demand and price move in opposite directions. Proposition 2.F.1 tells us that the law
of demand holds for compensated price changes. We therefore call it the compensated
law of demand.

The simplest case involves the effect on demand for some good ¢ of a compensated
change in its own price p,. When only this price changes, we have Ap = (0,...,0,Ap,,
0,...,0). Since Ap-Ax = Ap, Ax,, Proposition 2.F.1 tells us that if Ap, > 0, then we
must have Ax, < 0. The basic argument is illustrated in Figure 2.F.4. Starting at

Figure 2.F.3

The weak axiom holds
if and only if it holds
for all compensated
price changes.
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” -
B w'=p'x(p,w)

Allowable locations for x(p', w')
under the weak axiom

Xy X

(p, w), a compensated decrease in the price of good 1 rotates the budget line through
x(p, w). The WA allows moves of demand only in the direction that increases the
demand of good 1.

Figure 2.F.5 should persuade you that the WA (or, for that matter, the preference
maximization assumption discussed in Chapter 3) is not sufficient to yield the law
of demand for price changes that are not compensated. In the figure, the price change
from p to p’ is obtained by a decrease in the price of good 1, but the weak axiom
imposes no restriction on where we place the new consumption bundle; as drawn,
the demand for good 1 falls.

When consumer demand x(p, w) is a differentiable function of prices and wealth,
Proposition 2.F.1 has a differential implication that is of great importance. Consider,
starting at a given price-wealth pair (p, w), a differential change in prices dp. Imagine
that we make this a compensated price change by giving the consumer compensation
of dw = x(p, w)-dp [this is just the differential analog of Aw = x(p, w)-Ap]. Proposi-
tion 2.F.1 tells us that

dp-dx 0. (2F5)

Now, using the chain rule, the differential change in demand induced by this
compensated price change can be written as

dx = D,x(p,w)dp + D,x(p,w) dw. (2.F.6)
Hence
dx = D,x(p, w)dp + D.x(p, w) [x(p, w)-dp] (2.F.7)
or equivalentiy
dx = [D,x(p, w) + D,x(p, w)x(p, w)T ] dp. Q2F8)

Finally, substituting (2.F.8) into (2.F.5) we conclude that for any possible differential

price change dp, we have
dp-[D,x(p, w) + D, x(p, w}x(p, w)T]dp < 0. (2.F9)

The expression in square brackets in condition (2.F.9) is an L x L matrix, which
we denote by S(p, w). Formally

5P w) 51.(p W)
S(p,w) = : : )

spi(pow) sp(ps W),

Figure 2.F.4 (lett)
Demand must be
nonincreasing in own
price for a
compensated price
change.

Figure 2.F.5 (right)
Demand for good 1
can fall when its price
decreases for an
uncompensated price
change.
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where the (¢, k)th entry is

xAp, w) + OxAp, w)

spdp,w) = P I

x(p, w). (2.F.10)
The matrix S(p, w) is known as the substitution, or Slutsky, matrix, and its elements
are known as substitution effects.

The “substitution™ terminology is apt because the term s, (p, w) measures the
differential change in the consumption of commodity ¢ (i.e., the substitution to or
from other commodities) due to a differential change in the price of commodity
k when wealth is adjusted so that the consumer can still just afford his original
consumption bundle (i.e., due solely to a change in relative prices). To see this, note
that the change in demand for good ¢ if wealth is left unchanged is (dx,(p, w)/dp,) dp;.
For the consumer to be able to “just afford™ his original consumption bundle, his
wealth must vary by the amount x,(p, w) dp,. The effect of this wealth change on the
demand for good ¢ is then (0x,{p, w)/dw) [x,(p, w) dp,]. The sum of these two effects
is therefore exactly s, (p, w) dp,.

We summarize the derivation in equations (2.F.5) to (2.F.10) in Proposition 2.F.2.

Proposition 2.F.2: If a differentiable Walrasian demand function x(p, w) satisfies

Walras’ law, homogeneity of degree zero, and the weak axiom, then at any (p, w),
the Slutsky matrix S(p, w) satisfies v-S(p, w)v < 0 for any v e R,

A matrix satislying the property in Proposition 2.F.2 is called negative semidefinite
(it is negative definite if the inequality is strict for all v # 0). See Section M.D of the
Mathematical Appendix for more on these matrices.

Note that S(p, w) being negative semidefinite implies that s,.(p, w) < 0: That is,
the substitution effect of good £ with respect to its own price is always nonpositive.

An interesting implication of s,{p, w) < 0 is that a good can be a Giffen good at
(p, w) only if it is inferior. In particular, since

5,/(p, w) = 3x(p, w)[0p, + [0xAp, w}/ow] x/p, w) < O,

if 0x,(p, w)/dp, > 0, we must have dx,(p, w)/ow < 0.

For later reference, we note that Proposition 2.F.2 does not imply, in general,
that the matrix S(p, w) is symmetric.!’ For L =2, S(p, w) is necessarily symmetric
(you are asked to show this in Exercise 2.F.11). When L > 2, however, S(p, w) need
not be symmetric under the assumptions made so far (homogeneity of degrec zero,
Walras’ law, and the weak axiom). See Exercises 2.F.10 and 2.F.15 for examples. In
Chapter 3 (Section 3.H), we shall see that the symmetry of S(p, w) is intimately
connected with the possibility of generating demand from the maximization of
rational preferences.

Exploiting further the properties of homogeneity of degree zero and Walras’ law,
we can say a bit more about the substitution matrix S(p, w).

11. A matter of terminology: It is common in the mathematical literature that “definite™
matrices are assumed to be symmetric. Rigorously speaking, if no symmetry is implied, the matrix
would be called “quasidefinite.” To simplify terminology, we use “definite™ without any supposition
about symmetry; if a matrix is symmetric, we say so explicitly. (See Exercise 2.F.9.)
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Proposition 2.F.3: Suppose that the Walrasian demand function x{p, w) is differenti-
able, homogeneous of degree zero, and satisfies Walras' law. Then p-S(p, w) =0
and S{p, w)p = 0 for any (p, w).

Exercise 2.F.7: Prove Proposition 2.F.3. [Hint: Use Propositions 2.E.1 to 2.E.3.]

It follows from Proposition 2.F.3 that the matrix S(p, w) is always singular (ie.,
it has rank less than L), and so the negative semidefiniteness of S(p, w) established
in Proposition 2.F.2 cannot be extended to negative definiteness (e.g., see Exercise
2.F.17).

Proposition 2.F.2 establishes negative semidefiniteness of S(p, w) as a necessary implication
of the weak axiom. One might wonder: s this property sufficient to imply the WA [so that
negative semidefiniteness of S(p, w) is actually equivalent to the WAJ? That is, if we have a
demand function x(p, w) that satisfies Walras® law, homogeneity of degrec zero and has a
negative semidefinite substitution matrix, must it satisfy the weak axiom? The answer is almost,
but not quite. Exercise 2.F.16 provides an example of a demand function with a negative
semidefinite substitution matrix that violates the WA. The sufficient condition is that
v+S(p, w)v < 0 whenever v # ap for any scalar «; that is, S(p, w) must be negative definite for
all vectors other than those that are proportional to p. This result is due to Samuelson [see
Samuelson (1947) or Kihlstrom, Mas-Colell, and Sonnenschein (1976) for an advanced
treatment]. The gap between the nccessary and sufficient conditions is of the same nature as
the gap between the necessary and the sufficient second-order conditions for the minimization
of a function.

Finally, how would a theory of consumer demand that is based solely on the
assumptions of homogeneity of degree zero, Walras’ law, and the consistency
requirement embodied in the weak action compare with one based on rational
preference maximization?

Based on Chapter 1, you might hope that Proposition 1.D.2 implies that the two
are equivalent. But we cannot appeal to that proposition here because the family of
Walrasian budgets does not include every possible budget; in particular, it does not
include all the budgets formed by only two- or three-commodity bundles.

In fact, the two theories are not equivalent. For Walrasian demand functions, the
theory derived from the weak axiom is weaker than the theory derived from rational
preferences, in the sense of implying fewer restrictions. This is shown formally in
Chapter 3, where we demonstrate that if demand is generated from preferences, or
is capable of being so generated, then it must have a symmetric Slutsky matrix at ail
(p» w). But for the moment, Example 2.F.1, due originally to Hicks (1956), may be
persuasive enough.

Example 2.F.1: In a three-commodity world, consider the three budget sets determined
by the price vectors p' = (2,1,2), p* = (2,2, 1), p> = (1,2,2) and wealth = 8 (the
same for the three budgets). Suppose that the respective (unique) choices are
x!=(1,2,2), x* = (2, 1,2), x> = (2,2, 1). In Exercise 2.F.2, you are asked to verify
that any two pairs of choices satisfy the WA but that x* is revealed preferred to x2,
x? is revealed preferred to x*, and x' is revealed preferred to x*. This situation is
incompatible with the existence of underlying rational preferences (transitivity would
be violated).
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The reason this example is only persuasive and does not quite settle the question
is that demand has been defined only for the three given budgets, therefore, we cannot
be sure that it satisfies the requirements of the WA for all possible competitive
budgets. To clinch the matter we refer to Chapter 3. =

In summary, there are three primary conclusions to be drawn from Section 2.F:

(i) The consistency requirement embodied in the weak axiom (combined with
the homogeneity of degrec zero and Walras’ law) is equivalent to the
compensated law of demand. .

(ii) The compensated law of demand, in turn, implies negative semidefiniteness
of the substitution matrix S(p, w).

(iii) These assumptions do not imply symmetry of S(p, w), except in the case where
L=2
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EXERCISES

2.D.1* A consumer lives for two periods, denoted 1 and 2, and consumes a single consumption
good in cach period. His wealth when born is w > 0. What is his (lifetime) Walrasian budget
set?

2.D.2* A consumer consumes one consumption good x and hours of leisure h. The price of
the consumption good is p, and the consumer can work at a wage rate of s = 1. What is the
consumer's Walrasian budget set?

2.D.38 Consider an extension of the Walrasian budget set to an arbitrary consumption set
X:B,, = {xeX:px s w} Assume (p,w)>» 0.

(a) If X is the set depicted in Figure 2.C3, would B, be convex?

(b) Show that if X is a convex set, then B, is as well.
2.D.4* Show that the budget set in Figure 2.D.4 is not convex.
2.E1* In text.
2.E2% In text.
2.E.3% Use Propositions 2.E.1 to 2.E.3 to show that p-D,x(p,w) p = —w. Interpret.

2.E.4"® Show that if x(p, w) is homogeneous of degree one with respect to w [ie., x(p, aw)=ax(p, w)
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for afl « > 0] and satisfies Walras’ law, then ¢/.(p, w) = 1 for every ¢. Interpret. Can you say
something about D,x(p, w) and the form of the Engel functions and curves in this case?

2.E.5® Suppose that x(p, w) is a demand [unction which is homogeneous of degree one with
respect to w and satisfies Walras’ law and homogencity of degree zero. Suppose also that all
the cross-price effects are zero, that is 9x,(p, w)/dp, = 0 whenever k # ¢. Show that this implies
that for every 7, x,(p, w) = a,w/p,, where a, > 0 is a constant independent of (p, w).

2.E.6* Verify that the conclusions of Propositions 2.E.1 to 2.E.3 hold for the demand function
given in Exercise 2.E.1 when ff = 1.

2.E7* A consumer in a two-good economy has a demand function x(p, w) that satisfies
Walras' law. His demand function for the first good is x,(p, w) = aw/p,. Derive his demand
function for the second good. Is his demand function homogeneous of degree zero?

2.E.8% Show that the elasticity of demand for good £ with respect to price py, £4(p, W), can
be written as &,{(p, w) = d In (x,(p, w))/d In (p,), where In(*) is the natural logarithm function.
Derive a similar expression for &..(p, ). Conclude that if we estimate the parameters
(o, @, @3, ¥) Of the equation in {x,(p, w)) = ao + &, In p, + &, In p; + 7 In w, these parameter
estimates provide us with estimates of the elasticities £,,(p, W), &,2(p, w), and £,,(p, W).

2.F.1% Show that for Walrasian demand functions, the definition of the weak axiom given in
Definition 2.F.1 coincides with that in Definition 1.C.1.

2.F2% Verify the claim of Example 2.F.1.

2.F.3" You are given the following partial information about a consumer's purchases. He
consumes only two goods.

Year | Year 2
Quantity  Price Quantity  Price
Good 1 100 100 120 100
Good 2 100 100 ? 80

Over what range of quantities of good 2 consumed in year 2 would you conclude:
(a) That his behavour is inconsistent (i, in contradiction with the weak axiom)?
(b) That the consumer’s consumption bundle in year 1 is revealed preferred to that in year 2?
(c) That the consumer’s consumption bundle in year 2 is revealed preferred to that in
year 1?7
(d) That there is insufficient information to justify (a), (b), and/or (¢)?

(e) That good 1 is an inferior good (at some price) for this consumer? Assume that the
weak axiom is satisfied.

(f) That good 2 is an inferior good (at some price) for this consumer? Assume that the
weak axiom is satisfied.

2.F.4* Consider the consumption of a consumer in two different periods, period 0 and period
1. Period t prices, wealth, and consumption are P, w,, and x* = x(p', w,), respectively. It is
often of applied interest to form an index measure of the quantity consumed by a consumer.
The Laspeyres quantity index computes the change in quantity using period 0 prices as weights:
Lg = (p° x")/(p°-x°). The Paasche quantity index instead uses period | prices as weights:
Py =(p'x')/(p'-x°. Finally, we could use the consumer’s expenditure change: Eg =
(p*x")/(p°+ x°). Show the following:
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(a) 1f Lo < 1, then the cc has a revealed pr e for x° over x'.

(b} If Py > 1, then the consumer has a revealed preference for x' over x°

(c) No revealed preference relationship is implied by either Eg > 1 or Eg < 1. Note that
at the aggregate level, E, corresponds to the percentage change in gross national product.

2.F.5C Suppose that x(p, w) is a differentiable demand function that satisfies the weak axiom,
Walras' law, and homogeneity of degree zero. Show that if x(+,*} is homogeneous of degree
one with respect to w [i.e., x(p, aw) = ax(p, w) for all (p, w) and a > 0], then the law of demand
holds even for uncompensated price changes. If this is easier, establish only the infinitesimal
version of this conclusion; that is, dp-D,x(p, w) dp < 0 for any dp.

2.F.6* Suppose that x(p, w) is homogeneous of degree zero. Show that the weak axiom holds
if and only if for some w > 0 and all p,p’ we have p"*x(p, w) > w whenever p*x(p’, w) < wand
x(p',w) # x(p, w).

2.F.7% In text.

2.F8% Let $,(p, w) = [pe/x,Ap, W)1sn(p, w) be the substitution terms in elasticity form.
Express $,,(p, w) in terms of £,(p, w), &.(p, W), and by(p, w).

2.F.9" A symmetric n x n matrix A is negative definite if and only if (— 1)"4,,} > O for all
k < n, where A,, is the submatrix of A obtained by deleting the last n — k rows and columns.
For semidefiniteness of the symmetric matrix A, we replace the strict inequalities by weak
inequalities and require that the weak inequalities hold for all matrices formed by permuting
the rows and columns of A (see Section M.D of the Mathematical Appendix for details).

() Show that an arbitrary (possibly nonsymmetric) matrix A is negative definite (or
semidefinite) if and only if A + AT is negative definite (or semidefinite). Show aiso that the
above determinant condition (which can be shown to be necessary) is no longer sufficient in
the nonsymmetric case.

(b) Show that for L = 2, the necessary and sufficient condition for the substitution matrix
S(p. w) of rank 1 to be negative semidefinite is that any diagonal entry (ie., any own-price
substitution effect) be negative.

2.F.10% Consider the demand function in Exercise 2.E.1 with # = 1. Assume that w = 1.

(a) Compute the substitution matrix. Show that at p = (1,1, 1), it is negative semidefinite
but not symmetric.

(b) Show that this demand function does not satisfy the weak axiom. [Hint: Consider the
price vector p = (1, 1, £) and show that the substitution matrix is not negative semidefinite (for
£> 0 small).}

2.F.11* Show that for L = 2, S(p, w) is always symmetric. [Hint: Use Proposition 2F31}

2.F.12* Show that if the Walrasian demand function x(p,w) is generated by a rational
preference relation, than it must satisfy the weak axiom.

2.F.13¢ Suppose that x(p, w) may be multivalued.

(a) From the definition of the weak axiom given in Section 1.C, develop the generalization
of Definition 2.F.1 for Walrasian demand correspondences.

(b) Show that if x(p, w) satisfies this generalization of the weak axiom and Walras’ law,
then x(-) satisfies the following property:

(+) For any xe x(p, w) and x’" € x(p', w'), if p-x' <w, then p-x > w.
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(c) Show that the generalized weak axiom and Walras’ law implics the following
generalized version of the compensated law of demand: Starting from any initial position
(p, w) with demand x € x(p, w), for any compensated price change to new prices p’ and
wealth level w* = p’-x, we have

@ -px'—x)s0
for all x’ € x(p', w'), with strict inequality if x" € x(p, w).

(d) Show that if x(p, w) satisfies Walras’ law and the generalized compensated law of

demand defined in (c), then x{p, w) satisfies the generalized weak axiom.

2.F.14* Show that if x(p, w) is a Walrasian demand function that satisfies the weak axiom,
then x(p, w) must be homogeneous of degree zero.

2.F.15% Consider a setting with L = 3 and a consumer whose consumption set is R*. The
consumer's demand function x(p,w) satisfies homogeneity of degree zero, Walras’ jaw
and (fixing py = 1) has

xi(pw)==pr +p2
and

X{p,w) = —p;.

Show that this demand function satisfies the weak axiom by demonstrating that its substitution
matrix satisfies v+ S(p, w) v < 0 for all v # ap. [Hint: Use the matrix results recorded in Section
M.D of the Mathematical Appendix.] Observe then that the substitution matrix is not
symmetric. (Note: The fact that we allow for negative consumption levels here is not essential
for finding a demand function that satisfies the weak axiom but whose substitution matrix is not
symmetric; with a consumption set ailowing only for nonnegative consumption levels, however,
we would need to specify a more complicated demand function.)

2.F.16% Consider a sctting where L =3 and a consumer whose consumption set is RS.
Suppose that his demand function x(p, w) is
P
x(pow) ==,
Ps
4

Xap, W)= ——,
4]

W
x(pow) = .

(a) Show that x(p, w) is homogencous of degree zero in (p, w) and satisfies Walras® law.
(b) Show that x(p, w) violates the weak axiom.
(¢) Show that v-S(p, w)r = 0 for all ve R

2F.17% In an L-commodity world, a consumer's Walrasian demand function is

xpowy= o fork=1,...,L.
(£7)
=1
(a) 1s this demand function homogencous of degree zero in (p, w)?
(b) Does it satisfy Walras’ law?
(c) Does it satisfy the weak axiom?

(d) Compute the Slutsky substitution matrix for this demand function. Is it negative
semidefinite? Negative definite? Symmetric?
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CHAPTTEHR

Classical Demand Theory

Introduction

In this chapter, we study the classical, preference-based approach to consumer
demand.

We begin in Section 3.B by introducing the consumer’s preference relation and
some of its basic properties. We assume throughout that this preference relation is
rational, offering a complete and transitive ranking of the consumer's possible
consumption choices. We also discuss two properties, monotonicity (or its weaker
version, local nonsatiation) and convexity, that are used extensively in the analysis
that follows.

Section 3.C considers a technical issue: the existence and continuity properties of
utility functions that represent the consumer’s preferences. We show that not ali
preference relations are representable by a utility function, and we then formulate
an assumption on preferences, known as continuity, that is sufficient to guarantee the
existence of a (continuous) utility function.

In Section 3.D, we begin our study of the consumer’s decision problem by
assuming that there are L commodities whose prices she takes as fixed and
independent of her actions (the price-taking assumption). The consumer’s problem is
framed as one of utility maximization subject to the constraints embodied in the
Walrasian budget set. We focus our study on two objects of central interest: the
consumer’s optimal choice, embodied in the Walrasian (or market or ordinary) demand
correspondence, and the consumer’s optimal utility value, captured by the indirect
utility function.

Section 3.E introduces the consumer's expenditure minimization problem, which
bears a close relation to the consumer’s goal of utility maximization. In parallel to
our study of the demand correspondence and value function of the utility maximiza-
tion problem, we study the equivalent objects for expenditure minimization. They
arc known, respectively, as the Hicksian (or compensated) demand correspondence
and the expenditure function. We also provide an initial formal examination of
the relationship between the expenditure minimization and utility maximization
problems.

In Section 3.F, we pause for an introduction to the mathematical underpinnings
of duality theory. This material offers important insights into the structure of
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preference-based demand theory. Section 3.F may be skipped without loss of
continuity in a first reading of the chapter. Nevertheless, we recommend the study
of its material.

Section 3.G continues our analysis of the utility maximization and expenditure
minimization problems by establishing some of the most important results of demand
theory. These results develop the fundamental connections between the demand and
value functions of the two problems.

{n Section 3.H, we complete the study of the implications of the preference-based
theory of consumer demand by asking how and when we can recover the consumer’s
underlying preferences from her demand behavior, an issue traditionally known as
the integrability problem. In addition to their other uses, the results presented in this
section tell us that the properties of consumer demand identified in Sections 3.D to
3.G as necessary implications of preference-maximizing behavior are also sufficient
in the sense that any demand behavior satisfying these properties can be rationalized
as preference-maximizing behavior.

The results in Sections 3.D to 3.H also allow us to compare the implications of
the preference-based approach to consumer demand with the choice-based theory
studied in Section 2.F. Although the differences turn out to be slight, the two
approaches are not equivalent; the choice-based demand theory founded on the weak
axiom of revealed preference imposes fewer restrictions on demand than does the
preference-based theory studied in this chapter. The extra condition added by the
assumption of rational preferences turns out to be the symmetry of the Slutsky matrix.
As a result, we conclude that satisfaction of the weak axiom does not ensure the
existence of a rationalizing preference relation for consumer demand.

Although our analysis in Sections 3.B to 3.H focuses entirely on the positive (i,
descriptive) implications of the preference-based approach, onc of the most important
benefits of the latter is that it provides a framework for normative, or welfare, analysis.
In Section 3.1, we take a first look at this subject by studying the effects of a price
change on the consumer's welfare. In this connection, we discuss the use of the
traditional concept of Marshallian surplus as a measure of consumer welfare.

We conclude in Section 3.J by returning to the choice-based approach to
consumer demand. We ask whether there is some strengthening of the weak axiom
that leads to a choice-based theory of consumer demand equivalent to the preference-
based approach. As an answer, we introduce the strong axiom of revealed preference
and show that it leads to demand behavior that is consistent with the existence of
underlying preferences.

Appendix A discusses some technical issues related to the continuity and
diffcrentiability of Walrasian demand.

For further reading, see the thorough treatment of classical demand theory offered
by Dcaton and Muellbauer (1980).

Preference Relations: Basic Properties

In the classical approach to consumer demand, the analysis of consumer behavior
begins by specifying the consumer’s preferences over the commodity bundles in the
consumption set X < R%.
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The consumer’s preferences are captured by a preference relation 2 (an “at-least-
i as-good-as” relation) defined on X that we take to be rational in the sense introduced
in Section 1.B; that is, 2 is complete and transitive. For convenience, we repeat the

formal statement of this assumption from Definition 1.B.1.?

Definition 3.B.1: The preference relation > on X is rational it it possesses the
following two properties:

(i) Completeness. For all x, y € X, we have x Z y or y 2= x {or both).
(ii) Transitivity. For all x,y,ze X, it x 22y and y = 2, then x 2 2.

In the discussion that follows, we also use two other types of assumptions about
preferences: desirability assumptions and convexity assumptions.

(i) Desirability assumptions. It is often reasonable to assume that larger amounts
of commodities are preferred to smaller ones. This feature of preferences is captured
in the assumption of monotonicity. For Definition 3.B.2, we assume that the
consumption of larger amounts of goods is always feasible in principle; that is, if
xe X and y > x, then ye X.

Definltion 3.B.2: The preference relation > on X is monotone if xe X and y » x

~

implies y > x. It is strongly monotone if y > x and y # x imply that y > x.

The assumption that preferences are monotone is satisfied as long as commodities
are “goods” rather than “bads”. Even if some commodity is a bad, however, we may
still be able to view preferences as monotone because it is often possible to redefine
a consumption activity in a way that satisfies the assumption. For example, if one
commodity is garbage, we can instead define the individual’s consumption over the
“absence of garbage™.?

Note that if 2= is monotone, we may have indifference with respect to an increase
in the amount of some but not all commodities. In contrast, strong montonicity says
that if y is larger than x for some commodity and is no less for any other, then y is
strictly preferred to x.

For much of the theory, however, a weaker desirability assumption than
monotonicity, known as local nonsatiation, actually suffices.

Definitlon 3.B.3: The preference relation > on X is locally nonsatiated if for every
x€X and every £ > 0, there is y € X such that |y — x| < ¢ and y > x.3

The test for locally nonsatiated preferences is depicted in Figure 3.B.1 for the case in
which X = RL. It says that for any consumption bundle x € R, and any arbitrarily

1. See Section 1.B for a thorough discussion of these properties.

2. Itis also sometimes convenient to view preferences as defined over the level of goods available
for consumption (the stocks of goods on hand), rather than over the consumption levels themselves.
In this case, if the can freely dispose of any d commodities, her preferences over
the level of commodities on hand are monotone as long as some good is always desirable.

3. lix—y§ is the Euclidean distance between points x and y; that is, lx—y| =
[Z5o, =y )1
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small distance away from x, denoted by ¢ > 0, there is another bundle y € R% within
this distance from x that is preferred to x. Note that the bundle y may even have
less of every commodity than x, as shown in the figure. Nonetheless, when X = RL
local nonsatiation rules out the extreme situation in which all commodities are bads,
since in that case no consumption at all (the point x = 0) would be a satiation point.

Exercise 3.B.1: Show the following:

(a) If > is strongly monotone, then it is monotone.
(b) If X is monotone, then it is locally nonsatiated.

Given the preference relation > and a consumption bundle x, we can define three
related sets of consumption bundles. The indifference set containing point x is the
set of all bundles that are indifferent to x; formally, it is {y € X: y ~ x}. The upper
contour set of bundle x is the set of all bundles that are at least as good as
x:{ye X:yx x}. The lower contour set of x is the set of all bundles that x is at least
as good as: {ye X:x X v}

One implication of local nonsatiation (and, hence, of monotonicity) is that it rules
out “thick " indifference sets. The indifference set in Figure 3.B.2(a) cannot satisfy
local nonsatiation because, if it did, there would be a better point than x within the
circle drawn. In contrast, the indifference set in Figure 3.B.2(b) is compatible with
local nonsatiation. Figure 3.B.2(b) also depicts the upper and lower contour sets of x.

(i) Convexity assumptions. A second significant assumption, that of convexity
of >, concerns the trade-offs that the consumer is willing to make among different
goods.

Figure 3.B.1

The test for local
nonsatiation.

Figure 3.B.2

(a) A thick indifference
set violates Jocal
nonsatiation.

(b) Preferences
compatible with local
nonsatiation.
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(a)
Definition 3.B.4: The preference relation > on X is convex it for every x € X, the
upper contour set {yeX.:y 2 x} is convex; that is, if y2zx and z2X x, then
ay + (1 — a)z z x for any a« € [0, 1].
Figure 3.B.3(a) depicts a convex upper contour set; Figure 3.B.3(b) shows an upper
contour set that is not convex.

Convexity is a strong but central hypothesis in economics. It can be interpreted
in terms of diminishing marginal rates of substitution: That is, with convex preferences,
from any initial consumption situation x, and for any two commodities, it takes
increasingly larger amounts of one commodity to compensate for successive unit
losses of the other.*

Convexity can also be viewed as the formal expression of a basic inclination of
economic agents for diversification. Indeed, under convexity, i x is indifferent to y,
then ix + 1y, the half-half mixture of x and y, cannot be worse than either x or y.
In Chapter 6, we shall give a diversification interpretation in terms of behavior under
uncertainty. A taste for diversification is a realistic trait of economic life. Economic
theory would be in serious difficulty if this postulated propensity for diversification
did not have significant descriptive content. But there is no doubt that one can easily
think of choice situations where it is violated. For example, you may like both milk
and orange juice but get less pleasure from a mixture of the two.

Definition 3.B.4 has been stated for a general consumption set X. But de facto, the convexity
assumption can hold only if X is convex. Thus, the hypothesis rules out commodities being
consumable only in integer amounts or situations such as that presented in Figure 2.C.3.

Although the convexity assumption on preferences may scem strong, this appearance
should be qualified in two respects: First, a good number (although not all) of the results of
this chapter extend without modification to the nonconvex case. Second, as we show in
Appendix A of Chapter 4 and in Section 17.], nonconvexitics can often be incorporated into
the theory by exploiting regularizing aggregation effects across consumers.

We also make use at times of a strengthening of the convexity assumption.
Definition 3.B.5: The preference relation > on X is strictly convex if for every x, we
have that y > x, 2> x, and y # z implies ay + (1 — a)z > x for all « € (0, 1).

4. More generally, convexity is equivalent to a diminishing marginal rate of substitution between
any two goods, provided that we allow for “composite commodities” formed from linear
combinations of the L basic commodities.

Figure 3.B.3

(a) Convex
preferences.
(b) Nonconvex
preferences.
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Figure 3.B.3(a) showed strictly convex preferences. In Figure 3.B.4, on the other hand,
the preferences, although convex, are not strictly convex.

X

In applications (particularly those of an econometric nature), it is common to
focus on preferences for which it is possible to deduce the consumer’s entire preference
relation from a single indifference set. Two examples are the classes of homothetic
and quasilinear preferences.

Definition 3.B.6: A monotone preference relation ZonX= RE is homot.het.ic it all
indifference sets are related by proportional expansion along rays; thatis, itx ~y,
then ax ~ ay for any a > 0.

Figure 3.B.S depicts a homothetic preference relation.

Definition 3.B.7: The preference relation 2 on X = (=00, ) X RE~!is quasi/ine'ag
with respect to commodity 1 (called, in this case, the numeraire commodity) if
(i) Altthe indifference sets are paraliel displacements of each other along the
axis of commodity 1. That is, if x ~ y, then (x + ae;) ~ (y + ae,) for e, =
(1,0,....0) and any x e R.
(i) Good 1 is desirable; that is, x + ae, > X for all x and « > 0.

Note that, in Definition 3.B.7, we assume that there is no lower bound on the possible
consumption of the first commodity [the consumption set is (—o0, 00) X R’;,.’ ']. This
assumption is convenient in the case of quasilinear preferences (Exercise 3.D4
will illustate why). Figure 3.B.6 shows a quasilinear preference relation.

5. More generally, preferences can be quasilinear with respect to any commodity /.

Figure 3.B.4 {left)

A convex, but not
strictly convex,
preference relation.

Figure 3.B.5 (right)

Homothetic
preferences.

Figure 3.8.6

Quasilinear
prelerences.
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3.C Preference and Utility

For analytical purposes, it is very helpful if we can summarize the consumer’s
preferences by means of a utility function because mathematical programming
techniques can then be used to solve the consumer’s problem. In this scction, we
study when this can be done. Unfortunately, with the assumptions made so far, a
rational preference relation need not be representable by a utility function. We begin
with an example illustrating this fact and then introduce a weak, economically natural
assumption (called continuity) that guarantees the existence of a utility representation.

Example 3.C.1: The Lexicographic Preference Relation. For simplicity, assume that
X = R%. Define x = y if either “x, > y,” or “x, =y, and x; 2 y,.” This is known
as the lexicographic preference relation. The name derives from the way a dictionary
is organized; that is, commodity 1 has the highest priority in determining the
preference ordering, just as the first letter of a word does in the ordering of a
dictionary. When the level of the first commodity in two commodity bundles is the
same, the amount of the sccond commodity in the two bundles determines the
consumer’s preferences. In Exercise 3.C.1, you are asked to verify that the lexico-
graphic ordering is complete, transitive, strongly monotone, and strictly convex.
Nevertheless, it can be shown that no utility function exists that represents this
preference ordering. This is intuitive. With this preference ordering, no two distinct
bundles are indifferent; indifference sets are singletons. Therefore, we have two
dimensions of distinct indifference sets. Yet, each of these indifference sets must be
assigned, in an order-preserving way, a different utility number {rom the one-
dimensional real line. In fact, a2 somewhat subtle argument is actually required to
establish this claim rigorously. It is given, for the more advanced reader, in the
following paragraph.

Suppose there is a utility function u(-). For every x,, we can pick a rational number r(x;}
such that u(x,,2) > r(x,) > u(x,, 1). Note that because of the lexicographic character of
preferences, x, > x} implies r(x,} > r(x}) [since r(x,) > u(x,, 1) > u(x, 2) > r(x})]. Therefore,
r(-) provides a one-to-one function from the set of real numbers (which is uncountable) to
the set of rational numbers (which is countable). This is a mathematical impossibility.
Therefore, we conclude that there can be no utility function representing these preferences.

The assumption that is needed to ensure the existence of a utility function is that
the preference relation be continuous.

Definition 3.C.1: The preference relation > on X is continuous it it is preserved

under limits. That is, for any sequence of pairs {(x", y")} 3=, with x7 2 y" for alt n,
x = lim,., x" and y = lim,_ ., y”, we have x 2 y.

Continuity says that the consumer’s preferences cannot exhibit “jumps,” with, for
example, the consumer preferring each element in sequence {x"} to the corresponding
element in sequence {y"} but suddenly reversing her preference at the limiting points
of these sequences x and y.
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An equivalent way to state this notion of continuity is to say that for all x, the
upper contour set {y e X: y z x} and the lower contour set {ye X:x 2y} are both
closed; that is, they include their boundaries. Definition 3.C.1 implies that for any
sequence of points {y"}=, with x z y"forallnand y = lim, ., y" we have x 2 y
(just let x" = x for all n). Hence, continuity as defined in Definition 3.C.1 implies
that the lower contour set is closed; the same is implied for the upper contour
set. The reverse argument, that closedness of the lower and upper contour sets implies
that Definition 3.C.1 holds, is more advanced and is left as an exercise (Exercise
3.C.3).

Example 3.C.1 continued: Lexicographic preferences are not continuous. To see this,
consider the sequence of bundles x” = (1/n,0) and y" = (0, 1). For every n, we have
x" > y" But lim,_, y" = (0, 1) > (0,0) = lim, ., x". In words, as long as the first
component of x is larger than that of y, x is preferred to y even if y, is much larger
than x,. But as soon as the first components become equal, only the second
components are relevant, and so the preference ranking is reversed at the limit points
of the sequence. m

It turns out that the continuity of = is sufficient for the existence of a utility
function representation. In fact, it guarantees the existence of a continuous utility
function.

Proposition 3.C.1: Suppose that the rational preference relation 7 on X is continuous.

Then there is a continuous utility function u(x) that represents .

Proof: For the case of X = RY and a monotone preference relation, there is a
relatively simple and intuitive proof that we present here with the help of Figure
3.C.1.

Denote the diagonal ray in RS (the locus of vectors with all L components equal)
by Z. It will be convenient to let e designate the L-vector whose elements are all
equal to 1. Then ae € Z for all nonnegative scalars & 2 0.

Note that for every x € RL, monotonicity implies that x = 0. Also note that for
any & such that de > x (as drawn in the figure), we have &e 2 x. Monotonicity and
continuity can then be shown to imply that there is a unique value «(x) € {0, &] such
that a(x)e ~ x.

X3

2(x)e:

yeRL:y~x}

45°

Xy
a(x) = u(x)

Figure 3.C.1

Construction of a
utility function.
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Formally, this can be shown as follows: By continuity, the upper and lower contour sets of x
are closed. Hence, the sets A* = {a e R,:ae > x} and A™ = {a e R,:x X ae} are nonempty
and closed. Note that by completeness of 2=, R, < (A" u A7). The nonemptiness and
closedness of A* and 4, along with the fact that R, is connected, imply that A* n A~ # .
Thus, there exists a scalar a such that ae ~ x. Furthermore, by monotonicity, a,e > ase
whenever a, > «,. Hence, there can be at most one scalar satisfying ze ~ x. This scalar is

alx).

We now take a(x) as our utility function; that is, we assign a utility value
u(x) = a(x) to every x. This utility level is also depicted in Figure 3.C.1. We need to
check two properties of this function: that it represents the preference 2 [i.e., that
a(x) > a(y) < x = y] and that it is a continuous function. The latter argument is
more advanced, and therefore we present it in small type.

That a(x) represents preferences follows from its construction. Formally, suppose
first that a(x) 2> a(y). By monotonicity, this implies that a(x)e X a(y)e. Since
x ~ a(x)e and y ~ a(y)e, we have x = y. Suppose, on the other hand, that x 2 y.
Then a(x)e ~ x = y ~ a(y)e; and so by monotonicity, we must have a(x) 2 a(y).
Hence, a(x) > a(y) < x 2.

We now argue that a(x) is a continuous function at all x; that is, for any sequence {x*}
with x = lim, ., x*, we have lim, ., a(x") = a(x). Hence, consider a sequence {x"},., such
that x = lim, ., x".

We note first that the sequence {a(x")}2.,; must have a convergent subsequence. By
monotonicity, for any £ > 0, a(x’) lies in a compact subset of R, [2, a,], for all x’ such that
ix' — xli < e (see Figure 3.C.2). Since {x"}2., converges to x, there exists an N such that a(x")

% /Z .
i —a'e
Compact
Subset R
of Z a{x)e
£ B X
N
%y A X,

lies in this compact set for ali n > N. But any infinite sequence that lies in a compact set must
have a convergent subsequence (see Section M.F of the Mathematical Appendix).

What remains is to establish that all convergent subsequences of {a(x")}3-, converge to
a(x). To see this, suppose otherwise: that there is some strictly increasing function m(-) that
assigns to each positive integer n a positive integer m(n) and for which the subsequence
{a(x™")} =, converges to a’ # a(x). We first show that «’' > a(x) leads to a contradiction. To
begin, note that monotonicity would then imply that «’e > a(x)e. Now, let & = i[a’ + a(x)].
The point e is the midpoint on Z between a'e and a(x)e (see Figure 3.C.2). By monotonicity,
de > a(x)e. Now, since a(x™") — a' > &, there exists an N such that for all n > N, a(x™™) > 4.

Figure 3.C.2

Proof that the
constructed utility
function is continuous.
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Hence, for all such n, x™™ ~ a(x™™)e > de (where the latter relation follows from monoton-
icity). Because preferences are continuous, this would imply that x 2 de. But since x ~ a(x)e,
we get a(x)e - de, which is a contradiction. The argument ruling out o' < «(x) is similar.
Thus, since all convergent subsequences of {a(x*)}s%, must converge to a(x), we have
lim, - o, 2(x") = a{x), and we are done.

From now on, we assume that the consumer’s preference relation is continuous
and hence representable by a continuous utility function. As we noted in Section 1.B,
the utility function u(-) that represents a preference relation 2 is not unique; any
strictly increasing transformation of u(-), say w(x) = f(u(x)), where f(-) is a strictly
increasing function, also represents . Proposition 3.C.1 tells us that if = is
continuous, there exists some continuous utility function representing >. But not all
utility functions representing X are continuous; any strictly increasing but discon-
tinuous transformation of a continuous utility function also represents z.

For analytical purposes, it is also convenient if u(-) can be assumed to be
differentiable. It is possible, however, for continuous preferences not to be
representable by a differentiable utility function. The simplest example, shown in
Figure 3.C.3, is the case of Leontief prefercnces, where x"x x' if and only if
Min {x}, x3} = Min {xi, x3}. The nondifferentiability arises because of the kink in
indifference curves when x, = X,.

Whenever convenient in the discussion that follows, we nevertheless assume utility
functions to be twice continuously differentiable. It is possible to give a condition
purely in terms of preferences that implies this property, but we shall not do so here.
Intuitively, what is required is that indifference sets be smooth surfaces that fit
together nicely so that the rates at which commodities substitute for each other
depend differentiably on the consumption levels.

Restrictions on preferences translate into restrictions on the form of utility
functions. The property of monotonicity, for example, implies that the utility function
is increasing: u(x) > u(y) il x > y.

The property of convexity of preferences, on the other hand, implies that u(-)
is quasiconcave [and, similarly, strict convexity of preferences implies strict quasi-
concavity of u(-)]. The utility function u(-) is quasiconcave if the set {y € R::u(y) =
u(x)} is convex for all x or, equivalently, if u(ax + (1 — 2)y) =2 Min {u(x), u(y)} for

X

Figure 3.C.3

Leontief preferences
cannot be represented
by a differentiable
utility function.
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any x, y and all a € [0, 1]. [If the inequality is strict for all x # y and a € (0, 1) then u(-)
is strictly quasiconcave; for more on quasiconcavity and strict quasiconcavity see
Section M.C of the Mathematical Appendix.] Note, however, that convexity of 2
does not imply the stronger property that u(-) is concave [that u(ax + (1 — a)y) =
au(x) + (1 —a)u(y) for any x,y and all a€[0, 11]. In fact, although this is a
somewhat fine point, there may not be any concave utility function representing a
particular convex preference relation 2.

In Exercise 3.C.5, you are asked to prove two other results relating utility
representations and underlying preference relations:

(i) A continuous = on X = RL is homothetic if and only if it admits a utility
function u(x) that is homogeneous of degree one [i.., such that u(ax) = au(x)
for all « > 0].

(i) A continuous X on (~o, ) x R4 ™! is quasilinear with respect to the first
commodity if and only if it admits a utility function u(x) of the form
w(x) = x; + P(xX3,...,%.).

It is important to realize that although monotonicity and convexity of 2 imply
that all utility functions representing 2 are increasing and quasiconcave, (i) and (ii)
mercly say that there is at least one utility function that has the specified form.
Increasingness and quasiconcavity are ordinal properties of u(+); they are preserved
for any arbitrary increasing transformation of the utility index. In contrast, the special
forms of the utility representations in (i) and (ii) are not preserved; they are cardinal
properties that are simply convenient choices for a utility representation.®

3.D The Utility Maximization Problem

We now turn to the study of the consumer’s decision problem. We assume throughout
that the consumer has a rational, continuous, and focally nonsatiated preference
relation, and we take u(x) to be a continuous utility function representing these
preferences. For the sake of concreteness, we also assume throughout the remainder
of the chapter that the consumption set is X = R%.

The consumer’s problem of choosing her most preferred consumption bundle
given prices p » 0 and wealth level w > 0 can now be stated as the following wtility
maximization problem (UMP):

Max  u(x)
x>0

st.prx<w.

In the UMP, the consumer chooses a consumption bundle in the Walrasian
budget set B, ,, = {x € RL: p-x < w} to maximize her utility level. We begin with the
results stated in Proposition 3.D.1.

Proposition 3.D.1; If p>» 0 and u(-) is continuous, then the utility maximization
problem has a solution.

6. Thus, in this sense, continuity is also a cardinal property of utility functions. See also the
discussion of ordinal and cardinal properties of utility representations in Section 1.B.
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{reRi:u(y) = d}
{re Ry u(y) = u(x(p. wh}

X2

X2

x(p,w)

pow

i < u(x( p,w))

X, X,

(a) (b)

Proof: If p» 0, then the budget set B, = {xeR}:p'x s w} is a compact set because it is
both bounded [for any / = 1,...,L, we have x, < (w/p,) for all x€ B, ] and closed. The
result follows from the fact that a continuous function always has a maximum value on any
compact set (set Section M.F. of the Mathematical Appendix). m

With this result, we now focus our attention on the properties of two objects that
emerge from the UMP: the consumer’s set of optimal consumption bundles (the
solution set of the UMP) and the consumer’s maximal utility value (the value function
of the UMP).

The Walrasian Demand Correspondence/Function

The rule that assigns the set of optimal consumption vectors in the UMP to each
price-wealth situation (p, w) > 0 is denoted by x(p, w)e R% and is known as the
Walrasian (or ordinary or market) demand correspondence. An example for L = 2 is
depicted in Figure 3.D.1(a), where the point x(p, w) lies in the indifference set with
the highest utility level of any point in B, .. Note that, as a general matter, for a
given (p, w) » O the optimal set x(p, w) may have more than one element, as shown
in Figure 3.D.1(b). When x(p, w) is single-valued for all {p, w), we refer to it as the
Walrasian (or ordinary or market) demand function.”

The propertics of x(p, w) stated in Proposition 3.D.2 follow from direct examina-
tion of the UMP.

Proposition 3.D.2: Suppose that u(-) is a continuous utility function representing a
locally nonsatiated preference relation = defined on the consumption set X = RE.
Then the Walrasian demand correspondence x{(p, w) possesses the following
properties:

7. This demand function has also been called the Marshallian demand function. However, this
terminology can create confusion, and so we do not use it here. In Marshallian partial equilibrium
analysis (where wealth effects are absent), all the different kinds of demand functions studied in this
chapter coincide, and so it is not clear which of these demand functions would deserve the Marshall
name in the more general setting.

Figure 3.D.1

The utility
maximization problem
(UMP).

(a) Single solution.

(b) Multiple solutions.
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(i) Homogeneity of degree zero in (p, w). x(ap, aw) = x(p, w} for any p, w
and scalar « > 0.
(i) Walras' law: p-x = w for all xe x(p, w).
(i} Convexity/uniqueness: It Z is convex, so that u(-) is quasiconcave, then
x(p, w) is a convex set. Moreover, it X is strictly convex, so that u(-) is
strictly quasiconcave, then x(p, w) consists of a single element.

Proof: We cstablish each of these properties in turn.
(i) For homogeneity, note that for any scalar a > 0,
{xeR:ap-x Saw} = {xeRE:p-x < w};

that is, the set of feasible consumption bundles in the UMP does not change when
all prices and wealth are multiplied by a constant « > 0. The set of utility-maximizing
consumption bundles must therefore be the same in these two circumstances, and so
x(p, w) = x(ap, aw). Note that this property does not require any assumptions on u(").

(i) Walras’ law follows from local nonsatiation. If p-x < w for some x € x(p, w),
then there must exist another consumption bundle y sufficiently close to x with both
p-y < wand y > x (see Figure 3.D.2). But this would contradict x being optimal in
the UMP.

X

Xy

(iii) Suppose that u(-) is quasiconcave and that there are two bundles x and X/,
with x # X', both of which are elements of x(p, w). To establish the resuit, we show
that x” = ax + (1 — a)x’ is an element of x(p, w) for any a € [0,1]. To start, we know
that u(x) = u(x). Denote this utility level by u*. By quasiconcavity, u(x") 2 u* [see
Figure 3.D.3(a)). In addition, since p-x < w and p-x’ < w, we also have

prx"=plax + (1 —)x']<w.

Therefore, x” is a feasible choice in the UMP (put simply, x" is feasible because B, .,
is a convex set). Thus, since u(x") > u* and x" is feasible, we have x" € x(p, w). This
establishes that x(p, w) is a convex set if u() is quasiconcave.

Suppose now that u(-) is strictly quasiconcave. Following the same argument but
using strict quasiconcavity, we can establish that x” is a feasible choice and that
u(x") > u* for all « € (0,1). Because this contradicts the assumption that x and x" are
elements of x(p, w), we conclude that there can be at most one element in x(p, w).
Figure 3.D.3(b) illustrates this argument. Note the difference from Figure 3.D.3(a)
arising from the strict quasiconcavity of u(x). »

Figure 3.D.2

Local nonsatiation
implies Walras’ law.
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If () is continuously differentiable, an optimal consumption bundle x* € x(p, w)
car be characterized in a very useful manner by means of first-order conditions.
The Kuhn—Tucker (necessary) conditions (see Section MK of the Mathematical
Appendix) say that if x* € x(p, w) is a solution to the UMP, then there exists a
Lagrange multiplier 4 > 0 such that for allr=1,...,L8

Ju(x*)
dc,
Equivalently, if we let Vu(x) = [du(x)/0x,, . . ., du(x)/dx,] denote the gradient vector
of u(*) at x, we can write (3.D.1) in matrix notation as

< 4p,, with equality if x} > 0. 3.D.1)

Vu(x*) < p (3.D.2)
and
x*-[Vu(x*) — ip] = 0. (3.D.3)
Thus, if we are at an interior optimum (i.e., if x* » 0), we must have
Vu(x*) = Ap. (3.D4)

Figure 3.D.4(a) depicts the first-order conditions for the case of an interior
optimum when L = 2. Condition (3.D.4) tells us that at an interior optimum, the

8. To be [ully rigorous, these Kuhn-Tucker necessary conditions are valid only if the constraint
qualification condition holds (see Section M.K of the Mathematical Appendix). In the UMP, this
is always so. Whenever we use Kuhn-Tucker necessary conditions withoul mentioning the
constraint qualification condition, this requirement is met.

Figure 3.0.3

(a) Convexity of
preferences implies
convexity of x(p, w).
(b) Strict convexity of
preferences implics
that x(p, w) is
single-valued.

Figure 3.0.4

(a) Interior solution.
(b) Boundary solution.
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gradient vector of the consumer’s utility function Vu(x*) must be proportional to
the price vector p, as is shown in Figure 3.D.4(a). If Vu(x*) > 0, this is equivalent to
the requirement that for any two goods ¢ and k, we have

du(x*)[0x, _ b

(3.D.5)
ou(x*)[0x, P

The expression on the left of (3.D.5) is the marginal rate of substitution of good ¢ for
good k at x*, MRS, (x*); it tells us the amount of good k that the consumer must
be given to compensate her for a one-unit marginal reduction in her consumption
of good /. In the case where L = 2, the slope ol the consumer’s indifference set at
x* is precisely — MRS, ;(x*). Condition (3.D.5) tells us that at an interior optimum,
the consumer’s marginal rate of substitution between any two goods must be equal
to their price ratio, the marginal rate of exchange between them, as depicted in Figure
3.D.4(a). Were this not the case, the consumer could do better by marginally changing
her consumption. For example, if {du(x*)/dx,1/[du(x*)/0x,1 > (p,/Pi)s then an
increase in the consumption of good ¢ of dx,, combined with a decrease in good k’s
consumption equal to (p,/p,) dx,, would be feasible and would yield a utility change
of [eu(x*)/x,] dx, — [u(x*)/dx,](p,/py) dx, > O.

Figure 3.D.4(b) depicts the first-order conditions for the case of L = 2 when the
consumer’s optimal bundle x* lies on the boundary of the consumption set (we have
x¥ = 0 there). In this case, the gradient vector need not be proportional to the price
vector. In particular, the first-order conditions tell us that du,(x*)/0x, < 2p, for those
¢ with x¥ = 0 and du,(x*)/dx, = Ap, for those £ with x} > 0. Thus, in the figure, we
see that MRS, ,(x*) > p,/p,. In contrast with the case of an interior optimum, an
inequality between the marginal rate of substitution and the price ratio can arise at
a boundary optimum because the consumer is unable to reduce her consumption of
good 2 (and correspondingly increase her consumption of good 1) any further.

The Lagrange multiplier 2 in the first-order conditions (3.D.2) and (3.D.3) gives
the marginal, or shadow, value of relaxing the constraint in the UMP (this is a general
property of Lagrange multipliers; see Sections M.K and M.L of the Mathematical
Appendix). It therefore equals the consumer’s marginal utility value of wealth at
the optimum. To see this directly, consider for simplicity the case where x(p, w)
is a differentiable function and x(p, w) » 0. By the chain rule, the change in utility
from a marginal increasc in w is given by Vu(x(p,w))-D.x(p, w), where
D..x(p, w) = [2x,(p, w)/Ow, ..., dx.(p, w)/dw]. Substituting for Vu(x(p, w)) from con-
dition (3.D.4), we get

Vu(x(p, w))* D, x(p, w) = ip-D,x(p,w) = 2,

where the last equality follows because p+x(p, w) = w holds for all w (Walras’ law)
and therefore p-D,x(p, w) = L. Thus, the marginal change in utility arising from

9. Note that if utility is unchanged with differential changes in x, and x,, dx, and dx,, then
[fu(x)/éx,] dx, + [u(x)/dx,] dx, = 0. Thus, when x, falls by amount dx, < 0, the increase required
in x, 10 keep utility unchanged is precisely dx, = MRS, (x*)(—dx,).
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a marginal increase in wealth—the consumer’s marginal utility of wealth—is pre-
ciscly A.!°

We have seen that conditions (3.D.2) and (3.D.3) must necessarily be satisfied by any
x* € x(p, w). When, on the other hand, does satisfaction of these first-order conditions by some
bundle x impty that x is a solution to the UMP? That is, when are the first-order conditions
sufficient 10 establish that x is a solution? If u(-) is quasiconcave and monotone and has
Vu(x) # 0 for all x & R, then the Kuhn-Tucker first-order conditions are indeed sufficient
(see Section M.K of the Mathematical Appendix). What if u(+) is not quasiconcave? In that
case, if u(-) is locally quasiconcave at x*, and if x* satisfies the first-order conditions, then x*
is a Jocal maximum. Local quasiconcavity can be verified by means of 2 determinant test on the
bordered Hessian matrix of u(-) at x*. (For more on this, see Sections M.C and M.D of the
Mathematical Appendix.)

Example 3.D.1 illustrates the use of the first-order conditions in deriving the
consumer’s optimal consumption bundie.

Example 3.D.1: The Demand Function Derived from the Cobb-Douglas Utility
Function. A Cobb-Douglas utility function for L = 2 is given by u(x,, x;) = kx§x} ™"
for some a € (0, 1) and k > 0. It is increasing at all (x,, x;) » 0 and is homogeneous
of degree one. For our analysis, it turns out to be easier to use the increasing
transformation alnx, + (1 — ) In x,, a strictly concave function, as our utility
function. With this choice, the UMP can be stated as

Max alnx; +(1 —a)inx, (3.D.6)

X%
St piX, + pXy =W,
[Note that since u(-) is increasing, the budget constraint will hold with strict equality
at any solution.]
Since In 0 = —oo, the optimal choice (x,(p, W), X;(p, w)) is strictly positive and
must satisfy the first-order conditions (we write the consumption levels simply as x,
and x, for notational convenience)

2=, 3.D.7)
Xy
and
L= (3.D3)
X2

for some 7 > 0, and the budget constraint p-x(p, w) = w. Conditions (3.D.7) and
(3.D.8) imply that
2
piXy = -~ P2X;
| —a

or, using the budget constraint,
o
pixy = (W = pyxy).
i—=
10. Note that if monotonicity of u(-) is strengthened slightly by requiring that Vu(x) = 0 and

Vu(x) # 0 for all x, then condition (3.D.4) and p » 0 also imply that 4 is strictly positive at any
solution of the UMP,
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Hence (including the arguments of x, and x, once again)

aw
x,(p,w) = —,
41
and (using the budget constraint)
(1 - a)w
x(pw)=—-.
P2

Note that with the Cobb-Douglas utility function, the expenditure on each com-
modity is a constant fraction of wealth for any price vector p [a share of a goes for
the first commodity and a share of (1 — «) goes for the second]. =

Exercise 3.D.1: Verify the three properties of Proposition 3.D.2 for the Walrasian
demand function generated by the Cobb-Douglas utility function.

For the analysis of demand responses to changes in prices and wealth, it is also
very helpful if the consumer’'s Walrasian demand is suitably continuous and
differentiable. Because the issues are somewhat more technical, we will discuss the
conditions under which demand satisfies these properties in Appendix A to this
chapter. We conclude there that both properties hold under fairly general conditions.
Indeed, if preferences are continuous, strictly convex, and locally nonsatiated on the
consumption set RL, then x(p, w) (which is then a function) is always continuous at
all (p,w) » 0.

The Indirect Utility Function

For each (p, w) >» 0, the utility value of the UMP is denoted v(p, w) € R. It is equal
1o u(x*) for any x* € x(p, w). The function v(p, w) is called the indirect utility function
and often proves to be a very useful analytic tool. Proposition 3.D.3 identifies its basic
properties.

Proposition 3.D.3: Suppose that u() is a continuous utility function representing a

locally nonsatiated preterence relation > defined on the consumption setX = R:.
The indirect utility function v(p, w) is
(i) Homogeneous of degree zero.
(ii) Strictly increasing in w and nonincreasing in p, for any ¢.
(i) Quasiconvex; that is, the set {{p, w): v(p, w) < 7} is convex for any v."
(iv) Continuous in p and w.

Proof: Except for quasiconvexity and continuity all the properties follow readily from
our previous discussion. We forgo the proof of continuity here but note that, when
preferences are strictly convex, it follows from the fact that x(p, w) and u(x) are
continuous functions because v(p, w) = u(x(p, w)) [recall that the continuity of x(p, w)
is established in Appendix A of this chapter].

To see that v(p,w) is quasiconvex, suppose that v(p,w) < & and v(p’,w') < D.
For any « € [0, 1], consider then the price-wealth pair (p”, w") = (ap + (1 — @)p’,
aw + (1 — a)w').

11. Note that property (iii) says that v(p, w) is quasiconvex, not quasiconcave. Observe also
that property (iii) does not require for its validity that u(-) be quasiconcave.

3E
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" x(p'\w)
{xeR2: u(x) =i}
B, /
B,. x(p,w)

Xy

To establish quasiconvexity, we want to show that v(p”, w") < &. Thus, we show
that for any x with p”-x < w”, we must have u(x) < 0. Note, first, that if p"-x < w",
then,

apx + (1 —a)px <aw+ (1 —a)w'.
Hence, cither p-x < w or p'*x < w (or both). If the former inequality holds, then
u(x) < v(p.w) < 5, and we have established the result. If the latter holds, then
u(x) € v(p’, w') < b, and the same conclusion follows. =

The quasiconvexity of v(p, w) can be verified graphically in Figure 3.D.5 for the
casc where L = 2. There, the budget sets for price-wealth pairs (p, w) and (p', w')
generale the same maximized utility value @ The budget line corresponding to
", w")=(ap+ (1 —a)p, aw + (1 — x)w') is depicted as a dashed line in Figure
3.D.5. Because (p”, w") is a convex combination of (p, w) and (p’, w'), its budget line
lies between the budget lines for these two price-wealth pairs. As can be seen in the
figure, the attainable utility under (p*, w") is necessarily no greater than i.

Note that the indirect utility function depends on the utility representation chosen.
In particular, il v(p, w) is the indirect utility function when the consumer’s utility
function is u(-), then the indirect utility function corresponding to utility representa-

tion d#(x) = f(u(x)) is &(p, w) = f(v(p, w)).

Example 3.D.2: Suppose that we have the utility function u(x;,x,)=alnx, +
(1 — @) In x,. Then, substituting x,(p, w) and x,(p, w) from Example 3.D.1, into u(x)
we have
v(p, w) = u(x(p, w))
=[alna+(l —x)In(l-a)] +Inw—alnp, —(1 —a)Inp,.

Exercise 3.D.2: Verify the four properties of Proposition 3.D.3 for the indirect utility
function derived in Example 3.D.2.

The Expenditure Minimization Problem

In this section, we study the following expenditure minimization problem (EMP) for
p>» 0and u > u(0):'?

12. Utility u(0) is the utility from co ing the

restriction to 1 > u(0) rules out only uninteresting situations.

ption bundle x = (0,0,...,0). The

Figure 3.0.5

The indirect utility
function o(p, w) is
quasiconvex.
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X2

: xe R:: u(x)? u}

1
{xeR: p-x=px*}

X3

Min p-x (EMP)
x20
s.t. u(x) = u.

Whereas the UMP computes the maximal level of utility that can be obtained given
wealth w, the EMP computes the minimal level of wealth required to reach utility
level u. The EMP is the “dual” problem to the UMP. It captures the same aim of
efficient use of the consumer’s purchasing power while reversing the roles of objective
function and constraint.!?

Throughout this section, we assume that u(-) is a continuous utility function
representing a locally nonsatiated preference relation X defined on the consumption
set R,

The EMP is illustrated in Figure 3.E.1. The optimal consumption bundle x* is
the least costly bundle that still allows the consumer to achieve the utility level u.
Geometrically, it is the point in the set {x € R%: u(x) > u} that lies on the lowest
possible budget line associated with the price vector p.

Proposition 3.E.1 describes the formal relationship between EMP and the UMP.

Proposition 3.E.1: Suppose that u(-) is a continuous utility function representing a
locally nonsatiated preference relation 2= defined on the consumption set X = R
and that the price vector is p » 0. We have

(i) If x* is optimal in the UMP when wealth is w > 0, then x* is optimal in the
EMP when the required utility level is u(x*). Moreover, the minimized
expenditure level in this EMP is exactly w.

(i) 1f x* is optimal in the EMP when the required utility level is v > u(0), then
x* is optimal in the UMP when wealth is p*x*. Moreover, the maximized
utility level in this UMP is exactly u.

Proof: (i) Suppose that x* is not optimal in the EMP with required utility level u(x*).
Then there exists an x' such that u(x’) > u(x*) and p-x’ < px* < w. By local
nonsatiation, we can find an x” very close to x’ such that u(x”) > u(x’) and p-x" < w.
But this implies that x” € B, ,, and u(x") > u(x*), contradicting the optimality of x*
in the UMP. Thus, x* must be optimal in the EMP when the required utility level

13. The term “dual” is meant to be suggestive. It is usuaily applied to pairs of problems and
concepts that are formally similar except that the role of quantities and prices, and/or maximization
and minimization, and/or objective function and constraint, have been reversed.

Figure 3.E.1

The expenditure
minimization problem
(EMP).
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is u(x*), and the minimized expenditure level is therefore p-x*. Finally, since x*
solves the UMP when wealth is w, by Walras' law we have p-x* = w.

(ii) Since u > u(0), we must have x* # 0. Hence, p-x* > 0. Suppose that x* is
not optimal in the UMP when wealth is p-x*. Then there exists an x’ such that
u(x') > u(x*) and p-x’ < p-x*. Consider a bundle x” = ax’ where a € ©,1) (x" is a
wscaled-down™ version of x’). By continuity of u(*), if « is close enough to I, then
we will have u(x") > u(x*) and p-x" < p-x*. But this contradicts the optimality of
x* in the EMP. Thus, x* must be optimal in the UMP when wealth is p-x*, and
the maximized utility level is therefore u(x*). In Proposition 3.E.3(ii), we will show
that if x* solves the EMP when the required utility level is , then u(x*) = u. w

As with the UMP, when p » 0 a solution to the EMP exists under very general
conditions. The constraint sct mercly needs to be nonempty; that is, u(-) must attain
values at least as large as u for some x (see Exercise 3.E.3). From now on, we assume
that this is so; for example, this condition will be satisfied for any u > u(0) if u(-) is
unbounded above.

We now proceed to study the optimal consumption vector and the value function
of the EMP. We consider the value function first.

The Expenditure Function

Given prices p » 0 and required utility level u > u(0), the value of the EMP is denoted
e(p, u). The function e(p, u) is called the expenditure function. Tts value for any (p, u)
is simply p-x*, where x* is any solution to the EMP. The result in Proposition 3.E.2
describes the basic properties of the expenditure function. It parallels Proposition
3.D.3's characterization of the properties of the indirect utility function for the UMP.

Proposition 3.E.2: Suppose that u(-) is a continuous utility function representing a
locally nonsatiated preference relation 2 defined on the consumption set X = RS .
The expenditure function e(p, u) is

(i} Homogeneous of degree one in p.

(ii) Strictly increasing in v and nondecreasing in p, for any £,
(iii) Concave in p.
{iv) Continuous in p and v.

Proof: We prove only properties (i), (ii), and (iii).

(i) The constraint set of the EMP is unchanged when prices change. Thus, for
any scalar « > 0, minimizing (2p)- x on this sct leads to the same optimal consumption
bundles as minimizing p-x. Letting x* be optimal in both circumstances, we have
e(ap, u) = ap*x* = ae(p, u).

(i) Suppose that e(p, u) were not strictly increasing in u, and let x" and x” denote
optimal consumption bundles for required utility levels &' and u”, respectively, where
u" > u' and p-x' 2 p+x” > 0. Consider a bundle % = ax”, where a € (0, 1). By con-
tinuity of u(-), there exists an a close enough to 1 such that «(%) > v and p-x’ > p- &.
But this contradicts x’ being optimal in the EMP with required utility level u'.

To show that e(p, u) is nondecreasing in p,, suppose that price vectors p” and p’
have p; > p, and pj = p} for all k # ¢. Let x" be an optimizing vector in the EMP
for prices p”. Then e(p", u) = p"-x" > p'*x" = e(p', u), where the latter inequality
follows from the definition of e(p’, u).
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(iii) For concavity, fix a required utility level 4, and let p" =ap + (1 — «)p’ for
« € [0, 1]. Suppose that x” is an optimal bundle in the EMP when prices are p”. If so,

e(p" @) =p X"
=apx" + (1 —a)p’*x"
> ae(p, @) + (1 — a)e(p', @),

where the last inequality follows because u(x") 2 d and the definition of the
expenditure function imply that prx" 2 e(p,a)and p'-x" Z e(p i) =

The concavity of e(p, @) in p for given i, which is a very important property, is
actually fairly intuitive. Suppose that we initially have prices p and that X is an
optimal consumption vector at these prices in the EMP. If prices change but we do
not let the consumer change her consumption levels from %, then the resulting
expenditure will be p- X, which is a linear expression in p. But when the consumer
can adjust her consumption, as in the EM P, her minimized expenditure level can be
no greater than this amount. Hence, as illustrated in Figure 3.E.2(a), where we keep
p, fixed and vary p,, the graph of e(p, ) lies below the graph of the linear function
p-% at all p # j and touches it at p. This amounts to concavity because a similar
relation to a linear function must hold at each point of the graph of e(-, u); see Figure
3.E2(b).

Proposition 3.E.1 allows us to make an important connection between the
expenditure function and the indirect utility function developed in Section 3.D. In
particular, for any p » 0, w >0, and u > u(0) we have
v(p, e(p, w)) = u. (3.E.1)
These conditions imply that for a fixed price vector p, e(p, *) and v(p, *) are inverses
to one another (see Exercise 3.E.8). In fact, in Exercisc 3.E.9, you are asked to
show that by using the relations in (3.E.1), Proposition 3.E.2 can be directly derived
from Proposition 3.D.3, and vice versa. That is, there is a direct correspondence
beiween the properties of the expenditure function and the indirect utility function.
They both capture the same underlying features of the consumer's choice problem.

e(poe(pw) =w and

The Hicksian (or Compensated) Demand Function

The set of optimal commodity vectors in the EMP is denoted h(p, u) = R% and is
known as the Hicksian, or compensated, demand correspondence, or function if

Figure 3.E.2

The concavity in p of
the expenditure
function.
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hp,u) {xeRLulx)= u}

Xy

single-valued. (The reason for the term “compensated demand” will be explained
below.) Figure 3.E.3 depicts the solution set A(p, u) for two different price vectors p
and p'.

Three basic properties of Hicksian demand are given in Proposition 3.E.3, which
parallels Proposition 3.D.2 for Walrasian demand.

Proposition 3.E.3: Suppose that u(-) is a continuous utility function representing a
locally nonsatiated preference relation > defined on the consumption setX = R,.
Then for any p >» 0, the Hicksian demand correspondence A(p, u) possesses the
following properties:

(i) Homogeneity of degree zero inp: hiep, u) = hip, u)forany p, ¥ anda > 0.
(i) No excess utility: For any xeh(p, u), u(x) = u.
(iiiy Convexity/uniqueness: it > is convex, then h(p, u) is a convex set; and
i & is strictly convex, so that u(*) is strictly quasiconcave, then there is
a unique element in A(p, u).

Proof: (i) Homogeneity of degree zero in p follows because the optimal vector when
minimizing p-x subject to u(x) 2 u is the same as that for minimizing ap-x subject
to this same constraint, for any scalar « > 0.

(i) This property follows from continuity of u(-). Suppose there exists an
x € h(p, u) such that u(x) > u. Consider a bundle x’ = ax, where «€(0,1). By
continuity, for « close enough to 1, u(x') > u and px’ < p*x, contradicting x being
optimal in the EMP with required utility level u.

(iii) The proof of property (iii) parallels that for property (iii) of Proposition
3.D.2 and is left as an exercise (Exercise 3.E4). =

As in the UMP, when u(-) is differentiable, the optimal consumption bundle in
the EMP can be characterized using first-order conditions. As would be expected
given Proposition 3.E.1, these first-order conditions bear a close similarity to those
of the UMP. Exercise 3.E.1 asks you to explore this relationship.

Exercise 3.E.1: Assume that u(-) is differentiable. Show that the first-order conditions
for the EMP are

p = A Vu(x*) (3.E2)
and
x*+[p— 4 Vu(x*)] =0,

for some A > 0. Compare this with the first-order conditions of the UMP.

(3.E3)

i

Figure 3.E.3

The Hicksian (or
compensated) demand
function.
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Pi=n
Pi>n

K

x(p, w) = h(p, u)

h(p', u) = x(p', W + AWyicy,)
/ = x(p',e(p', u))

{xeRY:u(x) = x}

We will not discuss the continuity and differentiability properties of the Hicksian demand
correspondence. With minimal qualifications, they are the same as for the Walrasian demand
correspondence, which we discuss in some detait in Appendix A.

Using Proposition 3.E.1, we can relate the Hicksian and Walrasian demand
correspondences as follows:

h(p,u) = x(p,e(p,u))  and  x(p,w) = h(p,v(p, ). (3E4)
The first of these relations explains the use of the term compensated demand
correspondence to describe h(p, u): As prices vary, h(p, u) gives precisely the level of
demand that would arise if the consumer’s wealth were simultaneously adjusted to
keep her utility level at u. This type of wealth compensation, which is depicted in
Figure 3.E4, is known as Hicksian wealth compensation. In Figure 3.E4, the
consumer’s initial situation is the price-wealth pair (p, w), and prices then change to
p’, where p, = p, and p; > p,. The Hicksian wealth compensation is the amount
AWy, = €(p', u) — w. Thus, the demand function h(p, u) keeps the consumer’s utility
level fixed as prices change, in contrast with the Walrasian demand function, which
keeps money wealth fixed but allows utility to vary.

As with the value functions of the EMP and UMP, the relations in (3.E.4) allow
us to develop a tight linkage between the properties of the Hicksian demand
correspondence h(p, u) and the Walrasian demand correspondence x(p, w). In parti-
cular, in Exercise 3.E.10, you are asked to use the relations in (3.E.4) to derive the
properties of each correspondence as a direct consequence of those of the other.

Hicksian Demand and the Compensated Law of Demand

An important property of Hicksian demand is that it satisfies the compensated law
of demand: Demand and price move in opposite directions for price changes that are
accompanied by Hicksian wealth compensation. In Proposition 3.E.4, we prove this
fact for the case of single-valued Hicksian demand.

Proposition 3.E.4: Suppose that u(-) is a continuous utility function representing a

Jocally nonsatiated preference relation 2 and that h{p. u) consists of a single
element for all p > 0. Then the Hicksian demand function A(p, u) satisfies the
compensated law of demand: For all p’ and p",

(p" ~p' ) [hp" u) = hip, )] 0. (3.€.5)

Figure 3.£.4

Hicksian wealth
compensation.
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Proof: For any p > 0, consumption bundle h(p, u) is optimal in the EMP, and so it
achieves a lower expenditure at prices p than any other bundle that offers a utility
level of at least u. Therefore, we have

p h(p", u) < p"-h(p', u)
and

preh(p” u) 2 p'oh(p, u).
Subtracting these two inequalities yields the results. =

One immediate implication of Proposition 3.E.4 is that for compensated demand,
own-price effects are nonpositive. In particular, if only p, changes, Proposition 3.E.4
jmplies that (p; — pp)[h,(p" w) — h, (P, u)] < 0. The comparable statement is not
true for Walrasian demand. Walrasian demand need not satisfy the law of demand.
For example, the demand for a good can decrease when its price falls. Sce Section 2.E
for a discussion of Giffen goods and Figure 2.F.5 (along with the discussion of that
figure in Section 2.F) for a diagrammatic example.

Example 3.E.1: Hicksian Demand and Expenditure Functions for the Cobb-Douglas
Utility Function. Suppose that the consumer has the Cobb-Douglas utility function
over the two goods given in Example 3.D.1. That is, u(x,, x;) = x%x} % By deriving
the first-order conditions for the EMP (see Exercise 3.E.1), and substituting from the
constraint u(h,(p, u), hy{p, w)) = 1, we obtain the Hicksian demand functions

1-a
hy(p,u) = [———(1 ap;)p jl u
—opy

hy(p, u) = [(_—a-)_p_,]’ u.

ap;

and

Calculating e(p, u) = p-h(p, u) yields
e(p,u) =[a™*(1 ~ )* '1pip} “u. m

Exercise 3.E.2: Verify the properties listed in Propositions 3.E2 and 3.E.3 for the
Hicksian demand and expenditure functions of the Cobb-Douglas utility function.

Here and in the preceding section, we have derived several basic properties of the
Walrasian and Hicksian demand functions, the indirect utility function, and the
expenditure function. We investigate these concepts further in Section 3.G. First,
however, in Section 3.F, which is meant as optional, we offer an introductory
discussion of the mathematics underlying the theory of duality. The material covered
in Section 3.F provides a better understanding of the essential connections between
the UMP and the EMP. We emphasize, however, that this section is not a prerequisite
for the study of the remaining sections of this chapter.

Duality: A Mathematical Introduction

This section constitutes a mathematical detour. It focuses on some aspects of the
theory of convex sets and [unctions.

Recali that a set K < R* is convex if ax + (I — a)z € K whenever x,z€ K and
2€ [0, 1]. Note that the intersection of two convex sets is a convex set.
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A half-space is a set of the form {x € R:: p-x 2 c} for some p e RY, p # 0, called
the normal vector 1o the half-space, and some ¢ & R. Its boundary {x e R": p-x = c}
is called a hyperplane. The term normal comes from the fact that whenever
p-x = p-x =c, we have p-(x — x') =0, and so p is orthogonal (i.c., perpendicular,
or normal) to the hyperplane (see Figure 3.F.1). Note that both half-spaces and
hyperplanes are convex sets.

Suppose now that K < RE is a convex set that is also closed (i.e., it includes its
boundary points), and consider any point % ¢ K outside of this set. A fundamental
theorem of convexity theory, the separating hyperplane theorem, tells us that there is
a hall-space containing K and excluding £ (se¢ Section M.G of the Mathematical
Appendix). That is, there is a pe R and a ce R such that pX<c<p-x for all
x € K. The basic idea behind duality theory is the fact that a closed, convex set can
equivalently (“dually™) be described as the intersection of the half-spaces that contain
it; this is illustrated in Figure 3.F.2(a). Because any X ¢ K is excluded by some
half-space that contains K, as we draw such half-spaces for more and more points
% ¢ K, their intersection (the shaded area in the figure) becomes equal to K.

More generally, if the set K is not convex, the intersection of the half-spaces that
contain K is the smallest closed, convex set that contains K, known as the closed,
convex hull of K. Figure 3.F.2(b) illustrates a case where the set K is nonconvex; in
the figure, the closed convex hull of K is K.

Given any closed (but not necessarily convex) set K < R and a vector p e RY,
we can define the support function of K.

Definition 3.F.1: For any nonempty closed set K = R, the support function of K is

defined for any p € Rt to be

1(p) = Infimum {p-x: x e K}.

Flgure 3.F.1
A half-space and a
hyperplane.

Figure 3.F.2

A closed sct is convex
if and only if it equals
the interscction of the
half-spaces that
contain it.

(a) Convex K.

(b) Nonconvex K.
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The infimum of a set of numbers, as used in Definition 3.F.1, is a generalized version
of the set’'s minimum value. In particular, it allows for situations in which no minimum
exists because although points in the set can be found that come arbitrarily close to
some lower bound value, no point in the set actually attains that value. For example,
consider a strictly positive function f(x) that approaches zero asymptotically as x
increases. The minimum of this function does not exist, but its infimum is zero. The
formulation also allows uy(p) to take the value —oo when points in K can be found
that make the value of p-x unboundedly negative.

When K is convex, the function py(-) provides an alternative (“dual”) descrip-
tion of K because we can reconstruct K from knowledge of ui(-). In particular, for
every p, {xeRbpox2 ux(p)} is a half-space that contains K. In addition, as we
discussed above, if x ¢ K, then p*x < px(p) for some p. Thus, the intersection of the
half-spaces generated by all possible values of p is precisely K; that is,

K = {x e R% p-x 2 pg(p) for every p}.

By the same logic, il K is not convex, then {x € R*: p-x = pg(p) for every p} is the
smallest closed, convex set containing K.

The function p.(- ) is homogeneous of degree one. More interestingly, it is concave.
To see this, consider p” = ap + (1 — a)p’ fora € [0,1]. To make things simple, suppose
that the infimum is in fact attained, so that thereisa z € K such that ux(p”) =p"*z.
Then, because

ulp™) =ap-z+ (1 —a)p'z
> apy(p) + (1 — Dp(p).
we conclude that pi(-) is concave.

The concavity of () can also be scen geometrically. Figure 3.F.3 depicts the
value of the function ¢(p) = p+x, for various choices of x € K, as a function of p,
(with p, fixed at p,). For each x, the function ¢,(-) is a linear function of p,. Also
shown in the figure is juy(+). For each level of py, (P, p,) is equal to the minimum
value (technically, the infimum) of the various linear functions ¢,(-) at p = (p1, P2
that is, p(Py, p2) = Min {¢(p1, p2): x€ K }. For example, when p; = p3, plPr P2) =
¢dP1, P2) S @, P Ba) for all xe K. As can be seen in the figure, pg(*) is therefore
the “lower envelope™ of the functions ¢,(-). As the infimum of a family of linear
functions, ug(-) is concave.

@.(P.p2) = FaX) + PaX;

G:(Pyo p2) = Pr%y + P2%s
G.-(Py p2) = PrXy + P2Xy

HxlPup1)

D] IR
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'
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-
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Figure 3.F.3

The support function
ux(p) is concave.
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Proposition 3.F.1, the duality theorem, gives the central result of the mathematical
theory. Its use is pervasive in economics.

Proposition 3.F.1: (The Duality Theorem). Let K be a nonempty closed set, and let

1{+) be its support function. Then there is a unique X € K such that 5-X = u(5)
if and only if u,(-) is differentiable at 5. Moreover, in this case,

Vi) = X.

We will not give a complete proof of the theorem. Its most important conclusion
is that if the minimizing vector % for the vector p is unique, then the gradient of the
support function at j is equal to X. To understand this result, consider the linear
function ¢« p) = p-x. By the dcfinition of %, we know that uy(p) = ¢ {p). Moreover,
the derivatives of ¢ (-) at j satisly Vg { p) = . Therefore, the duality theorem tells us
that as far as the first derivatives of u,(-) are concerned, it is as if px(-) is linear in
p; that is, the first derivatives of ji.(-) at j are exactly the same as those of the function
¢Lp) = p*x.

The logic behind this fact is relatively straightforward. Suppose that p,(-) is
differentiable at 5, and consider the function &(p) = p-X — ux(p), where x € K and
tx(p) = p-X. By the definition of py(-), &(p) = p+X — px(p) 2 O for all p. We also
know that &(p) = p+ % — py(p) = 0. So the function &(-) reaches a minimum at p = p.
As a result, its partial derivatives at § must all be zero. This implies the result:
VE(p) = X — Vi p) = 0.1

Recalling our discussion of the EMP in Section 3.E, we see that the expenditure
function is precisely the support function of the set {x & R%: u(x) > u}. From our
discussion of the support function, several of the properties of the expenditure
function previously derived in Proposition 3.E.2, such as homogeneity of degree zero

_and concavity, immediately follow. In Section 3.G, we study the implications of the
duality theorem for the theory of demand.

For a further discussion of duality theory and its applications, see Green and
Heller (1981) and, for an advanced treatment, Diewert (1982). For an early
application of duality to consumer theory, sce McKenzie (1956-57).

The first part of the duality theorem says that u,(-) is differentiable at j if and only if the
minimizing vector at j is unique. If K is not strictly convex, then at some p, the minimizing
vector will not be unique and therefore six(+) will exhibit a kink at j. Nevertheless, in a sense
that can be made precise by means of the concept of directional derivatives, the gradient sx(-)
at this p is still equal to the minimizing set, which in this case is multivalued.

This is illustrated in Figure 3.F4 for L =2. In panel (a) of Figure 3.F.4, a strictly
convex set K is depicted. For all p, its minimizing vector is unique. At p = (4. 4), itis £ = (I, 1).
Panet (b) of Figure 3.F.4 graphs py(},p;) as a function of p,. As can be seen, the
function is concave and differentiable in p,, with a slope of 1 (the value of %,) at p, = §.

In panel (a) of Figure 3.F.5, a convex but not strictly convex set K is depicted. At
7 = (4, 1), the entire segment [x', x"] is the minimizing set. If p, > p,, then X’ is the minimizing
vector and the value of the support function is p,x) + p,xj, whereas if p, < p,, then x” is
optimal and the value of the support function is p,x] + p,x;. Panel (b) of Figure 3.F.5

14. Because X = Vyi,{p) for any minimizer < at j, either £ is unique or if it is not unique, then
s1x(*) could not be differentiable at 5. Thus, u() is differentiable at 5 only if there is a unique
minimizer at j.

-
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graphs uix(}, p2) as a function of p,. For p, < |, its slope is equal to 1, the value of x3. For
p2 > 4, its slope is 4, the value of x3. There is a kink in the function at p = (4, 1), the price
vector that has multiple minimizing vectors, with its left derivative with respect to p, equal
to ] and its right derivative equal to 1. Thus, the range of these directional derivatives at
5 = (4 ) is equal 10 the range of x, in the minimizing vectors at that point.

Relationships between Demand, Indirect Utility,
and Expenditure Functions

We now continue our exploration of results flowing from the UMP and the EMP.
The investigation in this section concerns three relationships: that between the
Hicksian demand function and the expenditure function, that between the Hicksian
and Walrasian demand functions, and that between the Walrasian demand function
and the indirect utility function.

As before, we assume that u(+) is a continuous utility function representing the
locally nonsatiated preferences 2 (defined on the consumption set X = RL), and we
restrict attention to cases where p » 0. In addition, to keep matters simple, we assume

Figure 3.F.4

The duality theorem
with a unique
minimizing vector at f.
{a) The minimum
vector.

{b) The support
function.

Figure 3.F.5

The duality theorem
with a multivalued
minimizing set at p.
(a) The minimum set.
(b) The support
function.
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throughout that = is strictly convex, so that the Walrasian and Hicksian demands,
x(p, w) and h(p, u), are single-valued.!®

Hicksian Demand and the Expenditure Function

From knowledge of the Hicksian demand function, the expenditure function can
readily be calculated as e(p, u) = p-h(p, u). The important result shown in Proposi-
tion 3.G.1 establishes a more significant link between the two concepts that runs in the
opposite direction.

Proposition 3.G.1: Suppose that u(-) is a continuous utility function representing a

tocally nonsatiated and strictly convex preference relation > defined on the
consumption set X = RL . For all p and u, the Hicksian demand h{p. u) is the
derivative vector of the expenditure function with respect to prices:

h(p, u) = Ve(p, u). (3.G.1)
That is, h,(p, u) = de(p, u)/dp, forall £ =1, ..., L.

Thus, given the expenditure function, we can calculate the consumer’s Hicksian
demand function simply by differentiating.
We provide three proofs of this important result.

Proof 1: (Duality Theorem Argument). The result is an immediate consequence of the
duality theorem (Proposition 3.F.1). Since the expenditure function is precisely the
support function for the set K = {x € R%: u(x) 2 u}, and since the optimizing vector
associated with this support function is h(p, ), Proposition 3.F.1 implies that
h(p, u) = V,e(p, u). Note that (3.G.1) helps us understand the use of the term “dual”
in this context. In particular, just as the derivatives of the utility function u(-) with
respect to quantities have a price interpretation (we have seen in Section 3.D that
at an optimum they are equal to prices multiplied by a constant factor of
proportionality), (3.G.1) tells us that the derivatives of the expenditure function e(-, )
with respect to prices have a quantity interpretation (they are equal to the Hicksian
demands). w

Proof 2: (First-Order Conditions Argument). For this argument, we focus for sim-
plicity on the case where h(p, u) > 0, and we assume that h(p, u) is differentiable at
(p. u).
Using the chain rule, the change in expenditure can be written as
V,e(p,u) = V,[p-hip, u)]

= h(p, u) + [p-D,h(p,w)]". (3.G.2)
Substituting from the first-order conditions for an interior solution to the EMP,
p = 4 Vu(h(p, u)), yields

V,e(p, u) = h(p, u) + A[Vu(h(p, w))- D, h(p. u)”.

But since the constraint u(h(p, u)) = u holds for all p in the EMP, we know that
Vu(h(p, u))* D, h(p, u) = 0, and so we have the resuit. =

15. In fact, all the resuits of this section are local results that hold at all price vectors j with
the property that for all p near j, the optimal consumption vector in the UMP or EMP with price
vector p is unique.

i i

SECTION 3.G: DEMAND, INDIRECT UTILITY, AND EXPENDITURE FUNCTIONS

69

Proof 3: (Envelope Theorem Argument). Under the same simplifying assumptions used
in Proofl 2, we can directly appeal to the envelope theorem. Consider the value function
$(«) of the constrained minimization problem

Min f(x,®)
s.t, g(x, @) = 0.

If x*(«) is the (differentiable) solution to this problem as a function of the parameters
@ = (&), - - - » &y ), then the envelope theorem tells us that at any & = (&, ..., %) We
have

09() _ 3f(x*@. ) _ , dg(x*(@)8)

Ot 0Oa,, ) oo,
for m = 1,..., M, or in matrix notation,

V,0(@ = V. f(x*(@), @) — 1 V,g(x*(3), 4).
Sec Scction M.L of the Mathematical Appendix for a further discussion of this
result.*®
Because prices are paramelers in the EMP that enter only the objective function

p-x, the change in the value function of the EMP with respect to a price change at
B, V,e( 7, u), is just the vector of partial derivatives with respect to p of the objective
function evaluated at the optimizing vector, h(p, u). Hence V,e(p, u) = h(p,u). =

The idea behind all three proofs is the same: If we are at an optimum in the EMP,
the changes in demand caused by price changes have no first-order effect on the
consumer’s expenditure. This can be most clearly seen in Proof 2; condition (3.G.2)
uses the chain rule to break the total effect of the price change into two effects: a
direct effect on expenditure from the change in prices holding demand fixed (the first
term) and an indirect effect on expenditure caused by the induced change in demand
holding prices fixed (the second term). However, because we are at an expenditure
minimizing bundle, the first-order conditions for the EMP imply that this latter effect
is zero.

Proposition 3.G.2 summarizes several properties of the price derivatives of the
Hicksian demand function D, h(p, u) that are implied by Proposition 3.G.1 [properties
(i) to (iii)]. It also records one additional fact apout these derivatives [property (iv)].

Proposition 3.G.2: Suppose that u(*) is a continuous utility function representing a

locally nonsatiated and strictly convex preference relation 2 defined on the
consumption set X = RS . Suppose also that (-, u) is continuously differentiable
at (p, u), and denote its L x L derivative matrix by D,h(p, u). Then
(i) Dyh(p. u) = Djelp, u).
(i)} Dph(p, u}is a negative semidefinite matrix.
(iiiy Dyhip,u)is a symmetric matrix.
(iv) Dyh(p, u)p = 0.

Proof: Property (i) follows immediately from Proposition 3.G.1 by differentiation.
Properties (ii) and (iii) follow from property (i) and the fact that since e(p, u} is a

16. Proof 2 is essentially a proof of the envelope theorem for the special case where the
parameters being changed (in this case, prices) affect only the objective function of the problem.
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twice continuously differentiable concave function, it has a symmetric and negative
semidefinite Hessian (i.e, second derivative) matrix (see Section M.C of the Mathe-
matical Appendix). Finally, for property (iv), note that because (p, u) is homogeneous
of degree zero in p, h(xp, u) — h(p, u) = O for all «; differentiating this expression with
respect to « yields D, h(p, u)p = 0. [Note that because h(p, u) is homogeneous of
degree zero, D, h(p, u)p = 0 also follows directly from Euler’s formula; see Section
M.B of the Mathematical Appendix.] m

The negative semidefiniteness of D h(p,u) is the differential analog of
the compensated law of demand, condition (3.E.5). In particular, the differential
version of (3.E.S) is dp-dh(p, u) < 0. Since dh(p, u) = D, h(p, u} dp, substituting gives
dp* D, h(p, u) dp < 0 for all dp; therefore, D, h(p, u) is negative semidefinite. Note that
negative semidefiniteness implies that 8h,(p, u)/dp, < Ofor all Z; that is, compensated
own-price effects are nonpositive, a conclusion that we have also derived directly
from condition (3.E.5).

The symmetry of D, h(p, u) is an unexpected property. It implies that compensated
price cross-derivatives between any two goods Z and k must satisly h,{p, u)/dp, =
Ohy(p, u)/dp,. Symmetry is not easy to interpret in plain economic terms. As
emphasized by Samuelson (1947), it is a property just beyond what one would derive
without the help of mathematics. Once we know that D,h(p,u) = V,?e(p, u), the
symmetry property reflects the fact that the cross derivatives of a (twice continuously
differentiable) function are equal. In intuitive terms, this says that when you climb
a mountain, you will cover the same net height regardless of the route.!” As we discuss
in Sections 13.H and 13.J, this path-independence feature is closely linked to the
transitivity, or “no-cycling”, aspect of rational preferences.

We define two goods ¢/ and k to be substitutes at (p, u) if dh,(p, u)/dp, = 0 and
complements if this derivative is nonpositive {when Walrasian demands have these
relationships at (p, w), the goods are referred to as gross substitutes and gross
complements at (p, w), respectively]. Because dh,(p,u)/dp, <0, property (iv) of
Proposition 3.G.2 implies that there must be a good k for which dh,(p, u)/dp, > 0.
Hence, Proposition 3.G.2 implies that every good has at feast one substitute.

17. To see why this is so, consider the twice continuously differentiable function f(x, y). We can
express the change in this function’s value from (x, ') to (x”, y") as the summation (technically, the
integral) of two different paths of incremental change: f(x",y") ~ f(x',y’) = {8 (x, )/eylde +
[ 08 (s, y")/exYds and f(x",y") = f(x', y') = [¥ [0f(s, ¥ )/Ox]ds + 5 [3/(x", 1)/@y] dt. For these
two to be equal (as they must be), we should have

J’"[éf(X". N _ 3, r)]dl _ I"'[ﬁf(s.y”)_ 6I(S.y’)]ds

&y dy ox Ox

x

or

¥ (P ar (P At
AL TS s AT (50
v . dy dx x ¥ éx dy
So equality of cross-derivatives implies that these two different ways of “climbing the function™

yield the same result. Likewise, if the cross-partials were not equal to (x”, y”), then for (x’, y') close
enough to (x*, y"), the last equality would be violated.
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The Hicksian and Walrasian Demand Functions

Although the Hicksian demand function is not directly observable (it has the
consumer’s utility level as an argument), we now show that D, h(p, u) can nevertheless
be computed from the observable Walrasian demand function x(p, w) (its arguments
are all observable in principle). This important result, known as the Slutsky equation,
means that the properties listed in Proposition 3.G.2 translate into restrictions on
the observable Walrasian demand function x(p, w).

proposition 3.G.3: (The Slutsky Equation) Suppose that u(-) is a continuous utility
function representing a locally nonsatiated and strictly convex preference relation
> defined on the consumption set X = R4. Then for all (p, w), and u = v(p, w),

we have
k) -]
Sh,{p. u) _ _z?x,(p, w) + x,(p, W_) xp. w) for all 7, k (3.6.3)
0P, 0P, ow
or equivalently, in matrix notation,
D, h(p. u) = D, x(p, w) + D, x(p. wix(p, w)T. (3.G.4)

Proof: Consider a consumer [acing the price—wealth pair {p, w) and attaining utility
tevel . Note that her wealth level w must satisfy w = &(p, ). From condition (3.E4),
we know that for all (p, u), h,(p, u) = x,(p, «(p, u)). Diflfercntiating this expression
with respect to p, and evaluating it at (p, a), we get

MR ) _ 05,5, 5.0 | D545, . ) PP )

ep, a-l’k ow ops

Using Proposition 3.G.1, this yiclds
oh,(p. @) - ax, (p, e(p. 7)) " ax,(p, e(p, 1) h(p. ).
op, epy ow
Finally, since w = e(p, @) and I(p, 1) = x,(f, e( P, )} = x,{p, w), we have
oh,(p, ) _ 17x,fﬁ, W) + ax,(p, W) (F ). m
ap, épy ow
Figure 3.G.1(a) depicts the Walrasian and Hicksian demand curves for good /
as a function of p,, holding other prices fixed at p_, [we use p_, to denote a vector

1 14
[ sl N o
‘ AR i I (por(p. %))
h(p, t(p. ¥)) X, (p. W)
Amount of Amount of
(@) Good / (b Good ¢

Figure 3.G.1

The Walrasian and
Hicksian demand
functions for good /.
(a) Norma! good.
(b) Inferior good.
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including all prices other than p, and abuse notation by writing the price vector as
p=(p,,7-4)} The figure shows the Walrasian demand function x(p, w) and the
Hicksian demand function h(p, &) with required utility level @ = v((p,, p-s) w). Note
that the two demand functions are equal when p, = j,. The Slutsky equation
describes the relationship between the slopes of these two functions at price p,. In
Figure 3.G.1(a), the slope of the Walrasian demand curve at j, is less negative than
the slope of the Hicksian demand curve at that price. From inspection of the Slutsky
equation, this corresponds to a situation where good 7 is a normal good at (5, ).
When p, increases above j,, we must increase the consumer’s wealth if we are to
keep her at the same level of utility. Therefore, if good ¢ is normal, its demand falls
by more in the absence of this compensation. Figure 3.G.1(b) illustrates a case in
which good 7 is an inferior good. In this case, the Walrasian demand curve has a
more negative slope than the Hicksian curve.

Proposition 3.G.3 implies that the matrix of price derivatives D, h(p, u) of the
Hicksian demand function is cqual to the matrix

spulpow) o sidpew)
S(p.w) = : : .
spdpow) o spdpow)

with s,,(p, w) = &x,(p, w)/dp, + [0x,(p, w)/dw]x,(p, w). This matrix is known as the
Slutsky substitution matrix. Note, in particular, that S(p, w) is directly computable
from knowledge of the (observable) Walrasian demand function x(p, w). Because
S(p, w) = D, I(p, u), Proposition 3.G.2 implics that when demand is generated from
preference maximization, S(p, w) must possess the following three properties: it must
be negative semidefinite, symmetric, and satisfy S(p, w)p = 0.

In Section 2.F, the Slutsky substitution matrix S(p, w) was shown to be the matrix of
compensated demand derivatives arising from a different form of wealth compensation, the
so-called Slutsky wealth compensation. Instcad of varying wealth to keep utility fixed, as we
do here, Slutsky compensation adjusts wealth so that the initial consumption bundle X is just
affordable at the new prices. Thus, we have the remarkable conclusion that the derivative of
the Hicksian demand function is equal to the derivative of this alternative Slutsky compensated
demand.

We can understand this result as follows: Suppose we have a wtility function u(-) and are
at initial position (. W) with X = x(j, W) and @ = u(%). As we change prices to p', we want to
change wealth in order to compensate for the wealth effect arising from this price change. In
principle, the compensation can be done in two ways. By changing wealth by amount
Awguay = PX(fF) — W, we leave the consumer just able to afford her initial bundle X.
Alternatively, we can change wealth by amount Awiex, = e(p', @) — W to keep her utility level
unchanged. We have Awyey, € AWgyy. and the incquality will, in general, be strict for any
discrete change (see Figure 3.G.2). But because Vye(p. iy = h(p, @) = x(p, w), these two
compensations are identical for a differential price change starting at p. Intuitively, this is due
to the same fact that led to Proposition 3.G.1: For a differential change in prices, the total
effect on the expenditure required to achieve utility level & (the Hicksian compensation level)
is simply the direct effect of the price change, assuming that the consumption bundle X does
not change. But this is precisely the calculation done for Slutsky compensation. Hence, the
derivatives of the compensated demand functions that arise from these two compensation
mechanisms are the same.
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Slutsky Compensation

Hicksian Compensation

The fact that D, h(p, u) = S(p, w) allows us to compare the implications of the
preference-based approach to consumer demand with those derived in Section 2.F
using a choice-based approach built on the weak axiom. Our discussion in Section
2.F concluded that if x(p, w) satisfics the weak axiom (plus homogeneity of degree
zero and Walras® law), then S(p, w) is negative semidefinite with S(p, w)p = 0.
Morcover, we argued that except when L = 2, demand satisfying the weak axiom
need not have a symmetric Slutsky substitution matrix. Therefore, the results here
tell us that the restrictions imposed on demand in the preference-based approach are
stronger than those arising in the choice-based theory built on the weak axiom. In
fact, it is impossible to find preferences that rationalize demand when the substitution
matrix is not symmetric. In Section 3.1, we explore further the role that this symmetry
property plays in the relation between the preference and choice-based approaches
to demand.

Walrasian Demand and the Indirect Utility Function

We have seen that the minimizing vector of the EMP, h(p, u), is the derivative with
respect to p of the EMP’s value function e(p, u). The exactly analogous statement for
the UMP does not hold. The Walrasian demand, an ordinal concept, cannot equal
the price derivative of the indirect utility function, which is not invariant to increasing
transformations of utility. But with a smail correction in which we normalize the
derivatives of v(p, w) with respect to p by the marginal utility of wealth, it holds true.
This proposition, called Roy's identity (after René Roy), is the parallel result to
Proposition 3.G.! for the demand and value functions of the UMP. As with
Proposition 3.G.1, we offer several proofs.

Proposition 3.G.4: (Roy's /dentity). Suppose that u{-} is a continuous utility function
representing a locally nonsatiated and strictly convex preference relation
defined on the consumption set X = RS. Suppose also that the indirect utitity
function is differentiable at (5, w) » 0. Then

1
x(p. W) = ——————V,¥(p, W).
v, v(p w) °
That is, forevery 7/ =1,...,L
_ ov(p, w)/é
xAp, W)= —- (P v L/’,’/

v(p, w)/ew

Figure 3.G.2

Hicksian versus
Stutsky wealth
compensation.
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Proof 1: Let ii = v(p, w). Because the identity o{(p, e(p, @)) = i holds for all p, differ-
entiating with respect to p and evaluating at p = j yields

ou(p, e(p, 1))

Yy, e, @) + =2 P2V e, 7) = 0.

é
But V,e(p, @) = h(p, &) by Proposition 3.G.1, and and so we can substitute and get
o Qu(p,e(pa)) .
V00, e, ) + 2L XBE 5 5y o,
ow
Finally, since w = e(p, i), we can write
_ o ou(pw)
V05 %) + 229 (5 5 = 0.
aw

Rearranging, this yields the result. a

Proof 1 of Roy's identity derives the result using Proposition 3.G.1. Prools 2 and
3 highlight the fact that both results actually follow from the same idea: Because we
are at an optimum, the demand response to a price change can be ignored in
calculating the effect of a diflerential price change on the value function. Thus, Roy’s
identity and Proposition 3.G.1 should be viewed as parallel results for the UMP
and EMP. (Indeed, Exercise 3.G.1 asks you to derive Proposition 3.G.1 as a
consequence of Roy’s identity, thereby showing that the direction of the argument
in Proof 1 can be reversed.)

Proof 2: (First-Order Conditions Argument). Assume that x(p, w) is differentiable and
x(p, w) » 0. By the chain rule, we can write
dolp, w) _ i Ju(x(p, w)) Ixy(p, W)
op, k=1 0x, dp,

Substituting for du(x(p, w))/0x, using the first-order conditions for the UMP, we have

dw(p,w) L . ax(pw

——==Y ip L)

ap, k=1 op,
= —ix,(p, W),

since 3, pu(0x(p, W)/0p,) = ~ x,(p, W) (Proposition 2.E.2). Finally, we have already
argued that £ = do(p, w)/0w (see Section 3.D); use of this fact yields the result. m

Proof 2 is again essentially a proof of the envelope theorem, this time for the case
where the parameter that varies enters only the constraint. The next result uscs the
envelope theorem directly.

Proof 3: (Envelope Theorem Argument) Applied to the UMP, the envelope theorem
tells us directly that the utility effect of 2 marginal change in p, is equal to its effect
on the consumer’s budget constraint weighted by the Lagrange multiplier £ of the
consumer’s wealth constraint. That is, dv(p, w)/dp, = — ix,(p, w). Similarly, the
utility effect of a differential change in wealth du(p, w)/dw is just 2. Combining these
two facts yields the result. =

Proposition 3.G.4 provides a substantial payoff. Walrasian demand is much casier
to compute from indirect than from direct utility. To derive x(p, w) from the indirect

3H
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“DUAL" PROBLEMS

The EMP
The UMP (Proposition 3.E1) ¢
Slutsky Equation
x(p.w) (for derivatives) h(p, u)
/ \\
Roy’s |/ \I h(p,u) =
Identity} W Ay, " 1 Vpelp.u)
\ D e =X /
\\ TRl “ep, ) L
1 woom ! elp.u) = o{p. elp. u)) o)
P Wp, w) = e(p. t{p. W)

utility function, no more than the calculation of derivatives is involved; no system
of first-order condition equations needs to be solved. Thus, it may often be more
convenient to express tastes in indirect utility form. In Chapter 4, for example, we
will be interested in preferences with the property that wealth expansion paths are
lincar over some range of wealth. It is simple to verify using Roy’s identity that
indirect utilities of the Gorman form v(p, w) = a(p) + b(p)w have this property (see
Exercise 3.G.11).

Figure 3.G.3 summarizes the connection between the demand and value functions
arising from the UMP and the EMP; a similar figure appears in Deaton and
Muellbauer (1980). The solid arrows indicate the derivations discussed in Sections
3.D and 3.E. Starting from a given utility function in the UMP or the EMP, we can
derive the optimal consumption bundles x(p, w) and h(p, u) and the value functions
o(p, w) and e(p, u). In addition, we can go back and forth between the value functions
and demand functions of the two problems using relationships (3.E.1) and (3.E4).

The relationships developed in this section are represented in Figure 3.G.3 by
dashed arrows. We have seen here that the demand vector for each problem can be
calculated from its value function and that the derivatives of the Hicksian demand
function can be calculated from the observable Walrasian demand using Slutsky’s
equation.

Integrability

If a continuously differentiablc demand function x(p, w) is gencrated by rational
preferences, then we have seen that it must be homogeneous of degree zero, satisfy
Walras’ law, and have a substitution matrix S(p, w) that is symmetric and negative
semidefinite (n.s.d.) at all (p, w). We now pose the reverse question: If we observe a
demand function x(p,w) that has these properties, can we find preferences that
rationalize x(-)? As we show in this section (albeit somewhat unrigorously), the
answer is yes; these conditions are sufficient for the existence of rational generating
preferences. This problem, known as the integrability problem, has a long tradition
in economic theory, beginning with Antonelli (1886); we follow the approach
of Hurwicz and Uzawa (1971).

There arc several theoretical and practical reasons why this question and resuit
are of interest.

On a theoretical level, the result tells us two things. First, it tells us that not only
are the properties of homogeneity of degree zero, satisfaction of Walras' law, and a

Figure 3.G.3
Relationships between
the UMP and the
EMP.
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symmetric and negative semidefinite substitution matrix necessary consequences of
the preference-based demand theory, but these are also all of its consequences. As
long as consumer demand satisfies these properties, there is some rational preference
relation that could have generated this demand.

Sccond, the result completes our study of the relation between the preference-
based theory of demand and the choice-based theory of demand built on the weak
axiom. We have already seen, in Section 2.F, that although a rational preference
relation always generates demand possessing a symmetric substitution matrix, the
weak axiom need not do so. Therefore, we already know that when S(p, w) is not
symmetric, demand satisfying the weak axiom cannot be rationalized by preferences.
The result studied here tightens this relationship by showing that demand satisfying
the weak axiom (plus homogeneity of degree zero and Walras' law) can be
rationalized by preferences if and only if it has a symmetric substitution matrix
S(p. w). Hence, the only thing added to the properties of demand by the rational
preference hypothesis, beyond what is implied by the weak axiom, homogeneity of
degree zero, and Walras® law, is symmetry of the substitution matrix.

On a practical level, the result is of interest [or at least two reasons. First, as we
shall discuss in Section 3.J, to draw conclusions about welfare effects we need to
know the consumer’s preferences {or, at the least, her expenditure function). The
result tells how and when we can recover this information from observation of the
consumer's demand behavior.

Second, when conducting empirical analyses of demand, we often wish to estimate
demand functions of a relatively simple form. If we want to allow only functions that
can be tied back to an underlying preference relation, there are two ways to do this.
One is to specify various utility functions and derive the demand functions that they
lead to until we find one that seems statistically tractable. However, the result studied
here gives us an easier way; it allows us instead to begin by specifying a tractable
demand function and then simply check whether it satisfies the necessary and
sufficient conditions that we identify in this section. We do not need to actually derive
the utility function; the result allows us to check whether it is, in principle, possible
to do so.

The problem of recovering preferences Z from x(p, w) can be subdivided into two
parts: (i) recovering an expenditure function e(p, u) from x(p, w}, and (ii) recovering
preferences from the expenditure function e(p, u). Because it is the more straight-
forward of the two tasks, we discuss (i) first.

Recovering Preferences from the Expenditure Function

Suppose that e(p, u) is the consumer’s expenditure function. By Proposition 3E2 it
is strictly increasing in u and is continuous, nondecreasing, homogeneous of degree
one, and concave in p. In addition, because we are assuming that demand is
single-valued, we know that e(p, u) must be differentiable (by Propositions 3.F.1 and
3.G.1).

Given this function e(p, u), how can we recover a preference relation that generates
it? Doing so requires finding, for each utility level u, an al-least-as-good-as set ¥, = R”
such that e(p, u) is the minimal expenditure required for the consumer to purchase
a bundle in V, at prices p > 0. That is, we want to identily a set ¥, such that, for all
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p»0, we have
e(p,u) = Min p-x
x20
st.xe V.

In the framework of Section 3.F, V, is a set whose support function is precisely e(p, u).
The result in Proposition 3.H.1 shows that the set ¥, = {xeRL:prx = e(p,u)for
all p » 0} accomplishes this objective.

proposition 3.H.1: Suppose that e(p, v) is strictly increasing in v and is continuous,

increasing, homogeneous of degree one, concave, and differentiable in p. Then,
for every utility level u, e(p, ) is the expenditure function associated with the
at-least-as-good-as set

V, = {xeR4:p-x2e(p, u) for all p>»0}.

That is, e(p. u) = Min {p-x:xeV,} for ali p» 0.

Proof: The properties of e(p, u) and the definition of ¥, imply that ¥, is nonempty, closed, and
bounded below. Given p » 0, it can be shown that these conditions insure that Min {p-x: xe ¥, }.
exists. It is immediate from the definition of V, that e(p, u) < Min {p-x: x € ¥,}. What remains
in order to establish the result is to show equality. We do this by showing that e(p,u) 2
Min {p-x:xe ¥}

For any p and p', the concavity of e(p, u) in p implies that (see Section M.C of the
Mathematical Appendix)

e(p', u) < e(p,u) + Vye(p,u)-(p' — p).

Because e(p, u) is homogeneous of degree one in p, Euler's formula tells us that &(p,u) =
p*V,e(p, u). Thus, e(p', u) < p'-V,e(p,u) for all p'. But since V,e(p,u) 2 0, this means that
Veelpwe V. It follows that Min {p-x: x€ ¥,} < p*V,e(p, u) = e(p, u), as we wanted (the last
equality uses Euler's formula once more). This establishes the result. 8

Given Proposition 3.H.1, we can construct a set ¥, for each level of u. Because
e(p, u) is strictly increasing in u, it follows that if &' > u, then ¥, strictly contains V..
In addition, as noted in the proof of Proposition 3.H.1, each ¥, is closed, convex,
and bounded below. These various at-least-as-good-as sets then define a preference
relation 2 that has e(p, u) as its expenditure function (see Figure 3.H.1).

X2

(xeRL:p"x =e(p" )]

{xeR:: p-x =e(p', u)}—]

=

[xeR3: prx = e(p, )}
u>u

-~

X

Figure 3.H.1

Recovering preferences
from the expenditure
function.
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X2

Boundary of Actual
\-\\\/ At-Least-As-Good-As Set
N\

\ __Boundaryof ¥,

X

Proposition 3.H.1 remains valid, with substantially the same proof, when e(p, u) is not
differentiable in p. The preference relation constructed as in the proof of the proposition
provides a convex preference relation that gencrates e(p, u). However, it could happen that
there are also nonconvex preferences that generate e(p, u). Figure 3.H.2 illustrates a case where
the consumer's actual at-least-as-good-as set is nonconvex. The boundary of this set is depicted
with a dashed curve. The solid curve shows the boundary of the set ¥, = {x € R4 : p-x > e(p, u)
for all p » 0}. Formally, this sct is the convex hull of the consumer’s actual at-least-as-good-as
set, and it also generates the expenditure function e(p, u).

If e( p, u) is differentiable, then any preference relation that generates e(p, u) must be convex.
If it were not, then there would be some utility level u and price vector p » 0 with several
expenditure minimizers (see Figure 3.H.2). At this price-utility pair, the expenditure function
would not be differentiable in p.

Recovering the Expenditure Function from Demand

It remains to recover e(p, u) from observable consumer behavior summarized in the
Walrasian demand x(p, w). We now discuss how this task (which is, more properly,
the actual “integrability problem”) can be done. We assume throughout that x(p, w)
satisfies Walras' law and homogeneity of degree zero and that it is single-valued.
Let us first consider the case of two commodities (L = 2). We normalize p, = 1.
Pick an arbitrary price-wealth point (p9, 1, w®) and assign a utility value of u° to
bundle x(p%, 1, w®). We will now recover the value of the expenditure function
e(p,, 1, u®) at all prices p, > 0. Because compensated demand is the derivative of the
expenditure function with respect to prices (Proposition 3.G.1), recovering e(-) is
equivalent to being able to solve (to “integrate™) a differential equation with the
independent variable p, and the dependent variable e. Writing e(p,) = e(p,, 1, u®)yand
x,(py. w) = x,(p;, 1, w) for simplicity, we need to solve the differential equation,

de(py)
dp,
with the initial condition'® e(p?) = w°.
If e(p,) solves (3.H.1) for &(p?) = w°, then e(p,) is the expenditure function
associated with the level of utility ¥°. Note, in particular, that if the substitution

= x1(py, e(p1))s (3.H.1)

18. Technically, (3.H.1) is a nonautonomous system in the (p,, €) plane. Note that p, plays the
role of the “t™ variable.

Figure 3.H.2
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w) ,/ Slope = x, (B, e(p4))

/ e(py)
Slope = x,(p}, W)

e
. s

¢ ,{/&Slope =x,(p\. )
e L—
[ [ P

matrix is negative scmidefinite then e(p,) will have all the propertics of an expenditure
function (with the price of good 2 normalized to equal 1). First, because it is the
solution to a differential equation, it is by construction continuous in p,. Second,
since x,(p, w) = 0, equation (3.H.1) implies that e(p,) is nondecreasing in p,. Third,
differentiating equation (3.H.1) tells us that

xy(p1, L, e(p))

d2e(p,) - axy(py, 1, e(py)) + dxy(py, 1, e(p,))
dpi i, ow
=5,,(pi. 1, e(py)) £ 0,

so that the solution e(p,) is concave in p,.

Solving equation (3.H.1) is a straightforward problem in ordinary differential
equations that, nonetheless, we will not go into. A few weak regularity assumptions
guarantee that a solution to (3.H.1) exists for any initial condition (p%, w°). Figure
3.H.3 describes the essence of what is involved: At each price level p, and expenditure
fevel e, we are given a direction of movement with slope x,(p,, €). For the initial
condition (p%, w®), the graph of e(p;) is the curve that starts at (p3, w°) and follows
the prescribed directions of movement.

For the general case of L commodities, the situation becomes more complicated.
The (ordinary) differential equation (3.H.1} must be replaced by the system of partial
differential equations:

";—fj’—) = (. e(p)
1
. (GH2)
2ep) _ s (p,e(p)
ap,

for initial conditions p°® and e(p®) = w®. The existence of a solution to (3.H.2) is not
automatically guaranteed when L > 2. Indeed, if there is a solution e(p), then its
Hessian matrix D?e(p) must be symmetric because the Hessian matrix of any twice
continuously differentiable function is symmetric. Differentiating equations (3.H.2),
which can be written as V,e(p) = x(p, e(p)), telis us that

D2e(p) = D,x(p. e(p)) + D x(p, e(p)x(p, e(P))'
= S(p, e(p))-

Figure 3.H.3
Recovering the

expenditure functions

from x(p, w).
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3.1

Therefore, a necessary condition for the existence of a solution is the symmetry of
the Slutsky matrix of x(p, w). This is a comforting fact because we know from previous
sections that if market demand is generated {rom preferences, then the Slutsky matrix
is indeed symmetric. It turns out that symmetry of S(p, w) is also sufficient for
recovery of the consumer’s expenditure function. A basic result of the theory of partial
differential equations (called Frobenius' theorem) tells us that the symmetry of the
L x L derivative matrix of (3.H.2) at all points of its domain is the necessary and
sufficient condition for the existence of a solution to (3.H.2). In addition, il a solution
e(p,, uo) does exist, then, as long as S(p, w) is negative semidefinite, it will possess the
properties of an expenditure function.

We therefore conclude that the necessary and sufficient condition for the recovery
of an underlying expenditure function is the symmetry and negative semidefiniteness of
the Slutsky matrix.'® Recall from Section 2.F that a differentiable demand function
satisfying the weak axiom, homogeneity of degree zero, and Walras' law necessarily
has a negative semidefinite Slutsky matrix. Moreover, when L = 2, the Slutsky matrix
is nccessarily symmetric (recall Exercise 2.F.12). Thus, for the case where L = 2, we
can always find preferences that rationalize any differentiable demand function
satisfying these (hree properties. When L > 2, however, the Slutsky matrix of a
demand function satisfying the weak axiom (along with homogeneity of degree zero
and Walras® law) need not be symmetric; preferences that rationalize a demand
function satisfying the weak axiom exist only when it is.

Observe that once we know that S(p, w) is symmetric at all (p, w), we can in fact use (3.H.1)
1o solve (3.H.2). Suppose that with initial conditions p° and e(p°) = w®, we want to recover
«(j). By changing prices one at a time, we can decompose this problem into L subproblems
where only one price changes at each step. Say it is price ¢. Then with p, fixed for k # 7, the
/th equation of (3.H.2) is an equation of the form (3.H.1), with the subscript 1 replaced by /.
It can be solved by the methods appropriate to (3.H.1). Iterating for different goods, we
eventually get to e(p). It is worthwhile to point out that this method makes mechanical sense
cven if S(p, w) is not symmetric. However, if S(p, w) is not symmetric (and therefore cannot be
associated with an underlying preference relation and expenditure function), then the value of
() will depend on the particular path followed from p° to p (i.e., on which price is raised first).
By this absurdity, the mathematics manage to keep us honest!

Welfare Evaluation of Economic Changes

Up to this point, we have studied the preference-based theory of consumer demand
from a positive (behavioral) perspective. In this section, we investigate the normative
side of consumer theory, called welfare analysis. Welfare analysis concerns itself with
the evaluation of the effects of changes in the consumer’s environment on her
well-being.

Although many of the positive results in consumer theory could also be deduced
using an approach based on the weak axiom (as we did in Section 2.F), the
preference-based approach to consumer demand is of critical importance for welfare

19. This is subject to minor technical requirements.
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analysis. Without it, we would have no means of evaluating the consumer's level of
well-being.

In this section, we consider a consumer with a rational, continuous, and locally
nonsatiated preference relation 2. We assume, whenever convenient, that the
consumer’s expenditure and indirect utility functions are differentiable.

We focus here on the welfare effect of a price change. This is only an example,
albeit a historically important one, in a broad range of possible welfare questions
one might want to address. We assume that the consumer has a fixed wealth level
w > 0 and that the price vector is initially p°. We wish to evaluate the impact on
the consumer’s welfare of a change {rom p° to a new price vector p'. For example,
some government policy that is under consideration, such as a tax, might result in
this change in market prices.?°

Suppose, (o start, that we know the consumer’s preferences . For example, we
may have derived 2 from knowledge of her (observable) Walrasian demand function
x(p, ), as discussed in Section 3.H. If so, it is a simple matter to determine whether
the price change makes the consumer better or worse off: if v(p, w) is any indirect
utility function derived from 2, the consumer is worse off if and only if v(p', w) —
o(p® w) < 0.

Although any indirect utility function derived from X suffices for making this
comparison, one class of indirect utility functions deserves special mention because
it leads to measurement of the welfare change expressed in dollar units. These are
called money metric indirect utility functions and are constructed by means of the
expenditure function. In particular, starting from any indirect utility function o(-, -),
choose an arbitrary price vector j » 0, and consider the function e(p, v(p, w)). This
function gives the wealth required to reach the utility level v(p, w) when prices are j.
Note that this expenditure is strictly increasing as a function of the level v(p, w), as
shown in Figure 3.11. Thus, viewed as a function of (p, w), e(p, v(p, w)) is itself an
indirect utility function for >, and

e(p, v(p', w)) — e(p, o(p°, W)
provides a measure of the welfare change expressed in dollars.2!

x, o(p’,w) > u(pw)

x(p',w)

B o

B.e(p.rip. el
Goetpulp’ wn
20. For the sake of expositional simplicity, we do not consider changes that affect wealth here.
However, the analysis readily extends to that case (sec Exercise 3.112).
21. Note that this measure is unaffected by the choice of the initial indirect utility function
v(p, w); it depends only on the consumer’s preferences X (see Figure 3.L1).

Figure 3.1.1

A money metric
indirect utility function.



82

CHAPTER 3:

CLASSICAL DEMAND THEORY

A money metric indirect utility function can be constructed in this manner for
any price vector § » 0. Two particularly natural choices for the price vector j are
the initial price vector p® and the new price vector p'. These choices lead
to two well-known measures of welfare change originating in Hicks (1939), the
equivalent variation (EV) and the compensating variation (CV). Formally, letting
u® = p(p° w) and u' = v(p', w), and noting that e(p°, u°) = e(p', u') = w, we define

EV(p® p*, w) = e(p u') — e(p°, u%) = e(p®, u') — w (.11
and

(3.1.2)

The equivalent variation can be thought of as the dollar amount that the
consumer would be indifferent about accepting in lieu of the price change; that is, it
is the change in her wealth that would be equivalent to the price change in terms of
its welfare impact (so it is negative if the price change would make the consumer
worse off). In particular, note that e(p®, u') is the wealth level at which the consumer
achieves exactly utility level u', the level generated by the price change, at prices p°.
Hence, e(p®, u') — wis the net change in wealth that causes the consumer to get utility
level u' at prices p°. We can also express the equivalent variation using the indirect
utility function o(-, -) in the following way: v(p®, w + EV) = u'.??

The compensating variation, on the other hand, measures the net revenue of a
planner who must compensate the consumer for the price change after it occurs,
bringing her back to her original utility level u®. (Hence, the compensating variation
is negative if the planner would have to pay the consumer a positive level of
compensation because the price change makes her worse off.) It can be thought of as
the negative of the amount that the consumer would be just willing to accept from
the planner to allow the price change to happen. The compensating variation can
also be expressed in the following way: v(p', w — CV) = u®.

Figure 3.1.2 depicts the equivalent and compensating variation measures of
welfare change. Because both the EV and the CV correspond to measurements of
the changes in a money metric indirect utility function, both provide a correct welfare
ranking of the alternatives p® and p!; that is, the consumer is better off under p' if
and only if these measures are positive. In general, however, the specific dollar

CV(p° p'w) = e(p', u') — e(p', u®) = w — e(p', u°).

X2

EV(p°p', W){

x(p%,w)

X;

P=p=1 P=pr=1

Cv(p% o', w){ x(p',w)
x(p',w) x(p®, w)

X, X,

(@ )

22. Notethatifu' = o(p° w + EV), then e(p°, u') = e(p° v(p® w + EV)) = w + EV. This leads
to (3.L.1).

Figure 3.1.2

The equivalent (a) and |

compensating (b)
variation measures of
welfare change.
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Py hn(Pnﬁ—l-“o) (47 \ h,(p,,ﬁ_l,u")
\/ ‘hl(Phﬁ—u u') h(p1.5- 1,4
" [
4 P!
\ X(pbre W) \ x(prf-1u W)
x(p%w) x,(p', w) 5 (%W x(p',w) X,

(a) (b)

amounts calculated using the EV and CV measures will differ because of the differing
price vectors at which compensation is assumed to occur in these two measures of
welfare change.

The equivalent and compensating variations have interesting representations in
terms of the Hicksian demand curve. Suppose, for simplicity, that only the price
of good 1 changes, so that p® # p! and p? =p} =p, for all £+ 1. Because
w = e(p° u®) = e(p', u') and h (p, u) = de(p, u)/dp,, we can write

EV(p% p'.w) = e(f% u') ~ w
= e(p° u') — e(p',u')

of
= J hi(pys - u')dpy,
sl

where p_, = (P ..., pr)- Thus, the change in consumer welfare as measured by the
equivalent variation can be represented by the area lying between p{ and p} and to the
left of the Hicksian demand curve for good 1 associated with utility level u' (it is
equal to this area if p} < p$ and is equal to its negative if p} > p%). The area is
depicted as the shaded region in Figure 3.1.3(a).

Similarly, the compensating variation can be written as

31

CV(p p' w) = J | hy(py o1 k%) dp,.
14

Note that we now use the initial utility level u®. See Figures 3.1.3(b) for its graphic

representation.

Figure 3.1.3 depicts a case where good 1 is a normal good. As can be seen
in the figure, when this is so, we have EV(p?, p!, w) > CV(p°, p', w) (you should check
that the same is true when p} > p%). This relation between the EV and the CV reverses
when good 1 is inferior (see Exercise 3.1.3). However, if there is no wealth effect for
good 1 (e.g., if the underlying preferences are quasilinear with respect to some good
¢ # 1), the CV and EV measures are the same because we then have

hy(py, Bo1s u®) = X (pra gy W) = hy(prfo gy ).
In this case of no wealth effects, we call the common value of C¥ and EV, which is
also the value of the area lying between p and p} and to the left of the market (i.e.,
Walrasian) demand curve for good 1, the change in Marshallian consumer surplus.*?

(3.L3)

(3.1.4)

23. The term originates from Marshall (1920), who used the area to the left of the market
demand curve as a welfare measure in the special case where wealth effects are absent.

Flgure 3.1.3

{a) The equivalent
variation.

(b) The compensating
variation.
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Exercise 3.1.1: Suppose that the change from price vector p°® to price vector p'
involves a change in the prices of both good 1 (from p§ to p}) and good 2 (from 1
to p}). Express the equivalent variation in terms of the sum of integrals under
appropriate Hicksian demand curves for goods 1 and 2. Do the same for the
compensating variation measure. Show also that if there are no wealth effects for
either good, the compensating and equivalent variations are equal.

Example 3.11: The Deadweight Loss from Commodity Taxation. Consider a situation
where the new price vector p' arises because the government puts a tax on some
commodity. To be specific, suppose that the government taxes commodity 1, setting
a tax on the consumer's purchases of good 1 of ¢ per unit. This tax changes the
eflective price of good 1 to p} = p? + t while prices for all other commodities £ # 1
remain fixed at pg (so we have p} = p? for all £ # 1). The total revenue raised by
the tax is therefore T = tx,(p*, w).

An alternative to this commodity tax that raises the same amount of revenue for
the government without changing prices is imposition of a “lump-sum™ tax of T
directly on the consumer's wealth. Is the consumer better or worse off facing this
lump-sum wealth tax rather than the commodity tax? She is worse off under the
commodity tax if the equivalent variation of the commodity tax EV(p°, p', w), which
is negative, is less than — T, the amount of wealth she will lose under the lump-sum
tax. Put in terms of the expenditure function, this says that she is worse off under
commodity taxation if w — 7> &(p°, u'), so that her wealth after the lump-sum tax
is greater than the wealth level that is required at prices p° to generate the utility
level that she gets under the commodity tax, u'. The difference (—T) — E V(p® p',w) =
w — T — e(p®, u') is known as the deadweight loss of commodity taxation. It measures
the extra amount by which the consumer is made worse off by commodity taxation
above what is necessary to raise the same revenue through a lump-sum tax.

The deadweight loss measure can be represented in terms of the Hicksian demand
curve at utility level . Since T = 1x,(p', w) = th,(p*, u'), we can write the deadweight
loss as follows [we again let j_, = (p,,...,P.), where pf = p} = p, for all £ # 1]:

(=T) = EV(p®, p'.w) = e(p',u') — e(p°,u') = T

R+t
=J. h(py, by u')dp, —thy(pd +1,p_1,u')
o

LA
= J. Chylpy F-rou') — hl(l’? +4,p.nu')]dp. (3LS)
2

Because h,(p, u) is nonincreasing in py, this expression (and therefore the deadweight
loss of taxation) is nonnegative, and it is strictly positive il h,(p,u) is strictly
decreasing in p,. In Figure 3.1.4(a), the deadweight loss is depicted as the arca of the
crosshatched triangular region. This region is sometimes called the deadweight loss
triangle.

This deadweight loss measure can also be rep dinthe odity space. For example,
suppose that L = 2, and normalize p§ = 1. Consider Figure 3.1.5. Since (% + Dx(p' W) +
pOx,(p', w) = w, the bundle x(p', w) lies not only on the budget line associated with budget
set B, ,, but also on the budget line associated with budget st Bo - 7. In contrast, the budget
set that generates a utility of u® for the consumer at prices PP is By, po.u) (OF, equivalently,
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APy By t')
hy(pr o)

J hy(ppf-n¥')
hn(Phﬁ—l—'"o)

0 4t ight  pl+ 1}——N\—-o
O Deadweig P Deadweight

Loss

e

 —

xy(pib-11 W)

hl(P?*".ﬁ-l-"l) rxl
(a) (b)

%

Deadweight
Loss {

Byo,wtEv): The deadweight loss is the vertical distance between the budget lines associated
with budget sets Byo -y and Byo 4,0 4 (recall that p§ = 1).

A similar deadweight loss triangle can be calculated using the Hicksian demand
curve h(p, u°). It also measures the loss from commodity taxation, but in a different
way. In particular, suppose that we examine the surplus or deficit that would arise
if the government were to compensate the consumer (o keep her welfare under the
tax equal to her pretax welfare u°. The government would run a deficit if the tax
collected th,(p', u°) is less than —CV(p° p', w) or, equivalently, if th,(p', u°) <
e(p, u°) — w. Thus, the deficit can be written as
—CV(p°, ptw) — thy(p', u) = e(p', u) — e(p°,u) — thy(p', )

P4t _
= J‘ hi(py P 4% dpy -‘hl(P?"'"P—h“o)
L
P+t _ o
=J [hl(vali—huo)—hl(P?""vP-h“ MNdp,.
(3.1.6)

141

which is again strictly positive as long as hy(p, u) is strictly decreasing in p,. This
deadweight loss measure is equal to the area of the crosshatched triangular region
in Figure 3.1.4(b). m

Figure 3.1.4

The deadweight loss

from commodity

taxation.

(a) Measure based at
1

(b; Measure based at
u®.

Figure 3.1.5

An alternative
depiction of the
deadweight loss from
commodity taxation.
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Exercise 3.1.2: Calculate the derivative of the deadweight loss measures (3.1.5) and
(3.1.6) with respect to t. Show that, evaluated at ¢ = 0, these derivatives are equal to
zero but that if h,(p, u®) is strictly decreasing in p;, they are strictly positive at all
t > 0. Interpret.

Up to now, we have considered only the question of whether the consumer was better off at
p' than at the initial price vector p®, We saw that both EV and CV provide a correct welfare
ranking of p® and p'. Suppose, howcver. that p° is being compared with two possible pncc
vectors p' and pZ. In this case, p' is better than p?if and only if EV(p°, p', w) > EV(p°, 2w,
since

EV(p°, p' W) — EV(p°, p2, w) = e(p°, u*) — e(p®, u®)
Thus, the EV measures EV(p°, p', w) and EV(p° p*, w) can be used not only to compare these
two price vectors with p° but also to determine which of them is better for the consumer. A
comparison of the compensa(mg variations CH(p®, p', w) and CV(p°, p*, w), however, will not
necessarily rank p' and p? correctly. The problem is that the CVmeasure uses the new pnces as
the base prices in the money metric indirect utility function, using p* 1o calculate CV(p° p', w)
and p? to calcutate CV(p°, p%, w). So
CV(p°. p', W) ~ CH(p°, p% w) = e(p?, u°) — e(p', u°),

which need not correctly rank p' and p? [see Exercise 3.1.4 and Chipman and Moore (1980)].
In other words, fixing p° EV(p® -, w) is a valid indirect utility function (in fact, a money
metric one), but CV(p° -, w) is not.2¢

An interesting example of the comparison of several possible new price vectors arises when
a government is considering which goods to tax. Suppose, for example, that two different taxes
are being considered that could raise tax revenue of 7: a tax on good 1 of t, (creating new price
vector p') and a tax on good 2 of ¢, (creating new price vector p?). Note that since they raise
the same tax revenue, we have t,x,(p', w) = t,x,(p* w) = T (sec Figure 3.1.6). Because tax

pl‘ P2 .
hy(pr P2 100" hatpy, P22 ')
. Deadweight Loss
P+ 1, Deadweight Loss R - from Tax on
from Tax on E
T Good |
- k-
l% ] xy(p, p01 w)
i X3Py P2y W) ! 2
! R —
hy(p + 1y, p% ') X Ryl g2 + 1y, P 5o u?) X
=h(p' u") =h(phud)

(a)

is better than tax ¢, if and only if EV(p®, p', w) > EV(p° p?, w), 1, is better than t, if and only
if [(=TY = EV(p° p', )] < [(—= T) — EV(p® p*, w)], that is, if and only if the deadweight loss

(b}

arising under tax ¢, is less than that arising under tax ,.

24, Of course, we can rank p' and p? correctly by seeing whether CWV(p', p?, w) is positive or

negative.

Figure 3.1.6
Comparing two taxes
that raise revenue T,
(a) Tax on good 1.
(b) Tax on good 2.
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In summary, if we know the consumer's expenditure function, we can precisely
measure the welfare impact of a price change; moreover, we can do it in a convenient
way (in dollars). In principle, this might well be the end of the story because, as we
saw in Section 3.H, we can recover the consumer’s preferences and expenditure
function from the observable Walrasian demand function x(p, w).2* Before conclud-
ing, however, we consider two further issues. We first ask whether we may be able
to say anything about the welfare effect of a price change when we do not have enough
information to recover the consumer’s expenditure function. We describe a test that
provides a sufficient condition for the consumer’s welfare to increase from the price
change and that uses information only about the two price vectors p° p' and the
initial consumption bundle x(p° w). We then conclude by discussing in detail the
extent to which the welfare change can be approximated by means of the area to
the left of the market (Walrasian) demand curve, a topic of significant historical
importance.

Welfare Analysis with Partial Information

In some circumstances, we may not be able to derive the consumer’s expenditure
function because we may have only limited information about her Walrasian demand
function. Here we consider what can be said when the only information we possess
is knowledge of the two price vectors p°, p! and the consumer's initial consumption
bundle x° = x(p% w). We begin, in Proposition 3.I1, by developing a simple
sufficiency test for whether the consumer’s welfare improves as a result of the price
change.

Proposition 3.1.1: Suppose that the consumer has a locally nonsatiated rational

preference relation 2. If (p' — p°%-x® < 0, then the consumer is strictly better off
under price-wealth situation (p', w) than under (p° w).

Proof: The result follows simply from revealed preference. Since p°-x% =w by
Walras’ law, if (p' — p®)+x° < 0, then p* -x® < w. But if so, x° is still affordable under
prices p' and is, moreover, in the interior of budget set B, . By local nonsatiation,
there must therefore be a consumption bundle in B, , that the consumer strictly
prefers to x°. &

The test in Proposition 3.1.1 can be viewed as a first-order approximation to the
true welfare change. To see this, take a first-order Taylor expansion of e(p, u) around
the initial prices p®:

e(p', u®) = e(p® u®) + (p' = p°)V,e(p° u®) + o(ilp* — p°I). 3L
If (p' — p°)-V,e(p° u) < 0 and the second-order remainder term could be ignored,
we would have e(p', u®) < e(p° u®) = w, and so we could conclude that the con-
sumer’s welfare is greater alter the price change. But the concavity of e(-,u°) in p
implies that the remainder term is nonpositive. Therefore, ignoring the remainder
term leads to no error here; we do have e(p', u%) < w if (p' — p°)-V,e(p% u°) < 0.
Using Proposition 3.G.1 then tells us that (p' —p°)-V,e(p° u®) = (p' — p®)-h(p°, u°) =
(p' ~ p®-x° and so we get exactly the test in Proposition 3.1.1.

25. As a practical matter, in applications you should use whatever are the state-of-the-art
techniques for performing this recovery.
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12 12y
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{peRL: e(p,u®) = e(p” u°)}
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What if (p* — p°)-x° > 0?7 Can we then say anything about the direction of
change in welfare? As a general matter, no. However, examination of the first-order
Taylor expansion (3.1.7) tells us that we get a definite conclusion if the price change
is, in an appropriate sense, small enough because the remainder term then becomes
insignificant relative to the first-order term and can be neglected. This gives the result
shown in Proposition 3.1.2.

Proposition 3.1.2: Suppose that the consumer has a differentiable expenditure func-

tion. Then it {p' — p%-x® > 0, there is a sufficiently small & e (0, 1) such that for all
« < 4, we have e((1 — x}p° + ap', ¢°) > w, and so the consumer is strictly better
oif under price—wealth situation (p°, w) than under ((1 — a)p° + ap', w).

Figure 3.7 illustrates these results for the cases where p' is such that
(p* — p°)+x° < 0 [panel (a)] and (p' — p°)-x° > 0 [panel (b)]. In the figure the set
of prices {peR%:e(p,u°) 2 e(p% u®)} is drawn in price space. The concavity
of e(-, u) gives it the shape depicted. The initial price vector p° lies in this set. By
Proposition 3.G.1, the gradient of the expenditure function at this point, V,e( p°, u®),
is equal to x°, the initial consumption bundle. The vector (p* — p°) is the vector
connecting point p° to the new price point p'. Figure 3.1.7(a) shows a case where
(p* — p°)x® < 0. As can be seen there, p' lies outside of the set {pe Ri:e(p,u) 2
e(p® u°)}, and so we must have e(p° u°) > e(p*, u®). In Figure 3.1.7(b), on the other
hand, we show a case where (p* — p°)-x° > 0. Proposition 3.1.2 can be interpreted
as asserting that in this case if (p* — p°) is small enough, then e(p°, u®) < e(p', u°).
This can be seen in Figure 3.1.7(b), because if (p* — p%)-x° > Oand p! is close enough
to p® [in the ray with direction p' — p°), then price vector p' lies in the set
(peR%:e(p, u) > e(p® u%)}.

Using the Area to the Left of the Walrasian (Market) Demand Curve as an
Approximate Welfare Measure

Improvements in computational abilities have made the recovery of the consumer’s
preferences/expenditure function from observed demand behavior, along the lines
discussed in Section 3.I, far easier than was previously the case.2® Traditionally,

26. They have also made it much casier to estimate complicated demand systems that are
explicitly derived from utility maximization and from which the parameters of the expenditure
function can be derived directly.

Figure 3.1.7

The welfare test of
Propositions 3.1.1 anq
312

(@) (p* — p°)x° <0
() (p* — P x>0,

I
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however, it has been common practice in applied analyses to rely on approximations
of the true welfare change.

We have already seen in (3.1.3) and (3.1.4) that the welfare change induced by a
change in the price of good 1 can be exactly computed by using the area to the left
of an appropriate Hicksian demand curve. However, these measures present the
problem of not being directly observable. A simpler procedure that has seen extensive
use appeals to the Walrasian (market) demand curve instead. We call this estimate
of welfare change the area variation measure (or AVY):

"
AV(p° p', w) =J x1(pys -1, W) dpy. (3.18)

el

If there are no wealth effects for good 1, then, as we have discussed, x,(p, w) =
hy(p, u°) = hy(p. u') for all p and the area variation measure is exactly equal to the
equivalent and compensating variation measures. This corresponds to the case
studied by Marshall (1920) in which the marginal utility of numeraire is constant.
In this circumstance, where the AV measure gives an exact measure of welfare change,
the measure is known as the change in Marshallian consumer surplus.

More generally, as Figures 3.1.3(a) and 3.1.3(b) make clear, when good 1 is a
normal good, the area variation measure overstates the compensating variation and
understates the equivalent variation (convince yourself that this is true both when
p, falls and when p, rises). When good 1 is inferior, the reverse relations hold. Thus,
when evaluating the welfare change from a change in prices of several goods, or when
comparing two different possible price changes, the area variation measure need not
give a correct evaluation of welfare change (e.g., see Exercise 3.1.10).

Naturally enough, however, if the wealth effects for the goods under consideration
are small, the approximation errors are also small and the area variation measure is
almost correct. Marshall argued that if a good is just one commodity among many,
then because one extra unit of wealth will spread itself around, the wealth effect for
the commodity is bound to be small; therefore, no significant errors will be made by
evaluating the welfare effects of price changes for that good using the area measure.
This idea can be made precise; for an advanced treatment, sce Vives (1987). It is
important, however, not to fall into the fallacy of composition; if we deal with a large
number of commodities, then while the approximating error may be small for each
individually, it may nevertheless not be small in the aggregate.

If (p! — p?) is small, then the error involved using the area variation measure
becomes small as a fraction of the true welfare change. Consider, for example,
the compensating variation.?” In Figure 3.L8, we see that the area B + D, which
measures the difference between the area variation and the true compensating
variation, becomes small as a fraction of the true compensating variation when
(p} ~ p?) is small. This might seem to suggest that the area variation measure is a
good approximation of the compensating variation measure for small price changes.
Note, however, that the same property would hold if instead of the Walrasian demand

27. All the points that follow apply to the equivalent variation as well.
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function we were to use any function that takes the value x,(p?, p2,, w) at p3.2®

In fact, the approximation error may be quite large as a fraction of the deadweight
loss {this point is emphasized by Hausman (1981)). In Figure 3.1.8, for example, the
deadweight loss calculated using the Walrasian demand curve is the area A + C,
whereas the real one is the area A + B. The percentage difference between these two
areas need not grow small as the price change grows small.?®

When (p} — p?) is small, there is a superior approximation procedure available
In particular, suppose we take a first-order Taylor approximation of h(p, u®) at p°

k(p, u®) = h(p® u°) + D h(p° u®)(p - p°)

and we calculate
" .
J' hy(py 51, u°) dp, (3.19)
»l

as our approximation of the welfare change. The function k,(p,, 5 -, u°) is depicted
in Figure 3.1.9. As can be seen in the figure, because Ry(py, P -1, u°) has the same slope
as the true Hicksian demand function h,(p, «°) at p° for small price changes this
approximation comes closer than expression (3.1.8) to the true welfare change (and
in contrast with the area variation measure, it provides an adequate approximation
to the deadweight loss). Because the Hicksian demand curve is the first derivative of
the expenditure function, this first-order expansion of the Hicksian demand function
at p° is, in essence, a second-order expansion of the expenditure function around p°.
Thus, this approximation can be viewed as the natural extension of the first-order
test discussed above; see expression (3.1.7).

The approximation in (3.1.9) is directly computable from knowledge of the
observable Walrasian demand function x,(p, w). To see this, note that because
h(p° u®) = x(p°, w) and D,h(p° u®) = S(p° w), h(p,u°) can be expressed solely in
terms that involve the Walrasian demand function and its derivatives at the point

28. In effect, the property identified here amounts to saying that the Walrasian demand function
provides a first-order approximation to the compensating variation. Indeed, note that the derivatives
of CV(p', p° w), EV(p', p°, w), and AW(p", p°, w) with respect to p! evaluated at p§ are all precisely
%, (P} P2, W)

29. Thus, for example, in the problem discussed above where we compare the deadweight losses
induced by taxes on two different commodities that both raise revenue T, the area variation measure
need not give the correct ranking even for small taxes.

Figure 3.1.8 (left)

The error in using the
area variation measyp,
of welfare change.

Figure 3.1.9 (right)
A first-order
approximation of
h(p, u®) at p°.
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(Po’ w):
h(p, uO) = x(pov w) + s(po' wXp - Po)'.
In particular, since only the price of good 1 is changing, we have

ill(pl’ ﬁ- 1 uO) = x|(p‘l)v ﬁ—l' W) + 5 l(p?’ P.-l' W)(pl - p?)»
where
ax](Po» W) axl(pov W)
AR AL AL AN R AL AL SN T4
ow

0
, w).
F x,(p% w)

su(P?: Py W)=

When (p! — p° is small, this procedure provides a better approximation to the

true compensating variation than does the area variation measure. However, if

(p* — p°) is large, we cannot tell which is the better approximation. It is entirely

possible for the area variation measure to be superior. After all, its use guarantees

some sensitivity of the approximation to demand behavior away from p° whereas
the use of h(p, u®) does not.

The Strong Axiom of Revealed Preference

We have seen that in the context of consumer demand theory, consumer choice may
satisfy the weak axiom but not be capable of being generated by a rational preference
relation (see Sections 2.F and 3.G). We could therefore ask: Can we find a necessary
and sufficient consistency condition on consumer demand behavior that is in the
same style as the WA but that does imply that demand behavior can be rationalized
by preferences? The answer is “yes”, and it was provided by Houthakker (1950) in
the form of the strong axiom of revealed preference (SA), a kind of recursive closure
of the weak axiom.>°

Definition 3.J.1: The market demand function x(p, w) satisties the strong axiom of

revealed preference (the SA) if for any list
T AR RN A

with x(p"*1, w™*") # x(p", w") for all n<N —1, we have p"-x(p', w') >w"
whenever p”-x(p"* . w* Y < wforalln <N - 1.

In words, if x(p', w') is directly or indirectly revealed preferred to x(p~, w"), then
x(p", w¥) cannot be (directly) revealed preferred to x(p*, w') [so x(p', w') cannot
be affordable at (p", w")]. For example, the SA was violated in Example 2.F.1. It is
clear that the SA is satisfied if demand originates in rational preferences. The converse
is a deeper result. It is stated in Proposition 3.J.1; the proof, which is advanced, is
presented in small type.

Proposition 3.J.1: If the Walrasian demand function x(p, w) satisfies the strong axiom

of revealed preference then there is a rational preference relation > that
rationalizes x(p, w), that is, such that for all (p, w), x(p, w) >y for every
y # x(p, w) withye B, ,,..

30. For an informal account of revealed preference theory after Samuelson, see Mas-Colell
(1982).
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Proof: We follow Richter (1966). His proof is based on sct theory and differs markedly from
the differential equations techniques used originally by Houthakker.?!

Define a relation >' on commodity vectors by letting x >' y whenever x # y and we have
x = x(p,w) and p*y < w for some (p, w). The relation >' can be read as “directly revealed
preferred to.” From >' define a new relation 2, to be read as “directly or indirectly revealed
preferred to,” by letting x > y whenever there is a chain x! >'x? >, ..., >! x¥ with x! = x
and x¥ = y. Observe that, by construction, > is transitive. According to the SA, > is also
irreflexive (i.e., x >? x is impossible). A certain axiom of set theory (known as Zorn's lemma)
tells us the following: Every relation >? that is transitive and irreflexive (called a partial order)
has a total extension >, an irreflexive and transitive relation such that, first, x >? y implies
x>y and, second, whenever x # y, we have either x >3y or y >3 x. Finally, we can define
Z by letting x X y whenever x = y or x > y. [t is not difficult now to verify that 3 is complete
and transitive and that x(p, w) > y whenever pry s wand y # x(p,w). &

The proof of Proposition 3.J.1 uses only the single-valuedness of x(p, w). Provided choice
is single-valued, the same result applies to the abstract theory of choice of Chapter 1. The fact
that the budgets are competitive is immaterial,

In Exercise 3.J.1, you are asked to show that the WA is equivalent to the SA
when L = 2. Hence, by Proposition 3.J.1, when L = 2 and demand satisfies the WA,
we can always find a rationalizing preference relation, a result that we have already
seen in Section 3.H. When L > 2, however, the SA is stronger than the WA. In fact,
Proposition 3.J.1 tells us that a choice-based theory of demand founded on the strong
axiom is essentially equivalent to the preference-based theory of demand presented
in this chapter.

The strong axiom is therefore essentially equivalent both to the rational preference
hypothesis and to the symmetry and negative semidefiniteness of the Slutsky matrix. We have
seen that the weak axiom is essentially equivalent to the negative semidefiniteness of the Slutsky
matrix. It is therefore natural to ask whether there is an assumption on preferences that is
weaker than rationality and that leads to a theory of consumer demand equivalent to that
based on the WA. Violations of the SA mean cycling choice, and violations of the symmetry
of the Slutsky matrix generate path dependence in attempts to “integrate back” to preferences.
This suggests preferences that may violate the transitivity axiom. See the appendix with W.
Shafer in Kihlstrom, Mas-Colell, and Sonnenschein (1976) for further discussion of this point.

APPENDIX A: CONTINUITY AND DIFFERENTIABILITY PROPERTIES
OF WALRASIAN DEMAND

In this appendix, we investigate the continuity and differentiability properties of the
Walrasian demand correspondence x(p, w). We assume that x » 0 for all (p, w) » 0
and x € x(p, w).

31. Yet a third approach, based on linear programming techniques, was provided by Afriat
(1967).
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Continuity

Because x(p,w) is, in general, a correspondence, we begin by introducing a
generalization of the more familiar continuity property for functions, called upper
hemicontinuity.

pefinition 3.AA.1: The Walrasian demand correspondence x{p, w) is upper hemi-
continuous at (p, w) it whenever (p”, w") - (p, W), x" e x(p”, w”) for all n, and
x = lim, . X", we have x € x(p, w}*

In words, a demand correspondence is upper hemicontinuous at (5, W) if for any
sequence of price-wealth pairs the limit of any sequence of .o.ptima.l demand bun.dles
is optimal (although not necessarily uniquely so) at the limmng' price-wealth pair. If
x(p, w) is single-valued at all (p, w)» 0, this notion is equivalent to the usual
continuity property for functions.

Figure 3.AA.1 depicts an upper hemicontinuous demand correspondence: _When
p" — p, x(+, w) exhibits a jump in demand behavior at the price vector P being )f"
for all p* but suddenly becoming the interval of consumption bundles [X, x] at p. Itis
upper hemicontinuous because ¥ (the limiting optimum for p" along the si:qucnce)
is an element of segment [%, X] (the set of optima at price vector p). See Section M.H
of the Mathematical Appendix for further details on upper hemicontinuity.

Proposition 3.AA.1: Suppose that u(-) is a continuous utility function rLepresenting
locally nonsatiated preferences X on the consumption set X = R%. Then the
derived demand correspondence x(p, w) is upper hemicontinuous at all (p, w)» 0.
Moreover, if x(p, w) is a function [i.e., if x(p, w) has a single element for all
(p. w)], then it is continuous at all (p, w) » 0.

Proof: To verify upper hemicontinuity, suppose that we had a sequence {(p", w")}i=y —
(B, W) » 0 and a sequence {x"}., with x"e x(p", w") for all m, such that x* — X and X ¢ x(f?..ﬁ/).
Because p"-x" < w" for all n, taking limits as n — oo, we conclude that p- % < w. Thus., X 1s'a
feasible consumption bundle when the budget set is B, ;. However, since it is not optimal in
this set, it must be that u(x) > u(%) for some X € B ;.

32. We use the notation z* — z as synonymous with z = lim, . ,, 2" This deﬁr.nilion of upper
hemicontinuity applies only to correspondences that are “locally bounded" (see Section M.H of the
Mathematical Appendix). Under our assumptions, the Walrasian demand correspondence satisfies
this property at all (p, w) » 0.

Figure 3.AA.1

An upper
hemicontinuous
Walrasian demand
correspondence.




94

CHAPTER 3: CLASSICAL DEMAND THEORY

x, (7" w") X,
x"e x(p", w') x(§, W)
B;.. : \\\ (%)
~— z~x(p, W
B/\ { \\’<
v \\\\ 2
0 — >
x(p", W) X,

By the continuity of u(-), there is a y arbitrarily close t0 X such that pry <w and
u(y) > u(%). This bundle y is illustrated in Figure 3AAL

Note that if n is large enough, we will have p"y < w” [since (p", w") = (p, w)]. Hence, y
is an element of the budget set B .., and we must have u(x") > u(y) because x" € x(p", w").
Taking limits as n — oo, the continuity of u(-) then implies that u(X) 2 u(y), which gives us
a contradiction. We must therefore have X € x(p, w), establishing upper hemicontinuity of
x(p, w).

The same argument also establishes continuity if x(p,w) is in fact a function. m

Suppose that the consumption set is an arbitrary closed set X < R%. Then the continuity
(or upper hemicontinuity) property still follows at any (, #) that passes the following (locally
cheaper consumption) test: “Suppose that x € X is affordable (i, p>x < w). Then there is a
y € X arbitrarily close to x and that costs less than W (i.e, p+y < w)." For example, in Figure
3.AA.3, commodity 2 is available only in indivisible unit amounts. The locally cheaper test
then fails at the price-wealth point (5, W) = (1, W, %), where a unit of good 2 becomes just
affordable. You can easily verify by examining the figure [in which the dashed line indicates
indifference between the points (0, 1) and 2] that demand will fail to be upper hemicontinuous
when p, = w. In particular, for price-wealth points (p", W) such that p} = 1 and py > w,
x(p", W) involves only the consumption of good I; whereas at (5, w) = (1, w, w), we have
x(j, %) = (0, 1). Note that the proof of Proposition 3.AA.1 fails when the locally cheaper
consumption condition does not hold because we cannot find a consumption bundle y with
the properties described there.

Differentiability
Proposition 3.AA.1 has established that if x(p, w) is a function, then it is continuous.
Often it is convenient that it be differentiable as well. We now discuss when this is
so. We assume for the remaining paragraphs that u(-) is strictly quasiconcave and
twice continuously differentiable and that Vu(x) # 0 for all x.

As we have shown in Section 3.D, the first-order conditions for the UMP imply
that x(p, w)» 0 is, for some 1> 0, the unique solution of the system of L +1
equations in L + I unknowns:

Vu(x) - Ap=0

px—w=0,

Figure 3.AA.2 (left)
Finding a bundle y
such that p*y < wang
u(y) > u(x).

Figure 3.AA.3 (right}
The locally cheaper
test fails at
price-wealth pair
(p.w) = (1, %, W).
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Therefore, the implicit function theorem (see Section M.E of the Mathematical
Appendix) tells us that the differentiability of the solution x(p,w) as a function of
the parameters (p, w) of the system depends on the Jacobian matrix of this system
having a nonzero determinant. The Jacobian matrix [i.c., the derivative matrix of
the L + 1 component functions with respect to the L + | variables (x, )] is

[D‘u(x) - p]
pro0J

Since Vu(x) = Ap and A > 0, the determinant of this matrix is nonzero if and only if
the determinant of the bordered Hessian of u(x) at x is nonzero:

D2u(x) Vu(x)
[(Vu(x)]" O
This condition has a straightforward geometric interpretation. It means that the
indifference set through x has a nonzero curvature at x; it is not (even infinitesimally)
fiat. This condition is a slight technical strengthening of strict quasiconcavity [just
as the strictly concave function f(x) = —(x*) has f"(0) = 0, a strictly quasiconcave
function could have a bordered Hessian determinant that is zero at a point].

We conclude, therefore, that x(p, w) is differentiable if and only if the determinant
of the bordered Hessian of u(-) is nonzero at x(p, w). It is worth noting the following
interesting fact (which we shall not prove here): If x(p, w) is differentiable at (p, w),
then the Slutsky matrix S(p, w) has maximal possible rank; that is, the rank of S(p, w)
equals L — 1.3
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EXERCISES

3.B.1* In text.

3.B.2% The preference relation 2 defined on the consumption set X = RY is said to be weakly
monotone if and only if x >y implies that x > y. Show that if > is traasitive, locally
nonsatiated, and weakly monotone, then it is monotone.

3.B.3* Draw a convex preference relation that is locally nonsatiated but is not monotone.
3.C.1% Verify that the lexicographic ordering is complete, transitive, strongly monotone, and
strictly convex.

3.C.2% Show that if u(-) is a continuous utility function representing >, then > is continuous.

3.C3€ Show that if for every x the upper and lower contour sets {ye R%:y 3 x} and
{ye R4 : x X y} are closed, then 2 is continuous according to Definition 3.C.1.

3.C.4% Exhibit an example of a preference retation that is not continuous but is representable
by a utility function.

3.C.5€ Establish the following two results:
(a) A continuous 2 is homothetic if and only if it admits a utility function u(x) that is
homogeneous of degree one; i.e., u(ax) = au(x) for all a > 0.

(b) A continuous > on{—o0, o) x RL™! is quasilinear with respect to the first commodity
if and only if it admits a utility function u(x) of the form u(x) = x; + ¢(x;" - x,). [Hint:
The existence of some continuous utility representation is guaranteed by Proposition 3.G.1.]

After answering (a) and (b), argue that these properties of u(-) are cardinal.

i -
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3.C.6® Supposc that in a two-commodity world, the consumer's utility function takes the form
u(x) = [ayx{ + a,x5]"%. This utility function is known as the constant elasticity of substitution
(or CES) utility function.

(a) Show that when p = 1, indifference curves become linear.

(b) Show that as p — 0, this utility function comes to represent the same preferences as
the (generalized) Cobb-Douglas utility function u(x) = x{'x3.

(c) Show that as p — —c0, indifference curves become “right angles™; that is, this utility
function has in the limit the indifference map of the Leontief utility function u(x,, x,) =
Min (X iy X3}

3.D.1* In text.
1.D.2* In text.

3.D.38 Suppose that u(x) is differentiable and strictly quasiconcave and that the Walrasian
demand function x(p, w) is differentiable. Show the lollowing:

(a) If u(x) is homogeneous of degree one, then the Walrasian demand function x(p, w) and
the indirect utility function {p, w) are homogeneous of degrec one [and hence can be written
in the form x(p, w) = wi(p) and v(p, w) = wil(p)] and the wealth expansion path (see Section
2.E) is a straight line through the origin. What does this imply about the wealth elasticities
of demand?

(b) If u(x) is strictly quasiconcave and u(p, ) is homogeneous of degee one in w, then u(x)
must be homogeneous of degree one.

3.D.4% Let (—0, ) x R4 denote the consumption set, and assume that preferences are
strictly convex and quasilinear. Normalize p, = 1.

(a) Show that the Walrasian demand functions for goods 2,...,L are independent of
wealth. What does this imply about the wealth effect (se¢ Section 2.E) of demand for good 17

(b) Argue that the indirect utility function can be written in the form v(p, w) = w + ¢(p)
for some function ¢(-).

(c) Suppose, for simplicity, that L =2, and write the consumer's utility function as
u(x, X3) = x; + q(x;). Now, however, let the consumption set be R% so that there is a
nonnegativity constraint on consumption of the numeraire x,. Fix prices p, and examine how
the consumer’s Walrasian demand changes as wealth w varies. When is the nonnegativity
constraint on the numeraire irrelevant?

3.D.58 Consider again the CES utility function of Exercise 3.C.6, and assume thata, = a, = 1.
(a) Compute the Walrasian demand and indirect utility functions for this utility function.
(b) Verify that these two functions satisfy all the properties of Propositions 3.D.2 and 3.D.3.

(¢) Derive the Walrasian demand correspondence and indirect utility function for the case
of linear utility and the case of Leontief utility (see Exercise 3.C.6). Show that the CES
Walrasian demand and indirect utility functions approach these as p approaches 1 and —oo0,
respectively.

(d) The elasticity of substitution between goods 1 and 2 is defined as
_5[x1(Pv w)/x,(p, w)] pi/pa )
api/p.] x1(p. w)/x5(p, w)

Show that for the CES utility function, &;,(p, w) = 1/(1 — p), thus justifying its name. What
is £;,(p, w) for the linear, Leontief, and Cobb—Douglas utility functions?

$ialpw) =
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3.D.6® Consider the three-good sctting in which the consumer has utility function
u(x) = (xy = by)"(x; = by)(xy ~ by)".

(a) Why can you assume that « +  + y = 1 without loss of generality? Do so for the rest
of the problem.

(b) Write down the first-order conditions for the UMP, and derive the consumer’s
Walrasian demand and indirect utility functions. This system of demands is known as the
linear expenditure system and is due to Stone (1954).

(c) Verify that these demand functions satisfy the properties listed in Propositions 3.D.2
and 3.D.3.

3.D.7"* There are two commodities. We are given two budget sets B,o .0 and B, ., described,
respectively, by p°® = (1, 1), w® =8 and p' = (1,4), w! = 26. The observed choice at (" w%
is x° = (4,4). At (p', w'"), we have a choice x! such that p-x' = w',

(a) Determine the region of permissible choices x! if the choices x° and x' are consistent
with maximization of preferences.

(b) Determine the region of permissible choices x! if the choices x® and x' are consistent
with maximization of preferences that are quasitinear with respect to the first good.

() Determine the region of permissible choices x! if the choices x° and x' are consistent
with maximization of preferences that are quasilinear with respect to the second good.

(d) Determine the region of permissible choices x! if the choices x° and x' are consistent
with maximization of preferences for which both goods are normal.

(e) Determine the region of permissible choices x* if the choices x® and x* are consistent
with maximization of homothetic preferences.

[Hint: The ideal way to answer this exercise relies on (good) pictures as much as possible.]
3.D.8* Show thatfor all (p, w), w év(p, w)/ow = —p-V,v(p, w).

3.E.I* In text,

3.E2* In text.

3.E.38 Prove that a solution to the EMP exists if p » 0 and there is some x € RY satisfying
u(x) = u.

3.E.48 Show that if the consumer's preferences = are convex, then h(p, u) is a convex set. Also
show that if u(x) is strictly convex, then h(p, u} is single-valued.

3.E.5% Show that if u(-) is homogeneous of degree one, then h(p, 1) and ¢(p, v) arc homo-
geneous of degree onc in u [i.e., they can be written as h(p,u) = i(pyu and e(p, u) = & p)ul.

3.E.6® Consider the constant elasticity of substitution utility function studied in Exercises
3.C6 and 3.D.5 with a, = x, = 1. Derive its Hicksian demand function and expenditure
function. Verify the properties of Propositions 3.E.2 and 3.E3.

3.E.7® Show that if = is quasilinear with respect to good 1, the Hicksian demand functions
for goods 2...., L do not depend on u. What is the form of the expenditure function in this
case?

3.E8* For the Cobb-Douglas utility function, verify that the relationships in (3.E.1) and
(3.E.4) hold. Note that the expenditure function can be derived by simply inverting the indirect
utility function, and vice versa.
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3.E9® Use the relations in (3.E.1) to show that the properties of the indirect utility function
identified in Proposition 3.D.3 imply Proposition 3.E.2. Likewise, use the relations in (3.E.1)
to prove that Proposition 3.E.2 implies Proposition 3.D.3.

3.E10% Use the relations in (3.E.1) and (3.E4) and the properties of the indirect utility and
expenditure functions to show that Proposition 3.D.2 implies Proposition 3.E.4. Then use these
facts to prove that Proposition 3.E.3 implies Proposition 3.D.2.

3.F.1® Prove formally that a closed, convex sct K < R® equals the intersection of the
half-spaces that contain it (use the separating hyperplane theorem).

3F.2* Show by means of a graphic example that the separating hyperplane theorem does not
hold for nonconvex sets. Then argue that if K is closed and not convex, there is always some
x ¢ K that cannot be separated from K.

3.G.1® Prove that Proposition 3.G.1 is implied by Roy's identity (Proposition 3.G.4).

3.G.2® Verify for the case of a Cobb~Douglas utility function that all of the propositions in
Section 3.G hold.

3.G.3® Consider the (linear expenditure system) utility function given in Exercise 3.D.6.

(a) Derive the Hicksian demand and expenditure functions. Check the properties listed in
Propositions 3.E.2 and 3.E.3.

(b) Show that the derivatives of the expenditure function are the Hicksian demand function
you derived in (a).
(c) Verify that the Slutsky equation holds.

(d) Verify that the own-substitution terms are negative and that compensated cross-price
effects are symmetric.
(e) Show that S(p, w) is negative semidefinite and has rank 2.

3.G.4® A utility function u(x) is additively separable if it has the form u(x) = T ou(x,)

(2) Show that additive separability is a cardinal property that is preserved only under
linear transformations of the utility function.

(b) Show that the induced ordering on any group of commodities is independent of
whatever fixed values we attach to the remaining ones. It turns out that this ordinal property
is not only necessary but also sufficient for the existence of an additive separable representation.
[You should not attempt a proof. This is very hard. See Debreu (1960)].

(¢} Show that the Walrasian and Hicksian demand functions generated by an additively
separable utility function admit no inferior goods if the functions u,(-) are strictly concave.
{You can assume differentiability and interiority to answer this question.)

(d) (Harder) Suppose that all u,(-) are identical and twice differentiable. Let a(-) = u, ()
Show that if —[ri"(1)/i’(1)] < 1 for all ¢, then the Walrasian demand x(p, w) has the so-called
gross substitute property, i., 5x,(p, w)/dp, > 0 for all ¢ and k # /.

3.G.5C (Hicksian composite commodities.) Suppose there are two groups of desirable com-
modities, x and y, with corresponding prices p and g. The consumer’s utility function is u(x, y),
and her wealth is w > 0. Suppose that prices for goods y always vary in proportion to one
another, so that we can write g = ago. For any number z > 0, define the function

i(x, z) = Max  u(x, y)
¥

st.gyy<z.
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(a) Show that if we imagine that the goods in the economy are x and a single composite
commodity z, that i(x, 2) is the consumer’s utility function, and that a is the price of the
composite commodity, then the solution to Max, , i(x,z) s.t. px + az < w will give the
consumer's actual levels of x and z = qq*y.

(b) Show that properties of Walrasian demand functions identified in Propositions 3.D.2
and 3.G.4 hold for x(p, a, w) and z(p, 2, w).

(c) Show that the properties in Propositions 3.E.3,and 3.G.1 to 3.G.3 hold for the Hicksian
demand functions derived using i(x, z).

3.G.6® (F. M. Fisher) A consumer in a three-good economy (goods denoted x,, X,, and x;
prices denoted p,, p,, p3) with wealth level w > 0 has demand functions for commodities | and
2 given by

100-sP 4 pP2y 52
Py Ps Ps

Xy

w
arpliayP2s?
Py Ps Ps

where Greek letters are nonzero constants.

X2

(a) Indicate how to calculate the demand for good 3 (but do not actually do it).

(b) Are the demand functions for x, and x, appropriately homogeneous?

() Calculate the restrictions on the numerical values of «, f, y and & implied by utility
maximization.

(d) Given your results in part (c), for a fixed level of x; draw the consumer’s indifference
curve in the x,, x, plane.

(¢) What does your answer to (d) imply about the form of the consumer's utility function
u(xy, Xz, X3)?

3.G.7* A striking duality is obtained by using the concept of indirect demand function. Fix w
at some level, say w = 1; from now on, we write x(p, 1) = x(p), o(p, 1) = v(p). The indirect
demand function g(x) is the inverse of x(p); that is, it is the rule that assigns to every commodity
bundle x » 0 the price vector g(x) such that x = x(g(x), 1). Show that

1
x) = ——— Vu(x).
g(x) e u(x)

Deduce from Proposition 3.G.4 that

x(p) = u(p).

1
—V
p-Vu(p)
Note that this is a completely symmetric expression. Thus, direct (Walrasian) demand is the
normalized derivative of indirect utility, and indirect demand is the normalized derivative of
direct utility.

3.G.8® The indirect utility function w(p, w) is logarithmically homogeneous if v(p, aw) =
Wp,w) +Inx for a> 0 [in other words, v(p, w) = In (v*(p, w)), where v*(p, w) is homo-
geneous of degree one). Show that if o-, ) is logarithmically homogencous, then
x(p, 1) = ~Vu(p, 1).

3.G.9€ Compute the Slutsky matrix from the indirect utility function.

3.G.10® For a function of the Gorman form 1{p, w) = a(p) + b(p)w, which properties will the
functions a(-) and b(-) have to satisfy for v(p, w) to qualify as an indirect utility function?

) S -~
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3.G.118 Verify that an indirect utility function in Gorman form exhibits linear wealth-
expansion Curves.

3.G.128 What restrictions on the Gorman form correspond to the cases of homothetic and
quasilinear preferences?

3.G.13€ Suppose that the indirect utility function v(p, w) is a polynomial of degree n on w
(with coefficients that may depend on p). Show that any individual wealth-expansion path is
contained in a linear subspace of at most dimension n + 1. Interpret.

3.G.14* The matrix below records the (Walrasian) demand substitution effects for a consumer
endowed with rational preferences and consuming three goods at the prices p; =1, p; =2,

and p; = 6:
-10 ? ?
7 -4 1.
3 7 ?

Supply the missing numbers. Does the resulting matrix possess all the properties of a
substitution matrix?
3.G.158 Consider the utility function
u=2x}? 4 4x}2.

(a) Find the demand functions for goods 1 and 2 as they depend on prices and
wealth.

(b) Find the compensated demand function h{-).

(c) Find the expenditure function, and verify that h(p,u) = V,e(p,u).

(d) Find the indirect utility function, and verify Roy's identity.

3.G.16€ Consider the expenditure function

e(p, u) = exp {; a, log p, + ([;] I’") }

(a) What restrictions on &, ..., %y By, . . ., B are necessary for this to be derivable from
utility maximization?

(b) Find the indirect utility that corresponds to it.

(¢) Verify Roy’s identity and the Slutsky equation.

3.G.17% [From Hausman (1981)] Suppose L = 2. Consider a *“local " indirect utility function
defined in some neighborhood of price-wealth pair ( p, w) by

w I p a
v(p,w) = —exp (-bm/pz)[ﬁ + - (a —+ -+ f)}
py b b

P

(a) Verify that the local demand function for the first good is

xl(p,w)=aﬁ+bi+c.

P2 P2

(b) Verify that the local expenditure function is

1 a
e(p, u) = —pyuexp(bpi/ps) — ;’(am + o + CI’z)-
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(c) Verify that the local Hicksian demand function for the first commodity is
a
hy(p,u) = —ubexp (bp,/p;) — B

3.G.18€ Show that every good is related to every other good by a chain of (weak) substitutes;
that is, for any goods ¢ and k, either h,(p, u)/dp, = 0, or there exists a good r such that
oh,(p, u)/0p, > 0 and 8h,(p, u)/dp, > O, or there is . .., and so on. [Hint: Argue first the case of
two commodities. Use next the insights on composite commodities gained in Exercise 3.G.5
to handle the case of three, and then L, commodities.}

3.H.1€ Show that if e(p,u) is continuous, increasing in u, homogencous of degree one,
nondecreasing, and concave in p, then the utility function u(x) = Sup {u:xe V,}, where
V, = {y:p-y 2 e(p, u) for all p» 0}, defined for x > 0, satisfies e(p, u) = Min {p-x: u(x) 2 u}
for any p » 0.

3.H.28 Use Proposition 3.F.1 to argue that if e(p, u) is differentiable in p, then there are no
(strongly monotone) nonconvex preferences generating e(-).

3.H.3* How would you recover v(p, w) from e(p, u)?

3.H.4% Suppose that we are given as primitive, not the Walrasian demand but the indirect
demand function g(x) introduced in Exercise 3.G.7. How would you go about recovering 2 ?
Restrict yourself to the case L = 2.

3.H.5® Suppose you know the indirect utility function. How would you recover from it the
expenditure function and the direct utility function?

3.H.6® Suppose that you observe the Walrasian demand functions x,(p, w) = «,w/p, for all
¢ =1,...,L with ¥,a, = 1. Derive the expenditure function of this demand system. What is
the consumer's utility function?

3.H.7® Answer the following questions with reference to the demand function in Exercise
2F.17.

(a) Let the utility associated with consumption bundle x = (1, 1,..., 1) be 1. What is the
expenditure function e(p, 1) associated with utility level u = 1? [Hint: Use the answer to (d)
in Exercise 2.F.17.]

(b) What is the upper contour set of consumption bundle x = (1, 1,...,1)?
3.L18 In text.
3128 In text.

3.1.38 Consider a price change from initial price vector p° to new price vector p! < p° in which
only the price of good ¢ changes. Show that CV(p°, p*, w) > EV(p°, p*, w) if good ¢ is inferior.

3.1.48 Construct an example in which a comparison of CV(p®, p*, w) and C¥(p°, p*, w) does
not give the correct welfare ranking of p! versus p2.

3.1.5% Show that if u(x) is quasilinear with respect to the first good (and we fix p, = 1), then
CV(p° p'. w)= EV(p° p', w) for any (p° p', w).

3.1.6* Suppose there are i = 1,..., I consumers with utility functions u;(x) and wealth w,. We
consider a change from p° to p*. Show that if ¥°; CV(p°, p*, w;) > O then we can find {wi}/.,
such that ¥';w; < 3", w; and v(p', wi) 2 v(p° w;) for all i. That is, it is in principle possible
to compensate everybody for the change in prices.
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3.1.7% There are three commodities (i.e., L = 3), of which the third is a numeraire (let py = 1).
The market demand function x(p, w) has

x(p.w)=a+ bp, +cp,
xy(p,w) =d + ep, + gp,.
(a) Give the parameter restrictions implied by utility maximization.

(b) Estimate the equivalent variation for a change of prices from (p,, p;) = (1, 1) to
(P, P2) = (2,2). Verify that without appropriate symmetry, there is no path independence.
Assume symmetry for the rest of the exercise.

() Let EV,, EV,, and EV be the equivalent variations for a change of prices from
(p1, P2) = (1, 1) to, respectively, (2, 1), (1,2), and (2,2). Compare EV with EV| + EV; as a
function of the parameters of the problem. Interpret.

(d) Suppose that the price increases in (c) are due to taxes. Denote the deadweight losses
for each of the three experiments by D W,, DW;, and DW. Compare DW with DW, + DW, as
a function of the parameters of the probiem.

(e) Suppose the initial tax situation has prices (p;, p;) = (1, 1). The government wants to
raise a fixed (small) amount of revenue R through commodity taxes. Call ¢, and ¢, the tax
rates for the two commodities. Determine the optimal tax rates as a function of the parameters
of demand if the optimality criterion is the minimization of deadweight loss.

3.1.8% Suppose we are in a three-commodity market (i.e. L = 3). Letting p, = 1, the demand
functions for goods | and 2 are

xy(p.w)=a, +bypy +c,p, +dipp;
x2(p,w) =a; + byp, + ¢yp2 +d1pypa.

(a) Note that the demand for goods | and 2 does not depend on wealth. Write down
the most general class of utility functions whose demand has this property.

(b) Argue that if the demand functions in (a) are generated from utility maximization, then
the values of the parameters cannot be arbitrary. Write down as exhaustive a list as you can of
the restrictions implied by utility maximization. Justify your answer.

(¢) Suppose that the conditions in (b) hold. The initial price situation is p = (p,, p,), and
we consider a change to p’ = (p}, p3). Derive a measure of welfare change generated in going
from p to p'.

(d) Let the values of the parameters be a, =a, =3/2, b, =c; =1, ¢, = b, = 1/2, and
dy = d, = 0. Suppose the initial price situation is p = (1, 1). Compute the equivalent variation
for a move to p’ for each of the following three cases: (i) p' = (2, 1), (ii) p' = (1, 2), and (iii)
P’ = (2, 2). Denote the respective answers by EV,, EV;, EV,. Under which condition will you
have EV, = EV; + EV,? Discuss.

3.1.9% In a one-consumer economy, the government is considering putting a tax of ¢ per unit
on good 7 and rebating the proceeds to the consumer (who nonetheless does not consider the
effect of her purchases on the size of the rebate). Suppose that s, (p, w) < 0 for all { p, w). Show
that the optimal tax (in the sense of maximizing the consumer’s utility) is zero.

3.1.10% Construct an example in which the area variation measure approach incorrectly ranks
p° and p'. [Hint: Let the change from p° to p’ involve a change in the price of more
than one good.]

3.1.11% Suppose that we know not only p° p', and x° but also x' = x(p', w). Show that if
(p' — p%)-x' > 0, then the consumer must be worse off at price-wealth situation (p', w) than
at (p° w). Interpret this test as a first-order approximation to the expenditure function at p'.
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Also show that an alternative way to write this test is p°-(x! — x°) < 0, and depict the test
for the case where L =2 in (x,, x,) space. [Hint: Locate the point x° on the set {xeR%:

- 540
« = )] Aggregate Demand
3.L12® Extend the compensating and equivalent variation measures of welfare change to the
case of changes in both prices and wealth, so that we change from (p°, w°) to (p', w'). Also
extend the “partial information” test developed in Section 3.I to this case.

3.J.1C Show that when L = 2, x(p, w) satisfies the strong axiom if and only if it satisfies the
weak axiom.

3.AA.1® Suppose that the consumption set is X = {x € R}:x, + x, > 1} and the utility
function is u(x) = x,. Represent graphically, and show (a) that the locally cheaper consumption
test fails at (p, w) = (1,1,1) and (b) that market demand is not continuous at this point.
Interpet economically.

3.AA.2€ Under the conditions of Proposition 3.AA.1, show that h(p, u) is upper hemicon-
tinuous and that e(p, u) is continuous (even if we replace minimum by infimum and allow .
p 2 0). Also, assuming that h(p, u) is a function, give conditions for its differentiability. 4 A Introductlon

For most questions in economics, the aggregate behavior of consumers is more
important than the behavior of any single consumer. In this chapter, we investigate
the extent to which the theory presented in Chapters | to 3 can be applied to aggregate
demand, a suitably defined sum of the demands arising from all the economy’s
consumers. There are, in fact, a number of different properties of individual demand
that we might hope would also hold in the aggregate. Which ones we are
interested in at any given moment depend on the particular application at hand.
In this chapter, we ask three questions about aggregate demand:

(i) Individual demand can be expressed as a function of prices and the
individual's wealth level. When can aggregate demand be expressed as a
function of prices and aggregate wealth?

(ii) Individual demand derived from rational preferences necessarily satisfies the
weak axiom of revealed preference. When does aggregate demand satisfy the
weak axiom? More generally, when can we apply in the aggregate the demand
theory developed in Chapter 2 (especially Section 2.F)?

(iii) Individual demand has welfare significance; from it, we can derive measures
of welfare change for the consumer, as discussed in Section 3.1. When does
aggregate demand have welfare significance? In particular, when do the welfare
measures discussed in Section 3.1 have meaning when they are computed
from the aggregate demand function?

These three questions could, with a grain of salt, be called the aggregation theories
of, respectively, the econometrician, the positive theorist, and the welfare theorist.

The econometrician is interested in the degree to which he can impose a simple
structure on aggregate demand functions in estimation procedures. One aspect of
these concerns, which we address here, is the extent to which aggregate demand can .
be accurately modeled as a function of only aggregate variables, such as aggregate il
(or, equivalently, average) consumer wealth. This question is important because the
econometrician’s data may be available only in an aggregate form.

The positive (behavioral) theorist, on the other hand, is interested in the degree
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to which the positive restrictions of individual demand theory apply in the aggregate.
This can be significant for deriving predictions from models of market equilibrium
in which aggregate demand plays a central role.!

The welfare theorist is interested in the normative implications of aggregate
demand. He wants to use the measures of welfare change derived in Section 3.1 to
evaluate the welfare significance of changes in the economic environment. Ideally, he
would like to treat aggregate demand as if it were generated by a “representative
consumer” and use the changes in this fictional individual’s welfare as a measure of
aggregate welfare.

Although the conditions we identify as important for each of these aggregation
questions are closely related, the questions being asked in the three cases are
conceptually quite distinct. Overall, we shall see that, in all three cases, very strong
restrictions will need to hold for the desired aggregation properties to obtain. We
discuss these three questions, in turn, in Sections 4.B to 4.D.

Finally, Appendix A discusses the regularizing (i.c., “smoothing™) effects arising
from aggregation over a large number of consumers.

Aggregate Demand and Aggregate Wealth

Suppose that there are I consumers with rational preference relations 2; and
corresponding Walrasian demand functions x(p, w;). In general, given prices p € R
and wealth levels (w,, .. ., w;) for the I consumers, aggregate demand can be written
as
1
x(p, Wiseoes W,) = ‘Z‘ X((P, W:)-

i=
Thus, aggregate demand depends not only on prices but also on the specific wealth
levels of the various consumers. In this section, we ask when we are justified in writing
aggregate demand in the simpler form x{p, ¥ ;w;), where aggregate demand depends
only on aggregate wealth 3", w;.

For this property to hold in all generality, aggregate demand must be identical
for any two distributions of the same total amount of wealth across consumers.
That is, for any (wy, ..., w;) and (w}, ..., ;) such that T;w; = 3, w;, we must have
Zixi(p, wi) = Lixip, wi)-

To examine when this condition is satisfied, consider, starting from some
initial distribution (w,, ..., w,), a differential change in wealth (dw,...,dw;) e Rr!
satisfying 3, dw; = 0. If aggregate demand can be written as a [unction of aggregate
wealth, then assuming differentiability of the demand functions, we must have

Y Oxailp, wi) dw; =0 for every Z.

i Wy

This can be true for all redistributions (dw,, .. ., dw;) satisfying 3", dw; = 0 and from
any initial wealth distribution (w,, . . ., w;) if and only if the coefficients of the different

1. The econometrician may also be interested in these questions because a priori restrictions
on the properties of aggregate demand can be incorporated into his estimation procedures.
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Wealth Expansion
A Path for Consumer i

Wealth Expansion Path
for a Consumer j # i

BP. w

X1

dw; are equal; that is,
0x,(p, ;) - Ox,;(p, w;)
ow; ow;

k)

@4.B.1)

for every Z, any two individuals i and j, and all (w,, ..., w,).2

In short, for any fixed price vector p, and any commodity 7, the wealth effect at
p must be the same whatever consumer we look at and whatever his level of wealth.?
It is indeed fairly intuitive that in this case, the individual demand changes arising
from any wealth redistribution across consumers will cancel out. Geometrically, the
condition is equivalent to the statement that all consumers’ wealth expansion paths
are parallel, straight lines. Figure 4.B.1 depicts parallel, straight wealth expansion
paths.

One special case in which this property holds arises when all consumers have
identical preferences that are homothetic. Another is when all consumers have
preferences that are quasilinear with respect to the same good. Both cases are
examples of a more general result shown in Proposition 4.B.1.

% Proposition 4.B.1: A necessary and sufficient condition for the set of consumers to

exhibit paraltel, straight wealth expansion paths at any price vector p is
that preferences admit indirect utility functions of the Gorman form with the
coefficients on w; the same for every consumer /. That is:

vilp, w,) = a;(p) + b(p)w,.

Proof: You are asked to establish sufficiency in Exercise 4.B.1 (this is not too difficult;
use Roy’s identity). Keep in mind that we are neglecting boundaries (alternatively,
the significance of a result such as this is only local). You should not attempt to
prove necessity. For a discussion of this result, see Deaton and Muellbauer (1980). m

2. As usual, we are neglecting boundary constraints; hence, strictly speaking, the validity of our
claims in this section is only local.

3. Note that dx,,(p, w;)/dw; = dx,,(p, w;)/dw, for all w; # w; because for any values of w;,j # i,
(4.B.1) must hold for the wealth distributions (w,, .. ., W WL W wand (wy, ., w W,
Wisys oo -2 wy). Hence, 8x,.(p, w,)/ow; = dx,,(p, w;)/dw; = dx,i(p, w))/0w, for any j # i.

Flgure 4.B.1

Invariance of
aggregate demand to
redistribution of
wealth implies wealth
expansion paths that
are straight and
parallel across
consumers.
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Thus, aggregate demand can be written as a function of aggregate wealth if and
only if all consumers have preferences that admit indirect utility functions of the
Gorman form with equal wealth coefficients b(p). Needless to say, this is a very
restrictive condition on preferences.*

Given this conclusion, we might ask whether less restrictive conditions can be
obtained if we consider aggregate demand functions that depend on a wider set of
aggregate variables than just the total (or, equivalently, the mean) wealth level. For
example, aggregate demand might be allowed to depend on both the mean and the
variance of the statistical distribution of wealth or even on the whole statistical
distribution itself. Note that the latter condition is still restrictive. It implies that
aggregate demand depends only on how many rich and poor there are, not on who
in particular is rich or poor.

These more general forms of dependence on the distribution of wealth are indeed
valid under weaker conditions than those required for aggregate demand to depend
only on aggregate wealth. For a trivial example, note that aggregate demand depends
only on the statistical distribution of wealth whenever all consumers possess identical
but otherwise arbitrary preferences and differ only in their wealth levels. We shall
not pursue this topic further here; good references are Deaton and Muellbauer
(1980), Lau (1982) and Jorgenson (1990).

There is another way in which we might be able to get a more positive answer
to our question. So far, the test that we have applied is whether the aggregate demand
function can be written as a function of aggregate wealth for any distribution of
wealth across consumers. The requirement that this be true for every conceivable
wealth distribution is a strong one. Indeed, in many situations, individual wealth
levels may be generated by some underlying process that restricts the set of individual
wealth levels which can arise. If so, it may still be possible to write aggregate demand
as a function of prices and aggregate wealth.

For example, when we consider general equilibrium models in Part IV, individual
wealth is generated by individuals’ shareholdings of firms and by their ownership of
given, fixed stocks of commodities. Thus, the individual levels of real wealth are
determined as a function of the prevailing price vector.

Alternatively, individual wealth levels may be determined in part by various
government programs that redistribute wealth across consumers (sec Section 4.D).
Again, these programs may limit the set of possible wealth distributions that
may arise.

To see how this can help, consider an extreme case. Suppose that individual i’s
wealth level is generated by some process that can be described as a function of prices
p and aggregate wealth w, w,(p, w). This was true, for example, in the general
equilibrium iilustration above. Similarly, the government program may base an
individual’s taxes (and hence his final wealth position) on his wage rate and the total
(real) wealth of the society. We call a family of functions (w,(p, w), ..., w,(p, w)) with
> wi(p, w) = wfor all (p, w) a wealth distribution rule. When individual wealth levels

4. Recall, however, that it includes some interesting and important classes of preferences. For
example, il preferences are quasilinear with respect to good ¢, then there is an indirect utility of the
form a;(p) + w,/p,, which, letting b(p) = 1/p,, we can see is of the Gorman type with identical b(p).
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are generated by a wealth distribution rule, we can indeed always write aggregate
demand as a function x(p, w) = X; x;(p, wi(p, W)}, and so aggregate demand depends
only on prices and aggregate wealth.

L,C Aggregate Demand and the Weak Axiom

To what extent do the positive properties of individual demand carry over to the
aggregate demand function x(p, wy, ..., W;) = ¥ x;(p, w;)? We can note immediately
three properties that do: continuity, homogeneity of degree zero, and Walras’ law
[that is, p-x(p, Wy, ..., W) =X, w for all (p,wy,...,w))] In this section, we
focus on the conditions under which aggregate demand also satisfies the weak axiom,
arguably the most central positive property of the individual Walrasian demand
function.

To study this question, we would like to operate on an aggregate demand written
in the form x(p, w), where w is aggregate wealth. This is the form for which we gave
the definition of the weak axiom in Chapter 2. We accomplish this by supposing
that there is a wealth distribution rule (w,(p, w), . . ., w;(p, )) determining individual
wealths from the price vector and total wealth. We refer to the end of Section 4.B
for a discussion of wealth distribution rules.® With the wealth distribution rule
at our disposal, aggregate demand can automatically be written as

x(p, w) = X, x(p, wi(p, w))-
Formally, therefore, the aggregate demand function x(p, w) depends then only on
aggregate wealth and is therefore a market demand function in the sense discussed
in Chapter 2.5 We now investigate the fulfillment of the weak axiom by x(-, ).

In point of fact, and merely for the sake of concreteness, we shall be even more
specific and focus on a particularly simple example of a distribution rule. Namely,
we restrict ourselves to the case in which relative wealths of the consumers remain
fixed, that is, are independent of prices. Thus, we assume that we are given wealth
shares o, > 0, ¥;a; = 1, so that wy(p, w) = a,w for every level we R of aggregate
wealth.” We have then

x(p, w) = X; x,(p, ;W)
We begin by recalling from Chapter 2 the definition of the weak axiom.

Pefinition 4.C.1: The aggregate demand function x(p, w) satisfies the weak axiom
(WA) if p-x(p,w) <w and x(p, w) # x(p’, w') imply p-x(p, w) >w for any
(p, w) and (p’, w).

5. There is also a methodological advantage to assuming the presence of a wealth distribution
rule. {t avoids confounding different aggregation issues because the aggregation problem studied in
Section 4.B (invariance of demand to redistributions) is then entirely assumed away.

6. Note that it assigns commodity bundles to price-wealth combinations, and, provided every
w,(-, ) is continuous and homogeneous of degree one, that it is continuous, homogeneous of degree
zero, and satisfies Walras's law.

7. Observe that this distribution rule amounts to leaving the wealth levels (wy, ..., w,) unaltered
and considering only changes in the price vector p. This is because the homogeneity of degree zero
of x(p,w,,...,w,) implies that any proportional change in wealths can also be captured by a
proportional change in prices. The description by means of shares is, however, analytically more
convenient.
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We next provide an example illustrating that aggregate demand may not satisfy
the weak axiom.

Example 4.C.1: Failure of Aggregate Demand to Satisfy the WA. Suppose that there
are two commodities and two consumers. Wealth is distributed equally so that
w, = w, = w/2, where w is aggregate wealth. Two price vectors p and p’ with
corresponding individual demands x,(p, w/2) and x,(p, w/2) under p, and x,(p’, w/2)
and x,(p’, w/2) under p', are depicted in Figure 4.C.1.

These individual demands satisfy the weak axiom, but the aggregate demands do
not. Figure 4.C.1 shows the vectors $x(p, w) and 4x(p’, w), which are equal to the
average of the two consumers’ demands; (and so for each price vector, they must lie
at the midpoint of the line segment connecting the two individuals’ consumption
vectors). As illustrated in the figure, we have

1p-x(p,w) < wf2 and 1p-x(p,w) < w/2,

which (multiply both sides by 2) constitutes a violation of the weak axiom at the
price-wealth pairs considered. m

The reason for the failure illustrated in Example 4.C.1 can be traced to wealth
effects. Recall from Chapter 2 (Proposition 2.F.1) that x(p, w) satisfies the weak axiom
if and only if it satisfies the law of demand for compensated price changes. Precisely,
if and only if for any (p, w) and any price change p’ that is compensated [so that
w = p’-x(p, w)], we have

0 —p)[x(p,w) — x(p, W] <0, “c1
with strict inequality if x(p, w) # x(p', w').2

If the price—wealth change under consideration, say from (p, w) to (p',w'),
happened to be a compensated price change for every consumer i—that is, if
aw =p'-x;(p, q;w) for all i—then because individual demand satisfies the weak
dxiom, we would know (again by Proposition 2.F.1) that foralli= 1,..., I:

(0 — p)-[xilp', W) — xi(p, aw)] £ 0, @.C2)

8. Note that if p-x(p, w') < w and x(p', w') # x(p, w), then we must have p'-x(p,w) > w', in
agreement with the weak axiom.

Figure 4.C.1

Failure of aggregate
demand to satisfy the

weak axiom.

with strict inequality if x;(p’, ;w) # x;(p, a;w’). Adding (4.C.2) over i gives us
precisely (4.C.1). Thus, we conclude that aggregate demand must satisfy the WA for
any price—-wealth change that is compensated for every consumer.

The difficulty arises because a price-wealth change that is compensated in the
aggregate, so that w' = p’-x(p, w), need not be compensated for each individual;
we may well have a;w # p’-x,(p, a;w) for some or all i. If so, the individual
wealth effects [which, except for the condition p-D,, x(p, a;w) = 1, are essentially
unrestricted] can play havoc with the well-behaved but possibly small individual
substitution effects. The result may be that (4.C.2) fails to hold for some i, thus making
possible the failure of the similar expression (4.C.1) in the aggregate.

Given that a property of individual demand as basic as the WA cannot be
expected to hold generally for aggregate demand, we might wish to know whether
there are any restrictions on individual preferences under which it must be satisfied.
The preceding discussion suggests that it may be worth exploring the implications
of assuming that the law of demand, expression (4.C.2), holds at the individual ievel
for price changes that are left uncompensated. Suppose, indeed, that given an initial
position (p, w;), we consider a price change p’ that is not compensated, namely, we
leave w; = w,. If (4.C.2) nonetheless holds, then by addition so does (4.C.1). More
formally, we begin with a definition.

Definition 4.C.2: The individual demand function x;(p, w;) satisfies the uncom-
pensated law of demand (ULD) property if

(P —p)-[xi{p', W)y — x,(p,w)] <0 (4.C.9)

for any p, p’, and w;, with strict inequality if x;(p’, w;) # x,(p, w,).
The analogous definition applies to the aggregate demand function x(p, w).

In view of our discussion of the weak axiom in Section 2.F, the following
differential version of the ULD property should come as no surprise (you are asked
to prove it in Exercise 4.C.1):

If x;(p, w;) satisfies the ULD property, then D,x;(p, w;) is negative
semidefinite; that is, dp-D,x;(p, w;) dp < 0 for all dp.

As with the weak axiom, there is a converse to this:

If D,x;(p, w;) is negative definite for all p, then x;(p, w;) satisfies the
ULD property.

The analogous differential version holds for the aggregate demand function x(p, w).

The great virtue of the ULD property is that, in contrast with the WA, it does,
in fact, aggregate. Adding the individual condition (4.C.3) for w; = o;w gives us
(p’ — p)-[x(p’,w) — x(p,w)] <0, with strict inequality if x(p, w) # x'(p, w). This
leads us to Proposition 4.C.1.

Proposition 4.C.1: If every consumer’s Walrasian demand function x;(p. w,) satisfies
the uncompensated law of demand (ULD) property, so does the aggregate
demand x(p, w) = 3, x;(p, a,w). As a consequence, the aggregate demand x(p, w)
satisfies the weak axiom.
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Proof: Consider any (p, w), (p, w) with x(p, w) # x(p', w). We must have
x,(p, a;w) # x(p', W)
for some i. Therefore, adding (4.C.3) over i, we get

(¢ = p)-[x(p, w) — x(p', w)] < 0.
This holds for all p, p, and w.

To verify the WA, take any (p,w), (p,w) with x(p,w)# x(p,w) and
p-x(p,w) <w? Define p* = (w/w')p’. By homogeneity of degree zero, we have
x(p", w) = x(p', w). From (p" — p)-[x(p", w) — x(p,w)] <0, p-x(p",w) < w, and
Walras’ law, it follows that p”-x(p, w) > w. That is, p’-x(p,w) > w. m

How restrictive is the ULD property as an axiom of individual behavior? It is
clearly not implied by preference maximization (see Exercise 4.C.3). Propositions
4.C.2 and 4.C.3 provide sufficient conditions for individual demands to satisfy the
ULD property.

Proposition 4.C.2: If x; is homothetic, then x,(p, w;) satisfies the uncompensated law

of demand (ULD) property.

Proof: We consider the differentiable case [i.e., we assume that x;(p, w,) is differen-
tiable and that >, is representable by a differentiable utility function]. The matrix
Dyx;(p, w;) is

1
Dpx,(p, wi) = Si(p, W) — o x:(p, wi) xi(p, w))T,
i
where S;(p, w;) is consumer i’s Slutsky matrix. Because [dp-x,(p, w;)]* > 0 except
when dp-x;(p,w;) =0 and dp-S;(p,w;)dp <O except when dp is proportional
to p, we can conclude that D,x,(p, w,) is negative definite, and so the ULD condition
holds. w

In Proposition 4.C.2, the conclusion is obtained with minimal help from the
substitution effects. Those could all be arbitrarily small. The wealth effects by
themselves turn out to be sufficiently well behaved. Unfortunately, the homothetic
case is the only one in which this is so (see Exercise 4.C.4). More generally, for the
ULD property to hold, the substitution effects (which are always well behaved) must
be large enough to overcome possible “perversities” coming from the wealth effects.
The intriguing result in Proposition 4.3.C [due to Mitiushin and Polterovich (1978)
and Milleron (1974); see Mas-Colell (1991) for an account and discussion of this
result] gives a concrete expression to this relative dominance of the substitution
effects.

Proposition 4.C.3: Suppose that =, is defined on the consumption set X = R and is

representable by a twice continuously differentiable concave function ugf-). If
_Xi'Dzui(xi)xi

X;"Vu(x;)
then x,(p, w,) satisfies the unrestricted law of demand (ULD) property.

<4 for all x;,

9. Strictly speaking, this proof is required because although we know that the WA is equivalent to
the law of demand for compensated price changes, we are now dealing with unc d price ct
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The proof of Proposition 4.C.3 will not be given. The courageous reader can
attempt it in Exercise 4.C.5.

The condition in Proposition 4.C.3 is not an extremely stringent one. In particular,
notice how amply the homothetic case fits into it (Exercise 4.C.6). So, to the question
“How restrictive is the ULD property as an axiom of individual behavior?” perhaps
we can answer: “restrictive, but not extremely so0.”!°

Note, in addition, that for the ULD property to hold for aggregate demand, it is
not necessary that the ULD be satisfied at the individual level. It may arise out of
aggregation itself. The example in Proposition 4.C.4, due to Hildenbrand (1983), is
not very realistic, but it is nonetheless highly suggestive.

Proposition 4.C.4: Suppose that all consumers have identical preferences X defined
on R4 [with individual demand functions denoted X(p, w)] and that individual
wealth is uniformly distributed on an interval [0, w] (strictly speaking, this
requires a continuum of consumers). Then the aggregate (rigorously, the average)
demand function

w
x(p) =-[ X(p, w) dw

0

satisfies the unrestricted law of demand (ULD) property.

Proof: Consider the differentiable case. Take v # 0. Then

v-Dx(p)y = J. v-D,%(p, w)v dw.

0

Also
D,%(p, w) = S(p, w) — D, &(p, W)%(p, W),

where S(p, w) is the Slutsky matrix of the individual demand function x(-, -) at(p, w). Hence,

»

%

v-Dx(p)o = J. v-S(p, wjv dw — J (v D, X(p, w)v-%(p, w)) dw.
o L]
The first term of this sum is negative, unless v is proportional to p. For the second, note that

% 2
2o D2 (p. W 3(p, w) = L XL
dw
So

5 i .= 2
—J’ (v-Dwi(p.w»(v-f(p,w»dw=-%j o2 p W),
0

! 2
= — (0 X(p, W) S0,
R S @3, %)) <

where we have used %(p, 0) = 0. Observe that the sign is negative when v is proportional to p. ®»

Recall that the ULD property is additive across groups of consumers. Therefore, what we
need in order to apply Proposition 4.C4 is, not that preferences be identical, but that for every
preference relation, the distribution of wealth conditional on that preference be uniform over

10. Not to misrepresent the import of this claim, we should emphasize that Proposition 4.C.1,
which asserts that the ULD property is preserved under addition, holds for the price-independent
distribution rules that we are considering in this section. When the distribution of real wealth may
depend on prices (as it typically will in the general equilibrium applications of Part 1V), then
aggregate demand may violate the WA even if individual demand satisfies the ULD property (see
Exercise 4.C.13). We discuss this point further in Section 17.F.




114

CHAPTER 4: AGGREGATE DEMAND

SECTION 4.C: AGGREGATE DEMAND AND THE WEAK axtom 115

some interval that includes the level 0 (in fact, a nonincreasing density function is enough; see
Exercise 4.C.7).

One lesson of Proposition 4.C.4 is that the properties of aggregate demand will depend on
how preferences and wealth are distributed. We could therefore pose the problem quite
generally and ask which distributional conditions on preferences and wealth will lead to
satisfaction of the weak axiom by aggregate demand.!*

As mentioned in Section 2.F, a market demand function x(p, w) can be shown to satisfy
the WA if for all (p, w), the Slutsky matrix S(p, w) derived from the function x(p, w) satisfies
dp+S(p, w) dp < 0 for every dp # 0 not proportional to p. We now examine when this property
might hold for the aggregate demand function.

The Slutsky equation for the aggregate demand function is

S(p, w) = Dpx(p, w) + Dux(p. w) x(p, w)". “.C4
Or, since x(p, w) = T x;(p, a;w),
5(p, w) = D,x(p, w) + [ LD x:(p, 2 w)] x(p, w)' @.C3)

Next, let S;(p,w,) denote the individual Slutsky matrices. Adding the individual Slutsky
equations gives

Z.'Si(l" aw) = ZiDpxi(p) aw) + ZlDw‘xl(pv a;w) x,(p, aw)’ 4.C.6)

Since D,x(p, w) = ¥; D,x,(p, a;w), we can substitute (4.C.6) into (4.C.5) to get
1 T

S(p,w) = Zisi(p: w;) — Zi“i[Dw.xi(P- a;w) — D,x(p, W)][ ; xi(p, aw) — x(p, W)] . @cn
it

Note that because of wealth effects, the Slutsky matrix of aggregate demand is not the sum
of the individual Slutsky matrices. The difference

C(p. w) = LSip, aw) — S(p, W)

T
= Ziui[Dmxi(pr a;w) — D, x(p, W)]l: al xi(p, a,w) — x(p, W)] (4.C.8)
i

is a covariance matrix between wealth effect vectors D, x,(p,a;w) and proportionately
adjusted consumption vectors (1/a;)x;(p, a;w). The former measures how the marginal
dollar is spent across commodities; the latter measures the same thing for the average dollar
[e.g, (}/a;w)x,(p, a;w) is the per-unit-of-wealth consumption of good ¢ by consumer i).
Every “observation” receives weight a;. Note also that, as it should be, we have

Z.’li[DMX.‘(Py a;w) — D,x(p,w)] =0 and Zlai[(l/ai)xi(pr aw) - x(p,w)] =0.

For an individual Slutsky matrix S,(, -) we always have dp-S;(p, xw)dp <0 fordp#0
not proportional to p. Hence, a sufficient condition for the Slutsky matrix of aggregate
demand to have the desired property is that C(p, w) be positive semidefinite. Speaking loosely,
this will be the case if, on average, there is a positive iation across cc s between
consumption (per unit of wealth) in one commodity and the wealth effect for that commodity.

Figure 4.C.2(a) depicts a case for L =2 in which, assuming a uniform distribution of
wealth across consumers, this association is positive: Consumers with higher-than-average

11. In the next few paragraphs, we follow Jerison (1982) and Freixas and Mas-Colell (1987).

Wealth Expansion
Paths at p
across Individuals

Xz X2
Wealth Expansion

Paths at p

across Individuals

(a) ) (b) X,

consumption of one good spend a higher-than-average fraction of their last unit of wealth on
that good. The association is negative in Figure 4.C.2(b).'>*?

From the preceding derivation, we can see that aggregate demand satisfies the WA in two
cases of interest: (i) All the D, x;(p, «,w) are equal (there are equal wealth effects), and (it) all
the (1/a,)x,(p, a;w) are equal (there is proportional consumption). In both cases, we have
C(p,w) =0, and so dp-S(p, w) dp < 0 whenever dp # 0 is not proportional to p.

Case (i) has important implications. In particular, if every consumer has indirect utility
functions of the Gorman form v,(p, w,) = a,(p) + b(p)w, with the coefficient b(p) identical
across consumers, then (as we saw in Section 4.B) the wealth effects are the same for all
consumers and we can therefore conclude that the WA is satisfied. We know from Section 4.B
that one is led to this family of indirect utility functions by the requirement that aggregate
demand be invariant to redistribution of wealth. Thus, aggregate demand satisfying the weak
axiom for a fixed distribution of wealth is a less demanding property than the invariance to
redistribution property considered in Section 4.B. In particular, if the second property holds,
then the first also holds, but aggregate demand (for a fixed distribution of wealth) may satisfy
the weak axiom even though aggregate demand may not be invariant to redistribution of
wealth (e.g., individual preferences may be homothetic but not identical).

Having spent all this time investigating the weak axiom (WA), you might ask: “What
about the strong axiom (SA)?” We have not focused on the Strong Axiom for three reasons.

First, the WA is a robust property, whereas the SA (which, remember, yields the symmetry
of the Slutsky matrix) is not; a priori, the chances of it being satisfied by a real economy are
essentially zero. For example, if we start with a group of consumers with identical preferences
and wealth, then aggregate demand obviously satisfies the SA. However, if we now perturb
every preference slightly and independently across consumers, the negative semidefiniteness of
the Slutsky matrices (and therefore the WA) may well be preserved but the symmetry (and
therefore the SA) will almost certainly not be.

12. You may want to verify that the wealth expansion paths of Example 4.C.1 must indeed
look like Figure 4.C.2(b).

13. A priori, we cannot say which form is more likely. Because the demand at zero wealth is
zero, it is true that for a consumer, some dollar must be spent among the two goods according to
shares similar to the shares of the average dollar. But if the levels of wealth are not close to zero,
it does not follow that this is the case for the marginal dollar. It may even happen that because of
incipient satiation, the shares of the marginal dollar display consumption propensities that are the
reverse of the ones exhibited by the average dollar. See Hildenbrand (1994) for an account of
empirical research on this matter.

Figure 4.C.2

The relation across
consumers between
expenditure per unit of
wealth on a
commodity and its
wealth effect when all
consumers have the
same wealth.

(a) Positive relation.
(b) Negative relation.
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Second, many of the strong positive resuits of general equilibrium (to be reviewed in Part
1V, especially Chapters 15 and 17) to which one wishes to apply the aggregation theory
discussed in this chapter depend on the weak axiom, not on the strong axiom, holding in the
aggregate.

Third, while one might initially think that the existence of a preference relation explaining
aggregate behavior (which is what we get from the SA) would be the condition required to
use aggregate demand measures (such as aggregate consumer surplus) as welfare indicators,
we will see in Section 4.D that, in fact, more than this condition is required anyway.

Aggregate Demand and the Existence of a
Representative Consumer

The aggregation question we pose in this section is: When can we compute meaningful
measures of aggregate welfare using the aggregate demand function and the welfare
measurement techniques discussed in Section 3.I for individual consumers? More
specifically, when can we treat the aggregate demand function as if it were generated
by a fictional representative consumer whose preferences can be used as a measure of
aggregate societal (or social) welfare?

We take as our starting point a distribution rule (w,(p, w), ..., w;(p, w)) that to
every level of aggregate wealth we R assigns individual wealths. We assume that
3 ,wi(p, w) = w for all (p, w) and that every w,(-, *) is continuous and homogeneous
of degree one. As discussed in Sections 4.B and 4.C, aggregate demand then takes
the form of a conventional market demand function x(p, w) = ¥,;x,(p, wi(p, w)). In
particular, x {p, w) is continuous, is homogeneous of degree zero, and satisfies Wairas’
law. It is important to keep in mind that the aggregate demand function x(p, w)
depends on the wealth distribution rule (except under the special conditions identified
in Section 4.B).

1t is useful to begin by distinguishing two senses in which we could say that there
is a representative consumer. The first is a positive, or behavioral, sense.

Definition 4.D.1: A positive representative consumer exists if there is a rational

preference relation 2 on R% such that the aggregate demand function x(p, w) is
precisely the Walrasian demand function generated by this preference relation.
That is, x(p, w) > x whenever x # x{(p, w) and p-x S w.

A positive representative consumer can thus be thought of as a fictional individual
whose utility maximization problem when facing society’s budget set {xeR%:
p*x < w} would generate the economy’s aggregate demand function.

For it to be correct to treat aggregate demand as we did individual demand
functions in Section 3.1, there must be a positive representative consumer.'* However,
although this is a necessary condition for the property of aggregate demand that we
seek, it is not sufficient. We also need to be able to assign welfare significance to this

14. Note that if there is a positive representative consumer, then aggregate demand satisfies the
positive properties sought in Section 4.C. Indeed, not only will aggregate demand satisfy the weak
axiom, but it will also satisfy the strong axiom. Thus, the aggregation property we are after in this
section is stronger than the one discussed in Section 4.C.
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fictional individual’s demand function. This will lead to the definition of a normative
representative consumer. To do so, however, we first have to be more specific about
what we mean by the term social welfare. We accomplish this by introducing the
concept of a social welfare function, a function that provides a summary (social) utility
index for any collection of individual utilities.

Definition 4.D0.2: A (Bergson-Samuelson) social welfare function is a function

W:R’ - R that assigns a utility value to each possible vector (u,, . .., u;) € R! of
utility levels for the I consumers in the economy.

The idea behind a social welfare function W(u,,...,u;) is that it accurately
expresses society’s judgments on how individual utilities have to be compared to
produce an ordering of possible social outcomes. (We do not discuss in this section
the issue of where this social preference ranking comes from. Chapters 21 and 22
cover this point in much more detail.) We also assume that social welfare functions
are increasing, concave, and whenever convenient, differentiable.

Let us now hypothesize that there is a process, a benevolent central authority
perhaps, that, for any given prices p and aggregate wealth level w, redistributes wealth
in order to maximize social welfare. That is, for any (p, w), the wealth distribution
(wy(p, W), ..., wi(p,w)) solves

Max W (p.wy), ..., v(p, W) 4.D.1)
stYl w<w,

where v;(p, w) is consumer i’s indirect utility function.!*!¢ The optimum value of
problem (4.D.1) defines a social indirect utility function v(p, w). Proposition 4.D.1
shows that this indirect utility function provides a positive representative consumer
for the aggregate demand function x{p, w) = X, x,(p, w;(p, w)).

Proposition 4.D.1: Suppose that for each level of prices p and aggregate wealith w,

the wealth distribution (w,(p, w), ..., w,(p, w)) solves problem (4.D.1). Then
the value function v{p, w) of problem (4.D.1) is an indirect utility function
of a positive representative consumer for the aggregate demand function
x(p, w) = T x{p, w;(p, w)).

Proof: In Exercise 4.D.2, you are asked to establish that v(p, w) does indeed have the
properties of an indirect utility function. The argument for the proof then consists
of using Roy's identity to derive a Walrasian demand function from v(p, w), which
we denote by xg(p, w), and then establishing that it actually equals x(p, w).

We begin by recording the first-order conditions of problem (4.D.1) for a

15. We assume in this section that our direct utility functions «,(-) are concave. This is 2 weak
hypothesis (once quasiconcavity has been assumed) which makes sure that in all the optimization
problems to be considered, the first-order conditions are sufficient for the determination of global
optima. In particular, v,(p, ') is then a concave function of w,.

16. In Exercise 4.D.1, you are asked to show that if so desired, problem (4.D.1) can be
equivalently formulated as one where social utility is maximized, not by distributing wealth, but by
distributing bundles of goods with aggregate value at prices p not larger than w. The fact that in
optimally redistributing goods, we can also restrict ourselves to redistributing wealth is, in essence,
a version of the second fundamental theorem of welfare economics, which will be covered extensively
in Chapter 16.
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given value of (p,w). Neglecting boundary solutions, these require that for some
A 20, we have

1= T 4D2)

(For notational convenience, we have omitted the points at which the derivatives
are evaluated.) Condition (4.D.2) simply says that at a socially optimal wealth
distribution, the social utility of an extra unit of wealth is the same irrespective of
who gets it.

By Roy’s identity, we have xg{p, w) = —[1/dv(p, w)/8w)] V,v(p, w). Since v(p, w)
is the value function of problem (4.D.1), we know that dv/dw = 1. (See Section M.K
of the Mathematical Appendix) In addition, for any commodity ¢, the chain rule and
(4.D.2)—or, equivalently, the envelope theorem—give us

v OW Oy 1 ow; _  OW dy;

5;;_1'5’—-'31’/ -'Ep—/_.- 0":517:’

where the second equality follows because 3, w;(p, w) = w for all (p, w) implies that
3 .(8w;/dp,) = 0. Hence, in matrix notation, we have

V,u(p, w) = ..(0W/dv;) V,v:(p, wi (P, W)).
Finally, using Roy’s identity and the first-order condition (4.D.2), we get

A
xg(p, W) = —% Zn[a—v‘m‘} V,0:(p, wi(p, w))

1
= _ZI[W] V,0i(p, wi(p, w))

25 x(p, wi(p, w)) = x(p, W),

as we wanted to show. =

Equipped with Proposition 4.D.1, we can now define a normative representative
consumer.

Definition 4.D.3: The positive representative consumer 2 for the aggregate demand
x(p, w) = Yx;(p, w;(p, w)) is a normative representative consumer relative to
the social welfare function W(-) it for every (p, w), the distribution of wealth
(wip. W), ..., w;{p, w)) solves problems (4.D.1) and, therefore, the vaiue function
of problem (4.D.1) is an indirect utility function for .

If there is a normative representative consumer, the preferences of this consumer
have welfare significance and the aggregate demand function x (p, w) can be used to
make welfare judgments by means of the techniques described in Section 3.1 In doing
50, however, it should never be forgotten that a given wealth distribution rule [the one
that solves (4.D.1) for the given social welfare function] is being adhered to and that
the “level of wealth” should always be understood as the “optimally distributed level
of wealth.” For further discussion, see Samuelson (1956) and Chipman and Moore
(1979).

Example 4.D.1: Suppose that consumers all have homothetic preferences represented
by utility functions homogeneous of degree one. Consider now the social welfare
function W(u,,...,u;) = L0 lnu with «;>0 and ¥, = 1. Then the optimal
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malth distribution function [for problem (4.D.1)] is the price-independent rule that

we adopted in Section 4.C: w(p, w) = ¢;w. (You are asked to demonstrate this
fact in Exercise 4.D.6.) Therefore, in the homothetic case, the aggregate demand
x(p, w) = ¥;x;(p, a;w) can be viewed as originating from the normative representative
consumer generated by this social welfare function. m

Example 4.D.2; Suppose that all consumers’ preferences have indirect utilities of the
Gorman form v,(p, w;) = a,(p) + b(p)w,. Note that b(p) does not depend on i, and
recall that this includes as a particular case the situation in which preferences are
quasilinear with respect to a common numeraire. From Section 4.B, we also know
that aggregate demand x(p, w) is independent of the distribution of wealth.!?

Consider now the utilitarian social welfare function 3 ;u;. Then any wealth
distribution rule (w,(p, w), . . ., w;(p, w)) solves the optimization problem (4.D.1), and
the indirect utility function that this problem generates is simply v(p, w) = ¥;a;(p) +
b(p)w. (You are asked to show these facts in Exercise 4D.7.) One conclusion is,
therefore, that when indirect utility functions have the Gorman form [with common
b(p)] and the social welfare function is utilitarian, then aggregate demand can always
by viewed as being generated by a normative representative consumer.

When consumers have Gorman-form indirect utility functions [with common
b(p)), the theory of the normative representative consumer admits an important
strengthening, In general, the preferences of the representative consumer depend
on the form of the social welfare function. But not in this case. We now verify
that if the indirect utility functions of the consumers have the Gorman form
[with common b(p)], then the preferences of the representative consumer are
independent of the particular social welfare function used.'® In fact, we show that
v(p, w) = 2;a,(p) + b(p)w is an admissible indirect utility function for the normative
representative consumer relative to any social welfare function W(u,, ..., ;).

To verify this claim, consider a particular social welfare function W(-), and denote
the value function of problem (4.D.1), relative to W(-), by v*(p, w). We must show
that the ordering induced by v(-) and v*() is the same, that is, that for any pair
(p, w) and (p’, w’) with v(p, w) < v(p’, w’), we have v*(p, w) < v*(p’, w'). Take the
vectors of individual wealths (w,,...,w,;) and (w,..., w}) reached as optima of
(4.D.1), relative to W(-), for (p, w) and (p’, w'), respectively. Denote u; = a,(p) + b(p)w;,
u; = a;(p) + b(p)w}, u= (uy,...,u;), and w' = (u,...,u;). Then v*(p,w) = W(u)
and v*(p,w')= W('). Also o(p,w)=3,a(p)+ b(p)w=3 4, and similarly,
wW(p’, w') = 3 u;. Therefore, v(p, w) < v(p’, w’) implies 3 ,u; < 3 ;u;. We argue that
VW(u')-(u — u') < 0, which, W(-) being concave, implies the desired result, namely
W(u) < W(u').!° By expression (4.D.2), at an optimum we have (9 W/dv;)(dv,/ow;) = A
for all i. But in our case, dv;/@w; = b(p) for all i. Therefore, dW/dv; = IW/dv; > 0 for
any i,j. Hence, ¥ ,u; < ¥ ,u; implies VW (u')-(u — u') < 0.

The previous point can perhaps be better understood if we observe that when

17. As usual, we neglect the nonnegativity constraints on consumption.

18. But, of course, the optimal distribution rules will typically depend on the social wellare
function. Only for the utilitarian social weifare function will it not matter how weaith is distributed.

19. Indeed, concavity of W(-) implies W(u') + VW(u')-(u — u') = W(u); see Section M.C of
the Mathematical Appendix.
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preferences have the Gorman form [with common b(p)], then (p', w") is socially better
than (p, w) for the utilitarian social welfare function ¥ ;u; if and only if when compared
with (p,w), (p,w’) passes the following potential compensation test: For any
distribution (w,, ..., w;) of w, there is a distribution (w},...,w}) of w’ such that
vi(p', w}) > vi(p,wy) for all i. To verify this is straightforward. Suppose that
(Taaip) + b W) — (Lia(p) + b(p)w) = ¢ > 0.

Then the wealth levels w} implicitly defined by a,(p’) + b(p')w; = a,(p) + b(p)w; + ¢/I
will be as desired.2® Once we know that (p’, w') when compared with (p, w) passes
the potential compensation test, it follows merely from the definition of t4he
optimization problem (4.D.1) that (p', ') is better than (p, w) for any normative
consumer, that is, for any social welfare function that we may wish to employ (see
Exercise 4.D.8). '

The two properties just presented—independence of the representative con-
sumer’s preferences from the social welfare function and the potential compensation
criterion—will be discussed further in Sections 10.F and 22.C. For the moment, .we
simply emphasize that they are not general properties of normative representative
consumers. By choosing the distribution rules that solve (4.D.1), we can gencrate. a
normative representative consumer for any set of individual utilities and any social
welfare function. For the properties just reviewed to hoid, the individual preferences
have been required to have the Gorman form [with common b(p)]. =

It is important to stress the distinction between the concepts of a positive
and a normative representative consumer. It is not true that whenever aggrega?te
demand can be generated by a positive representative consumer, this representa.tl_vc
consumer’s preferences have normative content. It may even be the case t'hat a positive
representative consumer exists but that there is no social welfare fun(ftmn that leads
to a normative representative consumer. We expand on this point in the next few
paragraphs [see also Dow and Werlang (1988) and Jerison (1994)].

We are given a distribution rule (w,(p, w),...,wi(p,w)) and assume that a positive
representative consumer with utility function u(x) exists for the aggregate dfmand .x(p, w) =
¥.x:(p, wi{p, w)). In principle, using the integrability techniques presented in Section 3.H, it
should be possible to determine the preferences of the repmsemative. consumer from the
knowledge of x(p, w). Now fix any (p, w), and let % = x(p, ). Relative to .the aggregate
consumption vector X, we can definc an at-least-as-good-as set for the representative consumer:

B = {xeR5:u(x) 2 (X)} = R%.
Next, let % = w;(p, w) and % = x,(p, %), and consider the set
A={x=TxpxZFforalli} = RL.

In words, A is the set of aggregate consumption vectors for which there is a distribution of
commodities among consumers that makes every consumer as well off as under (%,,..., %;).
The boundary of this set is sometimes called a Scitovsky contour. Note that both set A and
set B are supported by the price vector j at X (see Figure 4.D.1). L

If the given wealth distribution comes from the solution to a social‘w.elfare optlmlzatlpn
problem of the type (4.D.1) (i, if the positive representative consumer IS In fact a normative

20. We continue to neglect nonnegativity constraints on wealth.
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(a) (b)
A= {xeX x; ulx;) 2 u(x,) for all i}
B ={xeR:: u(x) > u(x)}

representative consumer), then this places an important restriction on how sets A and B relate
to each other: Every element of set A must be an element of set B. This is so because the social
welfare function underlying the normative representative consumer is increasing in the utility
level of every consumer (and thus any aggregate consumption bundle that could be distributed
in a manner that guarantees to every consumer a level of utility as high as the levels
corresponding to the optimal distribution of X must receive a social utility higher than the
latter; see Exercise 4.D.4). That is, a necessary condition for the existence of a normative
representative consumer is that 4 < B. A case that satisfies this necessary condition is depicted
in Figure 4.D.1(a).

However, there is nothing to prevent the existence, in a particular setting, of a positive
representative consumer with a utility function u(x) that fails to satisfy this condition, as in
Figure 4.D.1(b). To provide some further understanding of this point, Exercise 4.D.9 asks you
to show that 4 « B implies that 3 .S,(5, ;) — S(p, W) is positive semidefinite, where S(p, w)
and S,(p,w;) are the Slutsky matrices of aggregate and individual demand, respectively.
Informally, we could say that the substitution effects of aggregate demand must be larger in
absolute value than the sum of individual substitution effects (geometrically, this corresponds
to the boundary of B being flatter at < than the boundary of 4). This observation allows us
to generate in a simple manner examples in which aggregate d d can be rationalized by
preferences but, nonetheless, there is no normative representative consumer.

Suppose, for example, that the wealth distribution rule is of the form w,(p, w) = a;w.
Suppose also that S(p, w) happens to be symmetric for all (p, w); if L = 2, this is automatically
satisfied. Then, from integrability theory (see Section 3.H), we know that a sufficient condition
for the existence of underlying preferences is that, for all (p, w), we have dp-S(p, w) dp < 0 for
all dp # 0 not proportional to p (we abbreviate this as the n.d. property). On the other hand,
as we have just seen, a necessary condition for the existence of a normative representative
consumer is that C(p, w) = 3_,5;(p, w;) — S(P, W) be positive semidefinite [this is the same
matrix discussed in Section 4.C; see expression (4.C.8)]. Thus, if S(p, w) has the n.d. property
for all (p, w) but C(p, ) is not positive semidefinite [i.c., wealth effects are such that S(p, w)
is “less negative™ than Y .S;(p, )], then a positive representative consumer exists that,
nonetheless, cannot be made normative for any social welfare function. (Exercise 4.D.10
provides an instance where this is indeed the case) In any example of this nature we have
moves in aggregate consumption that would pass a potential compensation test (each
consumer’s welfare could be made better off by an appropriate distribution of the move) but
are regarded as socially inferior under the utility function that rationalizes aggregate demand.
[In Figure 4.D.1(b), this could be the move from % to x'.]

The moral of all this is clear: The existence of preferences that explain behavior is not

Figure 4.D.1
Comparing the
at-least-as-good-as set
of the positive
representative
consumer with the
sum of the
at-least-as-good-as sets
of the individual
consumers.

(a) The positive
representative
consumer could be a
normative
representative
consumer.

(b) The positive
representative
consumer cannot be a
normative
representative
consumet.
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enough to attach to them any welfare significance. For the latter, it is also necessary that these
preferences exist for the right reasons. ®

APPENDIX A: REGULARIZING EFFECTS OF AGGREGATION

This appendix is devoted to making the point that although aggregation can be
deleterious to the preservation of the good properties of individual demand, it can
also have helpful regularizing effects. By regularizing, we mean that the average
(per-consumer) demand will tend to be more continuous or smooth, as a function
of prices, than the individual components of the sum.

Recall that if preferences are strictly convex, individual demand functions are
continuous. As we noted, aggregate demand will then be continuous as well. But
average demand can be (nearly) continuous even when individual demands are not.
The key requirement is one of dispersion of individual preferences.

Example 4.AA.1: Suppose that there are two commodities. Consumers have quasi-
linear preferences with the second good as numeraire. The first good, on the other
hand, is available only in integer amounts, and consumers have no wish for more than
one unit of it. Thus, normalizing the utility of zero units of the first good to be zero,
the preferences of consumer i are completely described by a number vy;, the utility
in terms of numeraire of holding one unit of the first good. It is then clear that the
demand for the first good by consumer i is given by the correspondence

x(p) =1 if py < vy
={0,1} ifp,=vy,
=0 if py > vy,

which is depicted in Figure 4.AA.1(a). Thus, individual demand exhibits a sudden,
discontinuous jump in demand from 0 to 1 as the price crosses the value p, = vy;.
Suppose now that there are many consumers. In fact, consider the limit situation
where there is an actual continuum of consumers. We could then say that individual
preferences are dispersed if there is no concentrated group of consumers having
any particular value of v, or, more precisely, if the statistical distribution function
of the v,’s, G(v,), is continuous. Then, denoting by x,(p,) the average demand for
the first good, we have x,(p,) = “mass of consumers with v, > p."=1-G(py)

Pu Py

x(p)=1-G(py)

Xy Xy

(a) (b)

Fig
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Hence, the aggregate demand x,(-), shown in Figure 4AA.1(b), is a nice continuous
function even though none of the individual demand correspondences are so. Note
that with only a finite number of consumers, the distribution function G(-) cannot
quite be a continuous function; but if the consumers are many, then it can be nearly
continuous. m

The regularizing effects of aggregation are studied again in Section 17.1. We show
there that in general (ie., without dispersedness requirements), the aggregation of
numerous individual demand correspondences will generate a (nearly) convex-valued
average demand correspondence.
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EXERCISES

4.B.1% Prove the sufficiency part of Proposition 4.B.1. Show also that if preferences admit
Gorman-form indirect utility functions with the same b(p), then preferences admit expenditure
functions of the form ¢;(p, u,) = c(p)u; + di(p).

4.B.2% Suppose that there are [ consumers and L commodities. Consumers differ only by
their wealth levels w; and by a taste parameter s;, which we could call family size. Thus, denote
the indirect utility function of consumer i by v(p, w;, 5,). The corresponding Walrasian demand
function for consumer § is x(p, w;, ;).
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(a) Fix(s,,...,s;). Show that if for any (w,, ..., w,) aggregate demand can be written as a
function of only p and aggregate weaith w = ¥, w, (or, equivalently, average wealth), and if
every consumer’s preference relationship X, is homothetic, then all these preferences must be
identical [and so x(p, w;, s;) must be independent of s,].

(b) Give a sufficient condition for aggregate demand to depend only on aggregate
wealth w and ¥;s, (or, equivalently, average wealth and average family size).

4.C.1€ Prove that if x;(p, w;) satisfies the ULD, then D,x;(p, w;) is negative semidefinite
[i.e., dp- D,x,(p, w;) dp < 0 for all dp]. Also show that if D,x;(p, ;) is negative definite for all
p. then x;(p, ;) satisfies the ULD (this second part is harder).

4.C.2* Prove a version of Proposition 4.C.1 by using the (sufficient) differential versions of
the ULD and the WA. (Recall from the small type part of Section 2.F that a sufficient condition
for the WA is that v-S(p, w)v < O whenever v is not proportional to p.}

4.C.3* Give a graphical two-commodity example of a preference relation generating a
Walrasian demand that does not satisfy the ULD property. Interpret.

4.C.4C Show that if the preference relation >; on RZ has L-shaped indifference curves
and the demand function x;(p, w;) has the ULD property, then >; must be homothetic.
[Hint: The L shape of indifference curves implies S;(p, ;) = 0 for all (p, w;); show that if

D, x:(B, W) # (1/%)x,(p, W), then there is v € R™ such that v-D,x,(5, W)v > 0.]

4.C.5€ Prove Proposition 4.C.3. To that effect, you can fix w = 1. The proof is best done in
terms of the indirect demand function g;(x) = (1/x* Vu;(x)) Vi, (x) [note that x = x,(g;(x), 1)].
For an individual consumer, the ULD is self-dual; that is, it is equivalent to
(g:(x) — 9:(»))*(x — y) < O for all x #y. In turn, this property is implied by the negative
definiteness of Dg;(x) for all x. Hence, concentrate on proving this last property. More
specifically, let v # 0, and denote g = Vy;(x) and C = D*u;(x). You want to prove v+ Dg,(x)v < 0.
[Hint: You can first assume q+v = q-x; then differentiate g,(x), and make use of the equality
v Cy—xCo=(v—4x)Clv—1x)—4x-Cx]

4.C.6* Show that if u/(x,) is homogeneous of degree one, so that X, is homothetic, then

a,(x;) = 0 for all x; [6:(x;) is the quotient defined in Proposition 4.C.3).

4.C.78 Show that Proposition 4.C.4 still holds if the distribution of wealth has a nonincreasing
density function on [0, w]. A more realistic distribution of wealth would be unimodal (i.e., an
increasing and then decreasing density function with a single peak). Argue that there are
unimodal distributions for which the conclusions of the proposition do not hold.

4.C.8* Derive expression (4.C.7), the aggregate version of the Slutsky matrix.

4.C9* Verify that if individual preferences =; are homothetic, then the matrix C(p, w) defined
in expression (4.C.8) is positive semidefinite.

4.C.10€ Argue that for the Hildenbrand example studied in Proposition 4.C.4, C(p, w) is
positive semidefinite. Conclude that aggregate demand satisfies the WA for that weaith
distribution. [Note: You must first adapt the definition of C(p,w) to the continuum-of-
consumers situation of the example.]

4.C.118 Suppose there are two consumers, | and 2, with utility functions over two goods,

1and 2, of uy(x,,, X3,) = X1y + 4/x3, and uy(xy3, X23) = 4/X; + X,3. The two consumers
have identical wealth levels w, = w, = w/2,

(a) Calculate the individual demand functions and the aggregate demand function.

(b) Compute the individual Slutsky matrices S;(p, w/2) (for i = 1,2) and the aggregate
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Slutsky matrix §(p, w). [Hint: Note that for this two-good example, only one element of each
matrix must be computed to determine the entire matrix.] Show that dp-S(p, w) dp < 0 for all
dp # 0 not proportional to p. Conclude that aggregate demand satisfies the WA.

(¢) Compute the matrix C(p, w) = X;S;(p, w/2) — S(p, w) for prices p, = p, = 1. Show
that it is positive semidefinite if w > 16 and that it is negative semidefinite if 8 < w < 16. In fact,
argue that in the latter case, dp-C(p, w) dp < 0 for some dp [so that C(p, w) is not positive
semidefinite]. Conclude that C(p, w) positive semidefinite is not necessary for the WA to be
satisfied.

(d) For each of the two cases w > 16 and 8 < w < 16, draw a picture in the (x;, x,) plane
depicting each consumer’s consumption bundle and his wealth expansion path for the prices
pty = p2 = 1. Compare your picture with Figure 4.C.2.

4.C.12® The results presented in Sections 4.B and 4.C indicate that if for any Wy ..., wy)
aggregate demand can be written as a function of only aggregate wealth [ie., as x(p, T,w;)],
then aggregate demand must satisfy the WA. The distribution function F: [0, c0) - [0, 1] of
(w1, - - ., wy) is defined as F(w) = (1/I){number of i's with w, < w) for any w. Suppose now that
for any (wy, ..., w;), aggregate demand can be written as a function of the corresponding
aggregate distribution F(-) of wealth. Show that aggregate demand does not necessarily satisfy
the WA. [Hint: It suffices to give a two-commodity, two-consumer example where preferences
are identical, wealths are w, = 1 and w, = 3, and the WA fails. Try to construct the example
graphically. It is a matter of making sure that four suitably positioned indifference curves can
be fitted together without crossing.]

4.C.13€ Consider a two-good environment with two consumers. Let the wealth distribution
rule be w,(p, w) = wp/(p, + p,), wy(p, w) = wp,/(p, + p,). Exhibit an example in which the
two consumers have homothetic preferences but, nonetheless, the aggregate demand fails to
satisfy the weak axiom. A good picture will suffice. Why does not Proposition 4.C.1 apply?

4.D.1% In this question we are concerned with a normative representative consumer.
Denote by v(p, w) the optimal value of problem (4.D.1), and by (w,(p, ), ..., w,(p, w)) the
corresponding optimal wealth distribution ruies. Verify that v(p, w) is also the optimal value of

Max  W(u,(x,), ..., u(x))
.........
st.p(Lix)<w
and that [x,(p, w,(p, w)), ..., x,{p, w,(p, w))] is a solution to this latter problem. Note the
implication that to maximize social welfare given prices p and wealth w, the planner need not

control consumption directly, but rather need only distribute wealth optimally and allow
consumers to make consumption decisions independently given prices p.

4.D.2% Verify that v(p, w), defined as the optimal value of problem (4.D.1), has the properties
of an indirect utility function (i.e., that it is homogeneous of degree zero, increasing in w and
decreasing in p, and quasiconvex).

4.D.3% it is good to train one’s hand in the use of inequalities and the Kuhn-Tucker
conditions. Prove Proposition 4.D.1 again, this time allowing for corner solutions.

4.D.4¢ Suppose that there is a normative representative consumer with wealth distribution
rule (w,(p, w), ..., w,(p, w)). For any x € R%, define
u(x) = Max W (x,),...,u/(x,))
(X1,..033)
sty ix <x.
(a) Give conditions implying that u(-) has the properties of a utility function; that is, it is
monotone, continuous, and quasiconcave (and even concave).

ppnnpv—
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(b) Show that for any (p, w), the Walrasian demand generated from the problem Max, u(x)
s.t. pex < w is equal to the aggregate demand function.

4.D.5* Suppose that there are I consumers and that consumer #'s utility function is u;(x;),
with demand function x,(p, w;). Consumer i's wealth w; is generated according to a wealth
distribution rule w; = aw, where o, > 0 and ¥;a; = 1. Provide an example (i, a set of utility
functions) in which this economy does not admit a positive representative consumer.

4.D.6B Establish the claims made in Example 4.D.1.
4.D.78 Establish the claims made in the second paragraph of Example 4.D.2.

4.D.8* Say that (p’, w') passes the potential compensation test over (p, w) if for any distribution
(W, ..., w;) of wthere is a distribution (w}, ..., wi) of w’ such that v,(p’, w}) > v(p, w;) for all
i. Show that if (p'w’) passes the potential compensation test over (p, w), any normative
representative consumer must prefer (p', w') over (p, w).

4.D.98 Show that A < B (notation as in Section 4.D) implies that $(7, w) — X, S:(p, W;) is
negative semidefinite. [Hint: Consider g(p) = e(p, u(X)) — X e;(p, u;(%,)), where e(*) ts the
expenditure function for u(-) and e;(-) is the expenditure function for (). Note that
A = Y {x;u;(x;) 2 wi (%)} implies that 3;e(p, u,(X;) is the optimal value of the problem
Min,_,p-x. From this and A < B, you get g(p) < 0 for all p and g(p) = 0. Therefore, D*g(p)
is negative semidefinite. Show then that D*g(p) = S(§, W) — L:S:(p, w,).]

4.D.10* Argue that in the example considered in Exercise 4.C.11, there is a positive
representative consumer rationalizing aggregate demand but that there cannot be a normative
representative consumer.

4.D.11€ Argue that for L > 2, the Hildenbrand case of Proposition 4.C.4 need not admit a
positive representative consumer. [Hint: Argue that the Slutsky matrix may fail to be
symmetric.]
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Production

Introduction

In this chapter, we move to the supply side of the economy, studying the process by
which the goods and services consumed by individuals are produced. We view the
supply side as composed of a number of productive units, or, as we shall call them,
“firms.” Firms may be corporations or other legally recognized businesses. But they
must also represent the productive possibilities of individuals or households. More-
over, the set of all firms may include some potential productive units that are never
actually organized. Thus, the theory will be able to accommodate both active
production processes and potential but inactive ones.

Many aspects enter a full description of a firm: Who owns it? Who manages it?
How is it managed? How is it organized? What can it do? Of all these questions, we
concentrate on the last one. Our justification is not that the other questions are
not interesting (indeed, they are), but that we want to arrive as quickly as possible at
a minimal conceptual apparatus that allows us to analyze market behavior. Thus, our
model of production possibilities is going to be very parsimonious: The firm is viewed
merely as a “black box”, able to transform inputs into outputs.

In Section 5.B, we begin by introducing the firm’s production set, a set that
represents the production activities, or production plans, that are technologically
feasible for the firm. We then enumerate and discuss some commonly assumed
properties of production sets, introducing concepts such as returns to scale, free
disposal, and free entry.

After studying the firm’s technological possibilities in Section 5.B, we introduce
its objective, the goal of profit maximization, in Section 5.C. We then formulate and
study the firm’s profit maximization problem and two associated objects, the firm's
profit function and its supply correspondence. These are, respectively, the value
function and the optimizing vectors of the firm’s profit maximization problem.
Related to the firm's goal of profit maximization is the task of achieving cost-
minimizing production. We also study the firm’s cost minimization problem and two
objects associated with it: The firm’s cost function and its conditional factor demand
correspondence. As with the utility maximization and expenditure minimization
problems in the theory of demand, there is a rich duality theory associated with the
profit maximization and cost minimization problems.
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Section 5.D analyzes in detail the geometry associated with cost and production
relationships for the special but theoretically important case of a technology that
produces a single output.

Aggregation theory is studied in Section 5.E. We show that aggregation on the
supply side is simpler and more powerful than the corresponding theory for demand
covered in Chapter 4.

Section 5.F constitutes an excursion into welfare economics. We define the
concept of efficient production and study its relation to profit maximization. With
some minor qualifications, we see that profit-maximizing production plans are
efficient and that when suitable convexity properties hold, the converse is also true:
An efficient plan is profit maximizing for an appropriately chosen vector of prices.
This constitutes our first look at the important ideas of the fundamental theorems of
welfare economics.

In Section 5.G, we point out that profit maximization does not have the same
primitive status as preference maximization. Rigorously, it should be derived from
the latter. We discuss this point and related issues.

In Appendix A, we study in more detail a particular, important case of production
technologies: Those describable by means of linear constraints. It is known as the
linear activity model.

Production Sets

As in the previous chapters, we consider an economy with L commodities. A
production vector (also known as an input—output, or netput, vector, or as a production
plan) is a vector y = (yy,...,y.) € R* that describes the (net) outputs of the L
commodities from a production process. We adopt the convention that positive
numbers denote outputs and negative numbers denote inputs. Some elements of a
production vector may be zero; this just means that the process has no net output
of that commodity.

Example 5.B.1: Suppose that L = 5. Then y = (—5, 2, —6, 3,0) means that 2 and 3
units of goods 2 and 4, respectively, are produced, while 5 and 6 units of goods 1 and
3, respectively, are used. Good 5 is neither produced nor used as an input in this
production vector. m

To analyze the behavior of the firm, we need to start by identifying those
production vectors that are technologically possible. The set of all production vectors
that constitute feasible plans for the firm is known as the production set and is denoted
by Y < R Any ye Y is possible; any y ¢ Y is not. The production set is taken as
a primitive datum of the theory.

The set of feasible production plans is limited first and foremost by technological
constraints. However, in any particular model, legal restrictions or prior contractual
commitments may also contribute to the determination of the production set.

It is sometimes convenient to describe the production set Y using a function F(-),
called the transformation function. The transformation function F(-) has the property
that ¥ ={ye R F(y) <0} and F(y) =0 if and only il y is an element of the
boundary of Y. The set of boundary points of ¥, {y &€ R": F(y) = 0}, is known as the
transformation frontier. Figure 5.B.1 presents a two-good example.
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If F(-) is differentiable, and if the production vector j satisfies F(§) = 0, then for
any commodities Z and k, the ratio

OF(3)/9y,
OF(3)/oy

is called the marginal rate of transformation (MRT) of good ¢ for good k at 7.' The
marginal rate of transformation is a measure of how much the (net) output of good
k can increase if the firm decreases the (net) output of good ¢ by one marginal unit.
Indeed, from F(3) = 0, we get

F(3) IF(7)

——dy, + ——dy, =0,

P Ye 3, Ye

and therefore the slope of the transformation frontier at j in Figure 5.B.1 is precisely
—MRT,,(y).

MRTx(3) =

Technologies with Distinct Inputs and Outputs

In many actual production processes, the set of goods that can be outputs is distinct
from the set that can be inputs. In this case, it is sometimes convenient to notationally
distinguish the firm’s inputs and outputs. We could, for example, let g=(g,, ..., g )20
denote the production levels of the firm's M outputs and z = (z,...,2,_,) >0
denote the amounts of the firm's L — M inputs, with the convention that the amount
of input z, used is now measured as a nonnegative number (as a matter of notation,
we count all goods not actually used in the process as inputs).

One of the most frequentiy encountered production models is that in which there
is a single output. A single-output technology is commonly described by means of a
production function f(z) that gives the maximum amount g of output that can be
produced using input amounts (z,, ..., z,_,) > 0. For example, if the output is good
L, then (assuming that output can be disposed of at no cost) the production function
f(-) gives rise to the production set:
Y={(~z...,~2,.1,9:4q =Sy, 2.) S0 and (zy,...,2.) > 0}.

Holding the level of output fixed, we can define the marginal rate of technical

1. As in Chapter 3, in computing ratios such as this, we always assume that F(§)/dy, # 0.

Figure 5.8.1

The production set
and transformation
frontier.
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substitution (MRTS) of input ¢ for input k at Z as

of (2)/oz,

af(2)/0z

The number MRTS,(Z) measures the additional amount of input k that must be
used to keep output at level § = f(Z) when the amount of input ¢ is decreased
marginally. It is the production theory analog to the consumer’s marginal rate of
substitution. In consumer theory, we look at the trade-off between commodities that
keeps utility constant, here, we examine the trade-off between inputs that keeps the
amount of output constant. Note that MRTS,, is simply a renaming of the marginal
rate of transformation of input ¢ for input k in the special case of a single-output,
many-input technology.

MRTS,(3) =

Example 5.B.2: The Cobb—Douglas Production Function The Cobb-Douglas produc-
tion function with two inputs is given by f(z,,2,) = z5z4, where a > 0 and § > 0.
The marginal rate of technical substitution between the two inputs at z = (zy, 2,) is
MRTS,,(2) = az,/Bz,. m

Properties of Production Sets

We now introduce and discuss a fairly exhaustive list of commonly assumed
properties of production sets. The appropriateness of each of these assumptions
depends on the particular circumstances (indeed, some of them are mutually
exclusive).?

(i) Y is nonempry. This assumption simply says that the firm has something it
can plan to do. Otherwise, there is no need to study the behavior of the firm in
question.

(i) Y is closed. The set Y includes its boundary. Thus, the limit of a sequence of
technologically feasible input-output vectors is also feasible; in symbols, y* — y and
y*€ Y imply y € Y. This condition should be thought of as primarily technical.?

(iii) No free lunch. Suppose that ye Y and y > 0, so that the vector y does not
use any inputs. The no-free-lunch property is satisfied if this production vector cannot
produce output either. That is, whenever ye Y and y >0, then y =0; it is not
possible to produce something from nothing. Geometrically, ¥ n R% < {0}. For
L = 2, Figure 5.B.2(a) depicts a set that violates the no-free-lunch property, the set
in Figure 5.B.2(b) satisfies it.

(iv) Possibility of inaction This property says that 0 € Y: Complete shutdown is
possible. Both sets in Figure 5.B.2, for example, satisfy this property. The point in
time at which production possibilities are being analyzed is often important for the
validity of this assumption. If we are contemplating a firm that could access a set of
technological possibilities but that has not yet been organized, then inaction is clearly

2. For further discussion of these properties, see Koopmans (1957) and Chapter 3 of Debreu
(1959).

3. Nonetheless, we show in Exercise 5.B.4 that there is an important case of economic interest
when it raises difficulties.
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possible. But if some production decisions have already been made, or if irrevocable
contracts for the delivery of some inputs have been signed, inaction is not possible.
In that case, we say that some costs are sunk. Figure 5.B.3 depicts two examples.
The production set in Figure 5.B.3(a) represents the interim production possibilities
arising when the firm is already committed to use at least —y, units of good 1
(perhaps because it has already signed a contract for the purchase of this amount);
that is, the set is a restricted production set that reflects the firm’s remaining choices
from some original production set Y like the ones in Figure 5.B.2. In Figure 5.B.3(b),
we have a second example of sunk costs. For a case with one output (good 3) and
two inputs (goods 1 and 2), the figure illustrates the restricted production set arising
when the level of the second input has been irrevocably set at j, < 0 [here, in contrast
with Figure 5.B.3(a), increases in the use of the input are impossible].

(v) Free disposal. The property of free disposal holds if the absorption of any
additional amounts of inputs without any reduction in output is always possible.
That is, if ye Y and y’ < y (so that y’ produces at most the same amount of outputs
using at least the same amount of inputs), then y’ € Y. More succinctly, ¥ — R: < ¥
(see Figure 5.B.4). The interpretation is that the extra amount of inputs (or outputs)
can be disposed of or eliminated at no cost.

Figure 5.8.2

The no free lunch
property.

(a) Violates no free
lunch.

(b) Satisfies no free
tunch.

Figure 5.B.3

Two production sets
with sunk costs.

(a) A minimal level of
expenditure committed.
(b) One kind of input
fixed.
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(vi) Irreversibility. Suppose that ye Y and y s 0. Then irreversiblity says that
—y ¢ Y. In words, it is impossible to reverse a technologically possible production
vector to transform an amount of output into the same amount of input that was
used to generate it. If, for example, the description of a commodity includes the time
of its availability, then irreversibility follows from the requirement that inputs be
used before outputs emerge.

Exercise 5.B.1: Draw two production sets: one that violates irreversibility and one
that satisfies this property.

(vii) Nonincreasing returns to scale. The production technology Y exhibits
nonincreasing returns to scale if for any y € Y, we have ay € ¥ for all scalars a € [0, 1].
In words, any feasible input—output vector can be scaled down (see Figure 5.B.5).
Note that nonincreasing returns to scale imply that inaction is possible [property

()]

(viii) Nondecreasing returns to scale. In contrast with the previous case, the
production process exhibits nondecreasing returns to scale if for any ye ¥, we have
ay e Y for any scale o > 1. In words, any feasible input—output vector can be scaled
up. Figure 5.B.6(a) presents a typical example; in the figure, units of output (good
2) can be produced at a constant cost of input (good 1) except that in order to produce
at all, a fixed setup cost is required. It does not matter for the existence of
nondecreasing returns if this fixed cost is sunk [as in Figure 5.B.6(b)] or not [as in
Figure 5.B.6(a), where inaction is possible].

(ix) Constant returns to scale. This property is the conjunction of properties (vii)
and (viii). The production set Y exhibits constant returns to scale if ye ¥ implies
ay € Y for any scalar a > 0. Geometrically, Y is a cone (see Figure 5.B.7).

For single-output technologies, properties of the production set translate readily
into properties of the production function f(-). Consider Exercise 5.B.2 and Example
5.8.3.

Exercise 5.B.2: Suppose that f(-) is the production function associated with a
single-output technology, and let Y be the production set of this technology. Show
that Y satisfies constant returns to scale if and only if f(-) is homogeneous of degree
one.

Figure 5.8.4 (left)
The free disposal
property.

Figure 5.B.5 (right)

The nonincreasing
returns to scale
property.

(a) Nonincreasing
returns satisfied.
(b) Nonincreasing
returns violated.
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Example 5.B.3: Returns to Scale with the Cobb-Douglas Production Function: For the
Cobb-Douglas production function introduced in Example 5.B.2, f(2z,,2:z,) =
2%+P23 28 = 2°*%f(z,, z,). Thus, when « + § = 1, we have constant returns to scale;
when o + f < 1, we have decreasing returns to scale; and when « + § > 1, we have
increasing returns to scale. m

(x) Additivity (or free entry). Suppose that ye Y and y' e Y. The additivity
property requires that y + y’ e Y. More succinctly, ¥ + Y < Y. This implies, for
example, that ky € Y for any positive integer k. In Figure 5.B.8, we see an example
where Y is additive. Note that in this example, output is available only in integer
amounts (perhaps because of indivisibilities). The economic interpretation of the
additivity condition is that if y and y’ are both possible, then one can set up two
plants that do not interfere with each other and carry out production plans y and y’
independently. The result is then the production vector y + y".

Additivity is also related to the idea of entry. If y € Y is being produced by a firm
and another firm enters and produces y' € Y, then the net result is the vector y + y'.
Hence, the aggregate production set (the production set describing feasible production
plans for the economy as a whole) must satisfy additivity whenever unrestricted entry,
or (as it is called in the literature) free entry, is possible.

(xi) Convexity. This is one of the fundamental assumptions of microeconomics.
It postulates that the production set Y is convex. That is, if y, '€ Y and 2 € [0, 1],
thenay + (1 — @)y’ € Y. For example, Y is convex in Figure 5.B.5(a) but is not convex
in Figure 5.B.5(b).

Y2
—4
-3
-2
Y
-t
N

Figure 5.B.6 (left)
The nondecreasing
returns to scale
property.

Figure 5.8.7 (right)

A technology
satisfying the constant
returns to scale
property.

Figure 5B8.8

A production set
satisfying the
additivity property.
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The convexity assumption can be interpreted as incorporating two ideas about
production possibilities. The first is nonincreasing returns. In particular, if inaction
is possible (i.e., if 0 € Y), then convexity implies that ¥ has nonincreasing returns to
scale. To see this, note that for any ae [0, 1], we can write ay = ay + (1 — a)0.
Hence, if y € Y and 0 € Y, convexity implies that ay € Y. Second, convexity captures
the idea that “unbalanced” input combinations are not more productive than
balanced ones (or, symmetrically, that “unbalanced” output combinations are not
least costly to produce than balanced ones). In particular, if production plans y and
' produce exactly the same amount of output but use different input combinations,
then a production vector that uses a level of each input that is the average of the
levels used in these two plans can do at least as well as either y or y'.

Exercise 5.B.3 illustrates these two ideas for the case of a single-output technology.

Exercise 5.B.3: Show that for a single-output technology, Y is convex if and only if
the production function f(z) is concave.

(xii) Y is a convex cone. This is the conjunction of the convexity (xi) and constant
returns to scale (ix) properties. Formally, Y is a convex cone if for any production
vector y, y' € Y and constants « > O and f > 0, we haveay + By'€ Y. The production
set depicted in Figure 5.B.7 is a convex cone.

An important fact is given in Proposition 5.B.1.

Proposition 5.B.1: The production set Y is additive and satisfies the nonincreasing

returns condition if and only if it is a convex cone.

Proof: The definition of a convex cone directly implies the nonincreasing returns and
additivity properties. Conversely, we want to show that if nonincreasing returns and
additivity hold, then for any y, y' € Yand any a > 0,and § > 0, we have ay + By'eY.
To this effect, let k be any integer such that k > Max {a, B}. By additivity, kye ¥ and
ky € Y. Since (x/k) <1 and ay = (a/k)ky, the nonincreasing returns condition
implies that «y € Y. Similarly, 8y’ € Y. Finally, again by additivity, ay+8y' € Y. =

Proposition 5.B.1 provides a justification for the convexity assumption in
production. Informaily, we could say that if feasible input-output combinations can
always be scaled down, and if the simultaneous operation of several technologies
without mutual interference is always possible, then, in particular, convexity obtains.
(See Appendix A of Chapter 11 for several examples in which there is mutual
interference and, as a consequence, convexity does not arise.)

It is important not to lose sight of the fact that the production set describes technology, not
limits on resources. It can be argued that if all inputs (including, say, entrepreneurial inputs)
are explicitly accounted for, then it should always be possible to replicate production. After
all, we are not saying that doubling output is actually feasible, only that in principle it would
be possible if all inputs (however esoteric, be they marketed or not) were doubled. In this
view, which originated with Marshall and has been much emphasized by McKenzie (1959),
decreasing returns must reflect the scarcity of an underlying, unlisted input of production. For
this reason, some economists believe that among models with convex technologies the constant
returns model is the most fundamental. Proposition 5.B.2 makes this idea precise.

Proposition 5.B.2: For any convex production set Y c RL with Oe Y, there is a constant

returns, convex production set ¥’ < R:*' such that ¥ = {ye RE:(y, -1 eY'}
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Proof: Simply et Y' ={y'eR "'y =a(y, —1) for some ye Y and « > 0}. (See Figure
5B9) m

The additional input inciuded in the extended production set (good L + 1) can be called
the “entrepreneurial factor.” (The justification for this can be seen in Exercise 5.C.12; in a
competitive environment, the return to this entrepreneurial factor is precisely the firm’s profit.)
In essence, the implication of Proposition 5.B.2 is that in a competitive, convex setting, there
may be little loss of conceptual generality in limiting ourselves to constant returns technologies.

Profit Maximization and Cost Minimization

In this section, we begin our study of the market behavior of the firm. In parallel to
our study of consumer demand, we assume that there is a vector of prices quoted
for the L goods, denoted by p = (p,, ..., p.) » 0, and that these prices are independ-
ent of the production plans of the firm (the price-taking assumption).

We assume throughout this chapter that the firm’s objective is to maximize its
profit. (It is quite legitimate to ask why this should be so, and we wiil offer a brief
discussion of the issue in Section 5.G.) Moreover, we always assume that the firm's
production set Y satisfies the properties of nonemptiness, closedness, and free disposal
(see Section 5.B).

The Profit Maximization Problem

Given a price vector p >» 0 and a production vector y € RE, the profit generated by
implementing yis p-y = Y5., p, y.. By the sign convention, this is precisely the total
revenue minus the total cost. Given the technological constraints represented by its
production set Y, the firm’s profit maximization problem (PMP) is then

Max p-y
¥y

st.yeY. (PMP)

Using a transformation function to describe Y, F(-), we can equivalently state the
PMP as

Max p-y
¥y

st. F(y) < 0.

Figure 5.B.9

A constant returns
production set with an
“entrepreneurial
factor.”
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Given a production set Y, the firm’s profit function n(p) associates to every p the
amount n(p) = Max {p-y: y € Y}, the value of the solution to the PMP. Correspond-
ingly, we define the firm's supply correspondence at p, denoted y(p), as the set of
profit-maximizing vectors y(p) ={ye Y:p-y = n(p)}.* Figure 5.C.1 depicts the
supply to the PMP for a strictly convex production set Y. The optimizing vector
y(p) lies at the point in Y associated with the highest level of profit. In the figure,
y(p) therefore lies on the iso-profit line (a line in R? along which all points generate
equal profits) that intersects the production set farthest to the northeast and is,
therefore, tangent to the boundary of Y at y(p).

In general, y(p) may be a set rather than a single vector. Also, it is possible that
no profit-maximizing production plan exists. For example, the price system may
be such that there is no bound on how high profits may be. In this case, we say that
n(p) = +00.% To take a concrete example, suppose that L = 2 and that a firm with
a constant returns technology produces one unit of good 2 for every unit of good 1
used as an input. Then n(p) = 0 whenever p, < p,. But if p, > p,, then the firm’s
profit is (p, — p,)¥1, where y, is the production of good 2. Clearly, by choosing y,
appropriately, we can make profits arbitrarily large. Hence, n(p) = +o if p2 > py.

Exercise 5.C.1: Prove that, in general, if the production set Y exhibits nondecreasing
returns to scale, then either n(p) < 0 or n(p) = +0.

If the transformation function F(-) is differentiable, then first-order conditions
can be used to characterize the solution to the PMP. If y* € y(p), then, for some
4 > 0, y* must satisfy the first-order conditions

oF(y*
o= 2 EUD s,
0y,
or, equivalently, in matrix notation,
p=AVF(y*). 5.C.1H

4. We use the term supply correspondence to keep the parallet with the demand terminology of
the consumption side. Recall however that y(p) is more properly thought of as the firm's net supply
to the market. In particular, the negative entries of a supply vector should be interpreted as demand
for inputs.

5. Rigorously, to allow for the possibility that n(p) = +0c0 (as well as for other cases where no
profit-maximizing production plan exists), the profit function should be defined by =n(p) =
Sup {p-y: y€ Y}. We will be somewhat loose, however, and continue to use Max while allowing
for this possiblity.

Figure 5.C.1

The profit
maximization problem,
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In words, the price vector p and the gradient VF(y*) are proportional (Figure 5.C.1
depicts this fact). Condition (5.C.1) also yields the following ratio equality: p,/p, =
MRT,(y*) for all ,k. For L =2, this says that the slope of the transformation
frontier at the profit-maximizing production plan must be equal to the negative of
the price ratio, as shown in Figure 5.C.1. Were this not so, a small change in the
firm’s production plan could be found that increases the firm’s profits.

When Y corresponds to a single-output technology with differentiable production
function f(z), we can view the firm’s decision as simply a choice over its input levels
z. In this special case, we shall let the scalar p > 0 denote the price of the firm's
output and the vector w > 0 denote its input prices.® The input vector z* maximizes
profit given (p, w) if it solves

Max pf(z) - w-z.
=20

If z* is optimal, then the following first-order conditions must be satisfied for
/=1...,L-L
a *
p % < w,, with equality if z} > 0,
£

or, in matrix notation,
pVz*) < w and [pVf(z*) —w]-z* =0 (5.C2)
Thus, the marginal product of every input / actually used (ie., with z} > 0) must
equal its price in terms of output, w,/p. Note also that for any two inputs ¢ and k
with (z%,z¥)>» 0, condition (5.C.2) implies that MRTS, = w,/w,; that is, the
marginal rate of technical substitution between the two inputs is equal to their price
ratio, the economic rate of substitution between them. This ratio condition is merely
a special case of the more general condition derived in (5.C.1).
If the production set Y is convex, then the first-order conditions in (5.C.1) and

(5.C.2) are not only necessary but also sufficient for the determination of a solution
to the PMP.

Proposition 5.C.1, which lists the properties of the profit function and supply
correspondence, can be established using methods similar to those we employed in
Chapter 3 when studying consumer demand. Observe, for example, that mathematic-
ally the concept of the profit function should be familiar from the discussion of duality
in Chapter 3. In fact, n(p) = —u_,(p), where u_,(p) = Min {p-(—y): y€ Y} is the
support function of the set — Y. Thus, the list of important properties in Proposition
5.C.1 can be seen to follow from the general properties of support functions discussed
in Section 3.F.

6. Up to now, we have always used the symbol p for an overall vector of prices; here we use it
only for the output price and we denote the vector of input prices by w. This notation is fairly
standard. As a rule of thumb, unless we are in a context of explicit classification of commodities as
inputs or outputs (as in the single-output case), we will continue to use p to denote an overall vector
of prices p = (py,..., pr)-

7. The concern over boundary conditions arises here, but not in condition (5.C.1), because the
assumption of distinct inputs and outputs requires that z > 0, whereas the formulation leading to
(5.C.1) allows the net output of every good to be either positive or negative. Nonetheless, when
using the first-order conditions (5.C.2), we will typically assume that z* » 0.
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Proposition 5.C.1: Suppose that z(*) is the profit function of the production set Y and

that y(-) is the associated supply correspondence. Assume aiso that Y is closed
and satisfies the free disposal property. Then
(i) n(-) is homogeneous of degree one.
(ii} n(-) is convex.
(iii) It ¥ is convex, then Y = {y e Rt: p-y < n(p) tor all p » 0}.
(iv) y(-) is homogeneous of degree zero.

(v) if Y is convex, then y(p) is a convex set for all p. Moreover, if Y is strictly
convex, then y(p) is single-valued (if nonempty).
(vi) (Hotelling's lemma) It y(§) consists of a single point, then n({-) is
differentiable at 5 and Vr(3) = y(5).
(vii} i y(-)is a function differentiable at g, then Dy(p) = D?n(p) is a symmetric
and positive semidefinite matrix with Dy(p)p = 0.

Properties (ii), (iii), (vi), and (vii) are the nontrivial ones.

Exercise 5.C.2: Prove that n(-) is a convex function [Property (i) of Proposition
5.C.1]. [Hint: Suppose that y € y(ap + (1 — a)p’). Then

nlap + (1 — @)p) =ap'y+ (1 —a)p’*y < oan(p) + (1 = a)n(p').]

Property (iii) tells us that if Y is closed, convex, and satisfies free disposal, then
(p) provides an alternative (“dual”) description of the technology. As for the indirect
utility function’s (or expenditure function’s) representation of preferences (discussed
in Chapter 3), it is a less primitive description than Y itsell because it depends on
the notions of prices and of price-taking behavior. But thanks to property (vi), it has
the great virtue in applications of often allowing for an immediate computation of
supply.

Property (vi) relates supply behavior to the derivatives of the profit function. It
is a direct consequence of the duality theorem (Proposition 3.F.1). As in Proposition
3.G.1, the fact that Va(5) = y(p) can also be established by the related arguments of
the envelope theorem and of first-order conditions.

The positive semidefiniteness of the matrix Dy(p) in property (vii), which in view
of property (vi) is a consequence of the convexity of n(+), is the general mathematical
expression of the law of supply: Quantities respond in the same direction as price
changes. By the sign convention, this means that if the price of an output increases
(all other prices remaining the same), then the supply of the output increases; and if
the price of an input increases, then the demand for the input decreases.

Note that the law of supply holds for any price change. Because, in contrast with
demand theory, there is no budget constraint, there is no compensation requirement
of any sort. In essence, we have no wealth effects here, only substitution effects.

In nondifferentiable terms, the law of supply can be expressed as

(-p)(y-y)zo (5.C.3)

for all p, p', ye y(p), and y € y(p’). In this form, it can also be established by a
straightforward revealed preference argument. In particular,

(P—p)y—y)=@y—py)+ "y —p»N20,

e

where the inequality follows from the fact that y € y(p) and y’ € y(p’) (i, from the
fact that y is profit maximizing given prices p and y’ is profit maximizing for prices p’).

Property (vii) of Proposition 5.C.1 implies that the matrix Dy(p), the supply
substitution matrix, has properties that parallel (although with the reverse sign) those
for the substitution matrix of demand theory. Thus, own-substitution effects are
nonnegative as noted above [dy,(p)/dp, = 0 for all /], and substitution effects are
symmetric [dy,(p)/dp, = dy,(p)/dp, for all £, k]. The fact that Dy(p)p = 0 follows
from the homogeneity of y(-) [property (iv)] in a manner similar to the parallel
property of the demand substitution matrix discussed in Chapter 3.

Cost Minimization

An important implication of the firm choosing a profit-maximizing production plan is
that there is no way to produce the same amounts of outputs at a lower total input
cost. Thus, cost minimization is a necessary condition for profit maximization. This
observation motivates us to an independent study of the firm’s cost minimization
problem. The problem is of interest for several reasons. First, it leads us to a number
of results and constructions that are technically very useful. Second, as we shall see
in Chapter 12, when a firm is not a price taker in its output market, we can no longer
use the profit function for analysis. Nevertheless, as long as the firm is a price taker
in its input market, the results flowing from the cost minimization problem continue
to be valid. Third, when the production set exhibits nondecreasing returns to scale,
the value function and optimizing vectors of the cost minimization problem, which
keep the levels of outputs fixed, are better behaved than the profit function and supply
correspondence of the PMP (e.g, recall from Exercise 5.C.1 that the profit function
can take only the values 0 and +00).

To be concrete, we focus our analysis on the single-output case. As usual, we let
z be a nonnegative vector of inputs, f(z) the production function, ¢4 the amounts of
output, and w >» 0 the vector of input prices. The cost minimization problem (CMP)
can then be stated as follows (we assume free disposal of output):

Min w-z
220
st f(2) = q. (CMP)

The optimized value of the CMP is given by the cost function c(w,q). The
corresponding optimizing set of input (or factor) choices, denoted by z(w, g), is known
as the conditional factor demand correspondence (or function if it is always single-
valued). The term conditional arises because these factor demands are conditional on
the requirement that the output level g be produced.

The solution to the CMP is depicted in Figure 5.C.2(a) for a case with two inputs.
The shaded region represents the set of input vectors z that can produce at least the
amount g of output. It is the projection (into the positive orthant of the input space)
of the part of the production set Y than generates output of at least ¢, as shown in
Figure 5.C.2(b). In Figure 5.C.2(a), the solution z(w, g) lies on the iso-cost line (a line
in R? on which all input combinations generate equal cost) that intersects the set
{ze RL: f(z) > g} closest to the origin.

If z* is optimal in the CMP, and if the production function f(-) is differentiable,
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{z: wez = c(w, q/)}
{z:wez = ¢} with &> c(w,q)

(a) (b)

then for some 4 > 0, the following first-order conditions must hold for every input
(=1,...,L—1:

;= , with equality if z} >0,

L 3"
2/
or, in matrix notation,
w2 AVf(z¥) and [w— AVf(z*)]-z*=0. (5.C4)

As with the PMP, if the production set Y is convex [ie., if f(*) is concave], then
condition (5.C.4) is not only necessary but also sufficient for z* to be an optimum
in the CMP.2

Condition (5.C.4), like condition (5.C.2) of the PMP, implies that for any two
inputs £ and k with (z,, z,) » 0, we have MRTS,, = w,/w,. This correspondence is to
be expected because, as we have noted, profit maximization implies that input choices
are cost minimizing for the chosen output level g. For L = 2, condition (5.C.4) entails
that the slope at z* of the isoquant associated with production level g is exactly equal
to the negative of the ratio of the input prices — w,/w,. Figure 5.C.2(a) depicts this
fact as well.

As usual, the Lagrange multiplier A can be interpreted as the marginal value of
relaxing the constraint f(z*) = g. Thus, 1 equals dc(w, q)/dq, the marginal cost of
production.

Note the close formal analogy with consumption theory here. Replace f(-) by
u(-), g by u, and z by x (i.e, interpret the production function as a utility function),
and the CMP becomes the expenditure minimization problem (EMP) discussed in
Section 3.E. Therefore, in Proposition 5.C.2, properties (i) to (vii) of the cost function
and conditional factor demand correspondence follow from the analysis in Sections
3.E to 3.G by this reinterpretation. [You are asked to prove properties (viii) and (ix)
in Exercise 5.C.3.]

Proposition 5.C.2: Suppose that c(w, g) is the cost function of a single-output

technology Y with production function f(-) and that z{w, q) is the associated

8. Note, however, that the first-order conditions are sufficient for a solution to the CMP as iong
as the set {z: f(z) = q} is convex. Thus, the key condition for the sufficiency of the first-order
conditions of the CMP is the guasiconcavity of f(-). This is an important fact because the
quasiconcavity of f(-) is compatible with increasing returns to scale (see Example 5.C.1).

Flgure 5.C.2

The cost minimization

problem.

(a) Two inputs.

(b) The isoquant as
a section of the
production set.

£
&
£
]
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conditional factor demand correspondence. Assume also that Y is closed and
satisfies the free disposal property. Then

(i) ¢(-) is homogeneous of degree one in w and nondecreasing in q.
(ii} ¢(-) is a concave function of w.
(iiiy f the sets {z>0:f(z)>q} are
Y={(-2q):w-z>c(w,q)for all w > 0}.
(iv) z(*) is homogeneous of degree zero in w.
(v) it the set {z>0:f(z) > q} is convex, then z(w, g) is a convex set.
Moreover, if {z>0:f(z) > q} is a strictly convex set, then z(w, g} is
single-valued.
{(vi) (Shepard's lemma) If 2(w,q) consists of a single point, then c(-) is
differentiable with respect to w at w and V,c(w, q) = z(w, q).
(vii} If z(-} is differentiable at W, then D, z(W, q) = D2,c(w, g) is a symmetric
and negative semidefinite matrix with D, z(Ww, g)w = 0.
(viii) If f(-) is homogeneous of degree one (i.e., exhibits constant returns to
scale), then ¢(-) and z(-) are homogeneous of degree one in g.
(ix) If £{-) is concave, then ¢(-) is a convex function of g (in particular,
marginal costs are nondecreasing in q).

convex for every g, then

In Exercise 5.C.4 we are asked to show that properties (i) to (vii) of Proposition
5.C.2 also hold for technologies with multiple outputs.

The cost function can be particularly useful when the production set is of the
constant returns type. In this case, y(-) is not single-valued at any price vector
allowing for nonzero production, making Hotelling’s lemma [Proposition 5.C.1(vi)]
inapplicable at these prices. Yet, the conditional input demand z(w, q) may nevertheless
be single-valued, allowing us to use Shepard’s lemma. Keep in mind, however, that
the cost function does not contain more information than the profit function. In fact,
we know from property (iii) of Propositions 5.C.! and 5.C.2 that under convexity
restrictions there is a one-to-one correspondence between profit and cost functions;
that is, from either function, the production set can be recovered, and the other
function can then be derived.

Using the cost function, we can restate the firm’s problem of determining its
profit-maximizing production level as

Max pg — c(w, g). (5.C.5)
420
The necessary first-order condition for ¢* to be profit maximizing is then
dac(w, g* . -
p— i%iz < 0, with equality if ¢* > 0. (5.C.6)
q

In words, at an interior optimum (i.e., if ¢* > 0), price equals marginal cost.? If c(w, q)
is convex in g, then the first-order condition (5.C.6) is also sufficient for g* to be the
firm's optimal output level. (We study the relationship between the firm’s supply
behavior and the properties of its technology and cost function in detail in Section
5.D)

9. This can also be seen by noting that the first-order condition (5.C.4) of the CMP coincides
with first-order condition (5.C.2) of the PMP if and only if 4 = p. Recall that A, the multiplier on
the constraint in the CMP, is equal to dc(w, q)/0q.

MINIMIZATION
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We could go on for many pages analyzing profit and cost functions. Some
examples and further properties are contained in the exercises. See McFadden (1978)
for an extensive treatment of this topic.

Example 5.C.1: Profit and Cost Functions for the Cobb—Douglas Production Function.
Here we derive the profit and cost functions for the Cobb-Douglas production
function of Example 5.B.2, f(z,,z;) = z3z4. Recall from Example 5.B.3 that & + =1
corresponds to the case of constant returns to scale, a + B < 1 corresponds to
decreasing returns, and « + § > 1 corresponds to increasing returns.

The conditional factor demand equations and cost function have exactly the same
form, and are derived in exactly the same way, as the expenditure function in Section
3.E (see Example 3.E.1; the only difference in the computations is that we now do
not impose « + = 1):

zx(Wx» [ q) = q”‘“”(awz/ﬂwl)‘““’",

2y(wy, wa, q) = qmﬂ”)(ﬁwx/awz)l/u+ﬂ):
and
C(wl W, q) = ql/(ﬁﬁ)[(a/ﬂ)ﬁ/(ﬁﬂl + (a/ﬁ)—al(uﬂ)] w‘{“””wﬁ““”).
This cost function has the form c(wy, w,, g) = g “*#8¢(w,, w,), where

0 = [@/BY"" + (@/f) ]
is a constant and @(w,, w;) = wife*Pul=*d i5 2 function that does not depend on
the output level g. When we have constant returns, 8¢(w,, w,) is the per-unit cost of
production.

One way to derive the firm’s supply function and profit function is to use this cost
function and solve problem (5.C.5). Applying (5.C.6), the first-order condition for
this problem is

1
a+f

p < 0¢(w,, w2)< )q“"“‘”“, with equality if g >0 5.CD
The first-order condition (5.C.7) is sufficient for a maximum when a + <1
because the firm’s cost function is then convex in g.
When « + 8 < 1, (5.C.7) can be solved for a unique optimal output level:

q(wy, wy, ) = (@ + B p/0G(wy, wp)] @ PV 7P
The factor demands can then be obtained through substitution,
24(Wy, Wa, P) = 2,(Wy, Wa, g(wy, Wy, p)) for £ =1,2,
as can the profit function,
7wy, Wy, p) = pg(wy, Wy, p) — wrz(wy, W, q(wy, W, P))-

When a + B = 1, the right-hand side of the first-order condition (5.C.7) becomes
8¢(w,, w,), the unit cost of production (which is independent of g). If 8¢(w,, w,) is
greater than p, then g = 0 is optimal; if it is smaller than p, then no solution exists
(again, unbounded profits can be obtained by increasing ¢); and when 6¢(w,, w,) = p,
any non-negative output level is a solution to the PMP and generates zero profits.

Finally, when a + 8 > 1 (so that we have increasing returns to scale), a quantity
q satisfying the first-order condition (5.C.7) does not yield a profit-maximizing
production. [Actually, in this case, the cost function is strictly concave in g, so that
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any solution to the first-order condition (5.C.7) yields a local minimum of profits,
subject to output being always produced at minimum cost]. Indeed, since p >0, a
doubling of the output level starting from any g doubles the firm’s revenue but
increases input costs only by a factor of 2@*# > 2. With enough doublings, the
firm's profits can therefore be made arbitrarily large. Hence, with increasing returns
to scale, there is no solution to the PMP. m

The Geometry of Cost and Supply in the
Single-Output Case

In this section, we continue our analysis of the relationships among a firm’s
technology, its cost function, and its supply behavior for the special but commonly
used case in which there is a single output. A significant advantage of considering
the single-output case is that it lends itself to extensive graphical illustration.

Throughout, we denote the amount of output by ¢ and hold the vector of factor
prices constant at w > 0. For notational convenience, we write the firm’s cost function
as C(q) = ¢(W, ). For g > 0, we can denote the firm’s average cost by AC(q) = C(9)/q
and assuming that the derivative exists, we denote its marginal cost by C'(q)=dC(q)/dq.

Recall from expression (5.C.6) that for a given output price p, ail profit-
maximizing output levels g € g(p) must satisfy the first-order condition [assuming
that C'(q) exists]:

p < C'(g) with equality if g > 0. (5.D.1)

If the production set Y is convex, C(*) is a convex function [see property (ix) of
Proposition 5.C.2], and therefore marginal cost is nondecreasing. In this case, as we
noted in Section 5.C, satisfaction of this first-order condition is also sufficient to
establish that g is a profit-maximizing output level at price p.

Two examples of convex production sets are given in Figures 5.D.1 and 5.D.2.
In the figures, we assume that there is only one input, and we normalize its price to
equal ! (you can think of this input as the total expense of factor use).'® Figure 5.D.1
depicts the production set (a), cost function (b), and average and marginal cost
functions (c) for a case with decreasing returns to scale. Observe that the cost function
is obtained from the production set by a 90-degree rotation. The determination of
average cost and marginal cost from the cost function is shown in Figure 5.D.1(b)
(for an output level §). Figure 5.D.2 depicts the same objects for a case with constant
returns to scale.

In Figures 5.D.1(c) and 5.D.2(c), we use a heavier trace to indicate the firm’s
profit-maximizing supply locus, the graph of q(-). (Note: In this and subsequent
figures, the supply locus is always indicated by a heavier trace) Because the
technologies in these two examples are convex, the supply locus in each case coincides
exactly with the (q, p) combinations that satisfy the first-order condition (5.D.1).

If the technology is not convex, perhaps because of the presence of some
underlying indivisibility, then satisfaction of the first-order necessary condition

10. Thus, the single input can be thought of as a Hicksian composite commadity in a sense
analogous to that in Exercise 3.G.5.
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(5.D.1) no longer implies that g is profit maximizing. The supply locus will then be
only a subset of the set of (¢, p) combinations that satisfy (5.D.1).

Figure 5.D.3 depicts a situation with a nonconvex technology. In the figure, we
have an initial segment of increasing returns over which the average cost decreases
and then a region of decreasing returns over which the average cost increases. The
level (or levels) of production corresponding to the minimum average cost is called
the efficient scale, which, if unique, we denote by §. Looking at the cost functions in
Figure 5.D.3(a) and (b), we see that at § we have AC(G) = C'(g). In Exercise 5.D.1,
you are asked to establish this fact as a general result.

Exercise 5.D.1: Show that AC() = C’(§) at any § satisfying AC(§) < AC(q) for all q.
Does this result depend on the differentiability of C(-) everywhere?

The supply locus for this nonconvex example is depicted by the heavy trace in

Figure 5.D.1

A strictly convex
technology (strictly
decreasing returns to
scale).

(a) Production set.
(b) Cost function.
(c) Average cost,
marginal cost, and
supply.

Figure 5.D0.2

A constant returns to
scale technology.
(a) Production set.
(b) Cost function.
(c) Average cost,
marginal cost, and
supply.

Figure 5.0.3

A nonconvex
technology.

(a) Production set.
(b) Cost function.
(c) Average cost,
marginal cost, and
supply.
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Figure 5.D.3(c). When p > AC(g), the firm maximizes its profit by producing at the
unique level of g satisfying p = C'(g) > AC(q). [Note that the firm earns strictly
positive profits doing so, exceeding the zero profits earned by setting ¢ = 0, which in
turn exceed the strictly negative profits earned by choosing any ¢ > 0 with p =
C'(q) < AC(g).] On the other hand, when p < AC(g), any q > 0 earns strictly negative
profits, and so the firm's optimal supply is ¢ =0 [note that g = Q satisfies the
necessary first-order condition (5.D.1) because p < C'(0)]. When p = AC(g), the
profit-maximizing set of output levels is {0, §}. The supply locus is therefore as shown
in Figure 5.D.3(c).

An important source of nonconvexities is fixed setup costs. These may or may
not be sunk. Figures 5.D.4 and 5.D.5 (which parallel 5.D.1 and 5.D.2) depict two
cases with nonsunk fixed setup costs (so inaction is possible). In these figures, we
consider a case in which the firm incurs a fixed cost K if and only if it produces a
positive amount of output and otherwise has convex costs. In particular, total cost
is of the form C(0) = 0, and C(q) = C,(q) + K for 4 > 0, where K > 0 and C,(q), the
variable cost function, is convex [and has C,0) = 0]. Figure 5.D.4 depicts the case
in which C,(+) is strictly convex, whereas C,(-) is linear in Figure 5.D.5. The supply
loci are indicated in the figures. In both illustrations, the firm will produce a positive
amount of output only if its profit is sufficient to cover not only its variable costs
but also the fixed cost K. You should read the supply locus in Figure 5.D.5(c) as
saying that for p > p, the supply is “infinite,” and that ¢ = 0 is optimal for p < p.
In Figure 5.D.6, we alter the case studied in Figure 5.D.4 by making the fixed
costs sunk, so that C(0) > 0. In particular, we now have C(q) = C,(q) + K for all
q > 0; therefore, the firm must pay K whether or not it produces a positive quantity.

Figure 5.D.4

Strictly convex
variable costs with a
nonsunk setup cost.
(a) Production set.
(b) Cost function.
{c) Average cost,
marginal cost, and
supply.

Figure 5.0.5

Constant returns
variable costs with a
nonsunk setup cost.
(a) Production set.

(b) Cost function.
(c) Average cost,

marginal cost, and
supply.
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Although inaction is not possible here, the firm’s cost function is convex, and so we
are back to the case in which the first-order condition (5.D.1) is sufficient. Because
the firm must pay K regardless of whether it produces a positive output level, it will
not shut down simply because profits are negative. Note that because C,(-) is convex
and C,(0) = 0, p = C(q) implies that pg > C,(g); hence, the firm covers its variable
costs when it sets output to satisfy its first-order condition. The firm’s supply locus
is therefore that depicted in Figure 5.D.6(c). Note that its supply behavior is exactly
the same as if it did not have to pay the sunk cost K at all [compare with Figure
5.D.1(c)].

Exercise 5.D.2: Depict the supply locus for a case with partially sunk costs, that is,
where C(g) = K + C,(q) if g > 0 and 0 < C(0) < K.

As we noted in Section 5.B, one source of sunk costs, at least in the short run, is
input choices irrevocably set by prior decisions. Suppose, for example, that we have
two inputs and a production function f(z,, z;). Recall that we keep the prices of the
two inputs fixed at (w,, %,). In Figure 5.D.7(a), the cost function excluding any prior
input commitments is depicted by C(-). We call it the long-run cost function. If one
input, say z,, is fixed at level Z, in the short-run, then the short-run cost function of
the firm becomes Clg|Z,) = W, 2z, + W,Z,, where z; is chosen so that f(z,,%;) = 4.
Several such short-run cost functions corresponding to different levels of z, are
illustrated in Figure 5.D.7(a). Because restrictions on the firm’s input decisions can
only increase its costs of production, C(giZ,) lies above C(g) at all g except the g for

Clglz) Clgl)
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1
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which 7, is the optimal long-run input level [i.e., the g such that z,(w, g) = 7,]. Thus,
C(glz2(w.q)) = C(g) for all ¢. It follows from this and from the fact that C(q'|z,(W, q)) >
z C(q') for all ¢', that C'(q) = C'(glz,(W, q)) for all g; that is, if the level of z, is at its
i long-run value, then the short-run marginal cost equals the long-run marginal cost.
Geometrically, C(-) is the lower envelope of the family of short-run functions C{q|z,)
generated by letting z, take all possible values.

Observe finally that given the long-run and short-run cost functions, the long-run
and short-run average cost functions and long-run and short-run supply functions
of the firm can be derived in the manner discussed earlier in the section. The
average-cost version of Figure 5.D.7(a) is given in Figure 5.D.7(b). (Exercise 5.D.3
asks you to investigate the short-run and long-run supply behavior of the firm in
more detail.)
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Aggregation

In this section, we study the theory of aggregate (net) supply. As we saw in Section
5.C, the absence of a budget constraint implies that individual supply is not subject
to wealth effects. As prices change, there are only substitution effects along the
production frontier. In contrast with the theory of aggregate demand, this fact makes
for an aggregation theory that is simple and powerful.'*

Suppose there are J production units (firms or, perhaps, plants) in the economy,
each specified by a production set Y},..., Y;. We assume that each Y} is nonempty,
closed, and satisfies the free disposal property. Denote the profit function and supply
correspondences of Y, by n;(p) and y,(p), respectively. The aggregate supply corre-
spondence is the sum of the individual supply correspondences:

HRAMPRGES: b

i

Ll e

J
yp)= % yip)={yeRt:y=73y, for some y,e y(p)j=1,...,J}.
ji=1

B

i Assume, for a moment, that every y,(-) is a single-valued, differentiable function
at a price vector p. From Proposition 5.C.1, we know that every Dy;(p) is a symmetric,
positive semidefinite matrix. Because these two properties are preserved under
addition, we can conclude that the matrix Dy(p) is symmetric and positive semidefinite.
As in the theory of individual production, the positive semidefiniteness of Dy(p)
implies the law of supply in the aggregate: If a price increases, then so does
the corresponding aggregate supply. As with the law of supply at the firm level,
this property of aggregate supply holds for all price changes. We can also prove
this aggregate law of supply directly because we know from (5.C.3) that
(p—p')-[y(p) — yi(p")] = O for every j; therefore, adding over j, we get

(p—p)Inp) —ypH1=20.

The symmetry of Dy(p) suggests that underlying y(p) there is a “representative
producer.” As we now show, this is true in a particularly strong manner.
Given Y,,..., ¥;, we can define the aggregate production set by

Y=Y+ -+ Y ={yeRl:y=) yforsomeyeY,j=1..,J}

1. A classicai and very readable account for the material in this section and in Section S.F is
Koopmans (1957).
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The aggregate production set Y describes the production vectors that are feasible in
the aggregate if all the production sets are used together. Let n*(p) and y*(p) be the
profit function and the supply correspondence of the aggregate production set Y.
They are the profit function and supply correspondence that would arise if a single
price-taking firm were to operate, under the same management so to speak, all the
individual production sets.

Proposition 5.E.1 establishes a strong aggregation result for the supply side: The
aggregate profit obtained by each production unit maximizing profit separately taking
prices as given is the same as that which would be obtained if they were to coordinate
their actions (i.c., their y;s) in a joint profit maximizing decision.

Proposition 5.E.1: For all p > 0, we have

(i) n*(p) = 2,m;(p)
{ii) y*(0) = X,;(p) (={X,¥;: v;€ v;(p) for every j}).

Proof: (i) For the first equality, note that if we take any collection of production
plans y;e ¥, j=1,...,J, then T;y;€ Y. Because 7*(-) is the profit function
associated with Y, we therefore have n*(p) 2 p-(X;y;) = Z;P"¥;- Hence, it follows
that n*(p) = ¥ ;n;(p). In the other direction, consider any y € Y. By the definition of
the set Y, there are y;€ ¥;,j=1,..., J, such that ¥;y;=y.S0 pry=p-Liy)=2; P <
Tn(p) forall ye Y. Thus, n*(p) < 3;7,(p). Together, these two inequalities imply
that 7*(p) = X;7(p).

(ii) For the second equality, we must show that ¥;y{(p) < y*(p) and that
y*(p) < ¥;y{(p). For the former relation, consider any set of individual production
plans y;e yi(p),j = 1,...,J. Then p-(T;y;) = L;p ¥ = 3mip) = n*(p), where the
last equality follows from part (i) of the proposition. Hence, >;y;€ y*(p), and
therefore, 3°; y;(p) = y*(p). In the other direction, take any y € y*(p). Theny =3y,
for some y;€ ¥;,j=1,...,J. Since pe(X;y) = 7*(p) = Z;np) and, for every j, we
have p-y; < m;(p), it must be that p-y; = n;(p) for every j. Thus, y; € y;(p) for all j,
and so y € ¥; y;(p)- Thus, we have shown that y*(p) = X;y(p). ®

The content of Proposition 5.E.1 is illustrated in Figure 5.E.1. The proposition
can be interpreted as a decentralization result: To find the solution of the aggregate
profit maximization problem for given prices p, it is enough to add the solutions of
the corresponding individual problems.

Simple as this result may seem, it nevertheless has many important implications.
Consider, for example, the single-output case. The result tells us that if firms are
maximizing profit facing output price p and factor prices w, then their supply behavior
maximizes aggregate profits. But this must mean that if g = Y;q, is the aggregate
output produced by the firms, then the total cost of production is exactly equal to
c(w, q), the value of the aggregate cost function (the cost function corresponding to the
aggregate production set Y). Thus, the allocation of the production of output level q
among the firms is cost minimizing. In addition, this allows us to relate the firms’
aggregate supply function for output g( p) to the aggregate cost function in the same
manner as done in Section 5.D for an individual firm. (This fact will prove useful
when we study partial equilibrium models of competitive markets in Chapter 10.)
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In summary: If firms maximize profits taking prices as given, then the production
side of the economy aggregates beautifully.

As in the consumption case (see Appendix A of Chapter 4), aggregation can also have
helpful regularizing effects in the production context. An interesting and important fact is that
the existence of many firms or plants with technologies that are not too dissimilar can make the
average production set almost convex, even if the individual production sets are not so. This
is illustrated in Figure 5.E.2, where there are J firms with identical production sets equal to

Y2 1 ¥2

Y=Y +-+¥

1
HERSRER)

N i
(2) (b)

that displayed in 5.E.2(a). Defining the average production set as (I/JX¥, +---+ ¥}) =
{(yry =)y, +---+y,) for some y;e ¥}, j=1,...,J}, we see that for large J, this set is
nearly convex, as depicted in Figure 5.E2(b).!?

Efficient Production

Because much of welfare economics focuses on efficiency (see, for example, Chapters
10 and 16), it is useful to have algebraic and geometric characterizations of

productions plans that can unambiguously be regarded as nonwasteful. This
motivates Definition 5.F.1.

12. Note that this production set is bounded above. This is important because it insures that
the individual nonconvexity is of finite size. If the individual production set was like that shown in,
sz?y, Figure 5.B.4, where neither the set nor the nonconvexity is bounded, then the average set would
display a large nonconvexity (for any J). In Figure 5.B.5, we have a case of an unbounded production

set but with a bounded nonconvexity; as for Figure 5.E.2, the average set will in this case be almost
convex.
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Figure 5.E.1

Joint profit
maximization as a
result of individual
profit maximization.

Figure 5.E.2

An example of the
convexifying effects of
aggregation.

(a) The individual
production

set.

(b) The average
production set.
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Definition 5.F.1: A production vector y € Y is efficient if there is no y'e Y such that
y'2yandy #y.

In words, a production vector is efficient if there is no other feasible production
vector that generates as much output as y using no additional inputs, and that
actually produces more of some output or uses less of some input.

As we see in Figure 5.F.1, every efficient y must be on the boundary of Y, but the
converse is not necessarily the case: There may be boundary points of Y that are not
efficient.

We now show that the concept of efficiency is intimately related to that of
supportability by profit maximization. This constitutes our first look at a topic that
we explore in much more depth in Chapter 10 and especially in Chapter 16 .

Proposition 5.F.1 provides an elementary but important result. It is a version of
the first fundamental theorem of welfare economics.

Proposition 5.F.1: lf ye Y is profit maximizing for some p > 0, then y is efficient.

Proof: Suppose otherwise: That there is a y' € Ysuch that y # yand y’ > y. .Because
p > 0, this implies that p+y" > p*y, contradicting the assumption that y is profit
maximizing. ®

1t is worth emphasizing that Proposition 5.F.1 is valid even if the production set
is nonconvex. This is illustrated in Figure 5.F.2. N

When combined with the aggregation results discussed in Section 5.E, Proposition
5F.1 tells us that if a collection of firms each independently maximizes profits
with respect to the same fixed price vector p > 0, then the aggregate production is

p Y2

N

Figure 5.F.1

An efficient production
plan must be on the
boundary of Y, but
not all points on the
boundary of Y are
efficient.

(a) An inefficient
production plan in the
interior of Y. 4
(b) An inefficient :
production plan at the |
boundary of Y.

(c) The set of efficient
production plans.
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Figure 5.F.2 ’éﬁ
A profit-maximizing & {ﬁ—*

production pian (for
p > 0) is efficient.
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socially efficient. That is, there is no other production plan for the economy as a whole
that could produce more output using no additional inputs. This is in line with our
conclusion in Section 5.E that, in the single-output case, the aggregate output level
is produced at the lowest-possible cost when all firms maximize profits facing the
same prices.

The need for strictly positive prices in Proposition 5.F.l is unpleasant, but it
cannot be dispensed with, as Exercise 5.F.1 asks you to demonstrate.

Exercise 5.F.1: Give an example of a y € Y that is profit maximizing for some p > 0
with p # 0 but that is also inefficient (i.e. not efficient).

A converse of Proposition 5.F.1 would assert that any efficient production vector
is profit maximizing for some price system. However, a glance at the efficient
production y’ in Figure 5.F.2 shows that this cannot be true in general. Nevertheless,
this converse does hold with the added assumption of convexity. Proposition 5.F.2,
which is less elementary than Proposition 5.F.1, is a version of the so-called second
fundamental theorem of welfare economics.

Proposition 5.F.2: Suppose that Y is convex. Then every efficient production ye Y is
a profit-maximizing production for some nonzero price vector p > 0.13

Proof: This proof is an application of the separating hyperplane theorem for convex
sets (see Section M.G of the Mathematical Appendix). Suppose that y € Y is efficient,
and define the set P, = {y’ € R“: y’ » y}. The set P, is depicted in Figure 5.F.3. It is
convex, and because y is efficient, we have Y n P, = (J. We can therefore invoke the
separating hyperplane theorem to establish that there is some p # 0 such that
p-y = p-y” for every y'e P, and y” € Y (see Figure 5.F.3). Note, in particuiar, that
this implies p-y’ > p-y for every y' » y. Therefore, we must have p > 0 because if
p, < 0 for some ¢/, then we would have p-y’ < p-y for some y’' » y with y, -y,
sufficiently large.

Now take any y” € Y. Then p-y’ > p-y” for every y’ € P,. Because y' can be chosen
to be arbitrarily close to y, we conclude that p+y > p-y” for any y” € Y; that is, y is
profit maximizing for p. =

13. As the proof makes clear, the result also applies to weakly efficient productions, that is, to
productions such as y in Figure 5.F.1(b) where there is no y' € Y such that y' » y.

Figure 5.F.3

The use of the
separating hyperplane
theorem to prove
Proposition S.F2: If Y
is convex, every
efficient y € Y is profit
maximizing for some
p=0.
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The second part of Proposition 5.F.2 cannot be strengthened to read “p » 0.” In
Figure 5.F.4, for example, the production vector y is efficient, but it cannot be
supported by any strictly positive price vector.

As an illustration of Proposition 5.F.2, consider a single-output, concave produc-
tion function f(z). Fix an input vector Z, and suppose that f(-) is differentiable at z
and V() » 0. Then the production plan that uses input vector 7 to produce output
level f(Z) is efficient. Letting the price of output be 1, condition (5.C.2) tells us thgt
the input price vector that makes this efficient production profit maximizing is
precisely w = Vf(2), the vector of marginal productivities.

Remarks on the Objectives of the Firm

Although it is logical to take the assumption of preference maximization as a primitive
concept for the theory of the consumer, the same cannot be said for the assumption
of profit maximization by the firm. Why this objective rather than, say, the
maximization of sales revenues or the size of the firm's labor force? The objectives
of the firm assumed in our economic analysis should emerge from the objectives of
those individuals who control it. Firms in the type of economies we consider are
owned by individuals who, wearing another hat, are also consumers. A firm owned
by a single individual has well-defined objectives: those of the owner. In this case,
the only issue is whether this objective coincides with profit maximization. Whenever
there is more than one owner, however, we have an added level of complexity. Indeed,
we must either reconcile any conflicting objectives the owners may have or show
that no conflict exists.

Fortunately, it is possible to resolve these issues and give a sound theoretical
grounding to the objective of profit maximization. We shall now show that under
reasonable assumptions this is the goal that all owners would agree upon.

Suppose that a firm with production set ¥ is owned by consumers. Ownership
here simply means that each consumer i =1,...,[ is entitled to a share 8, > 0 of
profits, where 3,8, = 1 (some of the f;s may equal zero). Thus, if the production
decision is y € Y, then a consumer i with utility function u(-) achieves the utility
level

Max  ufx,)
x=0
st.px, Sw +0;py,
where w, is consumer i’s nonprofit wealth. Hence at fixed prices, higher profit
increases consumer—owner i’s overall wealth and expands her budget set, a desirable
outcome. It follows that at any fixed price vector p, the consumer—owners unanimously

Figure 5.F.4
Proposition 5.C.2
cannot be extended to
require p » 0.
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prefer that the firm implement a production plan y' € Y instead of y € ¥ whenever
p+y’ > p-y. Hence, we conciude that if we maintain the assumption of price-taking
behavior, all owners would agree, whatever their utility functions, to instruct the
manager of the firm to maximize profits.!*

It is worth emphasizing three of the implicit assumptions in the previous
reasoning; (i) prices are fixed and do not depend on the actions of the firm, (ii) profits
are not uncertain, and (iii) managers can be controlled by owners. We comment on
these assumptions very informally.

(i) If prices may depend on the production of the firm, the objective of the owners
may depend on their tastes as consumers. Suppose, for example, that each consumer
has no wealth from sources other than the firm (w; = 0), that L = 2, and that the
firm produces good | from good 2 with production function f(-). Also, normalize
the price of good 2 to be 1, and suppose that the price of good 1, in terms of good
2, is p(q) if output is g. If, for example, the preferences of the owners are such that
they care only about the consumption of good 2, then they will unanimously want
to solve Max_, o p(f(2)) f(z) — z. This maximizes the amount of good 2 that they get
to consume. On the other hand. if they want to consume only good I, then they will
wish to solve Max. o f(2) — [2/p(f(2))] because if they earn p(f(2))f(z) — z units
of good 2, then end up with [ p(f(2))f(z) — z}/p(f(2)) units of good 1. But these two
problems have different solutions. (Check the first-order conditions.) Moreover, as
this suggests, if the owners differ in their tastes as consumers, then they will not agree
about what they want the firm to do (Exercise 5.G.1 elaborates on this point.)

(ii) If the output of the firm is random, then it is crucial to distinguish whether
the output is sold before or after the uncertainty is resolved. If the output is sold
after the uncertainty is resolved (as in the case of agricultural products sold in spot
markets after harvesting), then the argument for a unanimous desire for profit
maximization breaks down. Because profit, and therefore derived wealth, are now
uncertain, the risk attitudes and expectations of owners will influence their preferences
with regard to production plans. For example, strong risk averters will prefer
relatively less risky production plans than moderate risk averters.

On the other hand, if the output is sold before uncertainty is resolved (as in the
case of agricultural products sold in futures markets before harvesting), then the risk
is fully carried by the buyer. The profit of the firm is not uncertain, and the
argument for unanimity in favor of profit maximization still holds. In effect, the firm
can be thought of as producing a commodity that is sold before uncertainty is resolved
in a market of the usual kind. (Further analysis of this issue would take us too far
afield. We come back to it in Section 19.G after covering the foundations of decision
theory under uncertainty in Chapter 6.)

(iii) It is plain that shareholders cannot usually exercise control directly. They
need managers, who, naturally enough, have their own objectives. Especially if
ownership is very diffuse, it is an important theoretical challenge to understand how
and to what extent managers are, or can be, controlled by owners. Some relevant
considerations are factors such as the degree of observability of managerial actions

14. In actuality, there are public firms and quasipublic organizations such as universities that
do not have owners in the sense that private firms have shareholders. Their objectives may be
different, and the current discussion does not apply to them.
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and the stake of individual owners. [These issues will be touched on in Section 14.C
(agency contracts as a mechanism of internal control) and in Section 19.G (stock
markets as a mechanism of external control).]

APPENDIX A: THE LINEAR ACTIVITY MODEL

The saliency of the model of production with convexity and constant returns to scale
technologies recommends that we examine it in some further detail.

Given a constant returns to scale technology Y, the ray generated (or spanned)
by a vector j€ Y is the set {y e Y: y = aj for some scalar « > 0}. We can think of
a ray as representing a production activity that can be run at any scale of operation.
That is, the production plan j can be scaled up or down by any factor a >0,
generating, in this way, other possible production plans.

We focus here on a particular case of constant returns to scale technologies that
lends itself to explicit computation and is therefore very important in applications.
We assume that we are given as a primitive of our theory a list of finitely many
activities (say M), each of which can be run at any scale of operation and any number
of which can be run simultaneously. Denote the M activities, to be called the
elementary activities, by a, € R, ..., a) € R-. Then, the production set is

M
Y={yeR:y= ¥ a,a, for some scalars (x,, ... L ay) = 0.

m=1

The scalar a,, is called the level of elementary activity m; it measures the scale of
operation of the mth activity. Geometrically, Y is a polyhedral cone, a set generated
as the convex hull of a finite number of rays.

An activity of the form (0,...,0,—1,0,...,0), where —1 is in the Zth place, is
known as the disposal activity for good /. Henceforth, we shall always assume that, in
addition to the M listed elementary activities, the L disposal activities are also
available. Figure 5.AA.1 illustrates a production set arising in the case where L =2
and M = 2.

Given a price vector p e RS, a profit-maximizing plan exists in Y if and only if
p-a,, < 0 for every m. To see this, note that if p-a,, <0, then the profit-maximizing
level of activity m is «,, = 0. If p-a,, =0, then any level of activity m generates zero
profits. Finally, if p-a,, > 0 for some m, then by making a,, arbitrarily large, we could
generate arbitrarily large profits. Note that the presence of the disposal activities
implies that we must have pe RL for a profit-maximizing plan to exist. If p, <0,
then the £ th disposal activity would generate strictly positive (hence, arbitrarily large)
profits.

For any price vector p generating zero profits, let A(p) denote the set of activi-
ties that generate exactly zero profits: A(p) = {a,: pra, =0}. If a, ¢ A(p), then
-4, <0, and so activity m is not used at prices p. The profit-maximizing supply set
y(p) is therefore the convex cone generated by the activities in A(p); that is,
V(P = {Tare atp) TmBm: %m = 0}. The set y(p) is also illustrated in Figure 5.AA.1 In
the figure, at price vector p, activity a, makes exactly zero profits, and activity a,
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incurs a loss (if operated at all). Therefore, A(p) = {a,} and y(p) = {y: y = a,a, for
any scalar «, > 0}, the ray spanned by activity a,.

A significant result that we shail not prove is that for the linear activity model
the converse of the efficiency Proposition 5.F.! holds exactly; that is, we can

strengthen Proposition 5.F.2 to say: Every efficient ye Y is a profit-maximizing
production for some p » 0.

An important special case of the linear activity model is Leontief”’s input—output
model. Tt is characterized by two additional features:

(i) There is one commodity, say the Lth, which is not produced by any activity.
For this reason, we will call it the primary factor. In most applications of the
Leontief model, the primary factor is labor.

(i) Every elementary activity has at most a single positive entry. This is called
the assumption of no joint production. Thus, it is as if every good except the
primary factor is produced from a certain type of constant returns production
function using the other goods and the primary factor as inputs.

The Leontief Input—Output Model with No Substitution Possibilities

The simplest Leontief model is one in which each producible good is produced by
only one activity. In this case, it is natural to label the activity that produces good
4 = l,...,L—1asa,=(ay,...,a.)e Rt So the number of elementary activities
M is equal to L — 1. As an example, in Figure 5.AA.2, for a case where L = 3, we
Fepresem the unit production isoquant [the set {(z,, z4): f(z;,z;) = 1}] for the
implied production function of good 1. In the figure, the disposal activities for goods
2 and 3 are used to get rid of any excess of inputs. Because inputs must be used in fixed
proportions (disposal aside), this special case is called a Leontief model with no
substitution possibilities.

If we normalize the activity vectors so thata,, =1 forall £ =1,..., L — 1, then
l%'lc vector @ = (ay, ..., %, _) € R of activity levels equals the vector of gross produc-
tion of goods 1 through L — 1. To determine the levels of net production, it is
convenient to denote by A the (L — 1) x (L — 1) matrix in which the Zth column is

Figure 5.AA.1

A production set
generated by two
activities.
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Jzpzy) =1

—dyidyy

—ay/ay, it

the negative of the activity vector a, except that its last entry has been deleted and
entry a,, has been replaced by a zero (recull that entries a,, with k # ¢ are

nonpositive):
0 —ay2 —@y1-1
—ay, 0 —dy1-1
A=
—GQp-1,1 TAL-12 77 0

The matrix A is known as the Leontief input—output matrix. Its k/th entry,
—a,, >0, measures how much of good k is needed to produce one unit of
good /. We also denote by be R“~! the vector of primary factor requirements,
b=(—ay,..., —a. 1) The vector (I ~ A)a then gives the net production levels of
the L — 1 outputs when the activities are run at levels a = (a,, ..., @, _,). To see this,
recall that the activities are normalized so that the gross production levels of the
L — 1 produced goods are exactly a = («y,...,%,_). On the other hand, 4a gives
the amounts of each of these goods that are used as inputs for other produced goods.
The difference, (I — A)a, is therefore the net production of goods 1,...,L — 1. In
addition, the scalar b-« gives the total use of the primary factor. In summary, with
this notation, we can write the set of technologically feasible production vectors
(assuming free disposal) as

Y= {y:ys[l —bA]a for some aeIR';,}.

If (I — A)&@ > 0 for some % > 0, the input-output matrix A is said to be productive.
That is, the input—output matrix A is productive if there is some production plan
that can produce positive net amounts of the L — 1 outputs, provided only that there
is a sufficient amount of primary input available.

A remarkable fact of Leontief input-output theory is the all-or-nothing property
stated in Proposition 5.AA.1.

Proposition 5.AA.1: If A is productive, then for any nonnegative amounts of the L -1
producible commodities ¢ € R4, there is a vector of activity levels a > 0 such
that (/ — A)a = ¢. That is, if A is productive, then it is possible to produce any
nonnegative net amount of outputs {perhaps for purposes of final consumption),
provided only that there is enough primary factor available.

Figure 5.AA.2

Unit isoquant
production fur
for good 1 in ¢
Leontief mode
no substitutiot
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Proof: We will show that if 4 is productive, then the inverse of the matrix (I — A) exists and
is nonnegative. This will give the result because we can then achieve net output levels c € R4 ™!
by setting the (nonnegative) activity levels a = (I — 4) " 'c.

To prove the claim, we begin by establishing a matrix-algebra fact. We show that if 4 is
productive, then the matrix 3°Y_, A" where A" is the nth power of A, approaches a limit as
N — 0. Because A has only nonnegative entries, every entry of YN, A" is nondecreasing with
N. Therefore, to establish that T¥_, A" has a limit, it suffices to show that there is an upper
bound for its entries. Since A is productive, there is an @ and ¢ » 0 such that é = (I — A)& If
we premultiply both sides of this equality by 3°%_, A", we get (7., A")¢ = (I — A¥* 1)a (recall
that A® = I). But (] — A¥* 1)@ < 3 because all elements of the matrix 4"*" are nonnegative.
Therefore, (Y., A")¢ < & With &> 0, this implies that no entry of Y., A" can exceed
{Max {a,,..., & _}/Min {&,,...,&,.,}], and so we have established the desired upper
bound. We conclude, therefore, that ¥ ., A" exists.

The fact that 32, A" exists must imply that limy ., A" =0. Thus, since (T¥_, A"}/ — A)=
U — A" YYandlimy_ , (I — AV*') = I, it must be that 5.5 A" = (I — 4)~". (If A is a single
number, this is precisely the high-school formula for adding up the terms of a geometric series.)
The conclusion is that (I — A) ™! exists and that ail its entries are nonnegative. This establishes
the result. =

The focus on 3'N_, A" in the proof of Proposition 5.AA.1 makes economic sense. Suppose
we want to produce the vector of final consumptions ¢ € R%™'. How much total production
will be needed? To produce final outputs ¢ = A%, we need to use as inputs the amounts
A(A%) = Ac of produced goods. In turn, to produce these amounts requires that A(4c) = A%
of additional produced goods be used, and so on ad infinitum. The total amounts of goods
required to be produced is therefore the limit of (Y., A")c as N — co. Thus, we can conclude
that the vector ¢ > 0 will be producible if and only if 3. o A" is well defined (i.e., all its entries
are finite).

Example 5.AA.1: Suppose that L = 3,and leta, =(}, —1, —2)and a, = (-8, |, —4)
for some constant § > 0. Activity levels « = (a,, a,) generate a positive net output of
good 2 if #, > «,; they generate a positive net output of good 1 if a;, — fa, > 0. The
input-output matrix A and the matrix (I — 4)~! are

0
A=|: ﬁ] and (1——A)"=—I-[1 ﬂ].
1 0 1-fL1 1

Hence, matrix 4 is productive if and only if 8 < 1. Figure 5.AA.3(a) depicts a case
where A is productive. The shaded region represents the vectors of net outputs that
can be generated using the two activity vectors; note how the two activity vectors
can span all of R2. In contrast, in Figure 5.AA.3(b), the matrix 4 is not productive:
No strictly positive vector of net outputs can be achieved by running the two activities
at nonnegative scales. [Again, the shaded region represents those vectors that can
be generated using the two activity vectors, here a set whose only intersection with
RZ is the point (0,0)]. Note also that the closer § is to the value 1, the larger the
levels of activity required to produce any final vector of consumptions. w

The Leontief Model with Substitution Possibilities

We now move to the consideration of the general Leontief model in which each good
may have more than one activity capable of producing it. We shall see that the




158

CHAPTER §:

PRODUCTION

Y2

(a) ®

properties of the nonsubstitution model remain very relevant for the more general
case where substitution is possible.

The first thing to observe is that the computation of the production function of
a good, say good 1, now becomes a linear programming problem (see Section M.M
of the Mathematical Appendix). Indeed, suppose that a, € RE, ..., ay, € REis a list of
M, elementary activities capable of producing good 1 and that we are given initial
levels of goods 2, ..., Lequal to z;,...,z;. Then the maximal possible production of
good 1 given these available inputs f(z,...,2.) is the solution to the problem

Max @ a8yt oy Ay

a2 0ervsan, 20
st. Y™, 00,2 —z foralld=2... ,L.

We also know from linear programming theory that the L —1 dual variables
(.., Ay) of this problem (i, the multipliers associated with the L — 1 constraints)
can be interpreted as the marginal productivities of the L — 1 inputs. More precisely,
for any ¢/ =2,...,L, we have (0f102,)* < A, <(8f/0z,)”, where (8f/0z,)* and
(8f/8z,)" are, respectively, the left-hand and right-hand /th partial derivatives of
f()at(zy. .- L)

Figure 5.AA.4 illustrates the unit isoquant for the case in which good 1 can be
produced using two other goods (goods 2 and 3) as inputs with two possible activities
a,=(1,-2 —1anda; = (1, =1, —2). If the ratio of inputs is either higher than 2o0r
lower than 1, one of the disposal activities is used to eliminate any excess inputs.

For any vector ye R~ it will be convenient to write y = (y_r,y.), where
Yop=Ys-eerYr-1)- We shall assume that our Leontief model is productive in the
sense that there is a technologically feasible vector y € Y such that y_, » 0.

A striking implication of the Leontief structure (constant returns, no joint
products, single primary factor) is that we can associate with each good a single
optimal technique (which could be a mixture of several of the elementary techniques
corresponding to that good). What this means is that optimal techniques (one for
each output) supporting efficient production vectors can be chosen independently of
the particular output vector that is being produced (as long as the net output of
every producible good is positive). Thus, although substitution is possible in
principle, efficient production requires no substitution of techniques as desired final
consumption levels change. This is the content of the celebrated non-substitution
theorem (due to Samuelson {1951]).

Figure 5.AA.3

Leontief model of
Example 5.AA.1

(a) Productive (§ < 1).
(b) Unproductive
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Proposition 5.AA.2: (The Nonsubstitution Theorem) Consider a productive Leontief

npput—output mode! with L — 1 producible goods and M, > 1 elementary activi-
ties for the producible good £ =1,...,L — 1. Then there exist L — 1 activities
(@, ...,3,_4), with a, possibly a nonnegative linear combination of the M,
elementary activities for producing good ¢/, such that a// efficient productiori
vectors with y_, » 0 can be generated with these L — 1 activities.

Proof: Let y € Y be an efficient production vector with y_ » 0. As a general matter.
the vector y must be generated by a collection of L — 1 activities (a,,...,a ;
(some of these may be “mixtures” of the original activities) run at ac‘t‘ivity, l:v_eis
@y, a.L_l) » 0; that is, y = 352! «,a,. We show that any efficient production
plan .y’ with y_; » 0 can be achieved using the activities (a,,...,a,_,).

Since y € Y is efficient, there exists a p > 0 such that y is profit maximizing with
respect to p (this is from Proposition 5.F.2, as strengthened for the linear activit
model). From p-a, <Oforail/=1,...,L —1,a,>0, and ’

L-1

L-1
O=py= P'( Z ar“:) = Z X pa,
=1 £=1
it follows that pra,=0forall£=1,...,L - 1.

Consider now any other efficient production y' € Y with y_, >» 0. We want to
§how that ¥’ can be generated from the activities (ay,...,a,_,). Denote by A the
mpuﬁoutput matrix associated with (a,,...,a,_,). Because y_, »0, it follows by
deﬁmugn that 4 is productive. Therefore, by Proposition 5.AA.1, we k;lOW that there
are activity levels (af, ..., af - ) such that the production vector y* = Y521 aa, has
Y= yLP. Note that since p-a, = Oforall/ = 1,..., L — 1, we must hav-e‘p-(y”/= 0
Thus, y” is profit maximizing for p >» 0 (recall that the maximum profits for p are:
zero), and so it follows that y” is efficient by Proposition 5.F.1. But then we have
two production vectors, y’ and y”, with y_, = y”,, and both are efficient. It must
therefore be that y; = y;. Hence, we conclude that y’ can be produced using onl
the activities (a,,...,a,_,), which is the desired result. m ’

The nonsubstitution theorem depends critically on the presence of only one

Figure 5.AA.4

Unit isoquant of
production function of
good 1. in the Leontief
model with
substitution.
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primary factor. This makes sense. With more than one primary factor, the optimal
choice of techniques should depend on the relative prices of these factors. In turn, it
is logical to expect that these relative prices will not be independent of the
composition of final demand (e.g., if demand moves from land-intensive goods toward
labour-intensive goods, we would expect the price of labor relative to the price of
land to increase). Nonetheless, it is worth mentioning that the nonsubstitution result
remains valid as long as the prices of the primary factors do not change.
For further reading on the material discussed in this appendix see Gale (1960).
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EXERCISES

5B.1* In text
5.B.2* In text.
5.B.3A In text.

5B.4°% Suppose that Y is a production set, interpreted now as the technology of a single
production unit. Denote by Y™ the additive closure of Y, that is, the smallest production set
that is additive and contains Y (in other words, Y* is the total production set if technology
Y can be replicated an arbitrary number of times). Represent Y* for each of the examples of
production sets depicted graphically in Section 5.B. In particular, note that for the typical
decreasing returns technology of Figure 5.B.5(a), the additive closure Y* violates the closedness
condition (ii). Discuss and compare with the case corresponding to Figure 5.B.5(b), where r*
is closed.

5,B.5C Show that if Y is closed and convex, and —RL < 7, then free disposal holds.

5.B.6® There are three goods. Goods 1 and 2 are inputs. The third, with amounts denoted by
g, is an output. Output can be produced by two techniques that can be operated simultaneously
or separately. The techniques are not necessarily linear. The first (respectively, the second)
technique uses only the first (respectively, the second) input. Thus, the first (respectively, the
second) technique is completely specified by ¢,(g,) [respectively, $,(4,)], the minimal amount
of input one (respectively, two) sufficient to produce the amount of output g, (respectively,
q,). The two functions ¢,(-) and ¢,(-) are increasing and ¢,(0) = ¢,(0) = 0.
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(a) Describe the three-dimensional production set associated with these two techniques.
Assume free disposal.

(b) Give sufficient conditions on ¢,(), ¢,(-)} for the production set to display additivity.

(c) Suppose that the input prices are w, and w,. Write the first-order necessary conditions
for profit maximization and interpret. Under which conditions on ¢,(-), §,(-) will the
necessary conditions be sufficient?

(d) Show that if ¢,(-) and ¢@,(-) are strictly concave, then a cost-minimizing plan cannot
involve the simultaneous use of the two techniques. [nterpret the meaning of the concavity
requirement, and draw isoquants in the two-dimensional space of input uses.

5.C.1* In text.

5.C.2* In text.

5.C.3% Establish properties (viii) and (ix) of Proposition 5.C.2. [Hint: Property (viii) is easy;
(ix) is more difficult. Try the one-input case first.}

5.C.4* Establish properties (i) to (vii) of Proposition 5.C.2 for the case in which there are
multiple outputs.

5.C.5* Argue that for property (iii) of Proposition 5.C.2 to hold, it suffices that f(-) be
quasiconcave. Show that quasiconcavity of f(-) is compatible with increasing returns.

5.C.6° Suppose f(z) is a concave production function with L —{ inputs (z,...,z,_,).
Suppose aiso that df(z)/8z, > 0 for all Z and z > 0 and that the matrix D*f(z) is negative
definite at ail z. Use the firm’s first-order conditions and the implicit function theorem to prove
the following statements:

(a) An increase in the output price aiways increases the profit-maximizing level of output.
(b) An increase in output price increases the demand for some input.

(c) An increase in the price of an input leads to a reduction in the demand for the input.

5.C.7€ A price-taking firm producing a single product according to the technoloqy q =
f(zy,...,2,_,) faces prices p for its output and w,,...,w,_, for each of its inputs. Assume
that f(-) is strictly concave and increasing, and that 3*f(z)/éz, dz, < 0 for all ¢ # k. Show
that forall / = 1,..., L — 1, the factor demand functions z,(p, w) satisfy dz,(p, w)/dp > 0 and
0z,(p, w)/dw, < O for all k # ¢.

5.C.8% Alpha Incorporated (Al) produces a single output ¢ from two inputs z, and z,. You
are assigned to determine Al's technology. You are given 100 monthly observations. Two of
these monthly observations are shown in the following table:

Input prices Input levels Qutput price Qutput level
Month wy w, L 1z P q
3 3 1 40 50 4 60
95 2 2 55 40 4 60

In light of these two monthly observations, what problem will you encounter in trying to
accomplish your task?

5.C.9* Derive the profit function n(p) and supply function (or correspondence) y(p) for the
single-output technologies whose production functions f{z) are given by
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i

@) f(2) =</ +22-

) f) = Min {z,, 22}
© f@)=(z5 +z2)", forpsgl

5.C.10* Derive the cost function c(w, g) and conditional factor demand functions (or corre-
spondences) z(w. g) for each of the following single-output constant return technologies with
production functions given by

@ f@=z+z2, (perfect substitutable inputs)
(b) f(z) = Min {z,, 2,} (Leontief technology)

© f(z)=(z8 +29)", p <! (constant elasticity of substitution technoiogy)
5.C.11* Show that dz,(w, q)/dq > 0 if and only if marginal cost at q is increasing in w,.
q

5.C.12* We saw at the end of Section 5.B that any convex Y can be viewed as the section of
a constant returns technology ¥' = RE ¥, where the L + | coordinate is fixed at the level —1.
Show that if ye Y is profit maximizing at prices p then (y, - 1)e Y’ is profit maximizing at
(p, a(p)), that is, profits emerge as the price of the implicit fixed input. The converse is also
true: If (y, —1) € ¥" is profit maximizing at prices (p, pL+ 1), then yeYis profit maximizing
at p and the profit is p. 4.

5.C.13® A price-taking firm produces output ¢ from inputs z, and z, according to a
differentiable concave production function f(z,, z,). The price of its output is p > 0, and the
prices of its inputs are (w,, w;) > 0. However, therc are two unusuai things about this firm.
First, rather than maximizing profit, the firm maximizes revenue (the manager wants her firm
1o have bigger dollar sales than any other). Second, the firm is cash constrained. In particular,
it has only C dollars on hand before production and, as a result, its total expenditures on
inputs cannot exceed C.

Suppose one of your econometrician friends tells you that she has used repeated
observations of the firm's revenues under various output prices, input prices, and levels of the
financial constraint and has determined that the firm’s revenue level R can be expressed as the
following function of the variables (p, w,, wa, Cy

R(p.wow, C)=ply+InC—alnw, —(1 —a)ln w,].

(y and a are scalars whose values she tells you.) What is the firm's use of input z, when prices
are (p, wy, w,) and it has C dollars of cash on hand?

5.D.1* In text.
5.D.2* In text.

5.D.3% Suppose that a firm can produce good L from L — 1 factor inputs (L > 2). Factor
prices are w € R“ ™! and the price of output is p. The firm’s differentiable cost function is c(w, q).
Assume that this function is strictly convex in g. However, although c(w, q) is the cost function
when all factors can be freely adjusted, factor 1 cannot be adjusted in the short run.

Suppose that the firm is initially at a point where it is producing its long-run profit-
maximizing output level of good L given prices w and p, g(w, p) [ie., the level that is optimal
under the long-run cost conditions described by ¢(w, g)], and that all inputs are optimally
adjusted {ie., z, = z,(w, q(w, p)) for all £ =1,..., L~ 1, where z,(-,") is the long-run input
demand function]. Show that the firm’s profit-maximizing output response to a marginal
increase in the price of good L is larger in the long run than in the short run. [Hint: Define
a short-run cost function c(w, g|z,) that gives the minimized costs of producing output level
q given that input 1 is fixed at level .}
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5.D.4% Consider a firm that has a distinct set of inputs and outputs. The firm produces M
outputs; let ¢ = (q,, ..., qy) denote a vector of its output levels. Holding factor prices fixed
C(q,, e qar) is the firm’s cost function. We say that C(-) is subadditive if for all (q,, ..., q )‘
there is no way to break up the production of amounts (q,, . . ., g,) among several firms, e:cl{
with cost function C(-), and lower the costs of production. That is, there is no set of, ;ay J
firms and collection of production vectors {q, =(g,,,...,qu;)}]=, such that ¥,q; ; q a’nd
¥;Clq;) < C(qg). When C(-) is subadditive, it is usual to say that the industry ;s la natural
monopoly because production is cheapest when it is done by only one firm.

(a) Consider the single-output case, M = L. Show that if C(-) exhibits decreasing average
costs, then C(-) is subadditive. -

(b) Now consider the multipie-output case, M > 1. Show by example that the following

multiple-output extension of the decreasing average cost assumption is not sufficient for C(-)
to be subadditive:

C(-) exhibits decreasing ray average cost if for any g e R,
C(q) > C(kg)/k for all k > 1.

© (H.arder) Pr.ovc that, if C(-) exhibits decreasing ray average cost and is quasiconvex
then C(*) is subadditive. [Assume that C(-) is continuous, increasing, and satisfies C(0) = 0.]

8 .
5.D.5% Suppose there are two goods: an input z and an output g. The production function is
g = f(z). We assume that f(-) exhibits increasing returns to scale.

(a) Assume that f(-) is differentiable. Do the increasing returns of f(-) imply that the
average product is necessarily nondecreasing in input? What about the marginal product?

(b_) Suppose there is a representative consumer with the utility function u(g) — z (the
flegauve sign indicates that the input is taken away from the consumer). Suppose that § = f{Z)
is a production plan that maximizes the representative consumer utility. Argue, either
mathematically or economically (disregard boundary solutions), that the equality of marginal
utility and marginal cost is a necessary condition for this maximization problem.

(c) Assume the existence of a representative consumer as in (b). “The equality of marginal
cqst and marginal utility is a sufficient condition for the optimality of a production plan.”
Right or wrong? Discuss. '

5.1;2.1‘ Assun'ling that every n(-) is differentiable and that you already know that n*(p) =
<1 n{(p), give a proof of y*(p) = /-, y;(p) using differentiability technigues.

5.E.2* Verify that Proposition 5.E.t and its interpretation do not depend on any convexity
hypothesis on the sets 7,,..., ¥,.

B :
S.E.3 JAssu@ng that the sets V), ..., ¥; are convex and satisfy the free disposal property, and
that 3°/_, Y} is closed, show that the latter set equals {y: p-y < ¥/, n;(p) for all p » 0}.

5.E.4® One output is produced from two inputs. There are many technoiogies. Every
Fechnology can produce up to one unit of output (but no more) with fixed and proportional
mput' requirements z, and z,. So a technology is characterized by z = (z,, z,), and we can
describe the population of technologies by a density function g(z,, z,). Take this density to be
uniform on the square [0, 10] x {0, 10).

. (a) Given t.he input prices w = (wy, w;), solve the profit maximization problem of a firm
with characteristics z. The output price is 1.
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(b) More generally, find the profit function n(w,, w,, 1) for

w2 and wy = !

— n = —.
LT =10

(¢) Compute the aggregate input demand function. Ideally, do that directly, and check
that the answer is correct by using your finding in (b); this way you also verify (b).

(d) What can you say about the aggregate production function? If you were to assume
that the profit function derived in (b) is valid for w, > 0 and w, 2 0, what would the underlying
aggregate production function be?

5.E.S5* (M. Weitzman) Suppose that there are J single-output plants. Plant Jj’s average cost
is ACj(q;) = « + B,;q; for g, = 0. Note that the coefficient « is the same for all plants but
that the coefficient p; may differ from plant to plant. Consider the problem of determining
the cost-minimizing aggregate production plan for producing a total output of g, where
q < (a/Max;|B,).

(a) If B, > 0 for all j, how should output be allocated among the J plants?

(b) If B; < O for all j, how shouid output be allocated among the J plants?

(¢) What if 8; > 0 for some plants and §; < 0 for others?

5.F.1* In text.

5.G.1®% Let f(z) be a single-input, single-output production function. Suppose that owners have
quasilinear utilities with the firm’s input as the numeraire.

(a) Show that a necessary condition for consumer—owners to unanimously agree to a

production plan z is that consumption shares among owners at prices p(z) coincide with
ownership shares.

(b) Suppose that ownership shares are identical. Comment on the conflicting instructions
to managers and how they depend on the consumer-owners’ tastes for output.

(¢) With identical preferences and ownership shares, argue that owners will unanimously
agree to maximize profits in terms of input. (Recall that we are assuming preferences are
quasilinear with respect to input; hence, the numeraire is intrinsically determined.)

5.AA.1* Compute thebcost function c(w, 1) and the input demand z(w, 1) for the produc-
tion function in Figure 5.AA4. Verify that whenever z(w, 1) is single-valued, we have
2(w, 1) = V,c(w, 1).

5.AA.2% Consider a Leontief input-output model with no substitution. Assume that the input
matrix A is productive and that the vector of primary factor requirements b is strictly positive.

(a) Show that for any « > 0, the production plan
[~ A]a
=l _, |

(b) Fixing the price of the primary factor to equal , show that any production plan with
a > 0 is profit maximizing at a unique vector of prices.

is efficient.

(c) Show that the prices obtained in (b) have the interpretation of amounts of the primary
factor directly or indirectly embodied in the production of one unit of the different goods.

(d) (Harder) Suppose that A corresponds to the techniques singled out by the nonsubstitu-
tion theorem for a model that, in principle, admits substitution. Show that every component of
the price vector obtained from A in (c) is less than or equal to the corresponding component
of the price vector obtained from any other selection of techniques.
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5.AA.3® There are two produced goods and labor. The input-output matrix is

0 1
A= .
x 0
Here a,, is the amount of good ¢ required to produce one unit of good k.

(a) Let a = 4, and suppose that the labor coefficients vector is

where b, (respectively, b,) is the amount of labor required to produce one unit of good 1
(respectively, good 2). Represent graphically the production possibility set (i.e., the locus of
possible productions) for the two goods if the total availability of labor is 10.

(b) For the values of a and b in (a), compute equilibrium prices p,, p, (normalize the wage
to equal 1) from the profit maximization conditions (assume positive production of the two
goods).

(c¢) For the values of « and b in (a), compute the amount of labor directly or indirectly
incorporated into the production of one net (i.e., available for consumption) unit of good 1.
How does this amount relate to your answer in (b)?

(d) Suppose there is a second technique to produce good 2. To
a 1
FRH
as3 0
aj; %
= R by =B.
[a;zJ [0] =/

Taking the two techniques into account, represent graphically the locus of amounts of good
1 and of labor necessary to produce one unit of good 2. (Assume free disposal.)

we now add

(e) In the context of (d), what does the nonsubstitution theorem say? Determine the value
of f at which there is a switch of optimal techniques.
5.AA.4® Consider the following linear activity model:
a=(,-1, 0, 0
a,=0,-1, 1, 0
a, =0, 0, -1, )
a,=(2, 0, 0,-1)

(a) For each of the following input-output vectors, check whether they belong or do not
belong to the aggregate production set. Justify your answers:

=6 0 0-2

y2=(,-3 0-1
yy=(6-3, 0, 0)
Ya=(0,-4, 0, 4
ys=1(0,-3, 4, 0)

(b) The input—output vector y = (0, —5, 5, 0) is efficient. Prove this by finding a p » 0 for
which y is profit-maximizing.

(¢) The input—output vector y = (1, — 1, 0,0) is feasible, but it is not efficient. Why?

5.AA.58 [This exercise was inspired by an exercise of Champsaur and Milleron (1983).] There
are four commodities indexed by / = 1, 2, 3, 4. The technology of a firm is described by eight

ey )
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elementary activities a,,, m=1,...,8 With the usual sign convention, the numerical values
of these activities are

a,=( =3 -6 4 0

a;=( -7, -9, 3, 2

ay=( -1, =2, 3, -1

a,=( -8 —13, 3 1)

ag=(—11,—19, 12, 0
ag=( -4 -3, -2 95
a,=( —8 =5 0, 10
ag=( -2 -4 5 2
It is assumed that any activity can be operated at any nonnegative level «,, > 0 and that all
activities can operate simultaneously at any scale (ie, for any «, 20, m=1,...,8, the
production ¥, 2,4,, is feasible).
() Define the corresponding production set Y, and show that it is convex.
(b) Verify the no-free-lunch property.
(¢) Verify that Y does not satisfy the free-disposal property. The free-disposal property
would be satisfied if we added new elementary activities to our list. How would you choose
them (given specific numerical values)?

(d) Show by direct comparison of a, with a, a; with a,, a; with ag, and a¢ with a, that
four of the elementary activities are not efficient.

(¢) Show that a, and a, are inefficient be exhibiting two positive linear combinations of
a, and a, that dominate a, and a;, respectively.
(f) Could you venture a complete description of the set of efficient production vectors?
(g) Suppose that the amounts of the four goods available as initial resources to the firm are
5, =480, 5, =300, s3=0 s54=0.
Subject to those limitations on the net use of resources, the firm is interested in maximizing
the net production of the third good. How would you set up the problem as a linear program?

(h) By using all the insights you have gained on the set of efficient production vectors, can
you solve the optimization problem in (g)? {Hint: It can be done graphically.]

6.A
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Choice Under Uncertainty

Introduction

In previous chapters, we studied choices that result in perfectly certain outcomes. In
reality, however, many important economic decisions involve an element of risk.
Although it is formally possible to analyze these situations using the general theory
of choice developed in Chapter 1, there is good reason to develop a more specialized
theory: Uncertain alternatives have a structure that we can use to restrict the
preferences that “rational” individuals may hold. Taking advantage of this structure
allows us to derive stronger implications than those based solely on the framework
of Chapter 1.

In Section 6.B, we begin our study of choice under uncertainty by considering a
setting in which alternatives with uncertain outcomes are describable by means of
objectively known probabilities defined on an abstract set of possibie outcomes. These
representations of risky alternatives are called lotteries. In the spirit of Chapter 1, we
assume that the decision maker has a rational preference relation over these lotteries.
We then proceed to derive the expected utility theorem, a result of central importance.
This theorem says that under certain conditions, we can represent preferences by an
extremely convenient type of utility function, one that possesses what is called the
expected utility form. The key assumption leading to this result is the independence
axiom, which we discuss extensively.

In the remaining sections, we focus on the special case in which the outcome of
a risky choice is an amount of money (or any other one-dimensional measure of
consumption). This case underlies much of finance and portfolio theory, as well as
substantial areas of applied economics.

In Section 6.C, we present the concept of risk aversion and discuss its measure-
ment. We then study the comparison of risk aversions both across different
individuals and across different levels of an individual’s wealth.

Section 6.D is concerned with the comparison of alternative distributions of
monetary returns. We ask when one distribution of monetary returns can un-
ambiguously be said to be “better” than another, and also when one distribution
can be said to be “more risky than™ another. These comparisons lead, respectively,
to the concepts of first-order and second-order stochastic dominance.

167
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6.B

Definitlon 6.B.1: A simpfe lottery L is alistL = (p,, ...

In Section 6.E, we extend the basic theory by allowing utility to depend on states
of nature underlying the uncertainty as well as on the monetary payoffs. In the
process, we develop a framework for modeling uncertainty in terms of these
underlying states. This framework is often of great analytical convenience, and we
use it extensively fater in this book.

In Section 6.F, we consider briefly the theory of subjective probability. The
assumption that uncertain prospects are offered to us with known objective prob-
abilities, which we use in Section 6.B to derive the cxpected utility theorem, is rarely
descriptive of reality. The subjective probability framework offers a way of modeling
choice under uncertainty in which the probabilities of different risky alternatives are
not given to the decision maker in any objective fashion. Yet, as we shall see, the
theory of subjective probability offers something of a rescue for our earlier objective
probability approach.

For further reading on these topics, see Kreps (1988) and Machina (1987).
Diamond and Rothschild (1978) is an excellent sourcebook for original articles.

Expected Utility Theory

We begin this section by developing a formal apparatus for modeling risk. We then
apply this framework to the study of preferences over risky alternatives and to
establish the important expected utility theorem.

Description of Risky Alternatives

Let us imagine that a decision maker faces a choice among a number of risky
alternatives. Each risky alternative may result in one of a number of possible
outcomes, but which outcome will actually occur is uncertain at the time that he must
make his choice.

Formally, we denote the set of all possible outcomes by C.! These outcomes
could take many forms. They could, for example, be consumption bundles. In this
case, C = X, the decision maker’s consumption set. Alternatively, the outcomes might
take the simpler form of monetary payoffs. This case will, in fact, be our leading
example later in this chapter. Here, however, we treat C as an abstract set and
therefore allow for very general outcomes.

To avoid some technicalities, we assume in this section that the number of possible
outcomes in C is finite, and we index these outcomes by n = 1,..., N.

Throughout this and the next several sections, we assume that the probabilities
of the various outcomes arising from any chosen alternative are objectively known.
For example, the risky alternatives might be monetary gambles on the spin of an
unbiased roulette wheel.

The basic building block of the theory is the concept of a lottery, a formal device
that is used to represent risky alternatives.

, Pp) with p, > 0 for all 7 and
Y, P, =1, where p, is interpreted as the probability of outcome n occurring.

1. It is also common, following Savage (1954), to refer to the elements of C as consequences.
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(b)

A simple lottery can be represented geometrically as a point in the (N — 1)
dimensional simplex, A = {pe RY:p, +---+ py=1}. Figure 6.B.1(a) depicts this
simplex for the case in which N = 3. Each vertex of the simplex stands for the
degenerate lottery where one outcome is certain and the other two outcomes have
probability zero. Each point in the simplex represents a lottery over the three
outcomes. When N = 3, it is convenient to depict the simplex in two dimensions, as
in Figure 6.B.1(b), where it takes the form of an equilateral triangle.?

In a simple lottery, the outcomes that may result are certain. A more general

variant of a lottery, known as a compound lottery, allows the outcomes of a lottery
themselves to be simple lotteries.®

f Definition 6.B.2: Given K simple lotteries L, = (0%, ..., p%), k=1,..., K, and prob-

a.bilities ag = Owith 3, a, = 1, the compound lottery (L,, . .., Ly a,, ..., ay)is the
risky alternative that yields the simple lottery L, with probability o, fork =1,..., K.

For any compound lottery (L,,..., Lg;a,,...,ax), we can calculate a corre-
sponding reduced lottery as the simple lottery L = (p,, ..., py) that generates the
same ultimate distribution over outcomes. The value of each p, is obtained by
muitiplying the probability that each lottery L, arises, a,, by the probability p* that
outcome n arises in lottery L,, and then adding over k. That is, the probability of
outcome # in the reduced lottery is

Pu= 0 pa+ o+ ogpl

2. Recail that equilateral triangies have the property that the sum of the perpendiculars from
any point to the three sides is equal to the altitude of the triangle. It is therefore common to depict
the simplex when N = 3 as an equilateral triangle with altitude equal to 1 because by doing so, we
have the convenient geometric property that the probability p, of outcome n in the lottery associated
with some point in this simplex is equal to the length of the perpendicular from this point to the
side opposite the vertex labeled n.

3. We could also define compound lotteries with more than two stages. We do not do so
because we will not need them in this chapter. The principles involved, however, are the same.

Figure 6.B.1

Representations of the
simplex when N = 3.
(a) Three-dimensional
representation.

(b) Two-dimensional
representation.
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Cc=1{1,23}
L,=(1,00 .y Le=G20)
§ 1
} Reduced Reduced
L L=G5Hd Lottery ~ G4 3 Lottery =G
3 ¥
Ly= Gr %- D Ly= (i, 0, ;)

for n=1,...,N* Therefore, the reduced lottery L of any compound lottery
(Ly,- .., Lg; @y, ..., ag) can be obtained by vector addition:

L=a L + - -+aglged.

In Figure 6.B.2, two simple lotteries L, and L, are depicted in the simplex A.
Also depicted is the reduced lottery 3L, + 3L, for the compound lottery (L, Lz‘; iLh
that yields either L, or L, with a probability of 4 each. This reduced lottery lies at
the midpoint of the line segment connecting L, and L,. The linear structure of th.c
space of lotteries is central to the theory of choice under uncertainty, and we exploit
it extensively in what follows.

Preferences over Lotteries

Having developed a way to model risky alternatives, we now study the decisiop
maker’s preferences over them. The theoretical analysis to follow rest on a basic
consequentialist premise: We assume that for any risky alternative, only the reduced
lottery over final outcomes is of relevance to the decision maker. Whether the
probabilities of various outcomes arise as a result of a simple lottery or of ? more
complex compound lottery has no significance. Figure 6.B.3 exhibits two dxﬂ't?re.nt
compound lotteries that yield the same reduced lottery. Our consequgnt:ahst
hypothesis requires that the decision maker view these two lotteries as equivalent.

4. Note that £, p, = L, (T o) = Tiar = L.

Figure 6.B.2

The reduced lottery of
a compound lottery.

Figure 6.B.3

Two compound
lotteries with the same
reduced lottery.
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We now pose the decision maker’s choice problem in the general framework
developed in Chapter 1 (see Section 1.B). In accordance with our consequentialist
premise, we take the set of alternatives, denoted here by &, to be the set of all simple
lotteries over the set of outcomes C. We next assume that the decision maker has a
rational preference relation > on ¥, a complete and transitive relation allowing
comparison of any pair of simple lotteries. It should be emphasized that, if anything,
the rationality assumption is stronger here than in the theory of choice under certainty
discussed in Chapter 1. The more complex the alternatives, the heavier the burden
carried by the rationality postulates. In fact, their realism in an uncertainty context
has been much debated. However, because we want to concentrate on the properties
that are specific to uncertainty, we do not question the rationality assumption further
here.

We next introduce two additional assumptions about the decision maker’s
preferences over lotteries. The most important and controversial is the independence
axiom. The first, however, is a continuity axiom similar to the one discussed in Section
3C.

Definition 6.B.3: The preference relation > on the space of simple lotteries % is

continuous it for any L, L', L" ¢ &, the sets

{ae[0, 1} al + (1 — o)L’ = L"} = [0,1]
and
{ee[01):L" Zal + (1 — )L} = [0,1]

are closed.

In words, continuity means that small changes in probabilities do not change
the nature of the ordering between two lotteries. For example, if a “beautiful and
uneventful trip by car” is preferred to “staying home,” then a mixture of the
outcome “beautiful and uneventful trip by car” with a sufficiently small but
positive probability of “death by car accident” is still preferred to “staying home.”
Continuity therefore rules out the case where the decision maker has lexicographic
(“safety first”) preferences for alternatives with a zero probability of some outcome
(in this case, “death by car accident™).

As in Chapter 3, the continuity axiom implies the existence of a utility function
representing =, a function U: ¥ — R such that L > L' if and only if U(L) > U(L").
Our second assumption, the independence axiom, will allow us to impose considerably
more structure on U(-).?

Definition 6.B.4: The preference relation > on the space of simple lotteries ¥

satisfies the independence axiom if for all L, L', L" ¢ & and a € (0, 1) we have
Lzl itandonlyif al + (1 —a)l”"Zal" + (1 —a)L”.

In other words, if we mix each of two lotteries with a third one, then the preference

ordering of the two resulting mixtures does not depend on (is independent of) the
particular third lottery used.

5. The independence axiom was first proposed by von Neumann and Morgenstern (1944) as
an incidental result in the theory of games.
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L v
Heads Heads
z
Tails Tails
L L
if and only if
Lz L

Suppose, for example, that L= L' and a = 1. Then 1L + 4L" can be thought of
as the compound lottery arising from a coin toss in which the decision maker gets
L if heads comes up and L if tails does. Similarly, 1L’ + 4L would be the coin toss
where heads results in L’ and tails results in L" (see Figure 6.B.4). Note that
conditional on heads, lottery L + 1L” is at least as good as lottery 1L+ L7 but
conditional on tails, the two compound lotteries give identical results. The indepen-
dence axiom requires the sensible conclusion that 1L + 4L" be at least as good as
i+ 4L

The independence axiom is at the heart of the theory of choice under uncertainty.
1t is unlike anything encountered in the formal theory of preference-based choice
discussed in Chapter 1 or its applications in Chapters 3 to 5. This is so precisely
because it exploits, in a fundamental manner, the structure of uncertainty present in
the model. In the theory of consumer demand, for example, there is no reason to
believe that a consumer’s preferences over various bundies of goods 1 and 2 should
be independent of the quantities of the other goods that he will consume. In the
present context, however, it is natural to think that a decision maker's preference
between two lotteries, say L and L, should determine which of the two he prefers
to have as part of a compound lottery regardless of the other possible outcome of
this compound lottery, say L”. This other outcome L’ should be irrelevant to his
choice because, in contrast with the consumer context, he does not consume Lot L
together with L” but, rather, only instead of it (if L or L' is the realized outcome).

Exercise 6.B.1: Show that if the preferences > over & satisfy the independence

axiom, then for all € (0,1) and L, L', L" € & we have
L>L ifandonlyif aL+ (1 —o)L">al + (1~ a)L”
and
L~L ifandonlyif aL+ (1l —a)l" ~al + (1 —o)L"
Show also that if L > L' and L” > L”, then aL + (1 — @)L’ >aL’ + (1 —a)L".
As we will see shortly, the independence axiom is intimately linked to the
representability of preferences over lotteries by a utility function that has an expected

utility form. Before obtaining that result, we define this property and study some of
its features.

Figure 6.B.4

The independence
axiom.
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Definition 6.B.5: The utility function U: ¢ — R has an expected utility form if there is
an assignment of numbers (u,, ..., uy) to the NV outcomes such that for every
simple lottery L = (p,, ..., py) € & we have

ULy = uypy+ - + Unpp.

A utility function U:¥ — R with the expected utility form is called a
von Neumann-Morgenstern (v.N-M) expected utility function.

Observe that if we let L denote the lottery that yields outcome n with probability
one, then U(L") = u,. Thus, the term expected utility is appropriate because with the
v.N-M expected utility form, the utility of a lottery can be thought of as the expected
value of the utilities u, of the N outcomes.

The expression U(L) =3, u,p, is a general form for a linear function in the
probabilities (p,, . . ., px). This linearity property suggests a useful way to think about
the expected utility form.

- Proposition 6.B.1: A utility function U: ¥ — R has an expected utility form if and only
it it is /inear, that is, if and only if it satisfies the property that

X K
U( Y a,(L,,) = ’;1 a U(Ly) (6.B.1)

k=1

for any K lotteries L, € £,k = 1,..., K, and probabilities (a,, .. ., ax) 20, 3 ap = 1.

Proof: Suppose that U(-) satisfies property (6.B.1). We can write any L = (py,..., py)
as a convex combination of the degenerate lotteries (L', ..., L¥), thatis, L = ¥ p,L"
We have then U(L) = U(T, p,L") =Y, p.U(L") =3, pyu,. Thus, U(-) has the
expected utility form.

In the other direction, suppose that U(-) has the expected utility form, and
consider any compound lottery (L,,..., Ly;a,,...,ax), where L, = (p, ..., pk).
Its reduced lottery is L' = Y, o, L,. Hence,

U(? a,L.) = Zﬂ: u,(g a,,p:) = ;a.<zn: u,,p,'f) = ;a,‘ U(Ly).

Thus, property (6.B.1) is satisfied. =

i i o, el AU T

The expected utility property is a cardinal property of utility functions defined on
the space of lotteries. In particular, the resuit in Proposition 6.B.2 shows that the
expected utility form is preserved only by increasing linear transformations.

Proposition 6.B.2: Suppose that U & — Ris a v.N-M expected utility function for the
preference relation = on . Then J: & — R is another v.N-M utility function for
> if and only if there are scalars §> 0 and y such that U(L) = fU(L) + y for
every Le ¥.

Proof: Begin by choosing two lotteries L and L with the property that LxLxL
for all Le #.5 If L ~ L, then every utility function is a constant and the result
follows immediately. Therefore, we assume from now on that L > L.

6. These best and worst lotteries can be shown to exist. We could, for example, choose a
maximizer and a minimizer of the linear, hence continuous, function U(-) on the simplex of
probabilities, a compact set.
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Note first that if U(-) is a v.N~M expected utility function and O(L) = BUL) + v,
then

X K
0( Y akLk> = /iU( Z; akL.> +7

ﬂ‘: i “kU(Lk)] +7

i & [BU(LL) +7]

k=1

I
[Inetd]

a, O(L,).
k=1

Since J(-) satisfies property (6.B.1), it has the expected utilit~y form.

For the reverse direction, we want to show that if both U(+) a~nd U(-) have the
expected utility form, then constants § > 0 and y exist such that U(L) = BULY + 7
for all Le . To do so, consider any lottery L € %, and define 4, € [0,1] by

U(L) = 4, UD) + (1 = A)UL).
Thus
_ UL - UW)
U(L) - U(L)
Since i, U(L) + (1 — A )U(L) = U(AL+ (1 =)L) and U(") reprfsenfs the pl"efer-
ences >, it must be that L ~ 4, L + (1 — A,.)L. But if so, then since U(") is also linear
and represents these same preferences, we have
U = U(aL + (1 = 4)D)
=2, 0@ + (1 - 2.)0(L)
= ,(0(D) - Oy + 0.
Substituting for 4, from (6.B.2) and rearranging terms yields the conclusion that
U(L) = BU(L) + 7, where

(6.B.2)

L

. 0L - 0w
T U@y - U

and e .
U(L) - UL)

7= 00 - VW 5 FE =y

This completes the proof =

A consequence of Proposition 6.B.2 is that for a utility function with the expected
utility form, differences of utilities have meaning. For example, if there_are four
outcomes, the statement “the difference in utility between outcomes 1 and 2 is greater
than the difference between outcomes 3 and 4,” u, — u; > u; — Uy, is equivalent to

1 1 1
Uy + 3ug > qus + 3.

Therefore, the statement means that the lottery L = (4,0,0,}) is preferred to. the
lottery L' = (0, 4, 1, 0). This ranking of utility differences is preserved by all linear
transformations of the v.N-M expected utility function.
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Note that if a preference relation > on & is representable by a utility function
U(") that has the expected utility form, then since a linear utility function is
continuous, it follows that > is continuous on .%. More importantly, the preference
relation > must also satisfy the independence axiom. You are asked to show this in
Exercise 6.B.2.

by fus TR R

~

utility function U(-) that has the expected utility form, then > satisfies the
independence axiom.

Exercise 6.B.2: Show that if the preference relation > on & is represented by a

The expected utility theorem, the central result of this section, tells us that the
converse is also true.

The Expected Utility Theorem

&
g
=
gs
%
=
%
#
“f
§

The expected utility theorem says that if the decision maker’s preferences over lotteries
satisfy the continuity and independence axioms, then his preferences are representable
by a utility function with the expected utility form. It is the most important result in
the theory of choice under uncertainty, and the rest of the book bears witness to its
usefulness.

Before stating and proving the result formally, however, it may be helpful to
attempt an intuitive understanding of why it is true.

Consider the case where there are only three outcomes. As we have already
observed, the continuity axiom insures that preferences on lotteries can be represented
by some utility function. Suppose that we represent the indifference map in the
simplex, as in Figure 6.B.5. Assume, for simplicity, that we have a conventional
map with one-dimensional indifference curves. Because the expected utility form is
linear in the probabilities, representability by the expected utility form is equivalent
to these indifference curves being straight, parallel lines (you should check this).
Figure 6.B.5(a) exhibits an indifference map satisfying these properties. We now argue
that these properties are, in fact, consequences of the independence axiom.

Indifference curves are straight lines if, for every pair of lotteries L, L', we have
that L ~ L’ implies aL + (1 — a)L’ ~ L for all x & [0,1]. Figure 6.B.5(b) depicts a
situation whcre‘ the indifference curve is not a straight line; we have L' ~ L but

s RS R BRI I A £ eyt A

we 885 Geometric explanation of the expected utility theorem. (a) % is representable by a utility function with the expected
lity form. (b) Contradiction of the independence axiom. (c) Contradiction of the independence axiom.
e

3 3
Direction of Direction of i oy2pe
Increasing Increasing R
Desirability Desirability Direction of
irection ol
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{L' + 1L > L. This is equivalent to saying that
0+ AL > 4L +4L. (6.B.3)

But since L ~ L', the independence axiom implies that we must have 1L + L ~
4L + 1L (see Exercise 6.B.1). This contradicts (6.B.3), and so we must conclude that
indifference curves are straight lines.

Figure 6.B.5(c) depicts two straight but nonparallel indifference lines. A violation
of the independence axiom can be constructed in this case, as indicated in the figure.
There we have L > L' (in fact, L ~ L), but 4L + 3L" 2= {L' + }L" does not hold for
the lottery L” shown in the figure. Thus, indifference curves must be parallel, straight
lines if preferences satisfy the independence axiom.

In Proposition 6.B.3, we formally state and prove the expected utility theorem.

Proposition 6.B.3: (Expected Utility Theorem) Suppose that the rational preference

relation = on the space of lotteries ¥ satisfies the continuity and independence
axioms. Then > admits a utility representation of the expected utility form. That

is, we can assign a number v, to each outcome n =1,..., N in such a manner
that for any two lofteries L = (p,,...,py) and L' = (p3, ..., py), we have
N N
Lzl ifandonlyit Y u,p,2 Y u,Dh (6.B.4)
n=1 n=1

Proof: We organize the proof in a succession of steps. For simplicity, we assume that
there are best and worst lotteries in %, L and L (so, L > L3> L for any Le ). If
I ~ L, then all lotteries in & are indifferent and the conclusion of the proposition
holds trivially. Hence, from now on, we assume that L>L.

Step l. If L>L and 2e(0,1), then L> oL + (1 —a)L' > L'.

This claim makes sense. A nondegenerate mixture of two lotteries will hold a
preference position strictly intermediate between the positions of the two lotteries.
Formally, the claim follows from the independence axiom. In particular, since L > L,
the independence axiom implies that (recall Exercise 6.B.1)

L=aL+(l —a)L>al+(1 —a)L'>al +(1 —2)L'=L'.

Step 2. Let a,[0,1]. Then BL+ (1 — p)L>aL + (1 —a)L if and only if
B> a

Suppose that § > a. Note first that we can write
BL+ (1 —PL=yL+ (1 -l + (1 —a)L],
where y = [(f — a)/(1 — a)] € (0, 1]. By Step 1, we know that L >al + (1 — a)L.
Applying Step 1 again, this implies that yL + (1 — y)(@L + (1 — a)L) > oL + (1 — @)L,
and so we conclude that L + (1 — B)L > oL + (1 — a)L.
For the converse, suppose that § < a. If 8 = «, we must have L + (1 — B)L ~
al + (1 —a)L. So suppose that § < a. By the argument proved in the previous

7. In fact, with our assumption of a finite set of outcomes, this can be established as a
consequence of the independence axiom (see Exercise 6.B.3).
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pa_ragraph (reversing the roles of a and B), we must then have al + (1 — )L >
BL+ (1 - BL.

Step 3. For any Le %, there is a unique 2, such that [a,L + (1 - o )L] ~ L.

Existence of such an «, is implied by the continuity of > and the fact that [ and L
are, respectively, the best and the worst lottery. Uniqueness follows from the result
of Step 2.

The existence of «, is established in 2 manner similar to that used in the proof of Proposition
3.C.1. Specifically, define the sets

{ee[0,1):2L + (1 —a)L = L} and {ae[01]: Lzl + (1 —a)L}.

By the continuity and completeness of >, both sets are closed, and any a € {0, 1] belongs to
at least one of the two sets. Since both sets are nonempty and [0, 1] is connected, it follows
(ha_l there is some « belonging to both. This establishes the existence of an %, such that
ol + (0 —a)l ~ L.

Step 4. The function U: £ — R that assigns U(L) = a, for all Le ¥ represents
the preference relation .
Observe that, by Step 3, for any two lotteries L, L' € &, we have
Lz L' fand onlyif a L+ (1 ~ap)lza L+ (1~ o)L
Thus, by Step 2, L > L' if and only if a, > a,..

Step 5. The utility function U(-) that assigns U(L) = a; for all Le & is linear
and therefore has the expected utility form.

We want to show that for any L, L' € &, and f e [0, 1], we have U(L + (1 — B)L) =
SU(L) + (1 — P)U(L’). By definition, we have

L ~ ULL+(1-UL)L
ind

L ~ UL+ -UL))L.
Therefore, by the independence axiom (applied twice),

BL+ (1 =B ~ BLUWL + (1 = U(LYLY + (1 - pL’
~ BLUML + (1 = U)LY + (1 = HLUL)IL + (1 - UL)L].

Rearranging terms, we see that the last lottery is algebraically identical to the
ottery

(AU + (1 = HULNL + [1 - BUL) — (1 — HULY]L.

n other words, the compound lottery that gives lottery [U(L)L + (1 — U(L))L] with
»robability § and lottery [U(L)L + (1 — U(L))L] with probability (1 — f) has the
ame reduced lottery as the compound lottery that gives lottery L with probability
BU(L) + (1 — B)U(L")] and lottery L with probability [1 — SU(L) — (1 — AU(LY)].
"hus

BL+ (1 —PL ~ [BUL) + (1 = HULNIL + [1 - BUL) ~ (1 — HUL)]IL.
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By the construction of U(-) in Step 4, we therefore have
U(BL + (1 — L) = BU(L) + (1 = BYU(L),

as we wanted.

Together, Steps 1 to § establish the existence of a utility function representing >
that has the expected utility form. m

Discussion of the Theory of Expected Utility

A first advantage of the expected utility theorem is technical: It is extremely
convenient analytically. This, more than anything else, probably accounts for its
pervasive use in economics. It is very easy to work with expected utility and very
difficult to do without it. As we have already noted, the rest of the book attests to
the importance of the result. Later in this chapter, we will explore some of the
analytical uses of expected utility.

A second advantage of the theorem is normative: Expected utility may provide
a valuable guide to action. People often find it hard to think systematically about
risky alternatives. But if an individual believes that his choices should satisfy the
axioms on which the theorem is based (notably, the independence axiom), then the
theorem can be used as a guide in his decision process. This point is illustrated in
Example 6.B.1.

Exainple 6.B.1: Expected Utility as a Guide to Introspection. A decision maker may
not be able to assess his preference ordering between the lotteries L and L’ depicted
in Figure 6.B.6. The lotteries are too close together, and the differences in the
probabilities involved are too small to be understood. Yet, if the decision maker
believes that his preferences should satisfy the assumptions of the expected utility
theorem, then he may consider L” instead, which is on the straight line spanned by
L and L' but at a significant distance from L. The lottery L" may not be a feasible
choice, but if he determines that L” > L, then he can conclude that L’ > L. Indeed,
if L” > L, then there is an indifference curve separating these two lotteries, as shown
in the figure, and it follows from the fact that indifference curves are a family of
parallel straight lines that there is also an indifference curve separating L' and L, so
that L' > L. Note that this type of inference is not possible using only the general

L">L
implies L' >~ L

Increasing
Preference
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{2 500000 dollars)

L= L, + (16, -.11,.01)
Ly =L, + (10, -1, 01)

a = ¢ (length of base)

Parallet c+b=a

(0 dollars) (500 000 dollars)

choice theor){ of_ Chapter 1 because, without the hypotheses of the expected utility
theorem, the indifference curves need not be straight lines (with a general indifference
map, we could perfectly well have L” > L and L > L’).

A concrete example of this use of the expected utility theorem is developed in
Exercise 6.B4. m

‘ As a descriptive theory, however, the expected utility theorem (and, by implication,
its central assumption, the independence axiom), is not without difficulties. Examples
6.B.2 and 6.B.3 are designed to test its plausibility.

Exan;nple 6.B.2: The Allais Paradox. This example, known as the Allais paradox [from
Allais (1953)], constitutes the oldest and most famous challenge to the expected utility

theorem. It is a thought experiment. There are three possible monetary prizes (so the
number of outcomes is N = 3):

First Prize
2 500000 dollars

Second Prize
500000 dollars

Third Prize

0 dollars
Figure 6.B.6

Expected utility as a

Th L. . . . . .
e introspection e decision maker is subjected to two choice tests. The first consists of a choice

between the lotteries L, and L:
L, =(,1,0) L; = (.10, .89, .01).
The second consists of a choice between the lotteries L, and Lj:
L, =(0,.11, .89) L, = (10,0, .90).

The fo.ur lotteries involved are represented in the simplex diagram of Figure 6.B.7.
It is common for individuals to express the preferences L, > L} and L} > L,8

8. In our classroom experience, roughly half the students choose this way.

Figure 6.B.7

Depiction of the Allais
paradox in the simplex.
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The first choice means that one prefers the certainty of receiving 500000 dollars over
a lottery offering a 1/10 probability of getting five times more but bringing with it
a tiny risk of getting nothing. The second choice means that, all things considered, a
1/10 probability of getting 2500000 dollars is preferred to getting only 500000
dollars with the slightly better odds of 11/100.

However, these choices are not consistent with expected utility. This can be seen
in Figure 6.B.7: The straight lines connecting L, to L} and L, to L} are parallel.
Therefore, if an individual has a linear indifference curve that lies in such a way that
L, is preferred to L}, then a parallel linear indifference curve must make L, preferred
to L}, and vice versa. Hence, choosing L, and L; is inconsistent with preferences
satisfying the assumptions of the expected utility theorem.

More formally, suppose that there was a v.N-M expected utility function. Denote
by u,s, Ugs, and ug the utility values of the three outcomes. Then the choice L, > L}
implies

s > (10)uy5 + (89)ugs + (01)u,.
Adding (.89)u, — (.89)u,s to both sides, we get
(1) ugs + (89 uy > (10)uy5 + (90)ug,
and therefore any individual with a v.N-M utility function must have L, > L3. »

There are four common reactions to the Allais paradox. The first, propounded
by J. Marshack and L. Savage, goes back to the normative interpretation of the
theory. It argues that choosing under uncertainty is a reflective activity in which one
should be ready to correct mistakes if they are proven inconsistent with the basic
principles of choice embodied in the independence axiom (much as one corrects
arithmetic mistakes).

The second reaction maintains that the Allais paradox is of limited significance
for economics as a whole because it involves payoffs that are out of the ordinary and
probabilities close to 0 and 1.

A third reaction seeks to accommodate the paradox with a theory that defines
preferences over somewhat larger and more complex objects than simply the ultimate
lottery over outcomes. For example, the decision maker may value not only what
he receives but also what he receives compared with what he might have received
by choosing differently. This leads to regret theory. In the example, we could have
L, > L} because the expected regret caused by the possibility of getting zero in lottery

\» when choosing L, would have assured 500000 dollars, is too great. On the other
hand, with the choice between L, and Lj, no such clear-cut regret potential exists;
the decision maker was very likely to get nothing anyway.

The fourth reaction is to stick with the original choice domain of lotteries but to
give up the independence axiom in favor of something weaker. Exercise 6.B.5 develops
this point further.

Example 6.B.3: Machina’s paradox. Consider the following three outcomes: “a trip
to Venice,” “watching an excellent movie about Venice,” and “staying home.”
Suppose that you prefer the first to the second and the second to the third.

Now you are given the opportunity to choose between two lotteries. The first
lottery gives “a trip to Venice” with probability 99.9%; and “watching an excellent
movie about Venice” with probability 0.1%. The second lottery gives “a trip to

A

hap e

A
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Venice,” again with probability 99.9% and “staying home” with probability 0.1%,. The
independence axiom forces you to prefer the first lottery to the second. Yet, it would
be understandable if you did otherwise. Choosing the second lottery is the rational
thing to do if you anticipate that in the event of not getting the trip to Venice, your
tastes over the other two outcomes will change: You will be severely disappointed
and will feel miserable watching a movie about Venice.

The idea of disappointment has parallels with the idea of regret that we discussed
in connection with the Allais paradox, but it is not quite the same. Both ideas refer
to the influence of “what might have been” on the level of well-being experienced,
and it is because of this that they are in conflict with the independence axiom. But
disappointment is more directly concerned with what might have been if another
outcome of a given lottery had come up, whereas regret should be thought of as
regret over a choice not made. m

Because of the phenomena illustrated in the previous two examples, the search
for a useful theory of choice under uncertainty that does not rely on the independence
axiom has been an active area of research [see Machina (1987) and also Hey and
Orme (1994)]. Nevertheless, the use of the expected utility theorem is pervasive in
economics.

An argument sometimes made against the practical significance of violations of the
independence axiom is that individuals with such preferences would be weeded out of the
marketplace because they would be open to the acceptance of so-called “Dutch books,” that
is, deals leading to a sure loss of money. Suppose, for example, that there are three lotteries
such that L > L’ and L > L” but, in violation of the independence axiom, aL’ + (1 — a)L" > L
for some « € (0, 1). Then, when the decision maker is in the initial position of owning the right
to lottery L, he would be willing to pay a small fee to trade L for a compound lottery yielding
lottery L’ with probability « and lottery L” with probability (1 — «). But as soon as the first
stage of this lottery is over, giving him either L' or L” we could get him to pay a fee to trade
this lottery for L. Hence, at that point, he would have paid the two fees but would
otherwise be back to his original position.

This may well be a good argument for convexity of the not-better-than sets of >, that is,
for it to be the case that L2 al’ + (1 — «)L” whenever L 2> L' and L > L". This property is
implied by the independence axiom but is weaker than it. Dutch book arguments for the full
independence axiom are possible, but they are more contrived [see Green (1987)).

Finally, one must use some caution in applying the expected utility theorem
because in many practical situations the final outcomes of uncertainty are influenced
by actions taken by individuals. Often, these actions should be explicitly modeled
but are not. Example 6.B.4 illustrates the difficulty involved.

Example 6.B.4: Induced preferences. You are invited to a dinner where you may be
offered fish (F) or meat (M). You would like to do the proper thing by showing up
with white wine if F is served and red wine if M is served. The action of buying the
wine must be taken before the uncertainty is resolved.

Suppose now that the cost of the bottle of red or white wine is the same and that
you are also indifferent between F and M. If you think of the possible outcomes as
F and M, then you are apparently indifferent between the lottery that gives F with
certainty and the lottery that gives M with certainty. The independence axiom would
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then seem to require that you also be indifferent to 2 lottery that gives F or M with
probability 3 each. But you would clearly not be indifferent, since knowing that either
F or M will be served with certainty allows you to buy the right wine, whereas, if
you are not certain, you will either have to buy both wines or else bring the wrong
wine with probability $.

Yet this example does not contradict the independence axiom. To appeal to the
axiom, the decision framework must be set up so that the satisfaction derived from
an outcome does not depend on any action taken by the decision maker before the
uncertainty is resolved. Thus, preferences should not be induced or derived from ex
ante actions.® Here, the action “acquisition of a bottle of wine” is taken before the
uncertainty about the meal is resolved.

To put this situation into the framework required, we must include the ex ante
action as part of the description of outcomes. For example, here there would be four
outcomes: “bringing red wine when served M,” “bringing white wine when served
M, “bringing red wine when served F,” and “bringing white wine when served F.”
For any underlying uncertainty about what will be served, you induce a lottery over
these outcomes by your choice of action. In this setup, it is quite plausible to be
indifferent among “having meat and bringing red wine,” “having fish and bringing
white wine,” or any lottery between these two outcomes, as the independence axiom
requires. =

Although it is not a contradiction to the postulates of expected utility theory, and
therefore it is not a serious conceptual difficuity, the induced preferences example
nonetheless raises a practical difficulty in the use of the theory. The example illustrates
the fact that, in applications, many economic situations do not fit the pure framework
of expected utility theory. Preferences are almost always, to some extent, induced.'®

The expected utility theorem does impose some structure on induced preferences. For
example, suppose the complete set of outcomes is B x A, where B = {b,, ..., by} is the set of
possible realizations of an exogenous randomness and A is the decision maker's set of possible
(ex ante) actions. Under the conditions of the expected utility theorem, for every a€ A and
b, € B, we can assign some utility value u,(a) to the outcome (b,, a). Then, for every exogenous
lottery L ={(p,, ..., Pn)on B, wecan define a derived utility function by maximizing expected
utility:

U(L) = Max Y, p,us(a).

aed

In Exercise 6.B.6, you are asked to show that while U(L), 2 function on %, need not be linear,

9. Actions taken ex post do not create problems. For example, suppose that u,(a,) is the utility
derived from outcome n when action a, is taken after the realization of uncertainty. The decision
maker therefore chooses a, to solve Max, ¢, Us(a.) where A, is the set of possible actions when
outcome n occurs. We can then let u, = Max, . 4, 4,(d.) and evaluate lotteries over the N outcomes
as in expected utility theory.

10. Consider, for example, preferences for lotteries over amounts of money available tomorrow.
Unless the individual’s preferences over consumption today and tomorrow are additively separable,
his decision of how much to consume today-—a decision that must be made before the resolution
of the uncertainty concerning tomorrow’s wealth—affects his preferences over these lotteries in a
manner that conflicts with the fulfiliment of the independence axiom.
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it is nonetheless always convex; that is,
Ul + (1 —a)L) < aU(L) + (1 — )U(L).

Figure 6.B.8 represents an indifference map for induced preferences in the probability simplex
for a case where N = 3.

Money Lotteries and Risk Aversion

In many economic settings, individuals seem to display aversion to risk. In this
section, we formalize the notion of risk aversion and study some of its properties
FrO@ this section through the end of the chapter, we concentrate on risk);
alter.nanvcs whose outcomes are amounts of money. It is convenient, however, when
dealmg with monetary outcomes, to treat money as a continuous variable. étrictly
speaking, the derivation of the expected utility representation given in Section 6.B
assumeq a finite number of outcomes. However, the theory can be extended wi'th
some minor technical complications, to the case of an infinite domain. We be ,in b
briefly discussing this extension. o

Lotteries over Monetary Outcomes and the Expected Utility Framework

Suppf)se that we denote amounts of money by the continuous variable x. We can
descn.be a monetary lottery by means of a cumulative distribution function F: R — [0,1]
That is, for any x, F(x) is the probability that the realized payoff is less than or ec;uai
to x. 'Note that if the distribution function of a lottery has a density function f(-)
associated with it, then F(x) = X, f(t) dt for all x. The advantage of a formalism
based og distribution functions over one based on density functions, however, is that
the first is completely general. It does not exclude a priori the possibility of a &iscrete
set of outcomes. For example, the distribution function of a lottery with only three
monetary outcomes receiving positive probability is illustrated in Figure 6.C.1

I\.lote that distribution functions preserve the linear structure of loneries.(:-as do
density functions). For example, the final distribution of money, F(-), induced by a
con'lpou:.ld lottery (L, ..., Lg; &y, ..., ax) is just the weighted average of the distri-
butions induced by each of the lotteries that constitute it: F(x) = 3, o, F,(x), where
Fi(-) is the distribution of the payoff under lottery L,. e
From this point on, we shall work with distribution functions to describe lotteries
over monetary outcomes. We therefore take the lottery space £ to be the set of all

Figure 6.B.8

An indifference map
for induced preferences
over lotteries on

B ={b,, by, bl}-
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distribution functions over nonnegative amounts of money, or, more generally, over an
interval [a, + o). ]

As in Section 6.B, we begin with a decision maker who has rational preferences
> defined over #. The application of the expected utility theorem to outcomes
geﬁned by a continuous variable tells us that under the assumptions of the theorefn,
there is an assignment of utility values u(x) to nonnegative am.ounts of money with
the property that any F(-) can be evaluated by a utility function U(*) of the form

U(F) = Ju(x) dF(x). 6.C1H

Expression (6.C.1) is the exact extension of the expected u'tility form t? the current
setting. The v.N—-M utility function U(-) is the mathematical expectation, over the
realizations of x, of the values u(x). The latter takes the place of the values (u,, . . - uy)
used in the discrete treatment of Section 6.B.11 Note that, as before, U(-) is linear
in F(*). .

The strength of the expected utility representation is that it preserves 'tl?e very
useful expectation form while making the utility of monctar.y lo.ttenes sensitive not
only to the mean but also to the higher moments of the distribution of the monetary
payoffs. (See Exercise 6.C.2 for an illuminating quadratic exarflple.)

It is important to distinguish between the utility function U(-), defined on
lotteries, and the utility function () defined on sure amounts of money. For t?ns
reason, we call U(-) the von-Neumann—-Morgenstern (v.N-M) expected utility function
and u(-) the Bernoulli utility function.'?

11. Given a distribution function F(x), the expected value of a funct.ion.dt(x) is given by
{ ¢(x) dF(x). When F() has an associated density function f(x), this CXPIFS'SIOH is ‘exactly C.ql:lal to
J #(x)f(x) dx. Note also that for notational simplicity, we do nt.n e-xphcﬂly write the limits of
integration when the integral is over the full range of possible realizations of x. - ‘

12. The terminology is not standardized. It is common to call u('? the v.N-M utility I.'uncuon
or the expected utility function. We prefer to have a name that is specific lt? the u(+) fu.ncuon, and
so we call it the Bernoulli function for Daniel Bernoulli, who first used an instance of it,

Figure 6.C.1
A distribution function,
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Although the general axioms of Section 6.B yield the expected utility representation,
they place no restrictions whatsoever on the Bernoulli utility function u(-). In large
part, the analytical power of the expected utility formulation hinges on specifying
the Bernoulli utility function u(-) in such a manner that it captures interesting
economic attributes of choice behavior. At the simplest level, it makes sense in the
current monetary context to postulate that u(-) is increasing and continuous.'> We
maintain both of these assumptions from now on.

Another restriction, based on a subtler arg is the bounded (above and below)
of u(-). To argue the plausibility of boundedness above (a similar argument applies for
boundedness below), we refer to the famous St. Petersburg—Menger paradox. Suppose that
u() is unbounded, so that for every integer m there is an amount of money x,, with u(x,,) > 2™
Consider the following lottery: we toss a coin repeatedly until tails comes up. If this happens
in the mth toss, the lottery gives a monetary payoff of x,,. Since the probability of this outcome
is 1/2™, the expected utility of this lottery is ¥ m.; a(x, )(1/2™) = T 0., (2™X(1/2™) = + 0. But
this means that an individual should be wiiling to give up ail his wealth for the opportunity
to play this lottery, a patently absurd conclusion (how much would you pay?).'*

The rest of this section concentrates on the important property of risk aversion,
its formulation in terms of the Bernoulli utility function u(+), and its measurement.'?

Risk Aversion and Its Measurement

The concept of risk aversion provides one of the central analytical techniques of
economic analysis, and it is assumed in this book whenever we handle uncertain
situations. We begin our discussion of risk aversion with a general definition that
does not presume an expected utility formulation.

Detinition 6.C.1: A decision maker is a risk averter (or exhibits risk aversion) if for any

lottery F(-), the degenerate lottery that yields the amount j' x dF(x) with certainty is
at least as good as the lottery F(-) itself. If the decision maker is always [i.e., for
any F(-)] indifferent between these two lotteries, we say that he is risk neutral.
Finally, we say that he is strictly risk averse it indifference holds only when the
two lotteries are the same [i.e., when F(-) is degenerate].

If preferences admit an expected utility representation with Bernoulli utility
function u(x), it follows directly from the definition of risk aversion that the decision
maker is risk averse if and only if

Ju(x) dF(x) < u(jx dF(x)) for all F(-). (6.C.2)

Inequality (6.C.2) is called Jensen's inequality, and it is the defining property of
a concave function (see Section M.C of the Mathematical Appendix). Hence, in the

13. In applications, an exception to continuity is sometimes made at x =0 by setting
u(0) = ~oco.

14. In practice, most utility functions commonly used are not bounded. Paradoxes are avoided
because the ciass of distributions allowed by the modeler in each particular application is a limited
one. Note also that if we insisted on u(-) being defined on (—co, o0) then any nonconstant u(-)
could not be both concave and bounded (above and below).

15. Arrow (1971) and Pratt (1964) are the classical references in this area.

A ame.
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Figure 6.C.2 Risk aversion (a) and risk neutrality (b).

context of expected utility theory, we see that risk aversion is equivalent to the
concavity of u(+) and that strict risk aversion is equivalent to the strict concavity of
u(-). This makes sense. Strict concavity means that the marginal utility of money is
decreasing. Hence, at any level of wealth x, the utility gain from an extra dollar is
smaller than (the absolute value of) the utility loss of having a dollar less. It follows
that a risk of gaining or losing a dollar with even probability is not worth taking.
This is illustrated in Figure 6.C.2(a); in the figure we consider a gamble involving
the gain or loss of 1 dollar from an initial position of 2 dollars. The (v.N-M )utility
of this gambie, Ju(1) + $u(3), is strictly less than that of the initial certain position u(2).

For a risk-neutral expected utility maximizer, (6.C.2) must hold with equality for
all F(-). Hence, the decision maker is risk neutral if and only if the Bernoulli utility
function of money u(-) is linear. Figure 6.C.2(b) depicts the (v.N-M) utility
associated with the previous gambie for a risk neutral individual. Here the individual
is indiflerent between the gambles that yield a mean wealth level of 2 dollars and a
certain wealth of 2 dollars. Definition 6.C.2 introduces two useful concepts for the
analysis of risk aversion.

Definition 6.C.2: Given a Bernouili utility function u(-) we define the following

concepts:
(i) The certainty equivalent of F(-), denoted c(F, u), is the amount of money
for which the individual is indifferent between the gamble F(-) and the
certain amount ¢(F, u); that is,

u(clF, u)) = J‘u(x) dF(x). (6.C.3)

(i) For any fixed amount of money x and positive number ¢, the probability
premium denoted by 7(x, &, u), is the excess in winning probability over fair
odds that makes the individual indifferent between the certain outcome x
and a gamble between the two outcomes x + ¢ and x — &. That is

ulx) = (3 + n(x, & U ulx + &) + 3 — nlx, & L)u(x —g). (6.C4)

These two concepts are illustrated in Figure 6.C.3. In Figure 6.C.3(a), we exhibit
the geometric construction of c(F, u) for an even probability gamble between 1 and
3 dollars. Note that c(F, u) < 2, implying that some expected return is traded for
certainty. The satisfaction of the inequality c(F, u) < § x dF(x) for all F(}is, in fact,
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Figure 6.C.3 The certainty equivalent (a) and the probability premium (b).

equivalent to the decision maker being a risk averter. To see this, observe that since
u(-) is nondecreasing, we have

c(F,u) < Jx dF(x) < u(c(F,u)) < u(Jx dF(x)) < Iu(x) dF(x) < u<J'x dF(x)),

where the last < follows from the definition of ¢(F, u).

In Figure 6.C.3(b), we exhibit the geometric construction of n(x, ¢, u). We see that
n(x, g, u) > 0; that is, better than fair odds must be given for the individual to accept
the risk. In fact, the satisfaction of the inequality n(x, ¢, u) > 0 for all x and ¢ > 0 is
also equivalent to risk aversion (see Exercise 6.C.3).

These points are formally summarized in Proposition 6.C.1.

Proposition 6.C.1: Suppose a decision maker is an expected utility maximizer with a

Bernoulli utility function u(-) on amounts of money. Then the following properties
are equivalent:
(i) The decision maker is risk averse.
(i) u(-) is concave.'®
(iii) e(F, u) < | x dF(x) for all F(-).
(iv) n(x, ¢ u) >0 for all x, &.

Examples 6.C.1 to 6.C.3 illustrate the use of the risk aversion concept.

Example 6.C.1: Insurance. Consider a strictly risk-averse decision maker who has an
initial wealth of w but who runs a risk of a loss of D dollars. The probability of the
loss is m. It is possible, however, for the decision maker to buy insurance. One unit
of insurance costs q dollars and pays 1 dollar if the loss occurs. Thus, if « units of
insurance are bought, the wealth of the individual will be w — agq if there is no loss
and w — aqg — D + a if the loss occurs. Note, for purposes of later discussion, that
the decision maker’s expected wealth is then w — D + a(n — g). The decision maker’s
problem is to choose the optimal level of «. His utility maximization problem is

16. Recall that if u(-) is twice differentiable then concavity is equivalent to u"(x) < 0 for
all x.
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therefore

Max (1 — m)u(w — 2g) + nu(w —ag — D + a).

@20
If a* is an optimum, it must satisfy the first-order condition:

—q{l —mu'(w—a*q) +a(l —Qu'(w—D + o«*(1 —q)) <0,

with equality if x* > 0.

Suppose now that the price g of one unit of insurance is actuarially fair in the
sense of it being equal to the expected cost of insurance. That is, g = 7. Then the
first-order condition requires that

uw—D+a*(l —n)) —u(w—a*n) <0,

with equality if a* > 0.
Since u'(w — D) > u'(w), we must have a* > 0, and therefore

w'(w—D + a*(l — r)) = u'(w— a*n).
Because u'(-) is strictly decreasing, this implies
w—=D+a¥(l —n)=w—a*n,
or, equivalently,
a*=D.

Thus, if insurance is actuarially fair, the decision maker insures completely. The
individual’s final wealth is then w — nD, regardless of the occurrence of the loss.

This proof of the complete insurance result uses first-order conditions, which is
instructive but not really necessary. Note that if g = , then the decision maker’s
expected wealth is w — =D for any a. Since setting « = D allows him to reach w — nD
with certainty, the definition of risk aversion directly implies that this is the optimal
level of a. m

Example 6.C.2: Demand for a Risky Asset. An asset is a divisible claim to a financial
return in the future. Suppose that there are two assets, a safe asset with a return of
1 dollar per dollar invested and a risky asset with a random return of z dollars per
dollar invested. The random return z has a distribution function F(z) that we assume
satisfies j z dF(z) > 1; that is, its mean return exceeds that of the safe asset.

An individual has initial wealth w to invest, which can be divided in any way
between the two assets. Let « and f§ denote the amounts of wealth invested in the
risky and the safe asset, respectively. Thus, for any realization z of the random return,
the individual's portfolio (a, B) pays az + B. Of course, we must also havea + f = w.

The question is how to choose « and B. The answer wiil depend on F(-), w,
and the Bernoulli utility function u(-). The utility maximization problem of the
individual is
Max Iu(az + B) dF(z)

ap20
st.a+ f=w.

Equivalently, we want to maximize | u(w + «(z — 1)) dF(z) subject to 0 < a < w. If
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a* is optimal, it must satisfy the Kuhn-Tucker first-order conditions:!”

<0 ifa*<w,

P(a*) = J‘u’(w +a*fz -1 -1) dF(z){>o fa*>0

Note that j z dF(z) > | implies ¢(0) > 0. Hence, a* = 0 cannot satisfy this first-order
condition. We conclude that the optimal portfolio has a* > 0. The general principle
illustrated in this example, is that if a risk is actuarially favorable, then a risk averter
will always accept at least a small amount of it.

This same principle emerges in Example 6.C.1 if insurance is not actuarially fair.
In Exercise 6.C.1, you are asked to show that if ¢ > =, then the decision maker will
not fully insure (i.e., will accept some risk). m

Example 6.C.3: General Asset Problem. In the previous example, we could define the
utility U(,f) of the portfolio (a,8) as U(a,f) = [ u(az + B) dF(z). Note that U(-) is
then an increasing, continuous, and concave utility function. We now discuss an
important generalization. We assume that we have N assets (one of which may be
the safe asset) with asset n giving a return of z, per unit of money invested. These
returns are jointly distributed according to a distribution function F(z,, ..., zy). The
utility of holding a portfolio of assets (a,, ..., ay) is then

Ulay,...,ay) = Ju(alzl +- o+ ayzy) dF(zy, ..., zy).

This utility function for portfolios, defined on RY, is also increasing, continuous, and
concave (see Exercise 6.C.4). This means that, formally, we can treat assets as the
usual type of commodities and apply to them the demand theory developed in
Chapters 2 and 3. Observe, in particular, how risk aversion leads to a convex
indifference map for portfolios. m

Suppose that the lotteries pay in vectors of physical goods rather than in money. Formally,
the space of outcomes is then the consumption set R: (all the previous discussion can be
viewed as the special case in which there is a single good). In this more general setting, the
concept of risk aversion given by Definition 6.C.1 is perfectly well defined. Furthermore, if
there is a Bernoulli utility function u: R — R, then risk aversion is still equivalent to the
coneavity of u(-). Hence, we have here another justification for the convexity assumption of
Chapter 3: Under the assumptions of the expected utility theorem, the convexity of preferences
for perfectly certain amounts of the physical commodities must hold if for any lottery with
commodity payoffs the individual always prefers the certainty of the mean commodity bundle
to the lottery itself.

In Exercise 6.C.5, you are asked to show that if preferences over lotteries with commodity
payoffs exhibit risk aversion, then, at given commodity prices, the induced preferences on
money lotteries (where consumption decisions are made after the realization of wealth) are
also risk averse. Thus, in principle, it is possible to build the theory of risk aversion on the
more primitive notion of lotteries over the final consumption of goods.

17. The objective function is concave in a because the concavity of u(-) implies that
Ju"(w + a(z - D)z = 1)* dF(x) < 0.
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The Measurement of Risk Aversion

Now that we know what it means to be risk averse, we can try to measure the extent
of risk aversion. We begin by defining one particularly useful measure and discussing
some of its properties.

Definition 6.C.3: Given a {twice-differentiabie) Bernoulli utility function u(-) for

money, the Arrow—Pratt coefficient of absolute risk aversion at x is defined as
(¥ = —uwx)/U'X).

The Arrow-Pratt measure can be motivated as follows: We know that risk
neutrality is equivalent to the linearity of u(-), that is, to u”(x) = 0 for all x. Therefore,
it seems logical that the degree of risk aversion be related to the curvature of u(").
In Figure 6.C.4, for example, we represent two Bernoulli utility functions u,(-) and
u,(+) normalized (by choice of origin and units) to have the same utility and marginal
utility values at wealth level x. The certainty equivalent for a small risk with mean
x is smaller for u,() than for u, ("), suggesting that risk aversion increases with the
curvature of the Bernoulli utility function at x. One possible measure of curvature
of the Bernoulli utility function u(-) at x is 4"(x). However, this is not an adequate
measure because it is not invariant to positive linear transformations of the utility
function. To make it invariant, the simplest modification is to use u’(x)/u'(x). If we
change sign so as to have a positive number for an increasing and concave u(*), we
get the Arrow—Pratt measure.

A more precise motivation for r,(x) as a measure of the degree of risk aversion
can be obtained by considering a fixed wealth x and studying the behavior of
the probability premium n(x, & u) as & — 0 [for simplicity, we write it as n(e)).
Differentiating the identity (6.C.4) that defines n(-) twice with respect to ¢ (assume
that n(-) is differentiable), and evaluating at & = 0, we get 4’ (0)u'(x) + u"(x) = 0.
Hence

ry(x) = 4n'(0).
Thus, r,(x) measures the rate at which the probability premium increases at certainty
with the small risk measured by £.'® As we go along, we will find additional related
interpretations of the Arrow—Pratt measure.

18. For a similar derivation relating r,(-) to the rate of change of the certainty equivalent with
respect to a small increase in a small risk around certainty, see Exercise 6.C.20.

/u,(')
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Figure 6.C.4

Differing degrees of
risk aversion.
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Note that, up to two integration constants, the utility function u(-) can be
recovered from r,(*) by integrating twice. The integration constants are irrelevant
because the Bernoulli utility is identified only up to two constants (origin and units).
Thus, the Arrow-Pratt risk aversion measure r, (') fully characterizes behavior
under uncertainty.

Example 6.C.4: Consider the utility function u(x) = —e™** for a > 0. Then u'(x) =
ae™™ and u”(x) = —a%e™** Therefore, r(x,u) = a for all x. It follows from the
observation just made that the general form of a Bernoulli utility function with an
Arrow—Pratt measure of absolute risk aversion equal to the constant a > 0 at all x
isu(x) = —ae™™ + fforsomea>0and f. =

Once we are equipped with a measure of risk aversion, we can put it to use in
comparative statics exercises. Two common situations are the comparisons of risk
attitudes across individuals with different utility functions and the comparison of risk
attitudes for one individual at different levels of wealth.

Comparisons across individuals
Given two Bernoulli utility functions u#,(-) and u,(-), when can we say that u,() is

unambiguously more risk averse than u,(-)? Several possible approaches to a
definition seem plausible:

(i) ry(x, uz) = ry(x, uy) for every x.

(ii) There exists an increasing concave function ¥(-) such that u,(x) = ¥ (u,(x))
at all x; that is, u,(-) is a concave transformation of u,(-). [In other words,
u,(-) is “more concave” than u,(-).]

(iti) c(F, u,) < ¢(F, u,) for any F(-).

(iv) n(x, &, uy) = n(x, ¢, u,) for any x and e.

(v) Whenever u,(-) finds a lottery F(-) at least as good as a riskless outcome
X, then u,(+) also finds F(-) at least as good as %. That is, { u,(x) dF(x) > u,(X)
implies § u,(x) dF(x) = u,(%) for any F(-) and %.'°

In fact, these five definitions are equivalent.

Propositlon 6.C.2: Definitions (i) to (v) of the more-risk-averse-than relation are

equivalent.

.Pmo.f: We wi.ll not give a complete proof. (You are asked to establish some of the
1r.nphcatn.ons in Exercises 6.C.6 and 6.C.7.) Here we will show the equivalence of
(i) and (ii) under differentiability assumptions.

Notg, flrst thgt we always have u,(x) = Y(u,(x)) for some increasing function
u.//('); this is true simply because u,(-) and u,(-) are ordinally identical (more money
is preferred to less). Differentiating, we get

uy(x) = ¥'(u, (x)uy(x)
and
u5(x) = ' (u, QN (x) + 9w, )y ()%

Dividing both sides of the second expression by u5(x) >0, and using the first

19. In other words, any risk that u,(-) would accept starting from a position of certainty would
also be accepted by u,(-).
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expression, we get

¥ (uy(x))
ry(x, uz) = ry(x, uy) — —
e
Thus, r,(x, uz) = ry(x, u,) for all x if and only if "(u,) <0 for all u, in the range
of uy(\). m

uy(x).

The more-risk-averse-than relation is a partial ordering of Bernoulli utility
functions; it is transitive but far from complete. Typically, two Bernoulli utility
functions u,(-) and u,(-) will not be comparable; that is, we will have r,(x, u,) > r,(x, u;)
at some x but r,(x’, u,) < r,(x’, u,) at some other x’ # x.

Example 6.C.2 continued: We take up again the asset portfolio problem between a
safe and a risky asset discussed in Example 6.C.2. Suppose that we now have two
individuals with Bernoulli utility functions u,(-) and u,(-), and denote by af and a3
their respective optimal investments in the risky asset. We will show that if u,() is
more risk averse than u,(-), then a% < «f; that is, the second decision maker invests
less in the risky asset than the first.

To repeat from our earlier discussion, the asset allocation problem for u,(-) is

Max Jul(w — o + az) dF(z).

O<axsw

Assuming an interior solution, the first-order condition is
J(z — Duj(w + af[z — 1)) dF(2) = 0. 6.C.5)

The analogous expression for the utility function u,(-) is
$a(af) = J.(z — Duj(w + af[z — 1]) dF(z) = 0. 6.C.6)

As we know, the concavity of u,(-) implies that ¢,(-) is decreasing. Therefore, if
we show that ¢,(a¥) < 0, it must follow that af < af, which is the result we want.
Now, u,(x) = ¥(u,(x)) allows us to write

d5(at) = J(Z — D'y (w + afz ~ 1Duy(w + affz - 1D dF(z) < 0. (6.C.T)

To understand the final inequality, note that the integrand of expression (6.C.7) is
the same as that in (6.C.5) except that it is multiplied by y'(*), a positive decreasing
function of z [recall that u,(-) more risk averse than u,(-) means that the increasing
function () is concave; that is, () is positive and decreasing]. Hence, the integral
(6.C.7) underweights the positive values of (z — 1)uj(w + at[z — 1]), which obtain
for z > 1, relative to the negative values, which obtain for z < 1. Since, in (6.C.5),
the integral of the positive and the negative parts of the integrand added to zero,
they now must add to a negative number. This establishes the desired inequality. =

Comparisons across wealth levels
It is a common contention that wealthier people are willing to bear more risk than
poorer people. Although this might be due to differences in utility functions across
people, it is more likely that the source of the difference lies in the possibility that
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richer people “can afford to take a chance.” Hence, we shall explore the implications
of the condition stated in Definition 6.C.4.

pefinition 6.C.4: The Bernoulli utility function u(-) for money exhibits decreasing
absolute risk aversion if r4(x, u) is a decreasing function of x.

Individuals whose preferences satisfy the decreasing absolute risk aversion
property take more risk as they become wealthier. Consider two levels of initial
wealth x, > x,. Denote the increments or decrements to wealth by z. Then the
individual evaluates risk at x, and x, by, respectively, the induced Bernoulli utility
functions u,(z) = u(x, + z) and u,(z) = u(x, + z). Comparing an individual’s attitudes
toward risk as his level of wealth changes is like comparing the utility functions
u(*) and u,(:), a problem we have just studied. If u(:) displays decreasing
absolute risk aversion, then r,(z, u,) = r,(z, u,) for all z. This is condition (i) of
Proposition 6.C.2. Hence, the result in Proposition 6.C.3 follows directly from
Proposition 6.C.2.

¥ Proposition 6.C.3: The following properties are equivalent:

(i} The Bernoulli utility function (-} exhibits decreasing absolute risk aversion.

(i) Whenever x, < x,, U,(Z) = u(x, + z) is a concave transformation of u,(z) =
ulxy + 2).

(iiiy For any risk F(z), the certainty equivalent of the lottery formed by
adding risk z to wealth level x, given by the amount ¢, at which
ulc,) = j' u{x + z) dF(z), is such that (x — c,) is decreasing in x. That is,
the higher x is, the less is the individual willing to pay to get rid of the risk.

(iv) The probability premium n(x, ¢, u) is decreasing in x.

(v) For any F(2), if I u(x, + 2) dF(2) = uix;) and x, < x, then | u(x, + 2) dF(z) >
u(x,).

Exercise 6.C.8: Assume that the Bernoulli utility function u(-) exhibits decreasing
absolute risk aversion. Show that for the asset demand model of Example 6.C.2 (and
Example 6.C.2 continued), the optimal allocation between the safe and the risky
assets places an increasing amount of weaith in the risky asset as w rises (ie., the
risky asset is a normal good).

The assumption of decreasing absolute risk aversion yields many other econom-
ically reasonable results concerning risk-bearing behavior. However, in applications,
it is often too weak and, because of its analytical convenience, it is sometimes
complemented by a stronger assumption: nonincreasing relative risk aversion.

To understand the concept of relative risk aversion, note that the concept of
absolute risk aversion is suited to the comparison of attitudes toward risky projects
whose outcomes are absolute gains or losses from current wealth. But it is also of
interest to evaluate risky projects whose outcomes are percentage gains or losses of
current wealth. The concept of relative risk aversion does just this.

Let ¢ > 0 stand for proportional increments or decrements of wealth. Then, an
individual with Bernoulli utility function u(-) and initial wealth x can evaluate a
random percentage risk by means of the utility function a(t) = u(tx). The initial
wealth position corresponds to ¢ = 1. We already know that for a small risk around
t =1, the degree of risk aversion is well captured by @"(1)/d’'(I). Noting that
a@'(1)/a'(1) = xu"(x)/u’(x), we are led to the concept stated in Definition 6.C.5.
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Definition 6.C.5; Given a Bernouili utility function u(-), the coefficient of relative risk

aversion at x is rg(x, u) = —xu"(x)/u’'(x).

Consider now how this measure varies with wealth. The property of nonincreasing
relative risk aversion says that the individual becomes less risk averse with regard to
gambles that are proportional to his wealth as his wealth increases. This is a stronger
assumption than decreasing absolute risk aversion: Since rp(x,u) = xry(x,u), a
risk-averse individual with decreasing relative risk aversion will exhibit decreasing
absolute risk aversion, but the converse is not necessarily the case.

As before, we can examine various implications of this concept. Proposition 6.C.4
is an abbreviated parallel to Proposition 6.C.3.

Proposition 6.C.4: The following conditions for a Bernoulli utility function u(-) on

6.D

amounts of money are equivalent:
(i) rq(x, u) is decreasing in x.
(i) Whenever x, < x,, U,{f) = ultx,) is a concave transformation of g, =
ultx,).
(iii) Given any risk F(f) on ¢t >0, the certainty equivalent ¢, defined by
u(C,) = ju(tx) dF(t) is such that x/¢, is decreasing in x.

Proof: Here we show only that (i) implies (iii). To this effect, fix a distribution
F(t) on ¢ >0, and, for any x, define u.(f) = u(tx). Let ¢(x) be the usual certainty
equivalent (from Definition 6.C.2): u.(c(x)) = fu,(t) dF(t). Note that — w(t)/u,(t) =
—(1/0)ex{u"(tx)/u'(x)] for any x. Hence if (i) holds, then u..(-) is less risk averse
than u, () whenever x' > x. Therefore, by Proposition 6.C.2, ¢(x’) > c(x) and we
conclude that c(-) is increasing. Now, by the definition of u,(-), u,(c(x)) = u(xc(x)).
Also

u (c(x)) = fu,(t) dF(ty = Ju(tX) dF(t) = u(c,).
Hence, é,/x = c(x), and so x/¢, is decreasing. This concludes the proof. m

Example 6.C.2 continued: In Exercise 6.C.11, you are asked to show that if rp(x, u)
is decreasing in x, then the proportion of wealth invested in the risky asset y = a/w
is increasing with the individual’s wealth level w. The opposite conclusion holds if
re(x, u) is increasing in x. If rg (x, u) is a constant independent of x, then the fraction
of wealth invested in the risky asset is independent of w [see Exercise 6.C.12 for the
specific analytical form that u(-) must have]. Models with constant relative risk
aversion are encountered often in finance theory, where they lead to considerable
analytical simplicity. Under this assumption, no matter how the wealth of the
economy and its distribution across individuals evolves over time, the portfolio
decisions of individuals in terms of budget shares do not vary (as long as the safe
return and the distribution of random returns remain unchanged).

Comparison of Payoff Distributions in Terms of
Return and Risk

In this section, we continue our study of lotteries with monetary payoffs. In contrast
with Section 6.C, where we compared utility functions, our aim here is to compare
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payoff distributions. There are two natural ways that random outcomes can be
compared: according to the level of returns and according to the dispersion of
returns. We will therefore attempt to give meaning to two ideas: that of a distribution
F(-) yielding unambiguously higher returns than G(-) and that of F(-) being
unambiguously less risky than G(-). These ideas are known, respectively, by the
technical terms of first-order stochastic dominance and second-order stochastic
dominance.*°

In all subsequent developments, we restrict ourselves to distributions F(-) such
that F(0) = 0 and F(x) = 1 for some x.

First-Order Stochastic Dominance

We want to attach meaning to the expression: “The distribution F(-) yields
unambiguously higher returns than the distribution G(-).” At least two sensible
criteria suggest themselves. First, we could test whether every expected utility
maximizer who values more over less prefers F(:) to G(-). Alternatively, we could
verify whether, for every amount of money x, the probability of getting at least x is
higher under F(-) than under G(-). Fortunately, these two criteria lead to the same
concept.

Detfinition 6.D.1: The distribution F(-) first-order stochastically dominates G(-) i, for

every nondecreasing function v: R —+ R, we have

J‘u(x) dF(x) > ju(x) dG(x).

Proposition 6.D.1: The distribution of monetary payoffs F(-) first-order stochastically

dominates the distribution G(-) if and only if F(x) < G(x) for every x.

Proof: Given F(-) and G(-) denote H(x) = F(x) — G(x). Suppose that H(x) > 0 for
some X. Then we can define a nondecreasing function u(-) by u(x) = 1 for x > x and
u(x) = 0 for x < %. This function has the property that | u(x)dH(x) = — H(%) < 0,
and so the “only if” part of the proposition follows.

For the “if” part of the proposition we first put on record, without proof, that
it suffices to establish the equivalence for differentiable utility functions u(-). Given
F(-) and G(*), denote H(x) = F(x) — G(x). Integrating by parts, we have

fu(x) dH(x) = [u(x)H(x)]1§ — Ju’(x)H(x) dx.

Since H(0) = 0 and H(x) = 0 for large x, the first term of this expression is zero. It
follows that [ u(x) dH(x) = 0 [or, equivalently, { u(x) dF(x) — | u(x) dG(x) = 0] if and
only if | u'(x)H(x)dx < 0. Thus, if H(x) <0 for all x and u(-) is increasing, then
[u'(x)H(x) dx < 0 and the “if” part of the proposition follows. m

In Exercise 6.D.1 you are asked to verify Proposition 6.D.1 for the case of lotteries
over three possible outcomes. In Figure 6.D.1, we represent two distributions F(-)
and G(-). Distribution F(') first-order stochastically dominates G(-) because the
graph of F(-) is uniformly below the graph of G(-). Note two important points: First,
first-order stochastic dominance does not imply that every possible return of the

20. They were introduced into economics in Rothschild and Stiglitz (1970).
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superior distribution is larger than every possible return of the inferior one. In the
figure, the set of possible outcomes is the same for the two distributions. Second,
although F(-) first-order stochastically dominating G(-) implies that the mean of x
under F(-), | x dF(x), is greater than its mean under G(-), a ranking of the means
of two distributions does not imply that one first-order stochastically dominates the
other; rather, the entire distribution matters (see Exercise 6.D.3).

Example 6.D.1: Consider a compound lottery that has as its first stage a realization
of x distributed according to G(-) and in its second stage applies to the outcome x
of the first stage an “upward probabilistic shift.” That is, if outcome x is realized in
the first stage, then the second stage pays a final amount of money x + z, where z
is distributed according to a distribution H,(z) with H,(0) = 0. Thus, H,(-) generates
a final return of at least x with probability one. (Note that the distributions applied
to different x’s may differ.)

Denote the resulting reduced distribution by F(-). Then for any nondecreasing
function u: R — R, we have

j u(x) dF(x) = J‘[J‘ u(x + z) dH,(z)] dG(x) > Ju(x) dG(x).

So F(-) first-order stochastically dominates G(-).
A specific example is illustrated in Figure 6.D.2. As Figure 6.D.2(a) shows, G()
is an even randomization between 1 and 4 dollars. The outcome “1 dollar” is then

Figure 6.0.1

F(-) first-order
stochastically
dominates G(-).

G(+) F(-) Figure 6.D.2
Dollas F(-) first-order
- 0 ! stochastically
’ / ! 1 domi G().
4 1 0 —
o G(-)
I 0 : i -
: - 1 \
i 0 / ‘ r F——J FC)
—
- } 0 J 1 ! [ .
: : 0 1 2 3 4 5 x

(a) (b}
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shifted up to an even probability between 2 and 3 dollars, and the outcome *4 dollars”
is shifted up to 5 dollars with probability one. Figure 6.D.2(b) shows that F(x) < G(x)
at all x.

It can be shown that the reverse direction also holds. Whenever F(-) first-order
stochastically dominates G(-), it is possible to generate F(-) from G(-) in the manner
suggested in this example. Thus, this provides yet another approach to the character-
ization of the first-order stochastic dominance relation. m

Second-Order Stochastic Dominance

First-order stochastic dominance involves the idea of “higher/better” vs. *lower/
worse.” We want next to introduce a comparison based on relative riskiness or
dispersion. To avoid confusing this issue with the trade-off between returns and risk,
we will restrict ourselves for the rest of this section to comparing distributions with the
same mean.

Once again, a definition suggests itself. Given two distributions F(-) and G(-)
with the same mean [that is, with | x dF(x) = [ x 4G(x)], we say that G(-) is riskier
than F(-) il every risk averter prefers F(-) and G(-). This is stated formally in
Definition 6.D.2.

Definition 6.D.2: For any two distributions F(x) and G(-) with the same mean, F(-)

second-order stochastically dominates (or is less risky than) G(-) if for every
nondecreasing concave function v: R, — R, we have

J u(x) dF(x) > J. u(x) dG(x).

Example 6.D.2 introduces an alternative way to characterize the second-order
stochastic dominance relation.

Example 6.D.2: Mean-Preserving Spreads. Consider the following compound lottery:
In the first stage, we have a lottery over x distributed according to F(-). In the second
stage, we randomize each possible outcome x further so that the final payoff is x + z,
where z has a distribution function H,(z) with 2 mean of zero [i.., |z dH,(z) = 0].
Thus, the mean of x + z is x. Let the resulting reduced lottery be denoted by G(-).
When lottery G(-) can be obtained from lottery F(-) in this manner for some
distribution H,(-), we say that G(-) is a mean-preserving spread of F(-).

For example, F(-) may be an even probability distribution between 2 and 3
dollars. In the second step we may spread the 2 dollars outcome to an even probability
between 1 and 3 dollars, and the 3 dollars outcome to an even probability between
2 and 4 dollars. Then G(-) is the distribution that assigns probability 4 to the four
outcomes: 1, 2, 3, 4 dollars. These two distributions F(-) and G(-) are depicted in
Figure 6.D.3.

The type of two-stage operation just described keeps the mean of G(-) equal to
that of F(-). In addition, if u(-) is concave, we can conclude that

ju(x) dG(x) = J(J u(x + z) dH,(z)) dF(x) < Ju (I(x +2) de(z)) dF(x)

= f u(x) dF(x),
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and so F(-) second-order stochastically dominates G(). It turns out that the converse
is also true: If F(-) second-order stochastically dominates G(-), then G(-)is a
mean-preserving spread of F(-). Hence, saying that G(*) is a mean-preserving spread of
F(*) is equivalent 10 saying that F(-) second-order stochastically dominates G(-). m

Example 6.D.3 provides another illustration of a mean-preserving spread.

Example 6.D.3: An Elementary Increase in Risk. We say that G(-) constitutes an
elementary increase in risk from F(-) if G(-) is generated from F (-) by taking all the
mass that F(-) assigns to an interval [x’, x"] and transferring it to the endpoints x’
and x” in such a manner that the mean is preserved. This is illustrated in Figure
6.D.4. An elementary increase in risk is a mean-preserving spread. [In Exercise 6.D.3,
you are asked to verify directly that if G(-) is an elementary increase in risk from
F(-), then F(-) second-order stochastically dominates G(')]m

We can develop still another way to capture the second-order stochastic
dominance idea. Suppose that we have two distributions F(-)and G(*) with the same
mean. Recall that, for simplicity, we assume that F(x)= G(X) =1 for some Xx.
Integrating by parts (and recalling the equality of the means) yields

Ji (F(x) - G(x))dx = — ji x d(F(x) — G(x)) + (F(®) - G(x)x=0. (6.D.})

0 0
That is, the areas below the two distribution functions are the same over the interval
{0, x]. Because of this fact, the regions marked 4 and B in Figure 6.D.4 must have
the same area. Note that for the two distributions in the figure, this implies that

J G(t)dt 2 J F(t)dt for all x. (6.D.2)
] 1]

1t turns out that property (6.D.2) is equivalent to F(-) second-order stochastically
dominating G(-).2! As an application, suppose that F(-) and G(-) have the same
mean and that the graph of G(-) is initially above the graph of F() and then moves

21. We will not prove this. The claim can be established along the same lines used to prove
Proposition 6.D.1 except that we must integrate by parts twice and take into account expression
(6.D.1).

Figure 6.D.3 (left)
G()isa
mean-preserving
spread of F(-).

Figure 6.D.4 (right)
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permanently below it (as in Figures 6.D.3 and 6.D.4). Then because of (6.D.1),
condition (6.D.2) must be satisfied, and we can conclude that G(-) is riskier than
F(-). As a more elaborate example, consider Figure 6.D.5, which shows two
distributions having the same mean and satisfying (6.D.2). To verify that (6.D.2) is
satisfied, note that area A has been drawn to be at least as large as area B and that
the equality of the means [ie., (6.D.1)] implies that the areas B + D and 4 + C must
be equal.
We state Proposition 6.D.2 without proof.

Proposition 6.D.2: Consider two distributions £(*) and G(-) with the same mean. Then

the following statements are equivalent:
(i} F(-) second-order stochastically dominates G(').
(i) G{-) is a mean-preserving spread of F{-).
(iii) Property (6.D.2) holds.

In Exercise 6.D.4, you are asked to verify the equivalence of these three properties
in the probability simplex diagram.

State-dependent Utility

In this section, we consider an extension of the analysis presented in the preceding
two sections. In Sections 6.C and 6.D, we assumed that the decision maker cares
solely about the distribution of monetary payoffs he receives. This says, in essence,
that the underlying cause of the payoff is of no importance. If the cause is one’s state
of health, however, this assumption is unlikely to be fulfilled.?* The distribution
function of monetary payoffs is then not the appropriate object of individual choice.
Here we consider the possibility that the decision maker may care not only about
his monetary returns but also about the underlying events, or states of nature, that
cause them.

We begin by discussing a convenient framework for modeling uncertain alternatives
that, in contrast to the lottery apparatus, recognizes underlying states of nature. (We
will encounter it repeatedly throughout the book, especially in Chapter 19.)

22. On the other hand, if it is an event such as the price of some security in a portfolio, the
assumption is more likely to be a good representation of reality.

Figure 6.D.5

F(-) second-order
stochastically
dominates G(-).
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State-of-Nature Representations of Uncertainty

In Sections 6.C and 6.D, we modeled a risky alternative by means of a distribution
function over monetary outcomes. Often, however, we know that the random
outcome is generated by some underlying causes. A more detailed description of
uncertain alternatives is then possible. For example, the monetary payoff of an
insurance policy might depend on whether or not a certain accident has happened,
the payoff on a corporate stock on whether the economy is in a recession, and the
payoff of a casino gamble on the number selected by the roulette wheel.

We call these underlying causes states, or states of nature. We denote the set of
states by § and an individual state by seS. For simplicity, we assume here
that the set of states is finite and that each state s has a well-defined, objective
probability m, > 0 that it occurs. We abuse notation slightly by also denoting the
total number of states by .

An uncertain alternative with (nonnegative) monetary returns can then be
described as a function that maps realizations of the underlying state of nature
into the set of possible money payoffs R,. Formally, such a function is known as a
random variable.

Definition 6.E.1: A random variable is a function g: S — R, that maps states into

monetary outcomes.??

Every random variable g(*) gives rise to a money lottery describable by the
distribution function F(-) with F(x) = ¥4y <= 7, for all x. Note that there is a loss
in information in going from the random variable representation of uncertainty to
the lottery representation; we do not keep track of which states give rise to a given
monetary outcome, and only the aggregate probability of every monetary outcome
is retained.

Because we take S to be finite, we can represent a random variable with monetary
payoffs by the vector (x,,..., xg), where x, is the nonnegative monetary payoff in
state 5. The set of all nonnegative random variables is then RS.

State-Dependent Preferences and the Extended Expected Utility Representation

The primitive datum of our theory is now a rational preference relation > on the
set RS of nonnegative random variables. Note that this formal setting is parallel to
the one developed in Chapters 2 to 4 for consumer choice. The similarity is not
merely superficial. If we define commodity s as the random variable that pays one
dollar if and only if state s occurs (this is called a contingent commodity in Chapter
19), then the set of nonnegative random variables RS, is precisely the set of
nonnegative bundles of these S contingent commodities.

As we shall see, it is very convenient if, in the spirit of the previous sections of
this chapter, we can represent the individual’s preferences over monetary outcomes
by a utility function that possesses an extended expected utility form.

23. For concreteness, we restrict the outcomes to be nonnegative amounts of money. As we
did in Section 6.B, we could equally well use an abstract outcome st C instead of R,.
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Definition 6.E.2: The preference relation > has an extended expected utility repre-
sentation if for every se S, there is a function u,: R, — R such that for any
(X5, ..., xs) € RS and (x5, ..., x5) e RS,

(X3 Xg)Z (X5, ..., xs) ifandonly it Y moug(xg) =Y mou,(x;).
s 5

To understand Definition 6.E.2, recall the analysis in Section 6.B. If only the
distribution of money payoffs mattered, and if preferences on money distributions
satisfied the expected utility axioms, then the expected utility theorem leads to a
state-independent (we will also say state-uniform) expected utility representation
¥, mou(x,), where u(-) is the Bernoulli utility function on amounts of money.?* The
generalization in Definition 6.E.2 allows for a different function u,(-) in every state.

Before discussing the conditions under which an extended utility representation
exists, we comment on its usefulness as a tool in the analysis of choice under
uncertainty. This usefulness is primarily a result of the behavior of the indifference
sets around the money certainty line, the set of random variables that pay the same
amount in every state. Figure 6.E.1 depicts state-dependent preferences in the space
RS for a case where S =2 and the u,(-) functions are concave (as we shall see
later, concavity of these functions follows from risk aversion considerations). The
certainty line in Figure 6.E.1 is the set of points with x;, = x,. The marginal rate of
substitution at a point (X, X) is m,u(X)/n,u5(%). Thus, the slope of the indifference
curves on the certainty line reflects the nature of state dependence as well as the
probabilities of the different states. In contrast, with state-uniform (i.e., identical
across states) utility functions, the marginal rate of substitution at any point on the
certainty line equals the ratio of the probabilities of the states (implying that this
slope is the same at all points on the certainty line).

Example 6.E.1: Insurance with State-dependent Utility. One interesting implication
of state dependency arises when actuarially fair insurance is available. Suppose there
are two states: State 1 is the state where no loss occurs, and state 2 is the state where
a loss occurs. (This economic situation parallels that in Example 6.C.1.) The
individual’s initial situation (ie., in the absence of any insurance purchase) is a

24.'Nole that the random variable (x,, ..., xs) induces a money lottery that pays x, with
probability n,. Hence, 3, m,u(x,) is its expected utility.

Figure 6.E.1

State-dependent
preferences.
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It turns out that the extended expected utility representation can be derived in
exactly the same way as the expected utility representation of Section 6.B if we
appropriately enlarge the domain over which preferences are defined.** Accordingly,
we now allow for the possibility that within each state s, the monetary payoff is not
a certain amount of money x, but a random amount with distribution function F,(-).
We denote these uncertain alternatives by L = (F,,..., Fs). Thus, L is a kind of
compound lottery that assigns well-defined monetary gambles as prizes contingent
on the realization of the state of the world s. We denote by & the set of all such
possible lotteries.

Our starting point is now a rational preference relation 2 on . Note that

X2
x
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Figure 6E.2 Insurance purchase with state-dependent utility. (a) State-uniform utility. (b) State-dependent utility.

random variable (w, w — D) that gives the individual’s wealth in the two states. This
is depicted in Figure 6.E.2(a). We can represent an insurance contract by a random
variable (z,,z,) € R* specifying the net change in wealth in the two states (the
insurance payoff in the state less any premiums paid). Thus, if the individual purchases
insurance contract (z,, z,), his final wealth position will be (w + z,, w — D + z,). The
insurance policy (zy, z,) is actuarially fair if its expected payoff is zero, that is, if
m,zy + Mz = 0.

Figure 6.E.2(a) shows the optimal insurance purchase when a risk-averse expected
utility maximizer with state-uniform preferences can purchase any actuarially fair
insurance policy he desires. His budget set is the straight line drawn in the figure.
We saw in Example 6.C.2 that under these conditions, a decision maker with
state-uniform utility would insure completely. This is confirmed here because if there
is no state dependency, the budget line is tangent to an indifference curve at the
certainty line.

Figure 6.E.2(b) depicts the situation with state-dependent preferences. The
decision maker will now prefer a point such as (x}, x3) to the certain outcome (X, X).
This creates a desire to have a higher payoff in state 1, where u(-) is relatively higher,
in exchange for a lower payoff in state 2. =

Existence of an Extended Expected Utility Representation

We now investigate conditions for the existence of an extended expected utility
representation.

Observe first that since m, > 0 for every s, we can formally include =, in the
definition of the utility function at state s. That is, to find an extended expected utility
representation, it suffices that there be functions u,(-) such that

(Xpso -0 Xs) T (X1, -+, x5) ifand only if 3 ui(x,) 2 Zuy(x))-

This is because if such functions u,(-) exist, then we can define () = (1/m,)u,(")
for each se S, and we will have 3, u,(x,) = ¥, u,(x}) if and only if ¥, n,if (x,) =
S, m,i1,(x,). Thus, from now on, we focus on the existence of an additively separable
form 3, u,(-), and the n.’s cease to play any role in the analysis.

al + (1 — )L’ = (aF, + (1 — a)F, ..., aFs + (1 — a)F5) has the usual interpretation
as the reduced lottery arising from a randomization between L and L', although here
we are dealing with a reduced lottery within each state s. Hence, we can appeal to
the same logic as in Section 6.B and impose an independence axiom on preferences.

Definition 6.E.3: The preference relation > on % satisfies the extended independence
axiom itfor all L, L', L" € & and x € {0, 1), we have

Lzl ifandonlyif al + (7 —a)l" Zal’ + (1 —a)l".

We also make a continuity assumption: Except for the reinterpretation of %, this
continuity axiom is exactly the same as that in Section 6.B; we refer to Definition
6.B.3 for its statement.

Proposition 6.E.1: (Extended Expected Utility Theorem) Suppose that the preference
relation 2 on the space of lotteries £ satisfies the continuity and extended
independence axioms. Then we can assign a utility function u(-) for money in
every state s such that for any L = (F,, ..., Fg) and L' = (F}, ..., Fs), we have

Lzl ifandonlyif ¥ (J u,(x;) dF,(xs)) 2y (j uy(xs) dF;(xS))A

s s

Proof: The proof is identical, aimost word for word, to the proof of the expected utility theorem
(Proposition 6.B.2).

Suppose, for simplicity, that we restrict ourselves to a finite number {x,,...,xy}
of monetary outcomes. Then we can identify the set % with AS, where A is the (N — 1)-
dimensional simplex. Our aim is to show that > can be represented by a linear utility function
U(L) on AS. To see this, note that, up to an additive constant that can be neglected,
U(pl,....pN,- > Ph ..., PY) is a linear function of its arguments if it can be written as
U(L) = ¥, u, , p} for some values u, ,. In this case, we can write U(L) = ¥, (¥, u, ,p}), which,
letting u,(x,) = u, ,, is precisely the form of a utility function on & that we want.

Choose L and L such that L Lz L for all Le &. As in the proof of Proposition
6.B.2, we can then define U(L) by the condition

L ~ UL + (1 = U(L)L.

Applying the extended independence axiom in exactly the same way as we applied the

independence axiom in the proof of Proposition 6.B.2 yields the result that U(L) is indeed a
linear utility function on . =

25. By pushing the enlargement further than we do here, it would even be possible to view the
existence of an extended utility representation as a corollary of the expected utility theorem.
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'6.F Subjective Probability Theory

Proposition 6.F.1 gives us a utility representation 3, u,(x,) for the preferences on
state-by-state sure outcomes (x,,...,Xs) € RS that has two properties. First, it is
additively separable across states. Second, every u,(-) is a Bernoulli utility function
that can be used to evaluate lotteries over money payoffs in state s by means of
expected utility. It is because of the second property that risk aversion (defined in
exactly the same manner as in Section 6.C) is equivalent to the concavity of each u,(-).

There is another approach to the extended expected utility representation that rests with the
preferences = defined on RS and does not appeal to preferences defined on a larger space. It
is based on the so-called sure-thing axiom.

Definition 6.E.4: The preference relation = satisfies the sure-thing axiom if, for any subset of

states £ < S (E is called an event), whenever (x,, ..., Xs) and (xy, ..., Xs) differ only in
the entries corresponding to £ (so that x; = x, for s ¢ £), the preference ordering between
(X, ..., xs) and {x}, ..., xs) is independent of the particular (common) payoffs for states
not in . Formally, suppose that (x,, . .., Xs). (X}, . ... Xs), (%,, ..., %), and (X4, ..., Xg) are
such that

Foralls¢ £: x,=x; and %, =X

Forall se £: x, =X, and x;=X.

Then (%, ..., %g) = (%, ..., X5) if and only if (x,, ..., xs} Z (x% ..., xs).

The intuitive content of this axiom is similar to that of the independence axiom. It simply
says that if two random variables cannot be distinguished in the compl of E, then the
ordering among them can depend only on the values they take on E. In other words, tastes
conditional on an event should not depend on what the payoffs would have been in states
that have not occurred.

If > admits an extended expected utility representation, the sure-thing axiom holds because
then (x,,..., Xs) 2 (x}, ..., x5) if and only if ¥, (u,(x,) — u,(x;)) 2 0, and any term of the sum
with x, = x will cancel. In the other direction we have Proposition 6.E.2.

Proposition 6.E.2: Suppose that there are at least three states and that the preferences >

on RS are continuous and satisty the sure-thing axiom. Then > admits an extended
expected utility representation.

Ides of Proof: A complete proof is too advanced to be given in any detail. One wants to show
that under the assumptions, preferences admit an additively separable utility representation
¥, us(x,). This is not easy to show, and it is not a result particularly related to uncertainty.
The conditions for the existence of an additively separable utility function for continuous
preferences on the positive orthant of a Euclidean space (ie., the context of Chapter 3)
are well understood; as it turns out, they are formally identical to the sure-thing axiom (see
Exercise 3.G.4). =

Although the sure-thing axiom yields an extended expected utility representation 3, m,u,(x,),
we would emphasize that randomizations over monetary payoffs in a state s have not been
considered in this approach, and therefore we cannot bring the idea of risk aversion to bear
on the determination of the properties of u,(-). Thus, the approach via the extended
independence axiom assumes a stronger basic framework (preferences are defined on the set
& rather than on the smailer RS ), but it also yields stronger conclusions.

Up to this point in the development of the theory, we have been assuming that risk,
summarized by means of numerical probabilities, is regarded as an objective fact by
the decision maker. But this is rarely true in reality. Individuals make judgments
about the chances of uncertain events that are not necessarily expressible in
quantitative form. Even when probabilities are mentioned, as sometimes happens
when a doctor discusses the likelihood of various outcomes of medical treatment,
they are often acknowledged as imprecise subjective estimates.

It would be very helpful, both theoretically and practically, if we could assert that
choices are made as if individuals held probabilistic beliefs. Even better, we would
like that well-defined probabilistic beliefs be revealed by choice behavior. This is the
intent of subjective probability theory. The theory argues that even if states of the
world are not associated with recognizable, objective probabilities, consistency-like
restrictions on preferences among gambles still imply that decision makers behave
as if utilities were assigned to outcomes, probabilities were attached to states
of nature, and decisions were made by taking expected utilities. Moreover, this
rationalization of the decision maker’s behavior with an expected utility function can
be done uniquely (up to a positive linear transformation for the utility functions).
The theory is therefore a far-reaching generalization of expected utility theory. The
classical reference for subjective probability theory is Savage (1954), which is very
readable but also advanced. It is, however, possible to gain considerable insight into
the theory if one is willing to let the analysis be aided by the use of lotteries with
objective random outcomes. This is the approach suggested by Anscombe and
Aumann (1963), and we will follow it here.

We begin, as in Section 6.E, with a set of states {1,...,S}. The probabilities on
{1,...,S} are not given. In effect, we aim to deduce them. As before, a random
variable with monetary payoffs is a vector x = (x,, ..., x5) € R$.2® We also want to
allow for the possibility that the monetary payoffs in a state are not certain but are
themselves money lotteries with objective distributions F,. Thus, our set of risky
alternatives, denoted %, is the set of all S-tuples (F,, . . ., Fs) of distribution functions.

Suppose now that we are given a rational preference relation > on .#. We assume
that > satisfies the continuity and the extended independence axioms introduced in
Section 6.E. Then, by Proposition 6.E.1, we conclude that there are u,(-) such that
any (xq, ..., xs)€ R} can be evaluated by ¥, u,(x,). In addition, u,(-) is a Bernoulli
utility function for money lotteries in state s.

The existence of the u,(-) functions does not yet allow us to identify subjective
probabilities. Indeed, for any (n,,..., n5) » 0, we could define & (-) = (1/m,)u,(-),
and we could then evaluate (x,,...,x5) by X, m i (x,). What is needed is some
way to disentangle utilities from probabilities.

Consider an example. Suppose that a gamble that gives one dollar in state I and
none in state 2 is preferred to a gamble that gives one dollar in state 2 and none in
state 1. Provided there is no reason to think that the labels of the states have any

26. To be specific, we consider monetary payoffs here. All the subsequent arguments, however,
work with arbitrary sets of outcomes.
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particular influence on the value of money, it is then natural to conclude that the
decision maker regards state 2 as less likely than state 1. .
! This example suggests an additional postulate. Preferences over money lc?tter.les
within state s should be the same as those within any other state s’; that is, risk
: attitudes towards money gambles should be the same across states. To formulate
‘ such a property, we define the state s preferences 2, on state s lotteries by

Rz, F it ju,(x,)dﬁ(x,)zju,(x,)dl’i(x,)-

Definition 6.F.1; The state preferences (=, ..., =g} on state lotteries are state
uniform it >, = 2z forany s and §'.
With state uniformity, u,(-) and u,.(-) can differ only by an increasing linear
transformation. Therefore, there is u(-) such that, forall s=1,..., S,
u(-) =mu(’) + B,
for some 7, > 0 and f,. Moreover, because we still represent the same preferences if
we divide all n, and §, by a common constant, we can normalize the =, so that
T, 1, = L. These , are going to be our subjective probabilities.
Proposition 6.F.1: (Subjective Expected Utility Theorem) Suppose that the preference

relation > on ¥ satisfies the continuity and extended independenf.:e axioms.
Suppose, in addition, that the derived state preferences are state uniform. Then

there are probabilities (,, ..., mg) > 0 and a utility function u(-) on amounts of
money such that for any (x,, .. ., Xs) and (x}, . . ., xs) we have
Ky Xg) Z (X ..., x5) ifandonly if Y moulx,) 2 ) mulxs).
5 s

Moreover, the probabilities are uniquely determined, and the utility function is
unique up to origin and scale.

Proof: Existence has already been proven. You are asked to establish uniqueness in
Exercise 6.F.1. m

The practical advantages of the subjective expected utility representation are
similar to those of the objective version, which we discussed in Section 6.B, and we
will not repeat them here. A major virtue of the theory is that it gives a precise,
quantifiable, and operational meaning to uncertainty. It is, indeed, most pleasant to
be able to remain in the familiar realm of the probability calculus.

But there are also problems. The plausibility of the axioms cannot be completely
dissociated from the complexity of the choice situations. The more complex these
become, the more strained even seemingly innocent axioms are, For example, is the
completeness axiom reasonable for preferences defined on huge sets of random
variables? Or consider the implicit axiom (often those are the most treacherous) that
the situation can actually be formalized as indicated by the model. This posits the
ability to list all conceivable states of the world (or, at least, a .sufﬁciex.ltly
disaggregated version of this list). In summary, every difficulty so far raised against
our model of the rational consumer (i, to transitivity, to completeness, to
independence) will apply with increased force to the current model. o

There are also difficulties specific to the nonobjective nature of probabilities. We
devote Example 6.F.1 to this point.

R T
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Example 6.F.1: This example is a variation of the Ellsberg paradox.?” There are two
urns, denoted R and H. Each urn contains 100 balls. The balls are either white
or black. Urn R contains 49 white balls and 51 black balls. Urn H contains an
unspecified assortment of balls. A ball has been randomly picked from each urn.
Call them the R-ball and the H-ball, respectively. The color of these balls has not
been disclosed. Now we consider two choice situations. In both experiments, the
decision maker must choose either the R-ball or the H-ball. After the choices have
been made, the color will be disclosed. In the first choice situation, a prize of 1000
dollars is won if the chosen ball is black. In the second choice situation, the same
prize is won if the ball is white. With the information given, most people will choose
the R-ball in the first experiment. If the decision is made using subjective probabilities,
this should mean that the subjective probability that the H-ball is white is larger
than .49. Hence, most people should choose the H-ball in the second experiment.
However, it turns out that this does not happen overwhelmingly in actual experi-
ments. The decision maker understands that by choosing the R-ball, he has only a
499, chance of winning. However, this chance is “safe” and well understood. The
uncertainties incurred are much less clear if he chooses the H-ball. m

Knight (1921) proposed distinguishing between risk and uncertainty according to
whether the probabilities are given to us objectively or not. In a sense, the theory of
subjective probability nullifies this distinction by reducing all uncertainty to risk
through the use of beliefs expressible as probabilities. The Example 6.F.1 suggests
that there may be something to the distinction. This is an active area of research
[e.g., Bewley (1986) and Gilboa and Schmeidler (1989)].

27. From Elisberg (1961).
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EXERCISES

6.B.1* In text.
6.B.2* In text.

6.B3% Show that if the set of outcomes C is finite and the rational preference relation = on
the set of lotteries & satisfies the independence axiom, then there are best and worst lotteries
in .Z. That is, we can find lotteries L and L such that L> L > Lforall Le &.

6.B4® The purpose of this exercise is to illustrate how expected utility theory allows us to
make consistent decisions when dealing with extremely smail probabilities by considering
relatively large ones. Suppose that a safety agency is thinking of establishing a criterion under
which an area prone to flooding should be evacuated. The probability of flooding is 19;. There
are four possible outcomes:

(A) No evacuation is necessary, and none is performed.

(B) An evacuation is performed that is unnecessary.

(C) An evacuation is performed that is necessary.

(D) No evacuation is performed, and a flood causes a disaster.
Suppose that the agency is indifferent between the sure outcome B and the lottery of A with
probability p and D with probability 1 — p, and between the sure outcome C and the lottery
of B with probability ¢ and D with probability 1 — g. Suppose also that it prefers A to D and
that pe (0,1) and g € (0, 1). Assume that the conditions of the expected utility theorem are
satisfied.

(a) Construct a utility function of the expected utility form for the agency.

(b) Consider two different policy criteria:

Criterion 1: This criterion will result in an evacuation in 90% of the cases in
which flooding will occur and an unnecessary evacuation in 10% of the cases in which
no flooding occurs.

Criterion 2: This criterion is more conservative. It results in an evacuation in 959,
of the cases in which flooding will occur and an unnecessary evacuation in 5% of the
cases in which no flooding occurs.

First, derive the probability distributions over the four outcomes under these two criteria.
Then, by using the utility function in (a), decide which criterion the agency would prefer.

6.B5® The purpose of this exercise is to show that the Allais paradox is compatible with a
weaker version of the independence axiom. We consider the following axiom, known as the

betweenness axiom {see Dekel (1986)]:
Forall L, L' and Ae(0,1),if L~ L', then AL+ (1 — )L’ ~ L.
Suppose that there are three possible outcomes.
(a) Show that a preference relation on lotteries satisfying the independence axiom also
satisfies the betweenness axiom.

(b) Using a simplex representation for lotteries similar to the one in Figure 6.B.1(b), show
that if the continuity and betweenness axioms are satisfied, then the indifference curves of a
preference relation on lotteries are straight lines. Conversely, show that if the indifference
curves are straight lines, then the betweenness axiom is satisfied. Do these straight lines need
to be paraliel?

(c) Using (b), show that the betweenness axiom is weaker (less restrictive) than the
independence axiom.

(d) Using Figure.6.B.7, show that the choices of the Allais paradox are compatible with the
betweeness axiom by exhibiting an indifference map satisfying the betweenness axiom
that yields the choices of the Allais paradox.

6.B.6% Prove that the induced utility function U(-) defined in the last paragraph of Section
6.B is convex. Give an example of a set of outcomes and a Bernoulli utility function for which
the induced utility function is not linear.

6.B.7* Consider the following two lotteries:
200 doflars with probability .7.
: { 0 dollars with probability .3.
, {1200 dollars with probabitity .1.
: { 0 dollars with probability .9.

Let x; and x,. be the sure amounts of money that an individual finds indifferent to L and
L'. Show that if his preferences are transitive and monotone, the individual must prefer
L to L’ if and only if x, > x,.. [Note: In actual experiments, however, a preference reversal
is often observed in which L is preferred to L' but x, < x,.. See Grether and Plott (1979) for
details.]

6.C.1% Consider the insurance problem studied in Example 6.C.1. Show that if insurance is
not actuarially fair (so that ¢ > =), then the individual wiil not insure completely.
6.C2°
(a) Show that if an individual has a Bernoulli utility function u( -) with the quadratic form
u(x) = Bx? + yx,
then his utility from a distribution is determined by the mean and variance of the distribution
and, in fact, by these moments alone. [Note: The number f§ should be taken to be negative in

order to get the concavity of u(-). Since u(-) is then decreasing at x > —y/2f, u(-) is useful
only when the distribution cannot take values larger than —y/28.]
(b} Suppose that a utility function U(-) over distributions is given by

U(F) = (mean of F) — r(variance of F),
where r > 0. Argue that uniess the set of possible distributions is further restricted (see, e.g.,
Exercise 6.C.19), U(-) cannot be compatible with any Bernoulli utility function. Give an
example of two lotteries L and L’ over the same two amounts of money, say x' and x" > x’,
such that L gives a higher probability to x” than does L’ and yet according to U(-), L' is
preferred to L.

TN it
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6.C.3% Prove that the four conditions of Proposition 6.C.1 are equivalent. [Hine: The
equivalence of (i), (ii), and (iif) has already been shown. As for (iv), prove that (i) implies (iv)
and that (iv) implies u(3x + 1y) = fu(x) + Lu(y) for any x and y, which is, in fact, sufficient
for (ii).]

6.C.48 Suppose that there are N risky assets whose returns z, (n=1,...,N) per dollar
invested are jointly distributed according to the distribution function F(zy,...,zy). Assume
also that all the returns are nonnegative with probability one. Consider an individual who
has a continuous, increasing, and concave Bernoulli utility function u(-) over R,. Define the
utility function U(*) of this investor over RY, the st of all nonnegative portfolios, by

Uy, ..., 28) = J.u(a,z, +- o+ ayzy)dF(zy, ..., 2Zx).

Prove that U(+) is (a) increasing, (b) concave, and (c) continuous (this is harder).

6.C.5* Consider a decision maker with utility function u(-) defined over R, just as in
Chapter 3.

(a) Argue that concavity of u(-) can be interpreted as the decision maker exhibiting risk
aversion with respect to lotteries whose outcomes are bundles of the L commodities.

(b) Suppose now that a Bernoulli utility function u(-) for wealth is derived from the
maximization of a utility function defined over bundles of commodities for each given wealth
level w, while prices for those commodities are fixed. Show that, if the utility function for the
commodities exhibits risk aversion, then so does the derived Bernoulli utility function for
wealth. Interpret.

(c) Argue that the converse of part (b} does not need to hold: There are nonconcave
functions u: RL — R such that for any price vector the derived Bernoulli utility function on
wealth exhibits risk aversion.

6.C.6% For Proposition 6.C.2:
(8) Prove the equivalence of conditions (i) and (iii).

(b) Prove the equivalence of conditions (iii) and (v).

6.C.7A Prove that, in Proposition 6.C.2, condition (jii) implies condition (iv), and (iv)
implies (i).
6.C.8* In text.

6.C.9% (M. Kimball) The purpose of this problem is to examine the implications of uncertainty
and precaution in a simple consumption-savings decision problem.
In a two-period economy, a consumer has first-period initial wealth w. The consumer’s
utility level is given by
u(c,, ¢;) = u(c,) + vica),

where u(-) and u(-) are concave functions and ¢, and ¢, denote consumption levels in the first
and the second period, respectively. Denote by x the amount saved by the consumer in the
first period (so that¢, = w — xand ¢, = x), and let xo be the optimal value of x in this problem.

We now introduce uncertainty in this economy. If the consumer saves an amount x in the
first period, his wealth in the second period is given by x + y, where y is distributed according
to F(+). In what follows, E[-] always denotes the expectation with respect to F(:). Assume
that the Bernoulli utility function over realized wealth levels in the two periods (w,, w,) is
u(w,) + v(w,). Hence, the consumer now solves

Max u(w — x) + E[o(x + p)).

x
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Denote the solution to this problem by x*.
(a) Show that if E[v'(xo + y)] > v'(x,), then x* > x,.

(b) Define the coefficient of absolute prudence of a utility function v(-) at wealth level x to
be —v™(x)/v"(x). Show that if the coefficient of absolute prudence of a utility function v,(-) is
not larger than the coefficient of absolute prudence of utility function v,(-) for all levels of
wealth, then E{v(xy + y)] > v\(x,) implies E[v3(xq + ¥)] > v3(xo). What are the implications
of this fact in the context of part (a)?

(c) Show that if v(:) > 0, and E[y] = 0, then E{v’(x + y)] > v'(x) for all values of x.

(d) Show that if the coefficient of absolute risk aversion of v(-) is decreasing with wealth,
then —v"(x)/v"(x) > —v"(x)/v'(x) for all x, and hence v"(*) > 0.

6.C.10* Prove the equivalence of conditions (i) through (v) in Proposition 6.C.3. [Hint: By
letting u,(z) = w(w, + z) and uy(z) = u(w, + 2z), show that each of the five conditions in
Proposition 6.C.3 is equivalent to the counterpart in Proposition 6.C.2.]

6.C.11% For the model in Example 6.C.2, show that if rg(x, u) is increasing in x then the
proportion of wealth invested in the risky asset y = a/x is decreasing with x. Similarly, if
ra(x, u) is decreasing in x, then y = a/x is increasing in x. [Hint: Let u,(t) = u(tw,) and
u,(1) = u(tw,), and use the fact, stated in the analysis of Example 6.C.2, that if one Bernoulli
utility function is more risk averse than another, then the optimal level of investment in the
risky asset for the first function is smaller than that for the second function. You could also
attempt a direct proof using first-order conditions.]

6.C.128 Let u: R, — R be a strictly increasing Bernoulli utility function. Show that

(a) u(-) exhibits constant relative risk aversion equal to p # 1 if and only if u(x) =
Bx'~? + y, where § >0 and yeR.

(b) u(-) exhibits constant relative risk aversion equal to | if and only if u(x) = filnx + v,
where f > 0and yeR.

() lim, ., (x*"*/(1 — p)) =Inx for all x> 0.

6.C.13% Assume that a firm is risk neutral with respect to profits and that if there is any
uncertainty in prices, production decisions are made after the resolution of such uncertainty.
Suppose that the firm faces a choice between two alternatives. In the first, prices are uncertain.
In the second, prices are nonrandom and equal to the expected price vector in the first
alternative. Show that a firm that maximizes expected profits will prefer the first alternative
over the second.

6.C.14% Consider two risk-averse decision makers (i.e., two decision makers with concave
Bernoulli utility functions) choosing among monetary lotteries. Define the utility function u*(-)
to be strongly more risk averse than u(-) if and only if there is a positive constant k and a
nonincreasing and concave function u(-) such that u*(x) = ku(x) + v(x) for all x. The monetary
amounts are restricted to lie in the interval [0, r}.

(a) Show that if u*(-) is strongly more risk averse than u(-), then «*(-) is more risk
averse than u(-) in the usual Arrow-Pratt sense.

(b) Show that if u(-) is bounded, then there is no w*(-) other than u*(-) = ku(-) + ¢, where
¢ is a constant, that is strongly more risk averse than u(-) on the entire interval [0, +c0].
{Hint: in this part, disregard the assumption that the monetary amounts are restricted to lie
in the intervai [0,r].]

(¢) Using (b), argue that the concept of a strongly more risk-averse utility function is
stronger (i.e., more restrictive) than the Arrow—Pratt concept of a more risk-averse utility
function.
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6.C.15* Assume that, in a world with uncertainty, there are two assets. The first is a riskless
asset that pays 1 dollar. The second pays amounts a and b with probabilities of = and [ — 1,
respectively. Denote the demand for the two assets by (x,, x,). B

Suppose that a decision maker’s preferences satisfy the axioms of expected l.l!ll.l!y theory
and that he is a risk averter. The decision maker’s wealth is 1, and so are the prices of the
assets. Therefore, the decision maker’s budget constraint is given by

Xy +x3=1, x,x,€[0,1].

(a) Give a simple necessary condition (involving a and b only) for the demand for the
riskless asset to be strictly positive.

(b) Give a simple necessary condition (involving a, b, and = only) for the demand for the
risky asset to be strictly positive.

In the next three parts, assume that the conditions obtained in (a) and (b) are satisfied.

(c) Write down the first-order conditions for utility maximization in this asset demand
problem.

(d) Assume that a < 1. Show by analyzing the first-order conditions that dx,/da < 0.

(e) Which sign do you conjecture for dx,/dn? Give an economic interpretation.

(f) Can you prove your conjecture in (e) by analyzing the first-order conditions?
6.C.16* An individual has Bernoulli utility function u(-) and initial wealth w. Let lottery L
offer a payoff of G with probability p and a payoff of B with probability 1 — p.

(a) If the individual owns the lottery, what is the minimum price he would sell it for?

(b) If he does not own it, what is the maximum price he would be willing to pay for it?

(¢) Are buying and selling prices equal? Give an economic interpretation for your .tmswer.
Find conditions on the parameters of the problem under which buying and selling prices are
equal.

(d) Let G =10, B =35, w =10, and u(x) = \/; Compute the buying and selling prices for
this lottery and this utility function.

6.C.17% Assume that an individual faces a two-period portfolio allocation problem. .In period
t = 0,1, his wealth w, is to be divided between a safe asset with return R and a risky asset
with return x. The initial wealth at period 0 is w,. Wealth at period ¢ = 1,2 depends ?n the
portfolio o, _, chosen at period ¢ — 1 and on the return x, realized at period ¢, according to
Wy = (1 — o )R + a1 x )Wy

The objective of this individual is to maximize the expected utility of terminal v./ea!llll wa.
Assume that x, and x, are independently and identicaily distributed. Prove that the individual
optimally sets @, = =z, if his utility function exhibits constant relative risk aversion. Show also
that this fails to hold if his utility function exhibits constant absolute risk aversion.

6.C.18% Suppose that an individual has a Bernoulli utility function u(x) = \/;

(a) Calculate the Arrow—Pratt coefficients of absolute and relative risk aversion at the
level of wealth w=5.

(b) Calculate the certainty equivalent and the probability premium for a gamble (16, 4; §, §).

(c) Calculate the certainty equivalent and the probability premium for a gamble (36, 16; Lh.
Compare this result with the one in (b) and interpret.

6.C.19€ Suppose that an individual has a Bernoulli utility function u(x) = —e™** wherea > 0.
His (nonstochastic) initial wealth is given by w. There is one riskless asset and there are N

risky assets. The return per unit invested on the riskless asset is r. The returns of the risky
assets are jointly normally distributed random variables with means #=(ty,...,1y) and
variance-covariance matrix V. Assume that there is no redundancy in the risky assets, so that
V is of full rank. Derive the demand function for these N + | assets.

6.C.20* Consider a lottery over monetary outcomes that pays x + ¢ with probability 4 and
x — ¢ with probability §. Compute the second derivative of this lottery’s certainty equivalent
with respect to &. Show that the limit of this derivative as ¢ — 0 is exactly —r (x).

6.D.1* The purpose of this exercise is to prove Proposition 6.D.1 in a two-dimensional
probability simplex. Suppose that there are three monetary outcomes: 1 dollar, 2 dollars, and
3 dollars. Consider the probability simplex of Figure 6.B.1(b).

(a) For a given lottery L over these outcomes, determine the region of the probability
simplex in which lie the lotteries whose distributions first-order stochastically dominate the
distribution of L.

(b) Given a lottery L, determine the region of the probability simplex in which lie the
lotteries L' such that F(x) < G(x) for every x, where F() is the distribution of L' and G(-) is
the distribution of L. [Notice that we get the same region as in (a).]

6.D.2* Prove that if F(-) first-order stochastically dominates G(-), then the mean of x under
F(), j x dF(x), exceeds that under G(-), ]' x dG(x). Also provide an example where §xdF(x) >
§ x dG(x) but F(-) does not first-order stochastically dominate G(-).

6.D.3* Verify that if a distribution G(-) is an elementary increase in risk from a distribution
F(-), then F(-) second-order stochastically dominates G(-).

6.D.4* The purpose of this exercise is to verify the equivalence of the three statements of
Proposition 6.D.2 in a two-dimensional probability simplex. Suppose that there are three
monetary outcomes: 1, 2, and 3 dollars. Consider the probability simplex in Figure 6.B.1(b).

(a) If two lotteries have the same mean, what are their positions relative to each other in
the probability simplex.

(b) Given a lottery L, determine the region of the simplex in which lie the lotteries L’
whose distributions are second-order stochastically dominated by the distribution of L.

() Given alottery L, determine the region of the simplex in which lie the lotteries L’ whose
distributions are mean preserving spreads of L.

(d) Given a lottery L, determine the region of the simplex in which lie the lotteries L’

for which condition (6.D.2) holds, where F(-) and G(") are, respectively, the distributions of
Land L.

Notice that in (b), (c), and (d), you always have the same region.

6.E.1% The purpose of this exercise is to show that preferences may not be transitive in the
presence of regret. Let there be S states of the world, indexed by s=1,...,S. Assume that
state s occurs with probability =,. Define the expected regret associated with lottery
X =(xy,...,xs) relative to lottery x' = (x}, ..., x5) by

5

Y mh(Max {0, x; - x,}),
=1
where h(-) is a given increasing function. [We call h(-) the regret valuation function; it measures
the regret the individual has after the state of nature is known.] We define x to be at least as
8ood as x” in the presence of regret if and only if the expected regret associated with x relative
to x’ is not greater than the expected regret associated with x’ relative to x.

A
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Suppose that §=3, n, =a, =13 = 4, and h(x) = \/;. Consider the following three
lotteries:
x=(0-2 D

x'=(0, 2 -2,
x"=(2, -3 -1
Show that the preference ordering over these three lotteries is not transitive.

6.E.2* Assume that in a world with uncertainty there are two possible states of nature (s = 1,2)
and a single consumption good. There is a single decision maker whose preferences over
lotteries satisfy the axioms of expected utility theory and who is a risk averter. For simplicity,
we assume that utility is state-independent.

Two contingent commodities are available to the decision maker. The first (respectively,
the second) pays one unit of the consumption good in state s = 1 (respectively s = 2) and zero
otherwise. Denote the vector quantities of the two contingent commodities by (x,, x).

(a) Show that the preference relation of the decision maker on (x,, x;) is convex.

(b) Argue that the decision maker is aiso a risk averter when choosing between lotteries
whose outcomes are vectors (xy, X;).

(c) Show that the Walrasian demand functions for x, and x, are normal.

6.E3® Let g: S — R, be a random variable with mean E(g) = 1. For a € (0, 1), define a new
random variable g*: S — R, by g*(s) = ag(s) + (1 — 2). Note that E(g*) = 1. Denote by G(-)
and G*(-) the distribution functions of g(-) and g*(-), respectively. Show that G*(-)
second-order stochastically dominates G(-). Interpret. :

6.F.1% Prove that in the subjective expected utility theorem (Proposition 6.F.2), the obtained
utility function u(-) on money is uniquely determined up to origin and scale. That is, if both
u(+) and 1(-) satisfy the condition of the theorem, then there exist §> 0 and ye R such that
i(x) = Pu(x) + 7 for all x. Prove also that the subjective probabilities are uniquely determined.

6.F.2* The purpose of this exercise is to explain the outcomes of the experiments described
in Example 6.F.1 by means of the theory of nonunique prior beliefs of Gilboa and Schmeidler
(1989).

We consider a decision maker with a Bernoulli utility function «(-) defined on {0, 1000}.
We novmalize u(-) so that u{0) = 0 and 1(1000) = L.

The probabilistic belief that the decision maker might have on the color of the H-ball being
white is a number 7 € [0, 1]. We assume that the decision maker has, not a single belief but a
set of betiefs given by a subset P of [0,1]. The actions that he may take are denoted R or H
with R meaning that he chooses the R-ball and H meaning that he chooses the H-ball.

As in Example 6.F.1, the decision maker is faced with two different choice situations. In
choice situation W, he receives 1000 dollars if the ball chosen is white and 0 dollars otherwise.
In choice situation B, he receives 1000 dollars if the ball chosen is black and 0 dollars
otherwise.

For each of the two choice situations, define his utility function over the actions R and H
in the following way:

For situation W, Uy: {R, H} — R is defined by
Uy(R)=.49 and Uy(H)=Min{rn:neP}.
For situation B, Uy: {R, H} — R is defined by
Ug(R) = .51 and Ug(H) = Min {(1 —n):me P}.

et Ehdanee o
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Namely, his utility from choice R is the expected utility of 1000 dollars with the (objective)
probability calculated from the number of white and black balls in urn R. However, his utility
from choice H is the expected utility of 1000 dollars with the probability associated with the
most pessimistic belief in P

(a) Prove that if P consists of only one belief, then Uy, and Uy are derived from
a von Neumann-Morgenstern utility function and that Uy (R) > Uy (H) if and only if
Ug(R) < Ug(H).

(b) Find a set P lor which Uy (R) > Uy (H) and Ug(R) > Ug(H).




Game Theory

In Part I, we analyzed individual decision making, both in abstract decision
problems and in more specific economic settings. Our primary aim was to lay the
groundwork for the study of how the simultaneous behavior of many self-interested
individuals (including firms) generates economic outcomes in market economies.
Most of the remainder of the book is devoted to this task. In Part 1I, however, we
study in a more general way how multiperson interactions can be modeled.

A central feature of multiperson interaction is the potential for the presence of
strategic interdependence. In our study of individual decision making in Part 1, the
3 decision maker faced situations in which her weli-being depended only on the choices
she made (possibly with some randomness). In contrast, in multiperson situations
with strategic interdependence, each agent recognizes that the payoff she receives (in
utility or profits) depends not only on her own actions but also on the actions of
other individuals. The actions that are best for her to take may depend on actions
these other individuals have already taken, on those she expects them to be taking
at the same time, and even on future actions that they may take, or decide not to
take, as a result of her current actions. )

The tool that we use for analyzing settings with strategic interdependence is
noncooperative game theory. Although the term “game” may seem to undersell the
theory's importance, it correctly highlights the theory’s central feature: The agents
under study are concerned with strategy and winning (in the general sense of utility
or profit maximization) in much the same way that players of most parlot games are.

Multiperson economic situations vary greatly in the degree to which strategic
interaction is present. In settings of monopoly (where a good is sold by only a single
firm; see Section 12.B) or of perfect competition (where all agents act as price takers;
see Chapter 10 and Part IV), the nature of strategic interaction is minimal enough
that our analysis need not make any formal use of game theory.! In other settings,
however, such as the analysis of oligopolistic markets (where there is more than one

1. However, we could well do so in both cases; see, for example, the proof of existence of

competitive equilibrium in Chapter 17, Appendix B. Moreover, we shall stress how perfect

. competition can be viewed usefully as a limiting case of oligopolistic strategic interaction; see, for
example, Section 12.F.
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but still not many sellers of a good; see Sections 12.C to 12.G), the central role of
strategic interaction makes game theory indispensable for our analysis.

Part I1 is divided into three chapters. Chapter 7 provides a short introduction to
the basic elements of noncooperative game theory, including a discussion of exactly
what a game is, some ways of representing games, and an introduction to a central
concept of the theory, a player’s strategy. Chapter 8 addresses how we can predict
outcomes in the special class of games in which all the players move simultaneously,
known as simultaneous-move games. This restricted focus helps us isolate some central
issues while deferring a number of more difficult ones. Chapter 9 studies dynamic
games in which players’ moves may precede one another, and in which some of these
more difficult (but also interesting) issues arise.

Note that we have used the modifier noncooperative to describe the type of game
theory we discuss in Part II. There is another branch of game theory, known as
cooperative game theory, that we do not discuss here. In contrast with noncooperative
game theory, the fundamental units of analysis in cooperative theory are groups and
subgroups of individuals that are assumed, as a primitive of the theory, to be able
to attain particular outcomes for themselves through binding cooperative agreements.
Cooperative game theory has played an important role in general equilibrium theory,
and we provide a brief introduction to it in Appendix A of Chapter 18. We should
emphasize that the term noncooperative game theory does not mean that non-
cooperative theory is incapable of explaining cooperation within groups of individuals.
Rather, it focuses on how cooperation may emerge as rational behavior in the absence
of an ability to make binding agreements (e.g., see the discussion of repeated
interaction among oligopolists in Chapter 12).

Some excellent recent references for further study of noncooperative game theory
are Fudenberg and Tirole (1991), Myerson (1992), and Osborne and Rubinstein
(1994), and at a more introductory level Gibbons (1992) and Binmore (1992). Kreps
(1990) provides a very interesting discussion of some of the strengths and weaknesses
of the theory. Von Neumann and Morgenstern (1944), Luce and Raiffa (1957), and
Schelling (1960) remain classic references.
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CHAPTEHR

Basic Elements of

Noncooperative Games

7.A Introduction

Bl

In this chapter, we begin our study of noncooperative game theory by introducing
some of its basic building blocks. This material serves as a prelude to our analysis
of games in Chapters 8 and 9.

Section 7.B begins with an informal introduction to the concept of a game. It
describes the four basic elements of any setting of strategic interaction that we must
know to specify a game.

In Section 7.C, we show how a game can be described by means of what is called
its extensive form representation. The extensive forrn representation provides a very
rich description of a game, capturing who moves when, what they can do, what they
know when it is their turn to move, and the outcomes associated with any collection
of actions taken by the individuals playing the game.

In Section 7.D, we introduce a central concept of game theory, a player’s strategy.
A player’s strategy is a compiete contingent plan describing the actions she will take
in each conceivable evolution of the game. We then show how the notion of a strategy
can be used to derive a much more compact representation of a game, known as
its normal (or strategic) form representation.

In Section 7.E, we consider the possibility that a player might randomize her
5 choices. This gives rise to the notion of a mixed strategy.

7B What Is a Game?

A game is a formal representation of a situation in which a number of individuals
interact in a setting of strategic interdependence. By that, we mean that each
individual’s welfare depends not only on her own actions but aiso on the actions of
the other individuals. Moreover, the actions that are best for her to take may depend
on what she expects the other players to do.

To describe a situation of strategic interaction, we need to know four things:

(i) The players: Who is involved?

(ii) The rules: Who moves when? What do they know when they move?

What can they do?

219

Lo ek



220

CHAPTER 7: BASIC ELEMENTS OF NONCOOPERATIVE GAMES

(ifi) The outcomes: For each possible set of actions by the players, what is the
outcome of the game?
What are the players’ preferences (i.e., utility functions) over
the possible outcomes?

(iv) The payoffs:

We begin by considering items (i) to (iii). A simple example is provided by the
school-yard game of Matching Pennies.

Example 7.B.1: Matching Pennies. Items (i) to (iii) are as follows:

Players:  There are two players, denoted | and 2.

Rules: Each player simultaneously puts a penny down, either heads up or
tails up.

Outcomes: If the two pennies match (either both heads up or both tails

up), player 1 pays 1 dollar to player 2; otherwise, player 2 pays
1 dollar to player 1. m

Consider another example, the game of Tick-Tack-Toe.

Example 7.B.2: Tick-Tack-Toe. Items (i) to (iii) are as follows:

There are two players, X and O.

The players are faced with a board that consists of nine squares
arrayed with three rows of three squares each stacked on one another
(see Figure 7.B.1). The players take turns putting their marks (an X
or an O) into an as-yet-unmarked square. Player X moves first. Both
players observe all choices previously made.

The first player to have three of her marks in a row (horizontally,
vertically, or diagonally) wins and receives 1 dollar from the other
player. If no one succeeds in doing so after all nine boxes are marked,
the game is a tie and no payments are made or received by either
player. m

Players:
Rules:

Qutcomes:

To complete our description of these two games, we need to say what the players’
preferences are over the possible outcomes [item (iv) in our list]. As a general matter,
we describe a player’s preferences by a utility function that assigns a utility level for
each possible outcome. It is common to refer to the player’s utility function as her
payoff function and the utility level as her payoff. Throughout, we assume that these
utility functions take an expected utility form (see Chapter 6) so that when we
consider situations in which outcomes are random, we can evaluate the random
prospect by means of the player’s expected utility.

Figure 7.B.1

A Tick-Tack-Toe
board.

SECTION 7.C:

THE EXTENSIVE FORM REPRESENTATION OF A

In later references to Matching Pennies and Tick-Tack-Toe, we assume that each
player’s payoff is simply equal to the amount of money she gains or loses. Note that
in both examples, the actions that maximize a player's payoff depend on what she
expects her opponent to do.

Examples 7.B.1 and 7.B.2 involve situations of pure conflict: What one player
wins, the other player loses. Such games are called zero-sum games. But strategic
interaction and game theory are not limited to situations of pure or even partial
conflict. Consider the situation in Example 7.B.3.

Example 7.B.3: Meeting in New York. ltems (i) to (iv) are as follows:

Players:  Two players, Mr. Thomas and Mr. Schelling.

Rules: The two players are separated and cannot communicate. They
are supposed to meet in New York City at noon for lunch but have
forgotten to specify where. Each must decide where to go (each can
make only one choice).

Outcomes: 1 they meet each other, they get to enjoy each other's company at
funch. Otherwise, they must eat alone.

Payoffs: They each attach a monetary value of 100 dollars to the other’s

company (their payoffs are each 100 dollars if they meet, 0 dollars if
they do not).

In this example, the two players’ interests are completely aligned. Their problem is
simply one of coordination. Nevertheless, each player’s payoff depends on what the
other player does; and more importantly, each player's optimal action depends on what
he thinks the other will do. Thus, even the task of coordination can have a strategic
nature. m

Although the information given in items (i) to (iv) fully describe a game, it is
useful for purposes of analysis to represent this information in particular ways. We
examine one of these ways in Section 7.C.

The Extensive Form Representation of a Game

If we know the items (i) to (iv) described in Section 7.B (the players, the rules, the
outcomes, and the payoffs), then we can formally represent the game in what is
called its extensive form. The extensive form captures who moves when, what actions
each player can take, what players know when they move, what the outcome is as a
function of the actions taken by the players, and the players’ payoffs from each
possible outcome.

We begin by informally introducing the elements of the extensive form representa-
tion through a series of examples. After doing so, we then provide a formal
specification of the extensive form (some readers may want to begin with this and
then return to the examples).

The extensive form relies on the conceptual apparatus known as a game tree. As
our starting point, it is useful to begin with a very simple variation of Matching
Pennies, which we call Matching Pennies Version B.

Example 7.C.1: Matching Pennies Version B and Its Extensive Form. Matching
Pennies Version B is identical to Matching Pennies (see Example 7.B.1) except
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Terminal nodes

(Player I's Payoﬂ') (
Player 2's Payoff

that the two players move sequentially, rather than simultaneously. In particular,
player 1 puts her penny down (heads up or tails up) first. Then, after seeing
player 1's choice, player 2 puts her penny down. (This is a very nice game for player 2!)

The extensive form representation of this game is depicted in Figure 7.C.1. The
game starts at an initial decision node (represented by an open circle), where
player 1 makes her move, deciding whether to place her penny heads up or tails up.
Each of the two possible choices for player 1 is represented by a branch from this
initial decision node. At the end of each branch is another decision node (represented
by a solid dot), at which player 2 can choose between two actions, heads up or tails
up, aftter seeing player 1’s choice. The initial decision node is referred to as player I's
decision node; the latter two as player 2's decision nodes. After player 2's move, we
reach the end of the game, represented by terminal nodes. At each terminal node, we
list the players’ payoffs arising from the sequence of moves leading to that terminal
node.

Note the treelike structure of Figure 7.C.1: Like an actual tree, it has a unique
connected path of branches from the initial node (sometimes also called the root) to
each point in the tree. This type of figure is known as a game tree. &

Example 7.C.2: The Extensive Form of Tick-Tack-Toe. The more elaborate game tree
shown in Figure 7.C.2 depicts the extensive form for Tick-Tack-Toe (to conserve
space, many parts are omitted). Note that every path through the tree represents a
unique sequence of moves by the players. In particular, when a given board position
(such as the two left corners filled by X and the two right corners filled by O) can
be reached through several different sequences of moves, each of these sequences is
depicted separately in the game tree. Nodes represent not only the current position
but also how it was reached. m

In both Matching Pennies Version B and Tick-Tack-Toe, when it is a player's
turn to move, she is able to observe all her rival's previous moves. They are games
of perfect information (we give a precise definition of this term in Definition 7.C.1).
The concept of an information set allows us to accommodate the possibility that this
is not so. Formally, the elements of an information set are a subset of a particular
player’s decision nodes. The interpretation is that when play has reached one of the
decision nodes in the information set and it is that player’s turn to move, she does

Figure 7.C.1
Extensive form for
Matching Pennies
Version B.
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not know which of these nodes she is actually at. The reason for this ignorance is
that the player does not observe something about what has previously transpired in
the game. A further variation of Matching Pennies, which we call Matching Pennies
Version C, helps make this concept clearer.

Player O~

Example 7.C.3: Matching Pennies Version C and Its Extensive Form. This version of
Matching Pennies is just like Matching Pennies Version B (in Example 7.C.1) except
that when player ! puts her penny down, she keeps it covered with her hand. Hence,
player 2 cannot see player I’s choice until after player 2 has moved.

The extensive form for this game is represented in Figure 7.C.3. It is identical to
Figure 7.C.1 except that we have drawn a circle around player 2’s two decision nodes
to indicate that these two nodes are in a single information set. The meaning of this
information set is that when it is player 2’s turn to move, she cannot tell which of
these two nodes she is at because she has not observed player 1’s previous move.
Note that player 2 has the same two possible actions at each of the two nodes in
her information set. This must be the case if player 2 is unable to distinguish the two
nodes; otherwise, she could figure out which move player 1 had taken simply by
what her own possible actions are.

In principle, we could also associate player 1’s decision node with an information
set. Because player 1 knows that nothing has happened before it is her turn to move,
this information set has only one member (player | knows exactly which node she is at
when she moves). To be fully rigorous, we should therefore also draw an information
set circle around player 1's decision node in Figure 7.C.3. It is common, however, to

Figure 7.C.2

Part of the extensive
form for
Tick-Tack-Toe.
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<l's Payoﬂ') <—l>
2's Payoff +1

simplify the diagrammatic depiction of a game in extensive form by not drawing the
information sets that contain a single node. Thus, any uncircled decision nodes are
understood to be elements of singleton information sets. In Figures 7.C.1 and 7.C.2,
for example, every decision node belongs to a singleton information set. =

A listing of all of a player’s information sets gives a listing, from the player’s
perspective, of all of the possible distinguishable “events” or “circumstances” in which
she might be called upon to move. For example, in Example 7.C.1, from player 2’s
perspective there are two distinguishable events that might arise in which she would
be called upon to move, each one corresponding to play having reached one of her
two (singleton) information sets. By way of contrast, player 2 foresees only one
possible circumstance in which she would need to move in Example 7.C.3 (this
circumstance is, however, certain to arise).

In Example 7.C.3, we noted a natural restriction on information sets: At every
node within a given information set, a player must have the same set of possible
actions. Another restriction we impose is that players possess what is known as perfect
recall. Loosely speaking, perfect recall means that a player does not forget what she
once knew, including her own actions. Figure 7.C.4 depicts two games in which this
condition is not met. In Figure 7.C.4(a), as the game progresses, player 2 forgets a
move by player 1 that she once knew (namely, whether player 1 chose Z or r). In
Figure 7.C.4(b), player 1 forgets her own previous move.! All the games we consider
in this book satisfy the property of perfect recall.

The use of information sets also allows us to capture play that is simuitaneous
rather than sequential. This is illustrated in Example 7.C.4 for the game of (standard)
Matching Pennies introduced in Example 7.B.1.

1. In terms of the formal specification of the extensive form given later in this section, if we
denote the information set containing decision node x by H(x), a game is formaily characterized as
one of perfect recall if the following two conditions hold: (i} If H(x)= H(x'), x is neither a
predecessor nor a successor of x’; and (ii) if x and x’ are two decision nodes for player i with
H(x) = H(x"), and if x” is a predecessor of x {not necessarily an immediate one) that is also in one
of player i's information sets, with a” being the action at H(x") on the path to x, then there must
be a predecessor node to x' that is an element of H(x") and the action at this predecessor
node that is on the path to x’ must also be a”.

Two games not
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) _Player 1
Player 2\ I,Player 2
Figure 7.C.3
Extensive form for
Matching Pennies
Version C.
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Example 7.C.4: The Extensive Form for Matching Pennies. Suppose now that the
players put their pennies down simultaneously. For each player, this game is
strategically equivalent to the Version C game. In Version C, player 1 was unable
to observe player 2's choice because player 1 moved first, and player 2 was unable to
observe player 1I’s choice because player 1 kept it covered; here each player is unable
to observe the other’s choice because they move simultaneously. As long as they
cannot observe each other’s choices, the timing of moves is irrelevant. Thus, we can
use the game tree in Figure 7.C.3 to describe the game of (standard) Matching
Pennies. Note that by this logic we can also describe this game with a game tree that
reverses the decision nodes of players | and 2 in Figure 7.C3. m

We can now return to the notion of a game of perfect information and offer a
formal definition.

satisfying perfect recall.
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Nature

Player l\

Player 2\

-1 (+1 (+1 <~1) (—l) (+1) (H) (—1
+1 -1 -1 +1 +1 -1 -1 +1
Figure 7.C.5 Extensive form for Matching Pennies Version D.

Definition 7.C.1: A game is one of perfect information if each information set contains
a single decision node. Otherwise, it is a game of imperfect information.

Up to this point, the outcome of a game has been a deterministic function of
the players’ choices. In many games, however, there is an element of chance. This,
too, can be captured in the extensive form representation by including random moves
of nature. We illustrate this point with still another variation, Matching Pennies
Version D.

Example 7.C.5: Matching Pennies Version D and Its Extensive Form. Suppose that
prior to playing Matching Pennies Version B, the two players flip a coin to see who
will move first. Thus, with equal probability either player 1 will put her penny down
first, or player 2 will. In Figure 7.C.5, this game is depicted as beginning with a move
of nature at the initial node that has two branches, each with probability 1. Note
that this is drawn as if nature were an additional player who must play its two
actions with fixed probabilities. (In the figure, H stands for “heads up” and T stands
for “tails up”.) =

It is a basic postulate of game theory that ail players know the structure of the
game, know that their rivals know it, know that their rivals know that they know
it, and so on. In theoretical parlance, we say that the structure of the game is common
knowledge [see Aumann (1976) and Milgrom (1981) for discussions of this concept].

In addition to being depicted graphically, the extensive form can be described
mathematicaily. The basic components are fairly easily explained and can help you
keep in mind the fundamental building blocks of a game. Formally, a game
represented in extensive form consists of the following items:?

2. To be a bit more precise about terminology: A collection of items (i) to (vi) is formally known
as an extensive game form; adding item (vii}, the players’ preferences over the outcomes, leads to a
game tepresented in extensive form. We will not make anything of this distinction here. See Kuhn
(1953) or Section 2 of Kreps and Wilson (1982) for additional discussion of this and other points
regarding the extensive form.

/Player t

)

-

1's Payoff
2's Payoff,

)
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(i) A finite set of nodes #, a finite set of possible actions &/, and a finite
set of players {1,...,[}.

(ii) A function p: & — {2 U J} specifying a single immediate predecessor of
each node x; p(x) is nonempty for all x € & but one, designated as the initial
node x,. The immediate successor nodes of x are then s(x) = p~ '(x), and the
set of all predecessors and all successors of node x can be found by iterating
p(x) and s(x). To have a tree structure, we require that these sets be disjoint
(a predecessor of node x cannot also be a successor to it). The set of terminal
nodesis T = {x & :s(x) = J}. All other nodes &'\ T are known as decision
nodes.

(i) A function a: £\{x,} — & giving the action that leads to any noninitial
node x from its immediate predecessor p(x) and satisfying the property that
if x’, x" e s(x) and x' # x”, then a(x') # a(x"). The set of choices available
at decision node x is c(x) = {a € &/ a = a(x) for some x' € 5(x)}.

(iv) A collection of information sets J#, and a function H: & — 5 assigning each

decision node x to an information set H(x) € #. Thus, the information sets

in # form a partition of Z. We require that all decision nodes assigned
to a single information set have the same choices available; formaily,

e(x) = c(x') if H(x) = H(x"). We can thercfore write the choices available

at information set H as C(H) = {ae o/ aec(x) for xe H}.

A function .: J — {0, 1,..., 1} assigning each information set in J# to

the player (or to nature: formally, player 0) who moves at the decision

nodes in that set. We can denote the collection of player i's information sets
by #={He#:i=(H)}

(vi) A function p: # x &/ — [0, 1] assigning probabilities to actions at in-
formation sets where nature moves and satisfying p(H,a) = 0 if a ¢ C(H)
and ¥, cupp(H, a) = | for all H € #;.

(vii) A collection of payoff functions u = {u,("),..., u,(*)} assigning utilities to

the players for each terminal node that can be reached, u;: T — R. As we

noted in Section 7.B, because we want to allow for a random realization of
outcomes we take each u;(-) to be a Bernoulli utility function.

-

(v

Thus, formally, a game in extensive form is specified by the collection
Tg ={Z, &, 1, p(:),a(), £, H(-), (), p(-) u}.

We should note that there are three implicit types of finiteness hidden in the formulation just
presented. Because we will often encounter games not sharing these features in the economic
applications discussed in later chapters, we briefly identify them here, although without any
formal treatment. The formal definition of an extensive form representation of a game can be
extended to these infinite cases without much difficulty, aithough there can be important
differences in the predicted outcomes of finite and infinite economic models, as we shall see
later (e.g., in Chapters 12 and 20).

First, we have assumed that players have a finite number of actions available at each
decision node. This would rule out a game in which, say, a player can choose any number
from some interval [a, b] < R. In fact, allowing for an infinite set of actions requires that we
allow for an infinite set of nodes as well. But with this change, items (i) to (vii) remain
the basic elements of an extensive form representation (e.g., decision nodes and terminal nodes
are still associated with a unique path through the tree).

ca i o TR
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Second. we have described the extensive form of a game that must end after a finite number
of moves (because the set of decision nodes is finite). Indeed, all the examples we have
considered so far fall into this category. There are, however, other types of games. For example,
suppose that two players with infinite life spans (perhaps two firms) play Matching Pennies
repeatedly every January 1. The players discount the money gained or lost at future dates
with interest rate r and seek to maximize their discounted net gains. In this game, there are
no terminal nodes. Even so, we can still associate discounted payoffs for the two players with
every {infinite) sequence of moves the players make. Of course, actually drawing a complete
game tree would be impossible, but the basic elements of the extensive form can nonetheless be
captured as before (with payoffs being associated with paths through the tree rather than with
terminal nodes).

Third, we may at times also imagine that there are an infinite number of players who take
actions in a game. For example, models involving overlapping generations of players (as in
various macroeconomic models) have this feature, as do models of entry in which we want to
allow for an infinite number of potential firms. In the games of this type that we consider, this
issue can be handled in a simple and natural manner.

Note that all three of these extensions require that we relax the assumption that there is
a finite set of nodes. Games with a finite number of nodes, such as those we have been
considering, are known as finite games.

For pedagogical purposes, we restrict our attention in Part II to finite games except where
specifically indicated otherwise. The extension of the formal concepts we discuss here to the
economic games studied later in the book that do not share these finiteness properties is
straightforward.

Strategies and the Normal Form Representation of
a Game

A central concept of game theory is the notion of a player’s strategy. A strategy is a
complete contingent plan, or decision rule, that specifies how the player will act in
every possible distinguishable circumstance in which she might be called upon to move.
Recall that, from a player’s perspective, the set of such circumstances is represented
by her collection of information sets, with each information set representing a different
distinguishable circumstance in which she may need to move (see Section 7.C). Thus, a
player’s strategy amounts to a specification of how she plans to move at each one
of her information sets, should it be reached during play of the game. This is stated
formally in Definition 7.D.1.

Definition 7.D.1: Let 5 denote the collection of player /'s information sets, & the set

of possible actions in the game, and C(H} < o the set of actions possible at
information set H. A strategy for player / is a function s;: #; - o such that
s;(H)e C(H) for all He 5.

The fact that a strategy is a complete contingent plan cannot be overemphasized,
and it is often a source of confusion to those new to game theory. When a player
specifies her strategy, it is as if she had to write down an instruction book prior to
play so that a representative could act on her behalf merely by consulting that book.

As a complete contingent plan, a strategy often specifies actions for a player
at information sets that may not be reached during the actual play of the game.
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For example, in Tick-Tack-Toe, player O's strategy describes what she will do
on her first move if player X starts the game by marking the center square.
But in the actual play of the game, player X might not begin in the center: she may
instead mark the lower-right corner first, making this part of player O's plan no
longer relevant.

In fact, there is an even subtler point: A player's strategy may include plans for
actions that her own strategy makes irrelevant. For example, a complete contingent
plan for ptayer X in Tick-Tack-Toe includes a description of what she will do after
she plays “center” and player O then plays “lower-right corner,” even though her
own strategy may call for her first move to be “upper-left corner.” This probably
seems strange; its importance will become apparent only when we talk about dynamic
games in Chapter 9. Nevertheless, remember: A strategy is a complete contingent plan
that says what a player will do at each of her information sets if she is called on to
play there.

It is worthwhile to consider what the players’ possible strategies are for some of
the simple Matching Pennies games.

Example 7.D.1: Strategies in Matching Pennies Version B. In Matching Pennies
Version B, a strategy for player 1 simply specifies her move at the game’s initial node.
She has two possible strategies: She can play heads (H) or tails (T). A strategy for
player 2, on the other hand, specifies how she will play (H or T) at each of her two
information sets, that is, how she will play if player 1 picks H and how she will play
if player 1 picks T. Thus, player 2 has four possible strategies.

Strategy 1 (s,): Play H if player 1 plays H; play H if player | plays T.
Strategy 2 (s;): Play H if player | plays H; play T if player 1 plays T.
Strategy 3 (s,): Play T if player 1 plays H; play H if player 1 plays T.
Strategy 4 (s,): Play T if player 1 plays H; play T if player 1 plays T. =

Example 7.D.2: Strategies in Matching Pennies Version C. In Matching Pennies
Version C, player 1’s strategies are exactly the same as in Version B; but player 2
now only has two possible strategies, “play H” and “play T", because she now has
only one information set. She can no longer condition her action on player I's
previous action. =

We will often find it convenient to represent a profile of players’ strategy choices
in an [-player game by a vector s = (5, ..., 5;), where s, is the strategy chosen by
player i. We will also sometimes write the strategy profile s as (s;, s_;), where s_; is
the (I — 1) vector of strategies for players other than i.

The Normal Form Representation of a Game

Every profile of strategies for the players s = (s,, ..., s;) induces an outcome of the
game: a sequence of moves actually taken and a probability distribution over the
terminal nodes of the game. Thus, for any profile of strategies (s, ..., ), we can
deduce the payoffs received by each player. We might think, therefore, of specifying
the game directly in terms of strategies and their associated payoffs. This second
way to represent a game is known as the normal (or strategic) form. It is, in essence,
a condensed version of the extensive form.
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Player | The normal form of
T{+1, ~t] =1, #1401, -1 =1 +1 Matching Pennies
Version B.

Definition 7.D.2: For a game with I players, the normal form representation Ty
specifies for each player / a set of strategies S; (with s, € S;) and a payoff function
u;(Sq, ..., S;) giving the von Neumann—Morgenstern utility levels associated with
the (possibly random) outcome arising from strategies (s,,...,s;). Formally,
we write Ty = [, {S;}. {u;(")}].

In fact, when describing a game in its normal form, there is no need to keep
track of the specific moves associated with each strategy. Instead, we can simply
number the various possible strategies of a player, writing player i’s strategy set as
S; = {51» 520, - - - } and then referring to each strategy by its number.

A concrete example of a game in normal form is presented in Exampie 7.D.3 for
Matching Pennies Version B.

Example 7.D.3: The Normal Form of Maiching Pennies Version B. We have
already described the strategy sets of the two players in Example 7.D.1. The payoff
functions are

+1if (s,, 55) = (H, strategies 3 or 4) or (T, strategies 1 or 3),

(s, $2) = {——1 if (s,, s;) = (H, strategies 1 or 2) or (T, strategies 2 or 4),

and uy(s,, $;) = —uy(s,, ). A convenient way to summarize this information is in the
“game box” depicted in Figure 7.D.1. The different rows correspond to the strategies
of player 1, and the columns to those of player 2. Within each cell, the payoffs of
the two players are depicted as (u,(sy, 53), #a(S1, 5;)). ®

Exercise 7.D.2: Depict the normal forms for Matching Pennies Version C and the
standard version of Matching Pennies.

The idea behind using the normal form representation to study behavior in a game
is that a player’s decision problem can be thought of as one of choosing her strategy
(her contingent plan of action) given the strategies that she thinks her rivals will be
adopting. Because each player is faced with this problem, we can think of the players
as simultaneously choosing their strategies from the sets {S;}. It is as if the players
each simultaneously write down their strategies on slips of paper and hand them to a
referee, who then computes the outcome of the game from the players’ submitted
strategies.

From the previous discussion, it is clear that for any extensive form representation of a
game, there is a unique normal form representation (more precisely, it is unique up to any
renaming or renumbering of the strategies). The converse is not true, however. Many different
extensive forms may be represented by the same normal form. For example, the normal form
shown in Figure 7.D.1 represents not only the extensive form in Figure 7.C.1 but also the

Player 2

L R L R L R

5hor) R ) Gy B ) R 4 B G A G I

extensive form in Figure 7.D.2. In the latter game, players move simultaneously, player 1
choosing between two strategies, L and R, and player 2 choosing among four strategies: a, b, ¢,
and 4. In terms of their representations in a game box, the only difference between
the normal forms for these games lies in the “labels” given to the rows and columns.
Because the condensed representation of the game in the normal form generally omits
some of the details present in the extensive form, we may wonder whether this omission is
important or whether the normal form summarizes ail of the strategically relevant information
(as the last paragraph in regular type seems to suggest). The question can be put a little
differently: Is the scenario in which players simultaneously write down their strategies and
submit them to a referee really equivalent to their playing the game over time as described in
the extensive form? This question is currently a subject of some controversy among game
theorists. The debate centers on issues arising in dynamic games such as those studied in
Chapter 9.

For the simultancous-move games that we study in Chapter 8, in which all players
choose their actions at the same time, the normal form captures all the strategically
relevant information. In simultaneous-move games, a player's strategy is a simple non-
contingent choice of an action. In this case, players’ simultaneous choice of strategies in the
normal form is clearly equivalent to their simultancous choice of actions in the extensive form
(captured there by having players not observing each other’s choices).

Randomized Choices

Up to this point, we have assumed that players make their choices with certainty.
However, there is no a priori reason to exclude the possibility that a player could
randomize when faced with a choice. Indeed, we will see in Chapters 8 and 9 that in
certain circumstances the possibility of randomization can play an important role in
the analysis of games.

As stated in Definition 7.D.1, a deterministic strategy for player i, which we now
call a pure strategy, specifies a deterministic choice 5,(H) at each of her information
sets H e J#,. Suppose that player i’s (finite) set of pure strategies is S;. One way for

+
-1

?

)

R
-1

()

Figure 7.0.2 An extensive form whose normal form is that depicted in Figure 7.D.1.



CHAPTER 7: BASIC ELEMENTS OF NONCOOPERATIVE GAMES

the player to randomize is to choose randomly one element of this set. This kind of
randomization gives rise to what is called a mixed strategy.

Definition 7.E.1: Given player /'s (finite) pure strategy set S; a mixed strategy

for player /, g,: S; — [0, 1], assigns to each pure strategy s,€S; a probability
a,(s;) > O that it wili be played, where 3 0,(5;) = 1.

Suppose that player i has M pure strategies in set S; = {s,;,....5,;}. Player
i's set of possible mixed strategies can therefore be associated with the points
of the following simplex (recall our use of a simplex to represent lotteries in
Chapter 6):

M
AGS) ={(0y,. .., op)eRM: 0, >0 forall m=1,...,.M and Y o, =1}.
m=1

This simplex is called the mixed extension of S;. Note that a pure strategy can be
viewed as a special case of a mixed strategy in which the probability distribution
over the elements of S; is degenerate.

When players randomize over their pure strategies, the induced outcome is itself
random, leading to a probability distribution over the terminal nodes of the game.
Since each player i’s normal form payoff function u;(s) is of the von Neumann-
Morgenstern type, player i’s payoff given a profile of mixed strategies ¢ = (4,,...,d,)
for the I players is her expected utility E,[u;(s)], the expectation being taken with
respect to the probabilities induced by o on pure strategy profiles s = (s, ..., 5;).
That is, letting S = S, x - -- x S, player i’s von Neumann—Morgenstern utility from
mixed strategy profile o is

Z [o1(s1) 05(s2) - - - o1 (51)Jui(5),

seS
which, with a slight abuse of notation, we denote by u;(c). Note that because we
assume that each player randomizes on her own, we take the realizations of players’
randomizations to be independent of one another.?

The basic definition of the normal form representation need not be changed to
accommodate the possibility that players might choose to play mixed strategies. We
can simply consider the normal form game [y = [I, {A(S;)}, {u,(*)}] in which players’
strategy sets are extended to include both pure and mixed strategies.

Note that we can equivalently think of a player forming her mixed strategy as follows:
Player i has access to a private signal @, that is uniformly distributed on the interval [0, 1] and is
independent of other players’ signals, and she forms her mixed strategy by making her plan
of action contingent on the realization of the signal. That is, she specifies a pure strategy
5:(0;) € S; for each realization of §;. We shall return to this alternative interpretation of mixed
strategies in Chapter 8.

If we use the extensive form description of a game, there is another way that
player i could randomize. Rather than randomizing over the potentially very

3. In Chapter 8, however, we discuss the possibility that players’ randomizations could be
correlated.

S
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large set of pure strategies in §;, she could randomize separately over the possible
actions at each of her information sets H e #;. This way of randomizing is called a
behavior strategy.

Definition 7.E.2: Given an extensive form game T, a behavior strategy for player
i specifies, for every information set H e J¥; and action a e C(H), a probability
Afa. H) =20, with 3, .oy 4l H) = 1 for all He #,.

As might seem intuitive, for games of perfect recall (and we deal only with
these), the two types of randomization are equivalent. For any behavior strategy
of player i, there is a mixed strategy for that player that yields exactly the
same distribution over outcomes for any strategies, mixed or behavior, that might
be played by i's rivals, and vice versa [this result is due to Kuhn (1953); see
Exercise 7.E.1]. Which form of randomized strategy we consider is therefore a
matter of analytical convenience; we typically use behavior strategies when analyzing
the extensive form representation of a game and mixed strategies when analyzing
the normal form.

Because the way we introduce randomization is solely a matter of analytical
convenience, we shall be a bit loose in our terminology and refer to all randomized
strategies as mixed strategies.
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EXERCISES

7.C.1* Suppose that in the Meeting in New York game (Example 7.B.3), there are two possible
places where the two players can meet: Grand Central Station and the Empire State Building.
Draw an extensive form representation (game tree) for this game.

7.D.1% In a game where player i has N information sets indexed n = I,..., N and M, possible
actions at information set n, how many strategies does player i have?

7.D.2* In text.

7.E.1® Consider the two-player game whose extensive form representation (excluding payoffs)
is depicted in Figure 7.Ex.1.

(a) What are player 1's possible strategies? Player 2's?

(b} Show that for any behavior strategy that player 1 might play, there is a realization
equivalent mixed strategy; that is, a mixed strategy that generates the same probability
distribution over the terminal nodes for any mixed strategy choice by player 2.
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T, T, T, T, T, T, T, T,

(c) Show that the converse is also true: For any mixed strategy that player 1 might play,
there is a realization equivalent behavior strategy.
(d) Suppose that we change the game by merging the information sets at player 1’s second

round of moves (so that all four nodes are now in a single information set). Argue that the
game is no longer one of perfect recall. Which of the two results in (b) and (c) still holds?

Figure 7.Ex.1

CHAPTEHR

Simultaneous-Move Games

Introduction

We now turn to the central question of game theory: What should we expect to
observe in a game played by rational players who are fully knowledgeable about the
structure of the game and each others’ rationality? In this chapter, we study
simultaneous-move games, in which all players move only once and at the same time.
Our motivation for beginning with these games is primarily pedagogic; they allow
us to concentrate on the study of strategic interaction in the simplest possible setting
and to defer until Chapter 9 some difficult issues that arise in more general, dynamic
games.

In Section 8.B, we introduce the concepts of dominant and dominated strategies.
These notions and their extension in the concept of iterated dominance provide a first
and compelling restriction on the strategies rational players should choose to play.

In Section 8.C, we extend these ideas by defining the notion of a rationalizable
strategy. We argue that the implication of players’ common knowledge of each others’
rationality and of the structure of the game is precisely that they will play
rationalizabie strategies.

Unfortunately, in many games, the set of rationalizable strategies does not yield
a very precise prediction of the play that will occur. In the remaining sections of the
chapter, we therefore study solution concepts that yield more precise predictions by
adding “equilibrium” requirements regarding players’ behavior.

Section 8.D begins our study of equilibrium-based solution concepts by intro-
ducing the important and widely applied concept of Nash equilibrium. This concept
adds to the assumption of common knowledge of players’ rationality a requirement
of mutally correct expectations. By doing so, it often greatly narrows the set of
predicted outcomes of a game. We discuss in some detail the reasonableness of this
requirement, as well as the conditions under which we can be assured that a Nash
equilibrium exists.

In Sections 8.E and 8.F, we examine two extensions of the Nash equilibrium
concept. In Section 8.E, we broaden the notion of a Nash equilibrium to cover
situations with incomplete information, where each player’s payoffs may, to some
extent, be known only by the player. This yields the concept of Bayesian Nash
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equilibrium. In Section 8.F, we explore the implications of players entertaining the
possibility that, with some small but positive probability, their opponents might make
a mistake in choosing their strategies. We define the notion of a (normal form)
trembling-hand perfect Nash equilibrium, an extension of the Nash equilibrium concept
that requires that equilibria be robust to the possibility of small mistakes.

Throughout the chapter, we study simultaneous-move games using their normal
form representations (see Section 7.D). Thus, we use Iy = [I, {S;}, {#;(-)}] when
we consider only purc (nonrandom) strategy choices and I'y = [, {A(S;)}, {u()}]
when we allow for the possibility of randomized choices by the players (see
Section 7.E for a discussion of randomized choices). We often denote a profile
of pure strategies for player i’s opponents by s_; = (Sy, ..., Si—1, Sis1s---s5)
with a similar meaning applying to the profile of mixed strategies o.,. We
then write s=(s;,s_;) and o =(0;,0_;). We also let S=§, x---x§;, and
Soi=S8Sy X xSy X Sy X xSy

Dominant and Dominated Strategies

We begin our study of simultaneous-move games by considering the predictions that
can be made based on a relatively simple means of comparing a player’s possible
strategies: that of dominance.

To keep matters as simple as possible, we initially ignore the possibility that
players might randomize in their strategy choices. Hence, our focus is on games
Ty = [1,{5;}, {u;()}] whose strategy scts allow for only pure strategies.

Consider the game depicted in Figure 8.B.1, the famous Prisoner’s Dilemma. The
story behind this game is as follows: Two individuals are arrested for allegedly
engaging in a serious crime and are held in separate cells. The district attorney (the
DA) tries to extract a confession from each prisoner. Each is privately told that if
he is the only one to confess, then he will be rewarded with a light sentence of 1 year
while the recalcitrant prisoner will go to jail for 10 years. However, if he is the only
one not to confess, then it is he who will serve the 10-year sentence. If both confess,
they will both be shown some mercy: they will each get 5 years. Finally, if neither
confesses, it will still be possible to convict both of a lesser crime that carries a
sentence of 2 years. Each player wishes to minimize the time he spends in jail (or
maximize the negative of this, the payoffs that are depicted in Figure 8.B.1).

What will the outcome of this game be? There is only one plausible answer:
(confess, confess). To see why, note that playing “confess” is each player’s best
strategy regardless of what the other player does. This type of strategy is known as
a strictly dominant strategy.

Prisoner 2
Don't
Confess  Confess
Don't
Confess| ~%>~2 | ~10.-1

Prisoner 1
Confess} —1, =10 [ -5, -5

Figure 8.B.1
The Prisoner’s

Dilemma.
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€' pefinition 8.B.1: A strategy s;€ S; is a strictly dominant strategy for player i in game

Iy =1 {S;}. {u;(-)}] it tor all 5} # 5;, we have
ui(s;,5-;) > u(s, s-))

foralls_,eS_;.

In words, a strategy s is a strictly dominant strategy for player i if it maximizes
uniquely player i's payoff for any strategy that player i's rivals might play. (The reason
for the modifier strictly in Definition 8.B.1 will be made clear in Definition 8.B.3.)
If a player has a strictly dominant strategy, as in the Prisoner’s Dilemma, we should
expect him to play it.

The striking aspect of the (confess, confess) outcome in the Prisoner’s Dilemma
is that although it is the one we expect to arise, it is not the best outcome for the
players jointly; both players would prefer that neither of them confess. For this reason,
the Prisoner's Dilemma is the paradigmatic example of self-interested, rational
behavior not leading to a socially optimal result.

One way of viewing the outcome of the Prisoner’s Dilemma is that, in seeking
to maximize his own payoff, each prisoner has a negative effect on his partner; by
moving away from the (don’t confess, don’t confess) outcome, a player reduces his
jail time by 1 year but increases that of his partner by 8 (in Chapter 11, we shall see
this as an example of an externality).

Dominated Strategies

Although it is compelling that players should play strictly dominant strategies if they
have them, it is rare for such strategies to exist. Often, one strategy of player i's may
be best when his rivals play s_; and another when they play some other strategies
s”_; (think of the standard Matching Pennies game in Chapter 7). Even so, we might
still be able to use the idea of dominance to eliminate some strategies as possible
choices. In particular, we should expect that player i will not play dominated strategies,
those for which there is some alternative strategy that yields him a greater payoff
regardless of what the other players do.

¥ Definition 8.B.2: A strategy s;€ S, is strictly dominated for player / in game

Ty =1 {S;}, {u;(")}] if there exists another strategy s;eS; such that for all
s_;eS_,
ui(si, s-;) > uils;, s_)).

In this case, we say that strategy s; strictly dominates strategy s;.

With this definition, we can restate our definition of a strictly dominant strategy
(Definition 8.B.1) as follows: Strategy s; is a strictly dominant strategy for player i in
game Iy = [I, {S;}, {u:(-)}] if it strictly dominates every other strategy in S;.

Example 8.B.1: Consider the game shown in Figure 8.B.2. There is no strictly
dominant strategy, but strategy D for player 1 is strictly dominated by strategy M
(and also by strategy U). =

Definition 8.D.3 presents a related, weaker notion of a dominated strategy that
is of some importance.

R =

a

Y.
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5
Player 2 Player 2

L R L R

ul 1,-t -1 4 51 4,0

Player | M| -1,1 1, ~1 Player | M 6.0 31

Di-25 =32 D 6,4 4.4

Definition 8.B.3: A strateqy s, € S; is weakly dominated in game Iy = [I, {S;} {u,("}1]
it there exists another strategy s € S; such thatfor all s_;e S_;,

uisi, s-)) 2 usi, s-,),

with strict inequality for some s_;. In this case, we say that strategy s; wea'klly
dominates strategy s;. A strategy is a weakly dominant strategy for player 7 in
game Ty = {1, {S;}, {¢;()}] it it weakly dominates every other strategy in S;.

Thus, a strategy is weakly dominated if another strategy does at least as well for
all s_; and strictly better for some s_;.

Example 8.B.2: Figure 8.B.3 depicts a game in which player 1 has two weakly
dominated strategies, U and M. Both are weakly dominated by strategy D =

Unlike a strictly dominated strategy, a strategy that is only weakly dominated
cannot be ruled out based solely on principles of rationality. For any alternative
strategy that player i might pick, there is at least one profile of strategies for his rivals
for which the weakly dominated strategy does as well. In Figure 8.B.3, for example,
player 1 could rationally pick M if he was absolutely sure that player 2 would play
L. Yet, if the probability of player 2 choosing strategy R was perceived by player 1
as positive (no matter how smail), then M would not be a rational choice for player 1.
Caution might therefore rule out M. More generally, weakly dominated strategies
could be dismissed if players always believed that there was at least some positive
probability that any strategies of their rivals could be chosen. We do not pursue this
idea here, although we return to it in Section 8.F. For now, we continue to allow a
player to entertain any conjecture about what an opponent might play, even a
perfectly certain one.

Iterated Deletion of Strictly Dominated Strategies

As we have noted, it is unusual for elimination of strictly dominated strategies to
lead to a unique prediction for a game (e.g., recall the game in Figure 8.B.2). However,
the logic of eliminating strictly dominated strategies can be pushed further, as
demonstrated in Example 8.B.3.

Example 8.B.3: In Figure 8.B.4, we depict a modification of the Prisoner’s Dilemma,
which we call the DA’s Brother.

The story (a somewhat far-fetched one!) is now as follows: One of the prisoners,
prisoner 1, is the DA’s brother. The DA has some discretion in the fervor with which

Figure 8.B.2 (left)

Strategy D is strictly 3
dominated. 3

F]gure 8.B.3 (right)

Strategies U and M ’
are weakly dominageg

Prisoner 2
Don't
Confess  Confess

Don't
Confess
Prisoner 1

0,-2 | -10,-1

Confess | -1, =10 =5, -5 Figure 8.B.4

he prosecutes and, in particular, can allow prisoner 1 to go free if neither of the
prisoners confesses. With this change, if prisoner 2 confesses, then prisoner | should
also confess; but “don’t confess” has become prisoner 1's best strategy if prisoner 2
plays “don’t confess.” Thus, we are unable to rule out either of prisoner 1’s strategies
as being dominated, and so elimination of strictly dominated (or, for that matter,
weakly dominated) strategies does not iead to a unique prediction. A
However, we can still derive a unique prediction in this game if we push the logic
of eliminating strictly dominated strategies further. Note that “don’t confess” is still
strictly dominated for prisoner 2. Furthermore, once prisoner ! eliminates “don’t
confess” as a possible action by prisoner 2, “confess” is prisoner 1’s unambiguously
optimal action; that is, it is his strictly dominant strategy once the strictly dominated
strategy of prisoner 2 has been deleted. Thus, the unique predicted outcome in the
DA’s Brother game should still be (confess, confess). m

Note the way players’ common knowledge of each other’s payoffs and rationality
is used to solve the game in Example 8.B.3. Elimination of strictly dominated
strategies requires only that each player be rational. What we have just done,
however, requires not only that prisoner 2 be rational but also that prisoner 1 know
that prisoner 2 is rational. Put somewhat differently, a player need not know anything
about his opponents’ payoffs or be sure of their rationality to eliminate a strictly
dominated strategy from consideration as his own strategy choice; but for the player
to eliminate one of his strategies from consideration because it is dominated if his
opponents never play their dominated strategies does require this knowledge.

As a general matter, if we are willing to assume that all players are rational and
that this fact and the players’ payoffs are common knowledge (so everybody knows
that everybody knows that ... everybody is rational), then we do not need to stop
after only two iterations. We can eliminate not only strictly dominated strategies and
strategies that are strictly dominated after the first deletion of strategies but also
strategies that are strictly dominated after this next deletion of strategies, and so on.
Note that with each elimination of strategies, it becomes possible for additional
strategies to become dominated because the fewer strategies that a player’s opponents
might play, the more likely that a particular strategy of his is dominated. However,
each additional iteration requires that players’ knowledge of each others’ rationality
be one level deeper. A player must now know not only that his rivals are rational
but also that they know that he is, and so on.

One feature of the process of iteratively eliminating strictly dominated strategies
is that the order of deletion does not affect the set of strategies that remain in the
end (see Exercise 8.B.4), That is, if at any given point several strategies (of one or

The DA’s Brother.
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several players) are strictly dominated, then we can eliminate them all at once or in
any sequence without changing the set of strategies that we ultimately end up with.
This is fortunate, since we would worry if our prediction depended on the arbitrarily
chosen order of deletion.

Exercise 8.B.5 presents an interesting example of a game for which the iterated
removal of strictly dominated strategies yields a unique prediction: the Cournot
duopoly game (which we will discuss in detail in Chapter 12).

The iterated deletion of weakly dominated strategics is harder to justify. As we have already
indicated, the argument for deletion of a weakly dominated strategy for player i is that he
contemplates the possibility that every strategy combination of his rivals occurs with positive
probability. However, this hypothesis clashes with the logic of iterated deletion, which assumes,
precisely, that eliminated strategies are not expected to occur. This inconsistency leads the
iterative elimination of weakly dominated strategies to have the undesirable feature that it can
depend on the order of deletion. The game in Figure 8.B.3 provides an example. If we first
eliminate strategy U, we next eliminate strategy L, and we can then eliminate strategy M;
(D, R) is therefore our prediction. If, instead, we eliminate strategy M first, we next eliminate
strategy R, and we can then eliminate strategy U; now (D, L) is our prediction.

Allowing for Mixed Strategies

When we recognize that players may randomize over their pure strategies, the basic
definitions of strictly dominated and dominant strategies can be generalized in a
straightforward way.

Definition 8.B.4: A strategy o;€ A(S;) is strictly dominated for player / in game
Ty = [1. {A(S)}, {u;{-)}] if there exists another strategy ;€ A(S;) such that for all
a_ €« AS)),

vl 0_;) > ude;. o).

In this case, we say that strategy o} strictly dominates strategy o;. A strategy o;
is a strictly dominant strategy for player i in game Iy = [I, {A(S)}, {u;(-)}] if it
strictly dominates every other strategy in A(S;).

Using this definition and the structure of mixed strategies, we can say a bit more about the
set of strictly dominated strategies in game Iy = [1, {A(S)}, {u()}].

Note first that when we test whether a strategy o, is strictly dominated by strategy o; for
player i, we need only consider these two strategies’ payoffs against the pure strategies of i’s
opponents. That is,

u(oi,0_;) >ufo,0_;) forallo_;
if and only if
uloy, s.;) > ulo,s_;) foralls_.

This follows because we can write

w0, 6_;) ~ulo,0.;)= Z [n ak(sk)jl[ui(a;: s —udoi,s-)].
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This expression is positive for all o_, if and only if {u;(s}, s_;) — w,(a;, 5-;)] is positive for all
s-;. One implication of this point is presented in Proposition 8.B.1.

Proposition 8.B.1: Player /s pure strategy s;eS; is strictly dominated in game T, =[],
{A(S)}, {u;(-)}] if and only if there exists another strategy o} € A(S;) such that

uilos, s-5) > uds; )
foralls_;eS_;.

Proposition 8.B.1 tells us that to test whether a pure strategy s, is dominated when
randomized play is possible, the test given in Definition 8.B.2 need only be augmented by
checking whether any of player i's mixed strategies does better than s; against every possible
profile of pure strategies by i's rivals.

In fact, this extra requirement can eliminate additional pure strategies because a pure
strategy s; may be dominated only by a randomized combination of other pure strategies; that
is, to dominate a strategy, even a pure one, it may be necessary to consider alternative strategies
that involve randomization. To see this, consider the two-player game depicted in Figure
8.B.5(a). Player | has three strategies: U, M, and D. We can see that U is an excellent strategy
when player 2 plays L but a poor one against R and that D is excellent against R and poor
against L. Strategy M, on the other hand, is a good but not great strategy against both L and
R. None of these three pure strategies is strictly dominated by any of the others. But if we
allow player 1 to randomize, then playing U and D each with probability § yields player 1 an
expected payoff of 5 regardless of player 2's strategy, strictly dominating M (remember, payoffs
are levels of von Neumann-Morgenstern utilities). This is shown in Figure 8.B.5(b), where
player 1’s expected payoffs from playing U, D, M, and the randomized strategy 4U + 1D are
plotted as points in R? (the two dimensions correspond to a strategy’s expected payoff for
player 1 when player 2 plays R, denoted by ug, and L, denoted by u, ). In the figure, the payoff
vectors achievable by randomizing over U and D, and that from the randomized strategy
1U + 1D in particular, lie on the line connecting points (0, 10) and (10, 0). As can be seen, the
payoffs from U + 1D strictly dominate those from strategy M.

Once we have determined the set of undominated pure strategies for player i, we need to
consider which mixed strategies are undominated. We can immediately eliminate any mixed
strategy that uses a dominated pure strategy; if pure strategy s, is strictly dominated for player
i, then so is every mixed strategy that assigns a positive probability to this strategy.

Exercise 8.B.6: Prove that if pure strategy s, is a strictly dominated strategy in game
Ty = [1, {A(S))}, {u(-)}], then so is any strategy that plays s; with positive probability.

Figure 8.B.5

Domination of a pure
strategy by a
randomized strategy.
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But these are not the only mixed strategies that may be dominated. A mixed strategy that
randomizes over undominated pure strategies may itself be dominated. For example, if strategy
M in Figure 8.B.5(a) instead gave player | a payoff of 6 for either strategy chosen by player
2, then atthough neither strategy U nor strategy D would be strictly dominated, the randomized
strategy YU + {D would be strictly dominated by strategy M [look where the point (6, 6)
would lie in Figure 8.B.5(b)].

In summary, to find the set of strictly dominated strategies for player i in Iy = [I, {A(S;)},
{u()}]). we can first eliminate those pure strategies that are strictly dominated by applying
the test in Proposition 8.B.1. Call player i's set of undominated pure strategies S} < S;. Next,
climinate any mixed strategies in set A(S!) that are dominated. Player i's set of undominated
strategies (pure and mixed) is exactly the remaining strategies in set A(S}).

As when we considered only pure strategies, we can push the logic of removal of strictly
dominated strategies in game Iy = {1, {A(S;)}, {u(*)}] further through iterative elimination.
The preceding discussion implies that this iterative procedure can be accomplished with the
following two-stage procedure: First iteratively eliminate dominated pure strategies using the
test in Proposition 8.B.1, applied at each stage using the remaining set of pure strategies. Call
the remaining sets of pure strategies {§‘;, ey §‘,‘}. Then, eliminate any mixed strategies in sets
{A(SY),..., A(S%)} that are dominated.

Rationalizable Strategies

In Section 8.B, we eliminated strictly dominated strategies based on the argument
that a rational player would never choose such a strategy regardless of the strategies
that he anticipates his rivals will play. We then used players’ common knowledge of
each others’ rationality and the structure of the game to justify iterative removal of
strictly dominated strategies.

In general, however, players’ common knowledge of each others’ rationality and
the game’s structure allows us to eliminate more than just those strategies that are
iteratively strictly dominated. Here, we develop this point, leading to the concept of
a rationalizable strategy. The set of rationalizable strategies consists precisely of those
strategies that may be played in a game where the structure of the game and the
players’ rationality are common knowledge among the players. Throughout this
section, we focus on games of the form Ty = [1, {A(S;)}, {4*)}] (mixed strategies
are permitted).

We begin with Definition 8.C.1.

Definition 8.C.1: In game T, = [I, {A(S)}, {1,;()}], strategy g, is a best response for

player / to his rivals' strategies o _; if
ufe; 06_;) 2 uyloj, a_;)

for all g} € A(S;). Strategy g, is never a best response if there is no ¢ .; for which
o, is a best response.

Strategy o, is a best response to o_; if it is an optimal choice when player i
conjectures that his opponents will play o _;. Player i’s strategy o, is never a best
response if there is no belief that player i may hold about his opponents’ strategy
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choices g _; that justifies choosing strategy 0,.! Clearly, a player should not play a
strategy that is never a best response.

Note that a strategy that is strictly dominated is never a best response. However,
as a general matter, a strategy might never be a best response even though it is not
strictly dominated (we say more about this relation at the end of this section in small
type). Thus, eliminating strategies that are never a best response must eliminate at
least as many strategies as eliminating just strictly dominated strategies and may
eliminate more.

Moreover, as in the case of strictly dominated strategies, common knowledge
of rationality and the game’s structure implies that we can iterate the deletion
of strategies that are never a best response. In particular, a rational player
should not play a strategy that is never a best response once he eliminates
the possibility that any of his rivals might play a strategy that is never a best
response for them, and so on.

Equally important, the strategies that remain after this iterative deletion are the
strategies that a rational player can justify, or rarionalize, affirmatively with some
reasonable conjecture about the choices of his rivals; that is, with a conjecture that
does not assume that any player will play a strategy that is never a best response or
one that is only a best response to a conjecture that someone else will play such a
strategy, and so on. (Example 8.C.1 provides an illustration of this point.) As a result,
the set of strategies surviving this iterative deletion process can be said to be precisely
the set of strategies that can be played by rational players in a game in which the
players’ rationality and the structure of the game are common knowledge. They are
known as rationalizable strategies [a concept developed independently by Bernheim
(1984) and Pearce (1984)].

Definition 8.C.2: In game Iy, = [1, {A(S))}, {¢;(-)}], the strategies in A(S,) that survive

the iterated removal of strategies that are never a best response are known as
player /'s rationalizable strategies.

Note that the set of rationalizable strategies can be no larger than the set of
strategies surviving iterative removal of strictly dominated strategies because, at each
stage of the iterative process in Definition 8.C.2, all strategies that are strictly
dominated at that stage are eliminated. As in the case of iterated deletion of strictly
dominated strategies, the order of removal of strategies that are never a best response
can be shown not to affect the set of strategies that remain in the end (see Exercise
8.C.2).

1. We speak here as if a player’s conjecture is necessarily deterministic in the sense that the player
believes it is certain that his rivals will play a particular profile of mixed strategies ¢ _,. One might
wonder about conjectures that are probabilistic, that is, that take the form of a nondegenerale
probability distribution over possibie profiles of mixed strategy choices by his rivals. In fact, a
strategy g; is an optimal choice for player i given some probabilistic conjecture (that treats his
opponents’ choices as independent random variabies) only if it is an optimal choice given some
deterministic conjecture. The reason is that if o; is an optimal choice given some probabilistic
conjecture, then it must be a best response to the profile of mixed strategies o _, that plays each
possible pure strategy profile s_; € S_, with exactly the compound probability implied by the
probabilistic conjecture.

fadhanac: oo gopss i vl R geprc it PR
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Example 8.C.1: Consider the game depicted in Figure 8.C.1, which is taken from
Bernheim (1984). What is the set of rationalizable pure strategies for the two
players? In the first round of deletion, we can eliminate strategy b,, which is never a
best response because it is strictly dominated by a strategy that plays strategies b,
and b; each with probability 1. Once strategy b, is eliminated, strategy a, can be
eliminated because it is strictly dominated by a, once b, is deleted. At this point, no
further strategies can be ruled out: a, is a best response to b, a, is a best response
to b,, and a; is a best response to b,. Similarly, you can check that b,, b,, and b,
are each best responses to one of a,, a,, and a;. Thus, the set of rationalizable pure
strategies for player 1 is {a,, a,, a;}, and the set [b,, b,, b,} is rationalizable for
player 2.

Note that for each of these rationalizable strategies, a player can construct a chain
of justification for his choice that never relies on any player believing that another
player will play a strategy that is never a best response.? For example, in the game
in Figure 8.C.1, player 1 can justify choosing a, by the belief that player 2 will play
b,, which player 1 can justify to himself by believing that player 2 will think that he
is going to play a,, which is reasonable if player 1 believes that player 2 is thinking
that he, player [, thinks player 2 will play b,, and so on. Thus, player 1 can construct
an (infinite) chain of justification for playing strategy a,, (a,, b,, a5, b,, .. .), where
each element is justified using the next element in the sequence.

Similarly, player 1 can rationalize playing strategy a, with the chain of justi-
fication (a,, bs, a,, by, ay, by, a3, by, a,,...). Here player 1 justifies playing a, by
believing that player 2 will play b;. He justifies the belief that player 2 will play b,
by thinking that player 2 believes that he, player 1, will play a,. He justifies this belief
by thinking that player 2 thinks that he, player 1, believes that player 2 will play b,.
And so on.

Suppose, however, that player 1 tried to justify a,. He could do so only by a
belief that player 2 would play b,, but there is no belief that player 2 could have that
would justify b,. Hence, player | cannot justify playing the nonrationalizable strategy
a, m

2. In fact, this chain-of-justification approach to the set of rationalizable strategies is used in
the original definition of the concept {for a formal treatment, consult Bernheim (1984) and Pearce
(1984)1.

Figure 8.C.1
{ay.ay, a5} =
are rationalizable
strategies for player 1;
{by, by, b3} are
rationalizable 1
strategies for player 2.
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It can be shown that under fairly weak conditions a player always has at least
one rationalizable strategy.’ Unfortunately, players may have many rationalizable
strategies, as in Example 8.C.1. If we want to narrow our predictions further, we need
to make additional assumptions beyond common knowledge of rationality. The
solution concepts studied in the remainder of this chapter do so by imposing
“equilibrium” requirements on players’ strategy choices.

We have said that the set of rationalizable strategies is no larger than the set remaining after
iterative deletion of strictly dominated strategies. It turns out, however, that for the case of
two-player games (I = 2), these two sets are identical because in two-player games a (mixed)
strategy o, is a best response to some strategy choice of a player’s rival whenever o; is not
strictly dominated.

To see that this is plausible, reconsider the game in Figure 8.B.5 (Exercise 8.C.3 asks you
for a general proof). Suppose that the payoffs from strategy M are altered so that M is not
strictly dominated. Then, as depicted in Figure 8.C.2, the payoffs from M lie somewhere above

upp (g ) g + Juy = Juy (M, R)
+ (M, L)}

the line connecting the points for strategies U and D. Is M a best response here? Yes. To see
this, note that if player 2 plays strategy R with probability o,(R), then player 1I’s expected
payoff from choosing a strategy with payoffs (ug, u;) is 05(R)ug + (1 ~ 0,(R))u,. Points
yielding the same expected payoff as strategy M therefore lie on a hyperplane with normal
vector (1 — a,(R), ¢5(R)). As can be seen, strategy M is a best response to g,(R) = §; it yields
an expected payoff strictly larger than any expected payoff achievable by playing strategies U
and/or D.

With more than two players, however, there can be strategies that are never a best response
and ‘yet are not strictly dominated. The reason can be traced to the fact that players’
randomizations are independent. If the randomizations by i's rivals can be correlated (we
discuss how this might happen at the end of Sections 8.D and 8.E), the equivalence reemerges.
Exercise 8.C.4 illustrates these points.

3. This will be true, for example, whenever a Nash equilibrium (imroduccd in Section 8.D) exists.

Figure 8.C.2

In a two-player game,
a strategy is a best
response if it is not
strictly dominated.
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8.D Nash Equilibrium

In this section, we present and discuss the most widely used solution concept in
applications of game theory to economics, that of Nash equilibrium [due to Nash
(1951)]. Throughout the rest of the book, we rely on it extensively.

For ease of exposition, we initially ignore the possibility that players might
randomize over their pure strategies, restricting our attention to game [y = [, {S},
{u-)}]- Mixed strategies are introduced later in the section.

We begin with Definition 8.D.1.

Definition 8.D.1: A strategy profile s = (s,, . . ., §;) constitutes a Nash equilibrium ot
game Iy = [ {S;}. {u;()}] itfor every i=1,..., 1,
uilsi, 5-;) = uilsi. s ;)
for all sj€ S;.

In a Nash equilibrium, each player’s strategy choice is a best response (see
Definition 8.C.1) to the strategies actuaily played by his rivals. The italicized words
distinguish the concept of Nash equilibrium from the concept of rationalizability
studied in Section 8.C. Rationalizability, which captures the implications of the
players’ common knowledge of each others’ rationality and the structure of the game,
requires only that a player’s strategy be a best response to some reasonable conjecture
about what his rivals will be playing, where reasonable means that the conjectured
play of his rivals can also be so justified. Nash equilibrium adds to this the
requirement that players be correct in their conjectures.

Examples 8.D.1 and 8.D.2 illustrate the use of the concept.

Example 8.D.1: Consider the two-player simultaneous-move game shown in Figure
8.D.1. We can see that (M, m) is a Nash equilibrium. If player | chooses M, then the
best response of player 2 is to choose m; the reverse is true for player 2. Moreover,
(M, m) is the only combination of (pure) strategies that is a Nash equilibrium. For
example, strategy profile (U, r) cannot be a Nash equilibrium because player | would
prefer to deviate to strategy D given that player 2 is playing r. (Check the other
possibilities for yourself) =

Example 8.D.2: Nash Equilibrium in the Game of Figure 8.C.1. In this game, the
unique Nash equilibrium profile of (pure) strategies is (a,, b,). Player I’s best response
to b, is a,, and player 2's best response to a, is b, 50 (a,, b,) is a Nash equilibrium.

Player 2
1 m r
U 53 0,4 3,5
Player | M 4,0 @ 4,0
D 3,5 0,4 53

Flgure 8.D.1
A Nash equilibrium. j

Mr. Schelling
Empire Grand
State Central

Empire
State 100, 100 0,0

Mr. Thomas
Grand
Centsal

At any other strategy profile, one of the players has an incentive to deviate. [In fact,
(@3, by) is the unique Nash equilibrium even when randomization is permitted;
see Exercise 8.D.1.]

This example illustrates a general relationship between the concept of Nash
equilibrium and that of rationalizable strategies: Every strategy that is part of a
Nash equilibrium profile is rationalizable because each player’s strategy in a Nash
equilibrium can be justified by the Nash equilibrium strategies of the other players.
Thus, as a general matter, the Nash equilibrium concept offers at least as sharp a
prediction as does the rationalizability concept. In fact, it often offers a much sharper
prediction. In the game of Figure 8.C.1, for example, the rationalizable strategies a,,
as, by, and b, are eliminated as predictions because they cannot be sustained when
players’ beliefs about each other’s play are required to be correct. m

In the previous two examples, the Nash equilibrium concept yields a unique
prediction. However, this is not always the case. Consider the Meeting in New York
game.

Example 8.D.3: Nash Equilibria in the Meeting in New York Game. Figure 8.D.2
depicts a simple version of the Meeting in New York game. Mr. Thomas and Mr.
Schelling each have two choices: They can meet cither at noon at the top of the
Empire State Building or at noon at the clock in Grand Central Station. There are
two Nash equilibria (ignoring the possibility of randomization): (Empire State,
Empire State) and (Grand Central, Grand Central). =

Example 8.D.3 emphasizes how strongly the Nash equilibrium concept uses the
assumption of mutually correct expectations. The theory of Nash equilibrium is silent
on which equilibrium we should expect to see when there are many. Yet, the players
are assumed to correctly forecast which one it will be.

A compact restatement of the definition of a Nash equilibrium can be obtained
through the introduction of the concept of a player’s best-response correspondence.
Formally, we say that player i’s best-response correspondence b;:S_; — S; in
the game Ty = [I, {S;} {u(-)}], is the correspondence that assigns to each s_;e S_;
the set

bi(s_y) = {s;€ S uy(s;, s_;) = uls;, s-;) for all 5;€S;}.
With this notion, we can restate the definition of a Nash equilibrium as follows: The

strategy profile (sy,...,s,;) is a Nash equilibrium of game [y = [1, {S;}, {u,(*)}] if
and only if s;e by(s_;)) fori=1,..., I

Figure 8.D.2

Nash equilibria in
the Meeting in New
York game.
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Discussion of the Concept of Nash Equilibrium

Why might it be reasonable to expect players’ conjectures about each other’s play
to be correct? Or, in sharper terms, why should we concern ourselves with the concept
of Nash equilibrium?

A number of arguments have been put forward for the Nash equilibrium concept
and you will undoubtedly react to them with varying degrees of satisfaction.
Moreover, one argument might seem compelling in one application but not at all
convincing in another. Until very recently, all these arguments have been inf.ormél,
as will be our discussion. The issue is one of the more important open questions in
game theory, particularly given the Nash equilibrium concept’s widespread use in
applied problems, and it is currently getting some formal attention.

(i) Nash equilibrium as a consequence of rational inference. It is sometimes
argued that because each player can think through the strategic considerations
faced by his opponents, rationality alone implies that players must be able to
correctly forecast what their rivals will play. Although this argument may seem
appealing, it is faulty. As we saw in Section 8.C, the implication of common knowledge
of the players’ rationality (and of the game’s structure) is precisely that each player
must play a rationalizable strategy. Rationality need not lead players’ forecasts
to be correct.

(ii) Nash equilibrium as a necessary condition if there is a unique predicted outcome
to a game. A more satisfying version of the previous idea argues that if there is.a
unique predicted outcome for a game, then rational players will understand this.
Therefore, for no player to wish to deviate, this predicted outcome must be a Nash
equilibrium. Put somewhat differently [as in Kreps (1990)], if players think and shar.e
the belief that there is an obvious (in particular, a unique) way to play a game, then it
must be a Nash equilibrium.

Of course, this argument is only relevant if there is a unique prediction
for how players will play a game. The discussion of rationalizability in Section 8.C,
however, shows that common knowledge of rationality alone does not imply this.
Therefore, this argument is really useful only in conjunction with some reason
why a particular profile of strategies might be the obvious way to play a particular
game. The other arguments for Nash equilibrium that we discuss can be viewed
as combining this argument with a reason why there might be an “obvious” way to
play a game.

(i) Focal points. It sometimes happens that certain outcomes are what Schelling
(1960) calls focal. For example, take the Meeting in New York game depicted in
Figure 8.D.2, and suppose that restaurants in the Grand Central area are so much
better then those around the Empire State Building that the payoffs to meeting at
Grand Central are (1000, 1000) rather than (100, 100). Suddenly, going to Grand
Central seems like the obvious thing to do. Focal outcomes could also be culturally
determined. As Schelling pointed out in his original discussion, two people who do
not live in New York will tend to find meeting at the top of the Empire State building
(a famous tourist site) to be focal, whereas two native New Yorkers will find Grand
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Central Station (the central railroad station) a more compelling choice. In both
examples, one of the outcomes has a natural appeal. The implication of argument
(ii) is that this kind of appeal can lead an outcome to be the clear prediction in a
game only if the outcome is a Nash equilibrium.

(iv) Nash equilibrium as a self-enforcing agreement. Another argument for Nash
equilibrium comes from imagining that the players can engage in nonbinding com-
munication prior to playing the game. If players agree to an outcome to be played,
this naturally becomes the obvious candidate for play. However, because players
cannot bind themselves to their agreed-upon strategies, any agreement that the
players reach must be self-enforcing if it is to be meaningful. Hence, any meaningful
agreement must involve the play of a Nash equilibrium strategy profile. Of course,
even though players have reached an agreement to play a Nash equilibrium, they
could still deviate from it if they expect others to do so. In essence, this justification
assumes that once the players have agreed to a choice of strategies, this agreement
becomes focal.

(v) Nash equilibrium as a stable social convention. A particular way to play a
game might arise over time if the game is played repeatedly and some stable social
convention emerges. If it does, it may be “obvious” to all players that the convention
will be maintained. The convention, so to speak, becomes focal.

A good example is the game played by New Yorkers every day: Walking in
Downtown Manhattan. Every day, people who walk to work need to decide which
side of the sidewalk they will walk on. Over time, the stable social convention is that
everyone walks on the right side, a convention that is enforced by the fact that any
individual who unilaterally deviates from it is sure to be severely trampled. Of course,
on any given day, it is possible that an individual might decide to walk on the left
by conjecturing that everyone else suddenly expects the convention to change.
Nevertheless, the prediction that we will remain at the Nash equilibrium “everyone
walks on the right” seems reasonable in this case. Note that if an outcome is to
become a stable social convention, it must be a Nash equilibrium. If it were not, then
individuals would deviate from it as soon as it began to emerge.

The notion of an equilibrium as a rest point for some dynamic adjustment process
underlies the use and the traditional appeal of equilibrium notions in economics. In
this sense, the stable social convention justification of Nash equilibrium is closest to
the tradition of economic theory.

To formally mode! the emergence of stable social conventions is not easy. One difficulty is
that the repeated one-day game may itself be viewed as a larger dynamic game. Thus, when
we consider rational players choosing their strategies in this overall game, we are merely led
back to our original conundrum: Why should we expect a Nash equilibrium in this Jarger
game? One response to this difficulty currently getting some formal attention imagines that
players follow simple rules of thumb concerning their opponents’ likely play in situations where
play is repeated (note that this implies a certain withdrawal from the assumption of complete
rationality). For example, a player could conjecture that whatever his opponents did yesterday
will be repeated today. If so, then each day players will play a best response to yesterday's
play. If a combination of strategies arises that is a stationary point of this process (i.e., the



250 CHAPTER 8: SIMULTANEOUS-MOVE GAMES

SECTION 8.D: NASH EQUILIBRIUM

251

Player 2
Heads Tails

Heads| —t, +1 | +1, -1

Player {
Tails| +1, -1 | =1, +1

play today is the same as it was yesterday), it must be a Nash equilibrium. However, it is less
clear that from any initial position, the process will converge to a stationary outcome;
convergence turns out to depend on the game.*

Mixed Strategy Nash Equilibria

It is straightforward to extend the definition of Nash equilibrium to games in which
we allow the players to randomize over their pure strategies.

Definition 8.D.2: A mixed strategy profile ¢ = (a,, ..., g;) constitutes a Nash equi-
librium ot game Ty, = [I, {A(S)}. {u;(-)}] if for every i=1,..., I,
ulo;, 6.;) 2 ufo;, o_;)
for ali o} € A(S;).

Example 8.D.4: As a very simple example, consider the standard version of Matching
Pennies depicted in Figure 8.D.3. This is a game with no pure strategy equilibrium.
On the other hand, it is fairly intuitive that there is a mixed strategy equilibrium in
which each player chooses H or T with equal probability. When a player randomizes
in this way, it makes his rival indifferent between playing heads or tails, and so his
rival is also willing to randomize between heads and tails with equal probability. =

1t is not an accident that a player who is randomizing in a Nash equilibrium of
Matching Pennies is indifferent between playing heads and tails. As Proposition 8.D.1
confirms, this indifference among strategies played with positive probability is a
general feature of mixed strategy equilibria.

Proposition 8.D.1: LetS; < S;denote the set of pure strategies that player i plays with
positive probability in mixed strategy profile 6 = (g4, ..., o). Strategy profile o is
a Nash equilibrium in game [y =[I, {A(S)}, {¢;(-)}] if and only if for all
i=1,....1,
() u(s; 06_;) = uilsi,a_;) for all 5;, 5;€ 57,
(i) uils; o) 2 uls;, 0_;) foralis;eS’ and all 5;¢S;.

Proof: For necessity, note that if either of conditions (i) or (i) does not hold
for some player i, then there are strategies s; € S; and s; € §; such that u,(s;, o _;) >
u,(s;, o ;). I so, player i can strictly increase his payoff by playing strategy s; whenever
he would have played strategy s;.

4. This approach actuaily dates to Cournot's (1838) myopic adjustment procedure. A recent
example can be found in Milgrom and Roberts (1990). Interestingly, this work explains the
“ultrarational™ Nash outcome by relaxing the assumption of rationality. It also can be used to try
to identify the likelihood of various Nash equilibria arising when multiple Nash equilibria exist.

Figure 8.D0.3

Matching Pennies,

For sufficiency, suppose that conditions (i) and (ii) hold but that ¢ is not a Nash
equilibrium. Then there is some player i who has a strategy ¢ with u,(s},6_;) >
u(0;, 0-;). But if so, then there must be some pure strategy s; that is played with
positive probability under g} for which u(s;, 6_,) > u,(0;, 5 _,). Since uo,,6_;) =
u(s;, o-;) for all s;€ S, this contradicts conditions (i) and (ii) being satisfied. m

Hence, a necessary and sufficient condition for mixed strategy profile ¢ to be a
Nash cquilibrium of game Ty = [, {A(S;)}, {u,(+)}] is that each player, given the
distribution of strategies played by his opponents, is indifferent among all the pure
strategies that he plays with positive probability and that these pure strategies are
at least as good as any pure strategy he plays with zero probability.

An implication of Proposition 8.D.1 is that to test whether a strategy profile o is
a Nash equilibrium it suffices to consider only pure strategy deviations (i.e., changes
in a player’s strategy o, to some pure strategy s;). As long as no player can improve
his payoff by switching to any pure strategy, ¢ is a Nash equilibrium. We therefore
get the comforting result given in Corollary 8.D.1.

¢ Corollary 8.D.1: Pure strategy profile s = (s,,..., 5;) is a Nash equilibrium of game
Iy =[L{S;}, {u()}] it and only if it is a (degenerate) mixed strategy Nash
equilibrium of game I'y, = [, {A(S))}, {u;(*)}].

Corollary 8D.1 tells us that to identify the pure strategy equilibria of
game Ty =[I, {A(S)}, {#,(-)}], it suffices to restrict attention to the game
Ty = [1, {S:}, {#;(-)}] in which randomization is not permitted.

Proposition 8.D.1 can also be of great help in the computation of mixed strategy
equilibria as Example 8.D.5 illustrates.

Example 8.D.5: Mixed Strategy Equilibria in the Meeting in New York Game. Let
us try to find a mixed strategy equilibrium in the variation of the Meeting in New
York game where the payoffs of meeting at Grand Central are (1000, 1000). By
Proposition 8.D.1, if Mr. Thomas is going to randomize between Empire State and
Grand Central, he must be indifferent between them. Suppose that Mr. Schelling
plays Grand Central with probability o,. Then Mr. Thomas’ expected payoff from
playing Grand Central is 10000, + 0(1 — 5,), and his expected payoff from playing
Empire State is 100(1 — ¢,) + Og,. These two expected payoffs are equal only when
a, = 1/11. Now, for Mr. Schelling to set o, = 1/11, he must also be indifferent between
his two pure strategies. By a similar argument, we find that Mr. Thomas’ probability
of playing Grand Central must also be 1/11. We conclude that each player going to
Grand Central with a probability of 1/11 is a Nash equilibrium. m

Note that in accordance with Proposition 8.D.1, the players in Example 8.D.5
have no real preference over the probabilities that they assign to the pure strategies
they play with positive probability. What determines the probabilities that each
player uses is an equilibrium consideration: the need to make the other player
indifferent over his strategies.

This fact has led some economists and game theorists to question the usefulness
of mixed strategy Nash equilibria as predictions of play. They raise two concerns:
First, if players always have a pure strategy that gives them the same expected payoff
as their equilibrium mixed strategy, it is not clear why they will bother to randomize.
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One answer to this objection is that players may not actually randomize. Rather,
they may make definite choices that are affected by seemingly inconsequential
variables (“signals™) that only they observe. For example, consider how a pitcher for
a major league baseball team “mixes his pitches” to keep batters guessing. He may
have a completely deterministic plan for what he will do, but it may depend on which
side of the bed he woke up on that day or on the number of red traffic lights he
came to on his drive to the stadium. As a result, batters view the behavior of the
pitcher as random even though it is not. We touched briefly on this interpretation
of mixed strategies as behavior contingent on realizations of a signal in Section 7.E,
and we will examine it in more detail in Section 8.E.

The second concern is that the stability of mixed strategy equilibria seems tenuous.
Players must randomize with exactly the correct probabilities, but they have no
positive incentive to do so. One’s reaction Lo this problem may depend on why one
expects a Nash equilibrium to arise in the first place. For example, the use of the
correct probabilities may be unlikely to arise as a stable social convention, but may
seem more plausible when the equilibrium arises as a self-enforcing agreement.

Up to this point, we have assumed that players’ randomizations are independent. In
the Meeting in New York game in Example 8.D.5, for instance, we could describe a mixed
strategy equilibrium as follows: Nature provides private and independently distributed signals
6,,8,)€ [0, 1] x [0, 1] to the two players, and each player i assigns decisions to the various
possible realizations of his signal 6;.

However, suppose that there are also public signals available that both players observe.
Let 8 € {0, 1] be such a signal. Then many new possibilities arise. For example, the two players
could both decide to go to Grand Central if 6 < § and to Empire State if 8 > 4. Each player’s
strategy choice is still random, but the coordination of their actions is now perfect and they
always meet. More importantly, the decisions have an equilibrium character. If one player
decides to follow this decision rule, then it is also optimal for the other player to do so. This
is an example of a correlated equilibrium [due to Aumann (1974)]. More generally, we could
allow for correlated equilibria in which nature’s signals are partly private and partly public.

Allowing for such correlation may be important because economic agents observe many
public signals. Formally, a correlated equilibrium is a special case of a Bayesian Nash
equilibrium, a concept that we introduce in Section 8.E; hence, we defer further discussion to
the end of that section.

Existence of Nash Equilibria

Does a Nash equilibrium necessarily exist in a game? Fortunately, the answer turns
out to be “yes” under fairly broad circumstances. Here we describe two of the more
important existence results; their proofs, based on mathematical fixed point theorems,
are given in Appendix A of this chapter. (Proposition 9.B.1 of Section 9.B provides
another existence result.)

Proposition 8.D.2: Every game Iy, = [I, {A(S)}, {¢;(-)}] in which the sets S,,..., S,
have a finite number of elements has a mixed strategy Nash equilibrium.

Thus, for the class of games we have been considering, a Nash equilibrium always
exists as long as we are willing to accept equilibria in which players randomize. (If you
want to be convinced without going through the proof, try Exercise 8.D.6.) Allowing
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for randomization is essential for this result. We have already seen in (standard)
Matching Pennies, for example, that a pure strategy equilibrium may not exist in a
game with a finite number of pure strategies.

Up to this point, we have focused on games with finite strategy sets. However. in
economic applications, we frequently encounter games in which players have
strategies naturally modeled as continuous variables. This can be helpful for the
existence of a pure strategy equilibrium. In particular, we have the result given in
Proposition 8.D.3.

Proposition 8.D.3: A Nash equilibrium exists in game Ty = [1, {S;}, {u;(-)}] if for all
i=1...,1
(i) S; is a nonempty, convex, and compact subset of some Euclidean
space RM.
(i) u;(sq, ..., ;) is continuous in {sy, ..., s,) and quasiconcave in s;.

Proposition 8.D.3 provides a significant result whose requirements are satisfied
in a wide range of economic applications. The convexity of strategy sets and the
nature of the payoff functions help to smooth out the structure of the model, allowing
us to achieve a pure strategy equilibrium.’

Further existence results can also be established. In situations where quasi-
concavity of the payoff functions u;(-) fails but they are still continuous, existence of
a mixed strategy equilibrium can still be demonstrated. In fact, even if continuity of
the payoff functions fails to hold, a mixed strategy equilibrium can be shown to exist
in a variety of cases [see Dasgupta and Maskin (1986)].

Of course, these results do not mean that we cannot have an equilibrium if the
conditions of these existence results do not hold. Rather, we just cannot be assured
that there is one.

¢8.E Games of Incomplete Information: Bayesian Nash

Equilibrium

Up to this point, we have assumed that players know all relevant information about
each other, including the payoffs that each receives from the various outcomes of the
game. Such games are known as games of complete information. A moment of thought,
however, should convince you that this is a very strong assumption. Do two firms
in an industry necessarily know each other’s costs? Does a firm bargaining with a
union necessarily know the disutility that union members will feel if they go out on
strike for a month? Clearly, the answer is “no.” Rather, in many circumstances,
players have what is known as incomplete information.

The presence of incomplete information raises the possibility that we may need
to consider a player’s beliefs about other players’ preferences, his beliefs about their
beliefs about his preferences, and so on, much in the spirit of rationalizability.®

5. Note that a finite strategy set S, cannot be convex. In fact, the use of mixed strategies
in Proposition 8.D.2 helps us to obtain existence of equilibrium in much the same way that
Proposition 8.D.3's assumptions assure existence of a pure strategy Nash equilibrium: It convexifies
players’ strategy sets and yields well-behaved payoff functions. (See Appendix A for details.)

6. For more on this problem, see Mertens and Zamir (1985).



254

CHAPTER 8: SIMULTANEOUS-MOVE GAMES

[GHON 8.E: GAMES OF INCOMPLETE INFOHMATION: BAYESIAN NASH

Fortunately, there is a widely used approach to this problem, originated by Harsanyi
(1967—68), that makes this unnecessary. In this approach, one imagines that each
player’s preferences are determined by the realization of a random variable. Although
the random variable’s actual realization is observed only by the player, its ex ante
probability distribution is assumed to be common knowledge among all the players.
Through this formulation, the situation of incomplete information is reinterpreted as
a game of imperfect information: Nature makes the first move, choosing realizations
of the random variables that determine each player’s preference type, and each player
observes the realization of only his own random variable. A game of this sort is
known as a Bayesian game.

Example 8.E.I: Consider a modification of the DA’s Brother game discussed in
Example 8.B.3. With probability g, prisoner 2 has the preferences in Figure 8.B.4 (we
call these type I preferences), while with probability (1 — p), prisoner 2 hates to rat
on his accomplice (this is type I1). In this case, he pays a psychic penalty equal to
6 years in prison for confessing. Prisoner 1, on the other hand, always has th.e
preferences depicted in Figure 8.B.4. The extensive form of this Bayesian game is
represented in Figure 8.E.1 (in the figure, “C” and “DC” stand for “confess” and
“don’t confess” respectively).

In this game, a pure strategy (a complete contingent plan) for player 2 can
be viewed as a function that for each possible realization of his preference type

/Naturc

Prisoner 1

DC

(-0 G ) G G

Simultaneous-Move

G ) ()

Simultaneous-Move

Game: Game:
Prisoner 2 Prisoner 2
DC C DC C
0,-2 |-10,-1 i 0,-2 | -10,-7
Prisoner ) Prisoner
! Cl-1,-10]-5-5 ! Cl-1,-10{ -5 -1t

Figure 8.E.1
The DA’s Brother 3
game with incomplete

information.
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indicates what action he will take. Hence. prisoner 2 now has four possible
pure strategies:

(confess if type I, confess if type II);

(confess if type I, don’t confess if type IT);
(don’t confess if type I, confess if type I1);
(don’t confess if type I, don’t confess if type I1).

Notice, however, that player | does not observe player 2's type, and so a pure

strategy for player 1 in this game is simply a (noncontingent) choice of either
“confess” or “don’t confess.” m

Formally, in a Bayesian game, each player i has a payoff function u(s;, s_;, 8;),
where 8; € ©, is a random variable chosen by nature that is observed only by player
i. The joint probability distribution of the 8;'s is given by F(8,,...,8,), which is
assumed to be common knowledge among the players. Letting @ = @, x - - x @,
a Bayesian game is summarized by the data [L {S;}, {#,(")}, ®, F(")].

A pure strategy for player i in a Bayesian game is a function s,(8,), or decision
rule, that gives the player’s strategy choice for each realization of his type ;. Player
i's pure strategy set & is therefore the set of all such functions. Player i’s expected
payoff given a profile of pure strategies for the I players (s,(-),...,s,(-)) is then
given by

€i(s1(0), .. 500 = Eglug(s,(0)), ..., 5,(6,), 6)].

We can now look for an ordinary (pure strategy) Nash equilibrium of this game
of imperfect information, which is known in this context as a Bayesian Nash
equilibrium.”

(8.E.1)

3 Y 26 Ko

efinition 8.E.1: A (pure strategy) Bayesian Nash equilibrium for the Bayesian game
L {S;}, {u(-)}. ©, F(-)] is a profile of decision rules {s,(*),...,s;(-}) that con-
stitutes a Nash equilibrium of game I}y, = [I, {#}, {G,(-)}]. That is, for every
i=1,...,1,

Gy (). s- (1)) Z @i(si(-), 52 ,()

for all 5;(-) € &, where d,(s;(*), s_;(}) is defined as in (8.E.1).

A very useful point to note is that in a (pure strategy) Bayesian Nash equilibrium
each player must be playing a best response to the conditional distribution of his
opponents’ strategies for each type that he might end up having. Proposition 8.F.1
provides a more formal statement of this point.

L Proposition 8.E.1: A profile of decision rules (s4(-).....s;(")) is a Bayesian Nash
equilibrium in Bayesian game [/, {S;}, {¢;()}, ©, F(-)] if and only if, for ali / and

7. We shall restrict our attention to pure strategies here; mixed strategies involve randomization
over the strategies in .%. Note aiso that we have not been very explicit about whether the O/s are
finite sets. If they are, then the strategy sets &, are finite; if they are not, then the sets ¥, inctude an
infinite number of possible functions s,(-). Either way, however, the basic definition of a Bayesian
Nash equilibrium is the same.

oo d B ) RIS Lot
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all ;€ ©, occurring with positive probability®
Ey LuisiB). s_8_,). 8181 = E,_[uds;. s_(6_,). 6,)(6,] (8.2

for all s; € S;, where the expectation is taken over realizations of the other players’
random variables conditional on player /'s realization of his signal ;.

Proof: For necessity, note that if (8.E.2) did not hold for some player i for some
0, € ©, that occurs with positive probability, then player i could do better by
changing his stratcgy choice in the event he gets realization 0;, contradicting
(sy(+),...,5;(-)) being a Bayesian Nash equilibrium. In the other direction, if
condition (8.E.2) holds for all §; € @, occurring with positive probability, then player
i cannot improve on the payoff he receives by playing strategy s;(*). m

Proposition 8.E.1 tells us that, in essence, we can think of each type of player i
as being a separate player who maximizes his payoff given his conditional probability
distribution over the strategy choices of his rivals.

Example 8.E.1 Continued: To solve for the (pure strategy) Bayesian Nash equilibrium
of this game, note first that type I of prisoner 2 must play “confess” with probability
I because this is that type's dominant strategy. Likewise, type II of prisoner 2
also has a dominant strategy: “don’t confess.” Given this behavior by prisoner 2,
prisoner 1's best response is to play “don’t confess” if [—10u + O(1 — )] >
[—5u — 1(1 — w)], or equivalently, if # < &, and is to play “confess” if u > . (He is
indifferent if u = L) =

Example 8.E.2: The Alphabeta research and development consortium has two
(noncompeting) members, firms 1 and 2. The rules of the consortium are that any
independent invention by one of the firms is shared fully with the other. Suppose that
there is a new invention, the “Zigger,” that either of the two firms could potentially
develop. To develop this new product costs a firm ¢ € (0, 1). The benefit of the Zigger
to each firm i is known only by that firm. Formally, each firm i has a type 6, that is
independently drawn from a uniform distribution on {0, 1], and its benefit from the
Zigger when its type is 8; is (8;)%. The timing is as follows: The two firms each privately
observe their own type. Then they each simultaneously choose either to develop the
Zigger or not.

Let us now solve for the Bayesian Nash equilibrium of this game. We shall write
5:(6;) = 1 if type 6, of firm i develops the Zigger and s5,(8;) = 0 if it does not. If firm
i develops the Zigger when its type is 8,, its payoff is (,)? — ¢ regardless of whether
firm j does so. If firm i decides not to develop the Zigger when its type is 8;, it will
have an expected payoff equal to (6,)* Prob (s,(8,) = 1). Hence, firm i’s best response
is to develop the Zigger if and only if its type 6, is such that (we assume firm i develops
the Zigger if it is indifferent):

c 1/2
8, > [———————] . (8.E.3)
1 — Prob (s;(8;) = 1)

8. The formulation given here (and the proof) is for the case in which the sets ©; are finite.
When a player i has an infinite number of possible types, condition (8.E.2) must hold on a subset
of ©; that is of full measure (i.e., that occurs with probability equal to one). It is then said that (8.E.2)
holds for almost every 6, ©,.

i
~. v :z;
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Note that for any given strategy of firm j, firm i’s best response takes the form of a
cutoff rule: It optimally develops the Zigger for all 8, above the value on the
right-hand side of (8.E.3) and does not for all §; below it. [Note that if firm i existed
in isolation, it would be indifferent about developing the Zigger when 6, = \/E But
(8.E.3) tells us that when firm i is part of the consortium, its cutoff is always (weakly)
above this. This is true because each firm hopes to free-ride on the other firm's
development effort: see Chapter 11 for more on this.}

Suppose then that 8,, , € (0, 1) are the cutoff values for firms 1 and 2 respectively
in a Bayesian Nash equilibrium (it can be shown that 0 <8, <1 for i=1,2
in any Bayesian Nash equilibrium of this game). If so, then using the fact that
Prob(s;(8;) = 1) =1 — 9,, condition (8.E.3) applied first for i = 1 and then fori = 2
tells us that we must have

(91)292 =c
and

0,)%0, = c.
Because (9,)30, = (8,)?0, implies that 8, = §,, we see that any Bayesian Nash
equilibrium of this game involves an identical cutoff value for the two firms,
8* = (c)'". In this equilibrium, the probability that neither firm develops the Zigger
is (6*)% the probability that exactly one firm develops it is 26*(1 — 6*), and the
probability that both do is (1 — 8*)%. =

The exercises at the end of this chapter consider several other examples of
Bayesian Nash equilibria. Another important application arises in the theory of
implementation with incomplete information, studied in Chapter 23.

In Section 8.D, we argued that mixed strategies could be interpreted as situations
where players play deterministic Strategies conditional on seemingly irrelevant signals
(recall the baseball pitcher). We can now say a bit more about this. Suppose we start
with a game of complete information that has a unique mixed strategy equilibrium
in which players actually randomize. Now consider changing the game by introducing
many different types (formally, a continuum) of each player, with the realizations of
the various players’ types being statistically independent of one another. Suppose, in
addition, that all types of a player have identical preferences. A (pure strategy)
Bayesian Nash equilibrium of this Bayesian game is then precisely equivalent
to a mixed strategy Nash equilibrium of the original complete information game.
Moreover, in many circumstances, one can show that there are also “nearby”
Bayesian games in which preferences of the different types of a player differ only
slightly from one another, the Bayesian Nash equilibria are close to the mixed strategy
distribution, and each type has a strict preference for his strategy choice. Such results
are known as purification theorems [see Harsanyi (1973)].

We can also return to the issue of correlated equilibria raised in Section 8.D. In particular, if
we allow the realizations of the various players’ types in the previous paragraph to be
statistically correlated, then a (pure strategy) Bayesian Nash equilibrium of this Bayesian game
is a correlated equilibrium of the original complete information game. The set of all correlated
equilibria in game [I, {S;}, {u;(*)}] is identified by considering all possible Bayesian games of
this sort (i.e., we allow for all possible signals that the players might observe).

g
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8.F The Possibility of Mistakes: Trembling-Hand
Perfection

In Section 8.B, we noted that although rationality per se does not rule out the choice
of a weakly dominated strategy, such strategies are unappealing because they are
dominated unless a player is absolutely sure of what his rivals will play. In fact, as
the game depicted in Figurc 8.F.1 illustrates, the Nash cquilibrium concept also does
not preclude the use of such strategies. In this game, (D, R) is a Nash equilibrium in
which both players play a weakly dominated strategy with certainty.

Here, we elaborate on the idea, raised in Section 8.B, that caution might
preclude the use of such strategies. The discussion leads us to define a refinement of
the concept of Nash equilibrium, known as a (normal form) trembling-hand perfect
Nash equilibrium, which identifies Nash equilibria that are robust to the possibility
that, with some very smail probability, players make mistakes.

Following Selten (1975), for any normal form game Ty = [/, {A(S)), {u:()}], we
can define a perturbed game T, = [I, {A,(S)}, {u(*)}] by choosing for each player
i and strategy s; € S; a number &(s;) € (0, 1), with ¥, . 5,&(s;) < 1, and then defining
player i's perturbed strategy set to be

A(S) = {01 0:(s)) = &i(s;) for all s;€ S;and Y oy(s;) = 1},
seSi
That is, perturbed game T, is derived from the original game T}y by requiring that
each player i play every one of his strategies, say s;, with at least some minimal
positive probability &(s;); &(s;) is interpreted as the unavoidable probability that
strategy s; gets played by mistake.

Having defined this perturbed game, we want to consider as predictions in game
T only those Nash equilibria ¢ that are robust to the possibility that players make
mistakes. The robustness test we employ can be stated roughly as: To consider o as
a robust equilibrium, we want there to be at least some slight perturbations of I'y
whose equilibria are close to o. The formal definition of a (normal form) trembling-
hand perfect Nash equilibrium (the name comes from the idea of players making
mistakes because of their trembling hands) is presented in Definition 8.F.1.

Definition 8.F.1: A Nash equilibrium ¢ of game [y = [1, {A(S))}. {¢,(-)}] is (normal
form) trembling-hand perfect if there is some sequence of perturbed games
{T.}F-, that converges to Ty [in the sense that lim,_, ¥(s;) = 0 for all j and
s;€ S;), for which there is some associated sequence of Nash equilibria {5y
that converges to o (i.e., such that lim_ ., o* = a).

We use the modifier normal form because Selten (1975) also proposes a slightly
different form of trembling-hand perfection for dynamic games; we discuss this version
of the concept in Chapter 9.°

Note that the concept of a (normal form) trembling-hand perfect Nash equi-
librium provides a relatively mild test of robustness: We require only that some
perturbed games exist that have equilibria arbitrarily close to ¢. A stronger test would

9. In fact, Selten (1975) is primarily concerned with the problem of identifying desirable
equilibria in dynamic games. See Chapter 9, Appendix B for more on this.
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require that the equilibrium o be robust to all perturbations close to the original
game.

In general, the criterion in Definition 8.F.1 can be difficult to work with because it
requires that we compute the equilibria of many possible perturbed games. The result
presented in Proposition 8.F.1 provides a formulation that makes checking whether a
Nash equilibrium is trembling-hand perfect much easier (in its statement, a rotally

mixed strategy is a mixed strategy in which every pure strategy receives positive
probability).

_ Proposition 8.F.1: A Nash equilibrium ¢ of game T}y = [I, {A(S;)}. {u,{-)}] is (normal
form) trembling-hand perfect if and only if there is some sequence of totally mixed
strategies {a"};‘;, such that lim,_ , 6% = ¢ and o, is a best response to every
element of sequence {o*,} 2. foralti=1,... I

You are asked to prove this result in Exercise 8.F.1 [or consult Selten (1975)]. The
result presented in Proposition 8.F.2 is an immediate consequence of Definition 8.F.1
and Proposition 8.F.1.

. Proposition 8.F.2: It 6 = (0,,..., 0;) is a (normal form) trembling-hand perfect Nash
equilibrium, then g; is not a weakly dominated strategy for any /=1,..., 1.
Hence, in any (normal form) trembling-hand pertect Nash equilibrium, no weakly
dominated pure strategy can be played with positive probability.

The converse, that any Nash equilibrium not involving play of a weakly dominated strategy
is necessarily trembling-hand perfect, turns out to be true for two-player games but not for
games with more than two players. Thus, trembling-hand perfection can rule out more than
just Nash equilibria involving weakly dominated strategies. The reason is tied to the fact that
when a player’s rivals make mistakes with small probability, this can give rise to only a limited
set of probability distributions over their nonequilibrium strategies. For example, if a player's
two rivals each have a small probability of making a mistake, there is a much greater
probability that one will make a mistake than that both will. If the player’s equilibrium strategy
is a unique best response only when both of his rivals make a mistake, his strategy may not
Pe a best response to any local perturbation of his rivals’ strategies even though his strategy
is not weakly dominated. (Exercise 8.F.2 provides an example.) However, if players’ trembles
are allowed to be correlated (e.g., as in the correlated equilibrium concept), then the converse
of Proposition 8.F.2 would hold regardless of the number of players.

Selten (1975) also proves an existence result that parallels Proposition 8.D.2:
Every game [y = [, {A(S)}, {u;()}] with finite strategy sets S,,...,S, has a
trembling-hand perfect Nash equilibrium. An implication of this result is that every
such game has at least one Nash equilibrium in which no player plays any weakly
dominated strategy with positive probability. Hence, if we decide to accept only Nash

Figure 8.F.1

{D. R) is a Nash
equilibrium involving
play of weakly
dominated strategics.
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equilibria that do not involve the play of weakly dominated strategies, with great
generality there is at least one such equilibrium.!®

Myerson (1978) proposes a refinement of Selten’s idea in which players are less likely to
make more costly mistakes (the idea is that they will try harder to avoid these mistakes). He
establishes that the resuiting solution concept, called a proper Nash equilibrium, exists under
the conditions described in the previous paragraph for trembling-hand perfect Nash equilibria.
van Damme (1983) presents a good discussion of this and other refinements of trembling-hand
perfection.

APPENDIX A: EXISTENCE OF NASH EQUILIBRIUM

In this appendix, we prove Propositions 8.D.2 and 8.D.3. We begin with Lemma

8.AA.L, which provides a key technical result.

Lemma 8.AA.1: If the sets S,,...,S; are nonempty, S; is compact and convex,

and u;(-) is continuous in (s,,...,s,) and quasiconcave in s;, then player /’s
best-response correspondence b;(-) is nonempty, convex-valued, and upper
hemicontinuous.

Proof: Note first that b(s_,) is the set of maximizers of the continuous function
u;(*, s_;) on the compact set S;. Hence, it is nonempty (see Theorem M.F.2 of the
Mathematical Appendix). The convexity of b/(s_;) follows because the set of
maximizers of a quasiconcave function [here, the function u,(-,s_;)] on a convex
set (here, S;) is convex. Finally, for upper hemicontinuity, we need to show that for
any sequence (s7, s”.;) — (s;, 5-;) such that 57 e b,(s".;) for all n, we have s; € b;(s_;).
To see this, note that for all n, u,(s}, s";) > u(s;, s;) for all s} € §,. Therefore, by
the continuity of u,(-), we have u,(s;,s_;) = u,(s},5_;). m

It is convenient to prove Proposition 8.D.3 first.

Proposition 8.D.3: A Nash equilibrium exists in game Iy = [, {S;}, {u(*)}] if for all

i=1,...,1
(i) S;is a nonempty, convex, and compact subset of some Euclidean space
RM
(i) u;(sy, ..., s;) is continuous in (s,, . .., s;) and quasiconcave in s;.

10. The Bertrand duopoly game discussed in Chapter 12 provides one example of a game
in which this is not the case; its unique Nash equilibrium involves the play of weakly dominated
strategies. The problem arises because the strategies in that game are continuous variables
(and so the sets S; are not finite). Fortunately, this equilibrium can be viewed as the limit of
undominated equilibria in “nearby” discrete versions of the game. (See Exercise 12.C.3 for more on
this point.)

11. See Section M.H of the Mathematical Appendix for a di ion of upper hemi inuous
correspondences.
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Proof: Define the correspondence b: S — S by
b(sy,....s) =byls_y) x - -- x by(s_)).

Note that b(-) is a correspondence from the nonempty, convex, and compact set
§=S, x---x§ to itsell. In addition. by Lemma 8.AA.l, b(-) is a nonempty,
convex-valued, and upper hemicontinuous correspondence. Thus, all the conditions
of the Kakutani fixed point theorem are satisfied (see Section M.I of the Mathematical
Appendix). Hence. there exists a fixed point for this correspondence, a strategy profile
s € § such that s € b(s). The strategies at this fixed point constitute a Nash equilibrium
because by construction s;e b;(s_;) foraili=1,...,]. =u

Now we move to the proof of Proposition 8.D.2.

Proposition 8.D.2: Every game Iy = {1, {A(S))}, {¢;(*)}] in which the sets S,, ..., S,

have a finite number of elements has a mixed strategy Nash equilibrium.

Proof: The game Iy = [/, {A(S))}, {u;()}], viewed as a game with strategy sets
{A(S:)} and payoff functions u(cy,. .., 0,) = ¥, s[T1f-, ol )]uls) foralli =1, ... A
satisfies all the assumptions of Proposition 8.D.3. Hence, Proposition 8.D.2 is a direct
corollary of that resuit. a
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EXERCISES

8.B.1* There are / firms in an industry. Each can try to convince Congress to give the industry
a subsidy. Let k; denote the number of hours of effort put in by firm i, and let ¢;(h;) = wi(h)%,
where w, is a positive constant, be the cost of this effort to firm i. When the effort levels of
the firms are (h,, . . ., hy), the value of the subsidy that gets approved is aX; by + B b)), where
x and f are constants.

Consider a game in which the firms decide simultaneously and independently how many
hours they will each devote to this effort. Show that each firm has a strictly dominant strategy
if and only if # = 0. What is firm i's strictly dominant strategy when this is so?

8.B.28 (a) Argue that if a player has two weakly dominant strategies, then for every strategy
choice by his opponents, the two strategies yield him equal payoffs.

(b) Provide an example of a two-player game in which a player has two weakly dominant
pure strategies but his opponent prefers that he play one of them rather than the other.

8.B.3% Consider the following auction (known as a second-price, or Vickrey, auction). An object
is auctioned off to I bidders. Bidder i's valuation of the object (in monetary terms) is v;. The
auction rules are that each player submit a bid (a nonnegative number) in a sealed envelope.
The envelopes are then opened, and the bidder who has submitted the highest bid gets the
object but pays the auctioneer the amount of the second-highest bid. If more than one bidder
submits the highest bid, each gets the object with equal probability. Show that submitting a
bid of v; with certainty is a weakly dominant strategy for bidder i. Also argue that this is
bidder i’s unique weakly dominant strategy.

8.B.4C Show that the order of deletion does not matter for the set of strategies surviving a
process of iterated deletion of strictly dominated strategies.

8.B.5C Consider the Cournot duopoly model (discussed extensively in Chapter 12) in which
two firms, 1 and 2, simultaneously choose the quantities they will sell on the market, 4, and
4, The price each receives for each unit given these quantities is P(q,, 4;) = a — b(q; + 42)-
Their costs are ¢ per unit sold.

(a) Argue that successive elimination of strictly dominated strategies yields a unique
prediction in this game.

(b) Would this be true if there were three firms instead of two?
8.B.6% In text.

8.B.78 Show that any strictly dominant strategy in game [, {A(S)}, {u;(-)}] must be a pure
strategy.

8.C.1* Argue that if elimination of strictly dominated strategies yields a unique prediction in
a game. this prediction also results from eliminating strategies that are never a best response.

8.C.2€ Prove that the order of removal does not matter for the set of strategies that
survives a process of iterated deletion of strategies that are never a best response.

8.C.3C Prove that in a two-player game (with finite strategy sets), if a pure strategy
s; for player i is never a best response for any mixed strategy by i’s opponent, then
5, is strictly dominated by some mixed strategy o; € A(S;). [Hint: Try using the supporting
hyperplane theorem presented in Section M.G of the Mathematical Appendix.]
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8.C.4% Consider a game Ty with players 1, 2, and 3 in which S, = {L, M, R}, S, = {U, D},
and Sy = {7, r}. Player I's payofls from each of his three strategies conditional on the strategy
choices of players 2 and 3 are depicted as (ug, uy, ug) in each of the four boxes shown below,
where (7, & 1) » 0. Assume that y < 4e.

Player 3's Strategy

U 44w —nn—4de n~—4£.n+?,n+4s
Player 2's 2

Strategy

D ']+4£,7[+g,7(—4£ n—4en—nn+de

(a) Argue that (pure) strategy M is never a best response for player 1 to any independent
randomizations by players 2 and 3.

(b) Show that (pure) strategy M is not strictly dominated.

(¢) Show that (pure) strategy M can be a best response if player 2's and player 3's
randomizations are allowed to be correlated.

8.D.1® Show that (a,, b,) being played with certainty is the unique mixed strategy Nash
equilibrium in the game depicted in Figure 8.C.1.

8.D.2% Show that if there is a unique profile of strategies that survives iterated removal of
strictly dominated strategies, this profile is a Nash equilibrium.

8.D.3% Consider a first-price sealed-bid auction of an object with two bidders. Each bidder
i’s valuation of the object is v;, which is known to both bidders. The auction rules are that
each player submits a bid in a sealed envelope. The envelopes are then opened, and the bidder
who has submitted the highest bid gets the object and pays the auctioneer the amount of his
bid. If the bidders submit the same bid, each gets the object with probability §. Bids must be
in dollar muitiples (assume that valuations are also).

(a) Are any strategies strictly dominated?
(b) Are any strategies weakly dominated?

(¢) Is there a Nash equilibrium? What is it? Is it unique?

8.D.4% Consider a bargaining situation in which two individuals are considering undertaking
a business venture that will earn them 100 dollars in profit, but they must agree on how to
split the 100 dollars. Bargaining works as follows: The two individuals each make a demand
simultaneously. If their demands sum to more than 100 doilars, then they fail to agree, and
each gets nothing. If their demands sum to less than 100 dollars, they do the project, each
gets his demand, and the rest goes to charity.

- A A

{a) What are each player’s strictly dominated strategies?

Jdr i v A

(b) What are each player’s weakly dominated strategies?

Ry

(c) What are the pure strategy Nash equilibria of this game?

" , A .
8.D.5® Consumers are uniformly distributed along a boardwalk that is | mile long. Ice-cream
prices are regulated, so consumers go to the nearest vendor because they dislike walking
(assume that at the regulated prices all consumers will purchase an ice cream even if they
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have to walk a full mile). If more than one vendor is at the same location, they split the
business evenly.

(a) Consider a game in which two ice-cream vendors pick their locations simultaneously.
Show that there exists a unique pure strategy Nash equilibrium and that it involves both
vendors locating at the midpoint of the boardwalk.

(b) Show that with three vendors, no pure strategy Nash equilibrium exists.

8.D.6% Consider any two-player game of the following form (where letters indicate arbitrary
payoffs):

Player 2
b, b,
a, u, v {m
Player 1
a, | wx »ne

Show that a mixed strategy Nash equilibrium always exists in this game. [Hint: Define player
I's strategy to be his probability of choosing action a, and player 2's to be his probability of
choosing b,; then examine the best-response correspondences of the two players.]

8.D.7€ (The Minimax Theorem) A two-player game with finite strategy sets Ty = [I, {5,, S;},
{uy(+), uy(-)}] is a zero-sum game if uy(s,, s;) = —u, (s, s;) for all (s,,5,) €S, x S,.
Define i's maximin expected utility level w; to be the level he can guarantee himself in game

18 {A(Sl)! A(Sz)}, {“x('): “1(')}]3
w; = Max [Min uy(a;, a_i)jl.

o Lo
Define player i's minimax utility level y, to be the worst expected utility level he can be forced
to receive if he gets to respond to his rival’s actions:

v, = Min [Max ufo,, a_,)].

(a) Show that y; > w; in any game.

(b) Prove that in any mixed strategy Nash equilibrium of the zero-sum game
Ty = [L {A(S5)), A(S,)}, {u (), ua(-)}], player i's expected utility uf satisfies uf =y, = w,.
[Hint: Such an equilibrium must exist by Proposition 8.D.2.]

(c) Show that if (¢}, 0%) and (a7}, 03) are both Nash equilibria of the zero-sum game
Oy = [1, {A(S1), A(S,)}, {uy(- )y up(0)}], then s0 are (0, 03) and (o}, 03).

8.D.8C Consider a simultaneous-move game with normal form [1, {A(S)}, {u,(-)}]. Suppose
that, for all §, S; is a convex set and u,(-) is strictly quasiconvex. Argue that any mixed strategy
Nash equilibrium of this game must be degenerate, with each player playing a single pure
strategy with probability 1.

8.D.9% Consider the following game [based on an example from Kreps (1990)]:

Player 2
LL L M R
U 100, 2 -100, 1 0,0 —100, —100
Player 1
D - 100, — 100 100, 49 1,0 100, 2
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(a) If you were player 2 in this game and you were playing it once without the ability to
engage in preplay communication with player 1, what strategy would you choose?

(b) What are all the Nash equilibria (pure and mixed) of this game?

(c) Is your strategy choice in (a) a component of any Nash equilibrium strategy profile?
Is it a rationalizable strategy?

(d) Suppose now that preplay communication were possible. Would you expect to play
something different from your choice in (a)?

8.E.1% Consider the following strategic situation. Two opposed armies are poised to seize an
island. Each army’s general can choose either “attack ™ or “not attack.” In addition, each army
is either “strong” or *weak ™ with equal probability (the draws for each army are independent),
and an army’s type is known only to its general. Payoffs are as follows: The island is worth
M if captured. An army can capture the island either by attacking when its opponent does
not or by attacking when its rival does if it is strong and its rival is weak. If two armies of
equal strength both attack, neither captures the island. An army also has a “cost™ of fighting,
which is s if it is strong and w if it is weak, where s < w. There is no cost of attacking if its
rival does not.
Identify all pure strategy Bayesian Nash equilibria of this game.

8.E.2C Consider the first-price sealed-bid auction of Exercise 8.D.3, but now suppose that each
bidder i observes only his own valuation v,. This valuation is distributed uniformly and
independently on [0, 5] for each bidder.

(a) Derive a symmetric (pure strategy) Bayesian Nash equilibrium of this auction. (You
should now suppose that bids can be any real number.) [Hint: Look for an equilibrium in
which bidder i’s bid is a linear function of his valuation.]

(b) What if there are I bidders? What happens to each bidder's equilibrium bid function
s(v;) as I increases?

8.E.3% Consider the linear Cournot model described in Exercise 8.B.5. Now, however, suppose
that each firm has probability ;1 of having unit costs of ¢, and (1 — y) of having unit costs
of ¢y, where cy > c,. Soive for the Bayesian Nash equilibrium.

8.F.1€ Prove Proposition 8.F.1.
8.F.2% Consider the following three-player game [taken from van Damme (1983)], in which

player 1 chooses rows (S, = {U, D}), player 2 chooses columns (S, = {L, R}), and player 3
chooses boxes (Sy = {B,, B,}):

B, B,
L R L R

ul Ly (1,0, 1) Ul (1,4,0) (0,0,0)

DI L (©,0,1) Dl ©1,00 | (1,00

Each cell describes the payoffs to the three players (uy,u,,u;) from that strategy
combination. Both (D, L, B,) and (U, L, B,) are pure strategy Nash equilibria. Show that
(D, L, B)) is not (normal form) trembling-hand perfect even though none of these three
strategies is weakly dominated.
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8.F.3C Prove that every game [y = [, {A(S)}, {:(-)}] in which the §; are finite scts has a
(normal form) trembling-hand perfect Nash equilibrium. [Hint: Show that every lperturbcd
game has an equilibrium and that for any sequence of perturbed games converging to the
original game [y and corresponding sequence of equilibria, there is a subsequence that
converges to an equilibrium of I'y.]

:

CHAPTEHR

Dynamic Games

Introduction

In Chapter 8, we studied simultaneous-move games. Most economic situations,
however, involve players choosing actions over time.! For example, a labor union and
a firm might make repeated offers and counteroffers to each other in the course of
negotiations over a new contract. Likewise, firms in a market may invest today in
anticipation of the effects of these investments on their competitive interactions in the
future. In this chapter, we therefore shift our focus to the study of dynamic games.

One way to approach the problem of prediction in dynamic games is to simply
derive their normal form representations and then apply the solution concepts studied
in Chapter 8. However, an important new issue arises in dynamic games: the
credibility of a player’s strategy. This issue is the central concern of this chapter.

Consider a vivid (although far-fetched) example: You walk into class tomorrow
and your instructor, a sane but very enthusiastic game theorist, announces, “This is
an important course, and I want exclusive dedication. Anyone who does not drop
every other course will be barred from the final exam and will therefore flunk.” After
a moment of bewilderment and some mental computation, your first thought is,
“Given that 1 indeed prefer this course to all others, I had better follow her
instructions” (after all, you have studied Chapter 8 carefully and know what a best
response is). But after some further reflection, you ask yourself, “ Will she really bar
me from the final exam if T do not obey? This is a serious institution, and she will
surely lose her job if she carries out the threat.” You conclude that the answer is
“no” and refuse to drop the other courses, and indeed, she ultimatety does not bar
you from the exam. In this example, we would say that your instructor’s announced
strategy, “1 will bar you from the exam if you do not drop every other course,” is
not credible. Such empty threats are what we want to rule out as equilibrium
strategies in dynamic games.

In Section 9.B, we demonstrate that the Nash equilibrium concept studied in
Chapter 8 does not suffice to rule out noncredible strategies. We then introduce a
stronger solution concept, known as subgame perfect Nash equilibrium, that helps

1. As do most parlor games.
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to do so. The central idea underlying this concept is the principle of sequential
rationality: equilibrium strategies should specify optimal behavior from any point in
the game onward, a principle that is intimately related to the procedure of backward
induction.

In Section 9.C, we show that the concept of subgame perfection is not strong
enough to fully capture the idea of sequential rationality in games of imperfect
information. We then introduce the notion of a weak perfect Bayesian equilibrium
(also known as a weak sequential equilibrium) to push the analysis further. The central
feature of a weak perfect Bayesian equilibrium is its explicit introduction of a player's
beliefs about what may have transpired prior to her move as a means of testing the
sequential rationality of the player's strategy. The modifier weak refers to the fact
that the weak perfect Bayesian equilibrium concept imposes a minimal set of
consistency restrictions on players’ beliefs. Because the weak perfect Bayesian
equilibrium concept can be too weak, we also examine some related equilibrium
notions that impose stronger consistency restrictions on beliefs, discussing briefly
stronger notions of perfect Bayesian equilibrium and, in somewhat greater detail, the
concept of sequential equilibrium,

In Section 9.D, we go yet further by asking whether certain beliefs can be regarded
as “unreasonable” in some situations, thereby allowing us to further refine our
predictions. This leads us to consider the notion of forward induction.

Appendix A studies finite and infinite horizon models of bilateral bargaining as
an illustration of the use of subgame perfect Nash equilibrium in an important
economic application. Appendix B extends the discussion in Section 9.C by examining
the notion of an extensive form trembling-hand perfect Nash equilibrium.

We should note that—following most of the literature on this subject—all the
analysis in this chapter consists of attempts to “refine” the concept of Nash
equilibrium; that is, we take the position that we want our prediction to be a Nash
equilibrium, and we then propose additional conditions for such an equilibrium to
be a “satisfactory” prediction. However, the issues that we discuss here are not
confined to this approach. We might, for example, be concerned about noncredibie
strategies even if we were unwilling to impose the mutually correct expectations
condition of Nash equilibrium and wanted to focus instead only on rationalizable
outcomes. See Bernheim (1984) and, especially, Pearce (1984) for a discussion of
nonequilibrium approaches to these issues.

Sequential Rationality, Backward Induction, and
Subgame Perfection

We begin with an example to illustrate that in dynamic games the Nash equilibrium
concept may not give sensible predictions. This observation leads us to develop a
strengthening of the Nash equilibrium concept known as subgame perfect Nash
equilibrium.

Example 9.B.1: Consider the following predation game. Firm E (for entrant) is
considering entering a market that currently has a single incumbent (firm I). If it
does so (playing “in”), the incumbent can respond in one of two ways: It can either
accommodate the entrant, giving up some of its sales but causing no change in
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Firm E
Firm |
Fight Accommodate
if Firm E if Firm E
/Firm [ Plays “In”  Plays “In"
) N ( Out 0,2 0,2
/ Accommodate Firm E
In -3 -1 2,1

) 0

the market price, or it can fight the entrant, engaging in a costly war of predation
that dramatically lowers the market price. The extensive and normal form representa-
tions of this game are depicted in Figure 9.B.1.

Examining the normal form, we see that this game has two pure strategy Nash
equilibria: (g, 0,) = (out, fight if firm E plays “in”) and (o, 0,) = (in, accommodate
if firm E plays “in”). Consider the first of these strategy profiles. Firm E prefers to
stay out of the market if firm I will fight after it enters. On the other hand, “fight if
firm E plays ‘in’” is an optimal choice for the incumbent if firm E is playing “out.”
Similar arguments show that the second pair of strategies is also a Nash equilibrium.

Yet, we claim that (out, fight if firm E plays “in”) is not a sensible prediction for
this game. As in the example of your instructor that we posed in Section 9.A, firm
E can foresee that if it does enter, the incumbent will, in fact, find it optimal to
accommodate (by doing so, firm I earns I rather than —1). Hence, the incumbent’s
strategy “fight if firm E plays ‘in’" is not credible. =

Example 9.B.1 illustrates a problem with the Nash equilibrium concept in dynamic
games. In this example, the concept is, in effect, permitting the incumbent to make
an empty threat that the entrant nevertheless takes seriously when choosing its
strategy. The problem with the Nash equilibrium concept here arises from the fact
that when the entrant plays “out,” actions at decision nodes that are unreached by
play of the equilibrium strategies (here, firm I's action at the decision node following
firm E’s unchosen move “in") do not affect firm I's payoff. As a result, firm I can plan
to do absolutely anything at this decision node: Given firm E’s strategy of choosing
“out,” firm I's payoff is still maximized. But—and here is the crux of the matter—what
firm I's strategy says it will do at the unreached node can actually insure that firm
E, taking firm I's strategy as given, wants to play “out.”

To rule out predictions such as (out, fight if firm E plays “in™), we want to insist
that players’ equilibrium strategies satisfy what might be called the principle of
sequential rationality: A player’s strategy should specify optimal actions at every point
in the game tree. That is, given that a player finds herself at some point in the tree,
her strategy should prescribe play that is optimal from that point on given her
opponents’ strategies. Clearly, firm I's strategy “fight if firm E plays ‘in’" does not:
after entry, the only optimal strategy for firm I is “accommodate.”

In Example 9.B.1, there is a simple procedure that can be used to identify the

Filgure 9.B.1

Extensive and normal
forms for Example
9.B.1. The Nash
equilibrium

(og, a;) = (out, fight if
firn E plays “in™)
involves a noncredible
threat.
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Firm E

desirable (i.¢., sequentially rational) Nash equilibrium (o, 0,) = (in, accommodate if
firm E plays “in™). We first determine optimal behavior for firm [ in the post-entry
stage of the game; this is “accommodate.” Once we have done this, we then
determine firm E’s optimal behavior earlier in the game given the anticipation of
what will happen after entry. Note that this second step can be accomplished by
considering a reduced extensive form game in which firm 's post-entry decision is
replaced by the payoffs that will result from firm I's optimal post-entry behavior. See
Figure 9.B.2. This reduced game is a very simple single-player decision problem in
which firm E’s optimal decision is to play “in.” In this manner, we identify the
sequentially rational Nash equilibrium strategy profile (dg, 6,) = (in, accommodate
if firm E plays “in”).

This type of procedure, which involves solving first for optimal behavior at the
“end” of the game (here, at the post-entry decision node) and then determining what
optimal behavior is earlier in the game given the anticipation of this later behavior,
is known as backward induction (or backward programming). It is a procedure that
is intimately linked to the idea of sequential rationality because it insures that players’
strategies specify optimal behavior at every decision node of the game.

The game in Example 9.B.1 is a member of a general class of games in which the
backward induction procedure can be applied to capture the idea of sequential
rationality with great generality and power: finite games of perfect information. These
are games in which every information set contains a single decision node and there
is a finite number of such nodes (see Chapter 7).2 Before introducing a formal
equilibrium concept, we first discuss the general application of the backward
induction procedure to this class of games.

Backward Induction in Finite Games of Perfect Information

To apply the idea of backward induction in finite games of perfect information, we
start by determining the optimal actions for moves at the final decision nodes
in the tree (those for which the only successor nodes are terminai nodes). Just as in
firm I's post-entry decision in Example 9.B.1, play at these nodes involves no further
strategic interactions among the players, and so the determination of optimal
behavior at these decision nodes involves a simple single-person decision problem.
Then, given that these will be the actions taken at the final decision nodes, we can
proceed to the next-to-last decision nodes and determine the optimal actions to be

2. The assumption of finiteness is important for some aspects of this analysis. We discuss this
point further toward the end of the section.
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taken there by players who correctly anticipate the actions that will follow at the final
decision nodes, and so on backward through the game tree.

This procedure is readily implemented using reduced games. At each stage, after
solving for the optimal actions at the current final decision nodes, we can derive a
new reduced game by deleting the part of the game following these nodes and

assigning to these nodes the payoffs that result from the already determined
continuation play.

Figure 9.B.2

Reduced game afte;’
solving for post-entey
behavior in Examplel

Example 9.B.2: Consider the three-player finite game of perfect information depicted
in Figure 9.B.3(a). The arrows in Figure 9.B.3(a) indicate the optimal play at the
final decision nodes of the game. Figure 9.B.3(b) is the reduced game formed by
replacing these final decision nodes by the payoffs that result from optimal play once
these nodes have been reached. Figure 9.B.3(c) represents the reduced game derived

Player 1

Player 3
Yf\

Player 3

(2)

Figure 9.8.3

Reduced games in a
backward induction
procedure for a finite
game of perfect
information.

(a) Original game.
{b) First reduced
game. {c) Second
reduced game.
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in the next stage of the backward induction procedure, when the final decision nodes
of the reduced game in Figure 9.B.3(b) are replaced by the payoffs arising from
optimal play at these nodes (again indicated by arrows). The backward induction
procedure therefore identifies the strategy profile (5, ¢,, ;) in which o, = R, 6, = “a
if player ! plays R,” and

r if player | plays L

oy =4 ril player T pluys R and player 2 plays o

¢ if player 1 plays R and player 2 plays b.
Note that this strategy profile is a Nash equilibrium of this three-player game but
that the game also has other pure strategy Nash equilibria. (Exercise 9.B.3 asks you

to verify these two points and to argue that these other Nash equilibria do not satisfy
the principle of sequential rationality.) =

In fact, for finite games of perfect information, we have the general result presented
in Proposition 9.B.1.

Proposition 9.B.1: (Zermelo’'s Theorem) Every finite game of perfect information I'¢
has a pure strategy Nash equilibrium that can be derived through backward
induction. Moreover, if no player has the same payoffs at any two terminal nodes,
then there is a unique Nash equilibrium that can be derived in this manner.

Proof: First, note that in finite games of perfect information, the backward induction procedure
is well defined: The player who moves at each decision node has a finite number of possible
choices, so optimal actions necessarily exist at each stage of the procedure (if a player is
indifferent, we can choose any of her optimal actions). Moreover, the procedure fully specifies
all of the players’ strategies after a finite number of stages. Second, note that if no player has
the same payoffs at any two terminal nodes, then the optimal actions must be unique at every
stage of the procedure, and so in this case the backward induction procedure identifies a
unique strategy profile for the game.

What remains is to show that a strategy profile identified in this way, say ¢ = (g,,...,d,),
is necessarily a Nash equilibrium of I';. Suppose that it is not. Then there is some player i
who has a deviation, say to strategy &,, that strictly increases her payoff given that the other
players continue to play strategies o _;. That is, letting u(0,, o ;) be player i's payoff function,?

9.B.1)

We argue that this cannot be. The proof is inductive. We shall say that decision node x has
distance n if, among the various paths that continue from it to the terminal nodes, the
maximal number of decision nodes lying between it and a terminal node is n. We let N denote
the maximum distance of any decision node in the game; since I is a finite game, N is a finite
number. Define 4,(n) to be the strategy that plays in accordance with strategy o, at all nodes
with distances 0, ..., n, and plays in accordance with strategy ¢, at all nodes with distances
greater than n.

By the construction of ¢ through the backward induction procedure, u,(5,0),0_,) >
ul(8;,0_;). That is, player i can do at least as well as she does with strategy 4; by instead
playing the moves specified in strategy o; at all nodes with distance 0 (i.e., at the finai decision
nodes in the game) and following strategy 4, elsewhere.

u(d,0-;) > uo;, 0_,).

3. To be precise, u,(-) is player i's payofl function in the normal form derived from extensive
form game I,
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We now argue that if u(d,(n — 1).6_,) > u(d,, o), then ufd(n).o_;) > ufd;.o.;). This
is straightforward. The only difference between strategy d(n) and strategy é,(n — 1) is in player
i's moves at nodes with distance n. [n both strategies, player i plays according to o, at all
decision nodes that follow the distance-n nodes and in accordance with strategy ¢, before them.
But given that all players are playing in accordance with strategy profile o after the distance-n
nodes, the moves derived for the distance-n decision nodes through backward induction,
namely those in o;, must be optimal choices for player i at these nodes. Hence, ufdin),o_;)) >
ufd;(n— 1) o_)

Applying induction, we therefore have u(d(N), 0_,) = u(d;,a_,). But ¢(N) = g;, and
so we have a contradiction to (9.B.1). Strategy profile ¢ must therefore constitute a Nash
equilibrium of T, w

Note, incidentally, that Proposition 9.B.1 establishes the existence of a pure
strategy Nash equilibrium in all finite games of perfect information.

Subgame Perfect Nash Equilibria

It is clear enough how to apply the principle of sequential rationality in Example
9.B.1 and, more generally, in finite games of perfect information. Before distilling a
general solution concept, however, it is useful to discuss another example. This
example suggests how we might identify Nash equilibria that satisfy the principle of
sequential rationality in more general games involving imperfect information.

Example 9.B.3: We consider the same situation as in Example 9.B.1 except that firms
I'and E now play a simultaneous-move game after entry, each choosing either “fight™

or “accommodate.” The extensive and normal form representations are depicted in
Figure 9.B.4.

Examining the normal form, we see that in this game there are three pure strategy
Nash equilibria (o, g, ):*

((out, accommodate if in), (fight if firm E plays “in™)),
((out, fight if in), (fight if firm E plays “in™)),
.((in, accommodate if in), (accommodate if firm E plays “in™)).

Notice, however, that (accommodate, accommodate) is the sole Nash equilibrium in
the simultaneous-move game that follows entry. Thus, the firms should expect that
they will both play “accommeodate” following firm E's entry.® But if this is so, firm E

4. The entrant’s strategy in the first two equilibria may appear odd. Firm E is planning to take
an action conditional on entering while at the same time planning not to enter. Recall from Section
7.D, however, that a strategy is a complete contingent plan. Indeed, the reason we have insisted on
this requirement is precisely the need to test the sequential rationality of a player's strategy.

5. Recall that throughout this chapter we maintain the assumption that rational players always
play some Nash equilibrium in any strategic situation in which they find themselves (i.c., we assume
that players will have mutually correct expectations). Two points about this assumption are worth
noting. First, some justifications for a Nash equilibrium may be less compelling in the context of
dynamic games. For example, if players never reach certain parts of a game, the stable social
convention argument given in Section 8.D may no longer provide a good reason for believing that
a Nash equilibrium would be played if that part of the game tree were reached. Second, the idea of
sequential rationality can still have force even if we do not make this assumption. For example, here
we would reach the same conclusion even if we assumed only that neither player would play an
iteratively strictly dominated strategy in the post-entry simultaneous-move game.
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Accommodalte A Simultaneous-Move
Game:
Firm |
L Accommodate  Fight
Accommodate Accommodate 31
Fight Accommodate Firm E
Fight| 1 -2

Firm 1

Accommodate if  Fight if
E Plays “In" E Plays “In"

Out, Accommodate if In 0,2 0,2
Out, Fight if In 0,2 0,2
Firm E
In, Accommodate if In 31 -2,-1
In, Fight if In 1, -2 -3, -1

Figure 9.8.4 Extensive and normal forms for Example 9.B.3. A sequeniially rational Nash equilibrium must have both

firms play “accommodate” after entry.

should enter. The logic of sequential rationality therefore suggests that only the last
of the three equilibria is a reasonable prediction in this game.

The requirement of sequential rationality illustrated in this and the preceding
examples is captured by the notion of a subgame perfect Nash equilibrium [introduced
by Selten (1965)]. Before formally defining this concept, however, we need to specify
what a subgame is.

Definition 9.B.1: A subgame of an extensive form game I is a subset of the game
having the foillowing properties:

(i) It begins with an information set containing a single decision node,
contains all the decision nodes that are successors (both immediate and
later) of this node, and contains onfy these nodes.

(i) If decision node x is in the subgame, then every x’ € H(x) is also, where
H(x) is the information set that contains decision node x. (That is, there
are no ‘‘broken” information sets.)

Note that according to Definition 9.B.1, the game as a whole is a subgame, as

£
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may be some strict subsets of the game.® For example, in Figure 9.B.1, there are two
subgames: the game as a whole and the part of the game tree that begins with and
follows firm I's decision node. The game in Figure 9.B.4 also has two subgames: the
game as a whole and the part of the game beginning with firm E’s post-entry decision
node. In Figure 9.B.5, the dotted lines indicate three parts of the game of Figure
9.B.4 that are nor subgames.

Finally, note that in a finite game of perfect information, every decision node
initiates a subgame. (Exercise 9.B.1 asks you to verify this fact for the game of
Example 9.B.2.)

The key feature of a subgame is that, contemplated in isolation, it is a game in
its own right. We can therefore apply to it the idea of Nash equilibrium predictions.
In the discussion that follows, we say that a strategy profile g in extensive form game
[ induces a Nash equilibrium in a particular subgame of I'; if the moves specified
in o for information sets within the subgame constitute a Nash equilibrium when
this subgame is considered in isolation.

Definition 9.B.2: A profile of strategies ¢ = (d,,.. ., g;) in an I-player extensive form

game I'c is a subgame perfect Nash equilibrium (SPNE) if it induces a Nash
equilibrium in every subgame of I

Note that any SPNE is a Nash equilibrium (since the game as a whole is a
subgame) but that not every Nash equilibrium is subgame perfect.

Exercise 9.B.2: Consider a game Iy in extensive form. Argue that:

(a) If the only subgame is the game as a whole, then every Nash equilibrium
is subgame perfect.

(b) A subgame perfect Nash equilibrium induces a subgame perfect Nash
equilibrium in every subgame of T'¢.

The SPNE concept isolates the reasonable Nash equilibria in Examples 9.B.1 and
9.B.3. In Example 9.B.1, any subgame perfect Nash equilibrium must have firm [
playing “accommodate if firm E plays ‘in’ " because this is firm I's strictly dominant
strategy in the subgame following entry. Likewise, in Example 9.B.3, any SPNE must
have the firms both playing “accommodate™ after entry because this is the unique
Nash equilibrium in this subgame.

Note also that in finite games of perfect information, such as the games of
Examples 9.B.1 and 9.B.2, the set of SPNEs coincides with the set of Nash equilibria
that can be derived through the backward induction procedure. Recall, in particular,
that in finite games of perfect information every decision node initiates a subgame.
Thus, in any SPNE, the strategies must specify actions at each of the final decision
nodes of the game that are optimatl in the single-player subgame that begins there.
Given that this must be the play at the final decision nodes in any SPNE, consider
play in the subgames starting at the next-to-last decision nodes. Nash equilibrium
play in these subgames, which is required in any SPNE, must have the players who

6. In the literature, the term proper subgame is sometimes used with the same meaning we assign
to subgame. We choose to use the unqualified term subgame here to make clear that the game itself
qualifies.
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Firm E

In fact, to identify the set of subgame perfect Nash equilibria in a general (finite)
dynamic game Iz, we can use a generalization of the backward induction procedure.
This generalized backward induction procedure works as follows:

1. Start at the end of the game tree, and identify the Nash equilibria for each of
the final subgames (i.e., those that have no other subgames nested within them).

2. Select one Nash equilibrium in each of these final subgames, and derive the
reduced extensive form game in which these final subgames are replaced by
the payoffs that result in these subgames when players use these equilibrium
strategies.

3. Repeat steps 1 and 2 for the reduced game. Continue the procedure until every
move in Iy is determined. This collection of moves at the various information
sets of I'; constitutes a profile of SPNE strategies.

4. If multiple equilibria are never encountered in any step of this process, this
profile of strategies is the unique SPNE. If multiple equilibria are encountered,
the full set of SPNE:s is identified by repeating the procedure for each possible
equilibrium that could occur for the subgames in question.

Not a Not a

The formal justification for using this generalized backward induction procedure to identify
the set of SPNEs comes from the result shown in Proposition 9.B.3.

Proposition 9.B.3: Consider an extensive form game I; and some subgame S of [.
! Suppose that strategy profile ¢ is an SPNE in subgame S, and let f‘; be the reduced
game formed by replacing subgame S by a terminal node with payoffs equal to those
arising from play of ¢°. Then:

f

(i) In any SPNE ¢ of I’z in which ¢° is the play in subgame S, players’ moves at
information sets outside subgame S must constitute an SPNE of reduced game f}.

(ii) It ¢ is an SPNE of f‘f, then the strategy profile o that specifies the moves
in o5 at information sets in subgame S and that specifies the moves in ¢
at information sets not in S is an SPNE of I.

Proof: (i) Suppose that strategy profile o specifies play at information sets outside subgame

Figure 9.B.5 A "

Three parts of the § that does not constitute an SPNE of reduced game TI';. Then there exists a subgame of '

Not a game in Figure 9.B4 in which o does not induce a Nash equilibrium. In this subgame of [, some player has a

(c) Subgame that are not subgames. deviation that improves her payoff, taking as given the strategies of her opponents. But then

it must be that this player also has a profitable deviation in the corresponding subgame of
game I;. She makes the same alterations in her moves at information sets not in S and leaves
her moves at information sets in § unchanged. Hence, o could not be an SPNE of the overall
game ;.

(it) Suppose that ¢ is an SPNE of reduced game f}, and let o be the strategy in the overall
game [; formed by specifying the moves in ¢° at information sets in subgame S and the moves
in ¢ at information sets not in S. We argue that ¢ induces a Nash equilibrium in every subgame
of I'z. This follows immediately from the construction of o for subgames of T, that either lie
entirely in subgame § or never intersect with subgame § (i.e,, that do not have subgame §
nested within them). So consider any subgame that has subgame S nested within it. If some
player i has a profitable deviation in this subgame given her opponent’s strategies, then she
must also have a profitable deviation that leaves her moves within subgame $ unchanged
because, by hypothesis, a player does best within subgame S by playing the moves specified
in strategy profile o° given that her opponents do so. But if she has such a profitable deviation,

move at these next-to-last nodes choosing optimal strategies given the play that will
occur at the last nodes. And so on. An implication of this fact and Proposition 9.B.1
is therefore the result stated in Proposition 9.B.2.

Proposition 9.B.2: Every finite game of perfect information I'; has a pure strategy
subgame perfect Nash equilibrium. Moreover, if no player has the same payoffs
at any two terminal nodes, then there is a unique subgame perfect Nash
equilibrium.”

3w
1
’g.
H

7. The result can also be seen directly from Proposition 9.B.1. Just as the strategy profile derived
using the backward induction procedure constitutes a Nash equilibrium in the game as a whole, it
is also a Nash equilibrium in every subgame.

g

<t

e



278 CHAPTER 9: DYNAMIC GAMES SECTION 9.B: BACKWARD INDUCTION AND SUBGAME PERFECTION 279

then she must have a profitable deviation in the corresponding subgame of reduced game [,
in contradiction to ¢ being an SPNE of [;. m

Note that for the final subgames of T, the set of Nash equilibria and SPNEs coincide,
because these subgames contain no nested subgames. Identifying Nash equilibria in these final
subgames therefore allows us to begin the inductive application of Proposition 9.B.3.

This generalized backward induction procedure reduces to our previous backward
induction procedure in the case of games of perfect information. But it also applies
to games of imperfect information. Example 9.B.3 provides a simple illustration. There
we can identify the unique SPNE by first identifying the unique Nash equilibrium
in the post-entry subgame: (accommodate, accommodate). Having done this, we can
replace this subgame with the payoffs that result from equilibrium play in it. The
reduced game that results is then much the same as that shown in Figure 9.B.2, the
only difference being that firm E's payoff from playing “in” is now 3 instead of 2.
Hence, in this manner, we can derive the unique SPNE of Example 9.B.3: (0, 9,) =
{(in, accommodate if in), (accommodate if firm E plays “in™)).

The game in Example 9.B.3 is simple to solve in two respects. First, there is a
unique equilibrium in the post-entry subgame. If this were not so, behavior earlier in
the game could depend on which equilibrium resuited after entry. Example 9.B.4
illustrates this point:®

Example 9.B.4: The Niche Choice Game. Consider a modification of Example 9.B.3
in which instead of having the two firms choose whether to fight or accommodate
each other, we suppose that there are actually two niches in the market, one large
and one small. After entry, the two firms decide simultaneously which niche they will
be in. For example, the niches might correspond to two types of customers, and the
firms may be deciding to which type they are targeting their product design. Both
firms lose money if they choose the same niche, with more lost if it is the small niche.
If they choose different niches, the firm that targets the large niche earns a profit,
and the firm with the small niche incurs a loss, but a smaller loss than if the two
firms targeted the same niche. The extensive form of this game is depicted in Figure
9.B.6.

To determine the SPNE of this game, consider the post-entry subgame first. There
are two pure strategy Nash equilibria of this simultancous-move game: (large niche,
small niche) and (small niche, large niche).® In any pure strategy SPNE, the firms’
strategies must induce one of these two Nash equilibria in the post-entry subgame.
Suppose, first, that the firms will play (large niche, small niche). In this case, the
payoffs from reaching the post-entry subgame are (ug, 4,) = (1, —1), and the reduced
game is as depicted in Figure 9.B.7(a). The entrant optimaily chooses to enter in this

8. Similar issues can arise in games of perfect information when a player is indifferent between
two actions. However, the presence of multiple equilibria in subgames involving simultancous play
is, in a sense, a more robust phenomenon. Multiple equilibria are generaily robust to small changes
in players’ payoffs, but ties in games of perfect information are not.

9. We restrict attention here to pure strategy SPNEs. There is also a mixed strategy Nash
equilibrium in the post-entry subgame. Exercise 9.B.6 asks you to investigate the implications of this
mixed strategy play being the post-entry equilibrium behavior.
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case. Hence, one SPNE is (o, 6;) = ((in, large niche if in), (small niche if irm E
plays “in™)).

Now suppose that the post-entry play is (small niche, large niche). Then the
payoffs from reaching the post-entry game are (ug, 4;) = (—1, 1), and the reduced
game is that depicted in Figure 9.B.7(b). The entrant optimally chooses not to enter
in this case. Hence, there is a second pure strategy SPNE: (o, 0,) = ((out, small
niche if in), (large niche if firm E plays “in”)). =

A second sense in which the game in Example 9.B.3 is simpie to solve is that it
involves only one subgame other than the game as a whole. Like games of perfect
information, a game with imperfect information may in general have many subgames,
with one subgame nested within another, and that larger subgame nested within a
still larger one, and so on.

One interesting class of imperfect information games in which the generalized

backward induction procedure gives a very clean conclusion is described in Proposi-
tion 9.B.4.

- Proposition 9.B.4: Consider an I-player extensive form game s involving successive

play of T simultaneous-move games, I'y = [I, {A(S))}, {v!(-)}]for t=1,..., T,
with the ptayers observing the pure strategies played in each game immediately
after its play is concluded. Assume that each player’s payoff is equal to the sum
of her payoffs in the plays of the 7 games. If there is a unique Nash equilibrium

Figure 9.8.6

Extensive form for
the Niche Choice
game. The post-entry
subgame has multiple
Nash equilibria.

Figure 9.B.7

Reduced games after
identifying (pure
strategy) Nash
equilibria in the
post-entry subgame of
the Niche Choice game.
(a) Reduced game if
(large niche, small
niche) is post-entry
equilibrium.

(b) Reduced game if
(small niche, large
niche) is post-entry
equilibrium.
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in each game T, say o' =(d},...,d}), then there is a unique SPNE of I’
and it consists of each player / playing strategy a! in each game I}, regardless
of what has happened previously.

Proof: The proof is by induction. The result is clearly true for 7 = 1. Now suppose it is true
for all 7 < n — 1. We will show that it is true for T=n.

We know by hypothesis that in any SPNE of the overall game, after play of game 'y the
play in the remaining n — 1 simultanecus-move games must simply involve play of the Nash
equilibrium of each game (since any SPNE of the overali game induces an SPNE in each of
its subgames). Let player i earn G; from this equilibrium play in these n —1 games.
Then in the reduced game that replaces all the subgames that follow I'} with their equilibrium
payoffs, player i earns an overall payoff of ugs!,...,s}) + G, if (s},...,s}) is the profile of
pure strategies played in game I'y. The unique Nash equilibrium of this reduced game is clearly
a'. Hence, the result is also true for T=n. &

The basic idea behind Proposition 9.B.4 is an application of backward induction
logic: Play in the last game must result in the unique Nash equilibrium of that game
being played because at that point players essentially face just that game. But if play
in the last game is predetermined, then when players play the next-to-last game, it
is again as if they were playing just that game in isolation (think of the case where
T =2). And so on.

An interesting aspect of Proposition 9.B.4 is the way the SPNE concept rules out
history dependence of strategies in the class of games considered there. In general, a
player’s strategy could potentially promise later rewards or punishments to other
players if they take particular actions early in the game. But as long as each of the
component games has a unique Nash equilibrium, SPNE strategies cannot be history
dependent.!°

Exercises 9.B.9 to 9.B.11 provide some additional examples of the use of the
subgame perfect Nash equilibrium concept. In Appendix A we also study an
important economic application of subgame perfection to a finite game of perfect
information (albeit one with an infinite number of possible moves at some decision
nodes): a finite horizon model of bilateral bargaining.

Up to this point, our analysis has assumed that the game being studied is finite.
This has been important because it has allowed us to identify subgame perfect Nash
equilibria by starting at the end of the game and working backward. As a general
matter, in games in which there can be an infinite sequence of moves (so that some
paths through the tree never reach a terminal node), the definition of a subgame
perfect Nash equilibrium remains that given in Definition 9.B.2: Strategies must
induce a Nash equilibrium in every subgame. Nevertheless, the lack of a definite finite
point of termination of the game can reduce the power of the SPNE concept because
we can no longer use the end of the game to pin down behavior. In games in which
there is always a future, a wide range of behaviors can sometimes be justified as
sequentially rational (i.e., as part of an SPNE). A striking example of this sort arises in

10. This lack of history dependence depends importantly on the uniqueness assumption of
Proposition 9.B.4. With multiple Nash equilibria in the component games, we can get outcomes
that are not merely the repeated play of the static Nash equilibria. (See Exercise 9.B.9 for an example.)

L
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Chapter 12 and its Appendix A when we consider infinitely repeated games in the
context of studying oligopolistic pricing.

Nevertheless, it is not always the case that an infinite horizon weakens the power
of the subgame perfection criterion. In Appendix A of this chapter, we study an
infinite horizon model of bilateral bargaining in which the SPNE concept predicts a
unique outcome, and this outcome coincides with the limiting outcome of the
corresponding finite horizon bargaining model as the horizon grows long.

The methods used to identify subgame perfect Nash equilibria in infinite horizon
games are varied. Sometimes, the method involves showing that the game can
effectively be truncated because after a certain point it is obvious what equilibrium
play must be (see Exercise 9.B.11). In other situations, the game possesses a
stationarity property that can be exploited; the analysis of the infinite horizon
bilateral bargaining model in Appendix A is one example of this kind.

After the preceding analysis, the logic of sequential rationality may seem unassailable. But
things are not quite so clear. For example, nowhere could the principle of sequential rationality
seem on more secure footing than in finite games of perfect information. But chess is a game
of this type (the game ends if 50 moves occur without a piece being taken or a pawn being
moved), and so its “solution™ should be simple to predict. Of course, it is exactly players’
inability to do so that makes it an exciting game to play. The same could be said even of the
much simpler game of Chinese checkers. It is clear that in practice, players may be only
boundedly rational. As a result, we might feel more comfortable with our rationality hypotheses
in games that are relatively simple, in games where repetition helps players learn to think
through the game, or in games where large stakes encourage players to do so as much as
possible. Of course, the possibility of bounded rationality is not a concern limited to dynamic
games and subgame perfect Nash equilibria; it is also relevant for simultaneous-move games
containing many possible strategies.

There is, however, an interesting tension present in the SPNE concept that is related to
this bounded rationality issue and that does not arise in the context of simultaneous-move
games. In particular, the SPNE concept insists that players should play an SPNE wherever
they find themselves in the game tree, even after a sequence of events that is contrary to the
predictions of the theory. To see this point starkly, consider the following example due to
Rosenthal (1981), known as the Centipede game.

Example 9.B.5: The Centipede Game. In this finite game of perfect information, there are two
players, 1 and 2. The players each start with 1 doilar in front of them. They alternate saying
“stop™ or “continue,” starting with player 1. When a player says “continue,” 1 dollar is taken
by a referee from her pile and 2 dollars are put in her opponent’s pile. As soon as either player
says “stop,” play is terminated, and each player receives the money currently in her pile.
Alternatively, play stops if both players’ piles reach 100 dollars. The extensive form for this
game is depicted in Figure 9.B.8.

The unique SPNE in this game has both players saying “stop™ whenever it is their turn,
and the players each receive 1 dollar in this equilibrium. To see this, consider player 2's move
at the final decision node of the game (after the players have said “continue” a total of 197
times). Her optimal move if play reaches this point is to say “stop”; by doing so, she receives
101 dollars compared with a payoff of 100 dollars if she says “continue.” Now consider what
happens if play reaches the next-to-last decision node. Player 1, anticipating player 2's move
at the final decision node, also says “stop”; doing so, she earns 99 dollars, compared with 98
dollars if she says “continue.” Continuing backward through the tree in this fashion, we identify
saying “stop” as the optimal move at every decision node.
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Figure 9.8.8 The Centipede game.
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A striking aspect of the SPNE in the Centipede game is how bad it is for the
players. They each get 1 dollar, whereas they might get 100 dollars by repeatedly saying
“continue.”

Is this (unique) SPNE in the Centipede game a reasonable prediction? Consider player 1's
initial decision to say “stop.” For this to be rational, player 1 must be pretty sure that if
instead she says “continue,” player 2 will say “stop™ at her first turn. Indeed, “continue™ would
be better for player 1 as long as she could be sure that player 2 would say “continue™ at her
next move. Why might player 2 respond to player 1 saying “continue™ by also saying
“continue™? First, as we have pointed out, player 2 might not be fully rational, and so she
might not have done the backward induction computation assumed in the SPNE concept.
More interestingly, however, once she sees that player 1 has chosen “continue™—an event
that should never happen according to the SPNE prediction—she might entertain the
possibility that player 1 is not rational in the sense demanded by the SPNE concept. If, as a
result, she thinks that player 1 would say “continue™ at her next move if given the
chance, then player 2 would want to say “continue™ herself. The SPNE concept denies this
possibility, instead assuming that at any point in the game, players will assume that the
remaining play of the game will be an SPNE even if play up to that point has contradicted
the theory. One way of resolving this tension is to view the SPNE theory as treating any
deviation from prescribed play as the result of an extremely unlikely “mistake ™ that is unlikely
to occur again. In Appendix B, we discuss one concept that makes this idea explicit. &

Beliefs and Sequential Rationality

Although subgame perfection is often very useful in capturing the principle of
sequential rationality, sometimes it is not enough. Consider Example 9.C.1’s adapta-
tion of the entry game studied in Example 9.B.1.

Example 9.C.1: We now suppose that there are two strategies firm E can use to enter,
“in,” and “in,,” and that the incumbent is unable to tell which strategy firm E has
used if entry occurs. Figure 9.C.1 depicts this game and its payofis.

As in the original entry game in Example 9.B.1, there are two pure strategy Nash
equilibria here: (out, fight if entry occurs) and (in,, accommodate if entry occurs).
Once again, however, the first of these does not seem very reasonable; regardless of
what entry strategy firm E has used, the incumbent prefers to accommodate once
entry has occurred. But the criterion of subgame perfection is of absolutely no use here:
Because the only subgame is the game as a whole, both pure strategy Nash equilibria
are subgame perfect. m

1
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How can we climinate the unreasonable equilibrium here? One possibility, which
is in the spirit of the principle of sequential rationality, might be to insist that the
incumbent’s action after entry be optimal for some belief that she might have about
which entry strategy was used by firm E. Indeed, in Example 9.C.1, “fight if entry
occurs™ is not an optimal choice for any belief that firm I might have. This suggests
that we may be able to make some progress by formally considering players’ beliefs
and using them 1o test the sequential rationality of players’ strategies.

We now introduce a solution concept, which we call a weak perfect Bayesian
equilibrium [Myerson (1991) refers to this same concept as a weak sequential
equilibrium], that extends the principle of sequential rationality by formally intro-
ducing the notion of beliefs.!! It requires, roughly, that at any point in the game, a
player’s strategy prescribe optimal actions from that point on given her opponents’
strategies and her beliefs about what has happened so far in the game and that her
beliefs be consistent with the strategies being played.

To express this notion formally, we must first formally define the two concepts
that are its critical components: the notions of a system of beliefs and the sequential
rationality of strategies. Beliefs are simple.

(%)

Definition 9.C.1: A system of beliefs u in extensive form game I is a specification
of a probability u(x) € [0, 1] for each decision node x in I’z such that

Taeralx) =1
for all information sets H.

A system of beliefs can be thought of as specifying, for each information set, a
probabilistic assessment by the player who moves at that set of the relative likelihoods
of being at each of the information set’s various decision nodes, conditional upon
play having reached that information set.

11. The concept of a perfect Bayesian equilibrium was first developed to capture the requirements
of sequential rationality in dvnamic games with incomplete information, that is (using the
terminology introduced in Section 8.E), in dynamic Bayesian games. The weak perfect Bayesian
equilibrium concept is a variant that is introduced here primarily for pedagogic purposes (the reason
for the modifier weak will be made clear later in this section). Myerson (1991) refers to this same
concept as a weak sequential equilibrium because it may also be considered a weak variant of the
sequential equilibritn concept introduced in Definition 9.C4.

Figure 9.C.1

Extensive form for
Example 9.C.1. The
SPNE concept may
fail to insure
sequential rationality.
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To define sequential rationality, it is useful to let E[u; | H, g, 0;, ¢ _;] denote player
i’s expected utility starting at her information set H if her beliefs regarding the
conditional probabilities of being at the various nodes in H are given by g, if she
follows strategy o;, and if her rivals use strategies o_,. [We will not write out the
formula for this expression explicitly, although it is conceptually straightforward:
Pretend that the probability distribution u(x) over nodes x € H is generated by nature;
then player i's expected payoff is determined by the probability distribution that is
induced on the terminal nodes by the combination of this initial distribution plus
the players’ strategies from this point on.]

Definition 9.C.2: A strategy profile ¢ = {¢,,....0,) in extensive form game [ is
sequentially rational at information set H given a system of beliefs i if, denoting
by «(H) the player who moves at information set H/, we have

EluynlH. w04y 0 40)] 2 E[u gl H. 1, Gy O - 11y

for all &,y € A(S,4))- If strategy profile o satisfies this condition for a// informa-
tion sets H, then we say that ¢ is sequentially rational given belief system .

In words, a strategy profile ¢ = (g, ..., 6,) is sequentially rational if no player
finds it worthwhile, once one of her information sets has been reached, to revise her
strategy given her beliefs about what has already occurred (as embodied in ) and
her rivals’ strategies.

With these two notions, we can now define a weak perfect Bayesian cquilibrium.
The definition involves two conditions: Firs, strategies must be sequentially rational
given beliefs. Second, whenever possible, beliefs must be consistent with the strategies.
The idea behind the consistency condition on beliefs is much the same as the idea
underlying the concept of Nash equilibrium (see Section 8.D): In an equilibrium,
players should have correct beliefs about their opponents’ strategy choices.

To motivate the specific consistency requirement on beliefs to be made in the
definition of a weak perfect Bayesian equilibrium, consider how we might define the
notion of consistent beliefs in the special case in which each player’s equilibrium
strategy assigns a strictly positive probability to each possible action at every one of
her information sets (known as a completely mixed strategy).'? In this case, every
information set in the game is reached with positive probability. The natural notion
of beliefs being consistent with the play of the equilibrium strategy profile ¢ is in this
case straightforward: For each node x in a given player’s information set H, the
player should compute the probability of reaching that node given play of strategies
a, Prob (x| 0), and she should then assign conditional probabilities of being at each
of these nodes given that play has reached this information set using Bayes’ rule:'?

_ Prob (ic_{_o)
Prob (x| H,0) = S ou Prob (—x' S

12. Equivalently, a completely mixed strategy can be thought of as a strategy that assigns a
strictly positive probability to each of the player's pure strategies in the normal form derived from
exiensive form game T,

13. Bayes’ rule is a basic principle of statistical inference. See, for example, DeGroot (1970},
where it is referred to as Bayes' theorem.
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As a concrete example, suppose that in the game in Example 9.C.1, firm E is using
the completely mixed strategy that assigns a probability of } to “out,” § to “in,,"
and 1 to “in,.” Then the probability of reaching firm I's information set given this
strategy is 3. Using Bayes’ rule, the probability of being at the left node of firm I's
information set conditional on this information set having been reached is 4, and the
conditional probability of being at the right node in the set is §. For firm I's beliefs
following entry to be consistent with firm E's strategy, firm I's beliefs should assign
exactly these probabilities.

The more difficult issue arises when players are not using completely mixed
strategies. In this case, some information sets may no longer be reached with positive
probability, and so we cannot use Bayes’ rule to compute conditional probabilities
for the nodes in these information sets. At an intuitive level, this problem corresponds
to the idea that even if players were to play the game repeatedly, the equilibrium play
would gencrate no experience on which they could base their beliefs at these
information sets. The weak perfect Bayesian equilibrium concept takes an agnostic
view toward what players should believe if play were to reach these information sets
unexpectedly. In particular, it allows us to assign any beliefs at these information
sets. It is in this sense that the modifier weak is appropriately attached to this concept.

We can now give a formal definition.

pefinition 9.C.3: A profile of strategies and system of beliefs (g, u) is a weak perfect
Bayesian equilibrium (weak PBE) in extensive form game I if it has the following
properties:

(i) The strategy profile ¢ is sequentially rational given belief system p.

(i) The system of beliefs u is derived from strategy profile o through Bayes’
rule whenever possible. That is, for any information set 4 such that
Prob (H | o) > 0 (read as "‘the probability of reaching information set M is
positive under strategies ¢''), we must have

_ Prob(x]o)

= for all xe H.
Prob (H | 6)

uix)

It should be noted that the definition formally incorporates beliefs as part
of an equilibrium by identifying a sirategy-beliefs pair (o, 1) as a weak perfect
Bayesian equilibrium. In the literature, however, it is not uncommon to see this
treated a bit loosely: a set of strategies ¢ will be referred to as an equilibrium with
the meaning that there is at least one associated set of beliefs x4 such that (o, y)
satisfies Definition 9.C.3. At times, however, it can be very useful to be more explicit
about what these beliefs are, such as when testing them against some of the
“reasonableness” criteria that we discuss in Section 9.D.

A useful way to understand the relationship between the weak PBE concept and
that of Nash equilibrium comes in the characterization of Nash equilibrium given
in Proposition 9.C.1.

Proposition 9.C.1: A strategy profile ¢ is a Nash equilibrium of extensive form game
Iz it and only if there exists a system of beliefs u such that

(i} The strategy profile o is sequentially rational given belief system u at a//
information sets H such that Prob (H{ o) > 0.
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(i) The system of beliefs u is derived from strategy profile ¢ through Bayes’
rule whenever possible.

Exercise 9.C.1 asks you to prove this result. The italicized portion of condition
(i) is the only change from Definition 9.C.3: For a Nash equilibrium, we require
sequential rationality only on the equilibrium path. Hence, a weak perfect Bayesnan
equilibrium of game Iy is a Nash equilibrium, but not every Nash equilibrium is a
weak PBE.

We now illustrate the application of the weak PBE concept in several examples.
We first consider how the concept performs in Example 9.C.1.

Example 9.C.1 Continued: Clearly, firm I must play “accommodate if entry occurs”
in any weak perfect Bayesian equilibrium because that is firm I's optimal action
starting at its information set for any system of beliefs. Thus, the Nash equilibrium
strategies (out, fight if entry occurs) cannot be part of any weak PBE.

What about the other pure strategy Nash equilibrium, (in,, accommodate if entry
occurs)? To show that this strategy profile is part of a weak PBE, we need to
supplement these strategies with a system of beliefs that satisfy criterion (ii) of
Definition 9.C.3 and that lead these strategies to be sequentially rational. Note first
that to satisfy criterion (ii), the incumbent’s beliefs must assign probability { to being
at the left node in her information set because this information set is reached with
positive probability given the strategies (in,, accommodate if entry occurs) [a
specification of beliefs at this information set fully describes a system of beliefs in this
game because the only other information set is a singleton]. Moreover, these strategies
are, indeed, sequentially rational given this system of beliefs. In fact, this strategy-
beliefs pair is the unique weak PBE in this game (pure or mixed). =

Examples 9.C.2 and 9.C.3 provide further illustrations of the application of the
weak PBE concept.

Example 9.C.2: Consider the following “joint venture™ entry game: Now there is a
second potential entrant E2. The story is as follows: Firm El has the essential
capability to enter the market but lacks some important capability that firm E2 has.
As a result, El is considering proposing a joint venture with E2 in which E2 shares
its capability with E1 and the two firms split the profits from entry. Firm El has
three initial choices: enter directly on its own, propose a joint venture with E2, or
stay out of the market. If it proposes a joint venture, firm E2 can either accept or
decline. If E2 accepts, then El enters with E2’s assistance. If not, then E1 must decide
whether to enter on its own. The incumbent can observe whether E{ has entered,
but not whether it is with E2's assistance. Fighting is the best response for the
incumbent if E1 is unassisted (E1 can then be wiped out quickly) but is not optimal
for the incumbent if El is assisted (E1 is then a tougher competitor). Finally, if Et
is unassisted, it wants to enter only if the incumbent accommodates; but if E1 is
assisted by E2, then because it will be such a strong competitor, its entry is profitable
regardless of whether the incumbent fights. The extensive form of this game is depicted
in Figure 9.C.2.

To identify the weak PBE of this game note first that, in any weak PBE, firm E2
must accept the joint venture if firm E1 proposes it because E2 is thereby assured
of a positive payoff regardless of firm I's strategy. But if so, then in any weak PBE
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firm E1 must propose the joint venture since if firm E2 will accept its proposal, then
firm E1 does better proposing the joint venture than it does by either staying out or
entering on its own, regardless of firm I's post-entry strategy. Next, these two
conclusions imply that firm I's information set is reached with positive probability
(in fact, with certainty) in any weak PBE. Applying Bayesian updating at this
information set, we conclude that the beliefs at this information set must assign a
probability of 1 to being at the middle node. Given this, in any weak PBE firm I's
strategy must be “accommodate if entry occurs.” Finally, if firm I is playing
“accommodate if entry occurs,” then firm EI must enter if it proposes a joint venture
that firm E2 then rejects.

We conclude that the unique weak PBE in this game is a strategy-beliefs pair
with strategics of (0,4, 05, @,) = ((propose joint venture, in if E2 declines), (accept),
(accommodate if entry occurs)) and a belief system of ¢ (middle node of incumbent’s
information set) = 1. Note that this is not the only Nash equilibrium or, for that
matter, the only SPNE. For example, (og,, 05y, 6;) = ((out, out if E2 declines),
(decline), (fight if entry occurs)) is an SPNE in this game. ®

0
Accommodate (3)

Example 9.C.3: In the games of Examples 9.C.1 and 9.C.2 the trick to identifying the
weak PBEs consisted of seeing that some player had an optimal strategy that was
independent of her beliefs and/or the future play of her opponents. In the game
depicted in Figure 9.C.3, however, this is not so for either player. Firm 1 is now
willing to fight if she thinks that firm E has played “in,,” and the optimal strategy
for firm E depends on firm ['s behavior (note that y > —1).

To solve this game, we look for a fixed point at which the behavior generated
by beliefs is consistent with these beliefs. We restrict attention to the case where
y > 0. [Exercise 9.C.2 asks you to determine the set of weak PBEs when y e (—1,0).]
Let o, be the probability that firm I fights after entry, let u, be firm I's belief that

Figure 9.C.2

Extensive form for
Example 9.C.2.
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“in,;” was E's entry strategy if entry has occurred, and let g4, 0,,, denote the
probabilities with which firm E actually chooses “out,” “in,,” and “in,,” respectively.

Note, first, that firm [ is willing to play “fight” with positive probability if and
onlyif =12 —2u, + (1 —p,),0r p, 2 4.

Suppose, first, that u, > % in a weak PBE. Then firm I must be playing “fight”
with probability 1. But then firm E must be playing “in,” with probability | (since
7> 0), and the weak PBE concept would then require that g, = 0, which is a
contradiction.

Suppose, instead, that u, <% in a weak PBE. Then firm I must be playing
“accommodate™ with probability 1. But, if so, then firm E must be playing “in,”
with probability 1, and the weak PBE concept then requires that u, = 1, another
contradiction.

Hence, in any weak PBE of this game, we must have g, = % If so, then firm E
must be randomizing in the equilibrium with positive probabilities attached to both
“in,” and “in,” and with “in,” twice as likely as “in,.” This means that firm I's
probability of playing “fight” must make firm E indifferent between “in,” and “in,.”
Hence, we must have — 1o + 3(1 — 65) = yo; + 2(1 — o), or 6 = 1/(y + 2). Firm
E’s payoff from playing “in,” or “in,” is then (3y + 2)/(y + 2) > 0, and so firm E
must play “out™ with zero probability. Therefore, the unique weak PBE in this game
when y > 0 has (00, 0,,0,) = (0,4 1), 0, = 1/(y + 2, and 4, =% u»

Strengthenings of the Weak Perfect Bayesian Equilibrium Concept

We have referred to the concept defined in Definition 9.C.3 as a weak perfect Bayesian
equilibrium because the consistency requirements that it puts on beliefs are very
minimal: The only requirement for beliefs, other than that they specily nonnegative
probabilities which add to 1 within each information set, is that they are consistent
with the equilibrium strategies on the equilibrium path, in the sense of being derived
from them through Bayes' rule. No restrictions at all are placed on beliefs off the
equilibrium path (i.e., at information sets not reached with positive probability with
play of the equilibrium strategies). In the literature, a number of strengthenings of
this concept that put additional consistency restrictions on off-the-equilibrium-path

Figure 9.C.3

Extensive form for
Example 9.C.3,

SECTION 9.C:

BELIEFS AND SEQUENTIAL

RATIONALITY 289

_~Nature

[.5] Player | [5]

X

beliefs are used. Examples 9.C.4 and 9.C.5 illustrate why a strengthening of the weak
PBE concept is often needed.

Example 9.C.4: Consider the game shown in Figure 9.C4. The pure strategies and
beliefs depicted in the figure constitute a weak PBE (the strategies are indicated by
arrows on the chosen branches at each information set, and beliefs are indicated by
numbers in brackets at the nodes in the information sets). The beliefs satisfy criterion
(i) of Definition 9.C.3; only player I's information set is reached with positive
probability, and player I's beliefs there do reflect the probabilities assigned by nature.
But the beliefs specified for player 2 in this equilibrium are not very sensible; player
2's information set can be reached only if player 1 deviates by instead choosing action
y with positive probability, a deviation that must be independent of nature’s actual
move, since player 1 is ignorant of it. Hence, player 2 could reasonably have only
beliefs that assign an equal probability to the two nodes in her information set. Here
we see that it is desirable to require that beliefs at least be “structurally consistent”
off the equilibrium path in the sense that there is some subjective probability
distribution over strategy profiles that could generate probabilities consistent with
the beliefs. m

Example 9.C.5: A second and more significant problem is that a weak perfect
Bayesian equilibrium need not be subgame perfect. To see this, consider again the
entry game in Example 9.B.3. One weak PBE of this game involves strategies of
(04, 0;) = ((out, accommodate if in), (fight if firm E plays “in”)) combined with
beliefs for firm I that assign probability 1 to firm E having played “fight.” This weak
PBE is shown in Figure 9.C.5. But note that these strategies are not subgame perfect;
they do not specify a Nash equilibrium in the post-entry subgame.

The problem is that firm I's post-entry belief about firm E's post-entry play is
unrestricted by the weak PBE concept because firm I’s information set is off the
equilibrium path. =

Figure 9.C.4

Extensive form for
Example 9.C.4. Beliefs
in a weak PBE may
not be structurally
consistent.
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These two examples indicate that the weak PBE concept can be too weak. Thus,
in applications in the literature, extra consistency restrictions on beliefs are often
added to the weak PBE concept to avoid these problems, with the resulting solution
concept referred to as a perfect Bayesian equilibrium. (As a simple example, restricting
attention to equilibria that induce a weak PBE in every subgame insures subgame
perfection.) We shall also do this when necessary later in the book; see, in particular,
the discussion of signaling in Section 13.C. For formal definitions and discussion of
some notions of perfect Bayesian equilibrium, see Fudenberg and Tirole (1991a) and
(1991b).

An important closely related equilibrium notion that also strengthens the weak
PBE concept by embodying additional consistency restrictions on beliefs is the
sequential equilibrium concept developed by Kreps and Wilson (1982). In contrast to
notions of perfect Bayesian equilibrium (such as the one we develop in Section 13.C),
the sequential equilibrium concept introduces these consistency restrictions indirectly
through the formalism of a limiting sequence of strategies. Definition 9.C.4 describes
its requirements.

() ()

Definition 9.C.4: A strategy profile and system of beliefs (o, n) is a sequential

equilibrium of extensive form game I if it has the following properties:

(i) Strategy profile ¢ is sequentially rational given belief system p.

(i) There exists a sequence of completely mixed strategies {o*}z. .. with
lim, . o ¢* = 6, such that u = lim,. u* where u* denotes the beliefs
derived from strategy profile ¢* using Bayes' rule.

In essence, the sequential equilibrium notion requires that beliefs be justifiable as
coming from some set of totally mixed strategies that are “close to™ the equilibrium
strategies o (i.e., a small perturbation of the equilibrium strategies). This can be viewed
as requiring that players can (approximately) justify their beliefs by some story in
which, with some small probability, players make mistakes in choosing their
strategies. Note that every sequential equilibrium is a weak perfect Bayesian
cquilibrium because the limiting beliefs in Definition 9.C.4 exactly coincide with the
beliefs derived from the equilibrium strategies ¢ via Bayes’ rule on the outcome path
of strategy profile . But, in general, the reverse is not true.

Figure 9.C.5

Extensive form for
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weak PBE may not b

subgame perfect,
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As we now show, the sequential equilibrium concept strengthens the weak perfect
Bayesian equilibrium concept in a manner that avoids the problems identified in
Examples 9.C.4 and 9.C.5.

Example 9.C.4 Continued: Consider again the game in Figure 9.C.4. In this game,
all beliefs that can be derived from any sequence of totally mixed strategies assign
equal probability to the two nodes in player 2's information set. Given this fact, in
any sequential equilibrium player 2 must play r and player { must therefore play y.
In fact, strategics (y, r) and belicls giving equal probability to the two nodes in both
players’ information sets constitute the unique sequential equilibrium of this game. =

Example 9.C.5 Continued: The unique scquential equilibrium strategies in the game
in Example 9.C.5 (see Figure 9.C.5) are those of the unique SPNE: {(in, accommodate
if in), (accommodate if firm E plays “in")). To verify this point, consider any totally
mixed strategy ¢ and any node x in firm I's information set, which we denote by H,.
Letting z denote firm E's decision node following entry (the initial node of the
subgame following entry), the beliefs y, associated with ¢ at information set H, are
equal to

Prob (x| 61 _ Prob (x |z, 6) Prob (z| )
Prob (H,|é) Prob(H,|z,6)Prob(z] é)’

#lx) =

where Prob(x]z, &) is the probability of reaching node x under strategies
& conditional on having reached node z. Canceling terms and noting that
Prob (H, |z 6) = 1, we then have p,(x) = Prob(x|z 6). But this is exactly the
probability that firm E plays the action that leads to node x in strategy 6. Thus, any
sequence of totally mixed strategies {G* }%., that converge to ¢ must generate limiting
betiefs for firm I that coincide with the play at node z specified in firm E’s actual
strategy og. It is then immediate that the strategies in any sequential equilibrium
must specify Nash equilibrium behavior in this post-entry subgame and thus must
constitute a subgame perfect Nash equilbrium. m

Proposition 9.C.2 gives a general result on the relation between sequential
equilibria and subgame perfect Nash equilibria.

Proposition 9.C.2: In every sequential equilibrium (g, u} of an extensive form game

[f, the equilibrium strategy profile ¢ constitutes a subgame perfect Nash
equilibrium of Tg.

Thus, the scquential equilibrium concept strengthens both the SPNE and the
weak PBE concepts; every sequential equilibrium is both a weak PBE and an SPNE.

Although the concept of sequential equilibrium restricts beliefs that are off the equilibrium
path enough to take care of the problems with the weak PBE concept illustrated in Examples
9.C.4 and 9.C.5, there are some ways in which the requirements on off-equilibrium-path beliefs
embodied in the notion of sequential equilibrium may be too strong. For example, they imply
that any two players with the same information must have exactly the same beliefs regarding
the deviations by other players that have caused play to reach a given part of the game tree.

In Appendix B, we briefly describe another related (and still stronger) solution
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9.D

concept, an extensive form trembling-hand perfect Nash equilibrium, first proposed by
Sclten (1975).14

Reasonable Beliefs and Forward Induction

In Section 9.C, we saw the importance of beliefs at unreached information sets for
testing the sequential rationality of a strategy. Although the weak perfect Bayesian
equilibrium concept and the related stronger concepts discussed in Section 9.C can
help rule out noncredible threats, in many games we can nonetheless justify a large
range of off-equilibrium-path behavior by picking off-equilibrium-path beliefs appro-
priately (we shall sec some examples shortly). This has led to a considerable amount
of recent research aimed at specifying additional restrictions that “reasonable” beliefs
should satisfy. In this section, we provide a brief introduction to these ideas. (We
shall encounter them again when we study signaling models in Chapter 13,
particularly in Appendix A of that chapter.)

To start, consider the two games depicted in Figure 9.D.1. The first is a variant
of the entry game of Figure 9.C.1 in which firm | would now find it worthwhile to
fight if it knew that the entrant chose strategy “in,”; the second is a variant of the
Niche Choice game of Example 9.B.4, in which firm E now targets a niche at the
time of its entry. Also shown in each diagram is a weak perfect Bayesian equilibrium
(arrows denote pure strategy choices, and the numbers in brackets in firm I's
information set denote beliefs).

One can argue that in neither game is the equilibrium depicted very sensible.!®
Consider the game in Figure 9.D.1(a). In the weak PBE depicted, if entry occurs,
firm 1 plays “fight™ because it believes that firm E has chosen “in,.” But “in,” is
strictly dominated for firm E by “in,.” Hence, it seems reasonable to think that if
firm E decided to enter, it must have used strategy “in,.” Indeed, as is commonly
done in this literature, one can imagine firm E making the following speech upon
entering: “1 have entered, but notice that I would never have used ‘in," to do so
because ‘in,’ is always a better entry strategy for me. Think about this carefully before
you choose your strategy.”

A similar argument holds for the weak PBE depicted in Figure 9.D.1(b). Here
“small niche” is strictly dominated for firm E, not by “large niche”, but by “out.”
Once again, firm I could not reasonably hold the beliefs that are depicted.
In this case, firm I should recognize that if firm E entered rather than playing “out,”
it must have chosen the large niche. Now you can imagine firm E saying: “Notice
that the only way I could ever do better by entering than by choosing ‘out’ is by
targeting the large niche.”

14. Selten actually gave it the name trembling-hand perfect Nash equilibrium; we add the modificr
extensive form 10 help distinguish it from the normal form concept introduced in Section 8.F.

15. For simplicity, we focus on weak perfect Bayesian equilibria here. The points to be made
apply as well to the stronger related notions discussed in Section 9.C. In fact, all the weak perfect
Bayesian equilibria discussed here are also sequential equilibria; indeed, they are even extensive
form trembling-hand perfect.
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These arguments make use of what is known as forward induction reasoning [see
Kohlberg (1989) and Kohlberg and Mertens (1986)]. In using backward induction,
a player decides what is an opgimal action for her at some point in the game tree based
on her calculations of the actions that her opponents will rationally play at larer
points of the game. In contrast, in using forward induction, a player reasons about
what could have rationally happened previously. For example, here firm [ decides on
its optimal post-entry action by assuming that firm E must have behaved rationally
in its entry decision.

This type of idea is sometimes extended to include arguments based on equilibrium
domination. For example, suppose that we augment the game in Figure 9.D.1(b) by also giving
firm T a move after firm E plays “out,” as depicted in Figure 9.D.2 (perhaps “out™ really
involves entry into some alternative market of firm I's in which firm E has only one potential
entry strategy).

The figure depicts a weak PBE of this game in which firm E plays “out” and firm 1 believes
that firm E has chosen “small niche™ whenever its post-entry information set is reached. In
this game, “small niche™ is no longer strictly dominated for firm E by “out,” so our previous
argument does not apply. Nevertheless, if firm E deviates from this equilibrium by entering,
we can imagine firm I thinking that since firm E could have received a payoff of 0 by following
its equilibrium strategy, it must be hoping to do better than that by entering, and so it must

Figure 9.D.1

Two weak PBEs with
unreasonable beliefs.
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have chosen to target the large niche. In this case, we say that “small niche™ is equilibrium
dominated for firm E; that is, it is dominated if firm E treats its equilibrium payoff as something
that it can achieve with certainty by following its equilibrium strategy. (This type of argu-
ment is embodied in the intuitive criterion refinement that we discuss in Section 13.C and
Appendix A of Chapter 13 in the context of signaling models.)

-3 -3

Forward induction can be quite powerful. For example, reconsider the original
Niche Choice game depicted in Figure 9.D.3. Recall that there are two (pure strategy)
Nash equilibria in the post-entry subgame: (large niche, small niche) and (small niche,
large niche). However, the force of the forward induction argument for the game in
Figure 9.D.1(b) seems to apply equally well here: Strategy (in, small niche if in) is
strictly dominated for firm E by playing “out.” As a result, the incumbent should
reason that if firm E has played “in,” it intends to target the large niche in the

Figure $.0.2

Strategy “small niche
is equilibrium
dominated for firm .

Figure 9.0.3

Forward induction
selects equilibrium
(large niche, small
niche) in the post-entry
subgame.
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post-entry game. If so, firm [ is better off targeting the small niche. Thus, forward
induction rules out one of the two Nash equilibria in the post-entry subgame.

Although thesc arguments may secm very appealing, there are also some potential
problems. For example, suppose that we are in a world where players make mistakes
with some small probability. In such a world, are the forward induction arguments
just given convincing? Perhaps not. To sce why, suppose that firm E enters in the
game shown in Figure 9.D.1(a) when it was supposed to play “out.” Now firm I can
explain the deviation to itscif as being the result of a mistake on firm E’s part, a
mistake that might equally well have led firm E to pick “in,” as “in,.” And firm E's
specch may not fall on very sympathetic ears: “Of course, firm E is telling me this,”
reasons the incumbent, “it has made a mistake and now is trying to make the best
of it by convincing me to accommodate.”

To see this in an even more striking manner, consider the game in Figure 9.D.3.
Now, after firm E has entered and the two firms are about to play the simultaneous-
move post-entry game, firm E makes its speech. But the incumbent retorts: “Forget
it' I think you just made a mistake—and even if you did not, I'm going to target
the large niche!™

Clearly, the issues here, aithough interesting and important, are also tricky.

A noticeable feature of these forward induction arguments is how they use the normal form
notion of dominance to restrict predicted play in dynamic games. This stands in sharp contrast
with our discussion earlier in this chapter, which relied exclusively on the extensive form to
determine how players should play in dynamic games. This raises a natural question: Can we
somehow use the normal form representation to predict play in dynamic games?

There are at least two reasons why we might think we can. First, as we discussed in Chapter 7,
it seems appealing as a matter of logic to think that players simultancously choosing their
strategies in the normal form (e.g., submitting contingent plans to a referec) is equivalent to
their actually playing out the game dynamically as represented in the extensive form. Second,
in many circumstances, it seems that the notion of weak dominance can get at the idea of
sequential rationality. For example, for finite games of perfect information in which no player
has equal payoffs at any two terminal nodes, any strategy profile surviving a process of iterated
deletion of weakly dominated strategies leads to the same predicted outcome as the SPNE
concept (take a look at Example 9.B.1, and see Exercise 9.D.1).

The argument for using the normal form is also bolstered by the fact that extensive form
concepts such as weak PBE can be sensitive to what may seem like irrelevant changes in the
extensive form. For example, by breaking up firm E's decision in the game in Figure 9.D.1(a)
into an “out™ or “in" decision followed by an “in,” or “in," decision [just as we did in Figure
9.D.3 for the game in Figure 9.D.1(b)], the unique SPNE (and, hence, the unique sequential
equilibrium) becomes firm E entering and playing “in," and firm | accommodating. However,
the reduced normal form associated with these two games (ie., the normal form where we
eliminate all but one of a player's strategies that have identical payoffs) is invariant to this
change in the extensive form; therefore, any solution based on the (reduced) normal form
would be unaffected by this change.

These points have led to a renewed interest in the use of the normal form as a device for
predicting play in dynamic games [see, in particular, Kohiberg and Mertens (1986)]. At the
same time, this issue remains controversial. Many game theorists believe that there is a loss
of some information of strategic importance in going from the extensive form to the more
condensed normal form. For example, are the games in Figures 9.D.3 and 9.D.1(b) really the
same? If you were firm I, would you be as likely to rely on the forward induction argument

.-
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in the game in Figure 9.D.3 as in that in Figure 9.D.1(b)? Does it matter for your answer
whether in the game in Figure 9.D.3 a minute or a month passes between firm E's two decisions?
These issues remain to be sorted out.

APPENDIX A: FINITE AND INFINITE HORIZON BILATERAL
BARGAINING

In this appendix we study two models of bilateral bargaining as an economically
important example of the use of the subgame perfect Nash equilibrium concept. We
begin by studying a finite horizon model of bargaining and then consider its infinite
horizon counterpart.

Example 9.AA.1: Finite Horizon Bilateral Bargaining. Two players, 1 and 2, bargain
to determine the split of v dollars. The rules are as follows: The game begins in period
1; in period 1, player 1 makes an offer of a split (a real number between 0 and v) to
player 2, which player 2 may then accept or reject. If she accepts, the proposed split
is immediately implemented and the game ends. If she rejects, nothing happens until
period 2. In period 2, the players’ roles are reversed, with player 2 making an offer
to player 1 and player | then being able to accept or reject it. Each player has a
discount factor of 8 € (0, 1), so that a dollar received in period ¢ is worth 6 'in
period 1 dollars. However, after some finite number of periods 7, if an agreement
has not yet been reached, the bargaining is terminated and the players each reccive
nothing. A portion of the extensive form of this game is depicted in Figure 9.AA.1
[this model is due to Stahl (1972)].

There is a unique subgame perfect Nash equilibrium (SPNE) in this game. To
see this, suppose first that T is odd, so that player | makes the offer in period T if
no previous agreement has been reached. Now, player 2 is willing to accept any offer
in this period because she will get zero if she refuses and the game is terminated (she
is indifferent about accepting an offer of zero). Given this fact, the unique SPNE in
the subgame that begins in the final period when no agreement has been previously
reached has player 1 offer player 2 zero and player 2 accept.'® Therefore, the payofis
from equilibrium play in this subgame are (67~ 'v, 0).

Now consider play in the subgame starting in period T — 1 when no previous
agreement has been reached. Player 2 makes the offer in this period. In any SPNE,
player | will accept an offer in period 7 — 1 if and only if it provides her with a
payofl of at least 87~ v, since otherwise she will do better rejecting it and waiting
to make an offer in period T (she earns 57~ 'v by doing so). Given this fact, in any
SPNE, player 2 must make an offer in period T — 1 that gives player 1 a payoff of
exactly 87!, and player 1 accepts this offer (note that this is player 2's best offer

16. Note that if player 2 is unwilling to accept an offer of zero, then player 1 has no optimal
strategy; she wants to make a strictly positive offer ever closer to zero (since player 1 will accept
any strictly positive offer). If the reliance on player 1 accepting an offer over which she is indifferent
bothers you, you can convince yourself that the analysis of the game in which offers must be in small
increments (pennies) yields exactly the same outcome as that identified in the text as the size of
these increments goes to zero.

APPENDIX A: FINITE AND INFINITE HORIZON BILATERAL

BARGAINING

Player 1

among all those that would be accepted, and making an offer that will be rejected
is worse for player 2 because it results in her receiving a payoff of zero). The payofls
arising if the game reaches period T — | must therefore be (87 ~'v, 67 2w — 67~ 'u).

Continuing in this fashion, we can determine that the unique SPNE when T
is odd results in an agreement being reached in period 1, a payoff for player 1 of

v¥(T)=v[l -6 +6*—---+6771)

1 _61'-1 ~
oo care)

and a payoff to player 2 of v3(T) = v — v}(T).

If T is instead even, then player 1 must earn v — dv¥(7 — 1) because in any SPNE,
player 2 (who will be the first offerer in the odd-number-of-periods subgame that
begins in period 2 if she rejects player 1’ period 1 offer) will accept an offer in period
1 if and only if it gives her at least dv}(7T — 1), and player 1 will offer her exactly
this amount.

Finally, note that as the number of periods grows large (T — o), player 1's payoff
converges to v/(1 + 8), and player 2's payoff converges to dv/(1 + ). m

In Example 9.AA.1, the application of the SPNE concept was relatively straight-
forward; we simply needed to start at the end of the game and work backward. We
now consider the infinite horizon counterpart of this game. As we noted in Section

Figure 9.AA.1

The alternating-offer
bilateral bargaining
game.
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9.B, we can no longer solve for the SPNE in this simple manner when the game has
an infinite horizon. Moreover, in many games, introduction of an infinite horizon
aliows a broad range of behavior to emerge as subgame perfect. Nevertheless, in the
infinite horizon bargaining model, the SPNE concept is quite powerful. There is a
unique SPNE in this game, and it turns out to be exactly the limiting outcome of
the finite horizon model as the length of the horizon T approaches co.

Example 9.AA.2: Infinite Horizon Bilateral Bargaining. Consider an extension of the
finite horizon bargaining game considered in Example 9.AA.1 in which bargaining
is no longer terminated after T rounds but, rather, can potentially go on forever. If this
happens, the players both earn zero. This model is due to Rubinstein (1982).

We claim that this game has a unique SPNE. In this equilibrium, the players
reach an immediate agreement in period 1, with player 1 earning v/(1 + J) and player
2 earning dv/(1 + 8).

The method of analysis we use here, following Shaked and Sutton (1984), makes
heavy use of the stationarity of the game (the subgame starting in period 2 looks
exactly like that in period 1, but with the players’ roles reversed).

To start, let 5, denote the largest payoff that player 1 gets in any SPNE (i.e,, there
may, in principle, be multiple SPNEs in this model).!” Given the stationarity of the
model, this is also the largest amount that player 2 can expect in the subgame that
begins in period 2 after her rejection of player I's period 1 offer, a subgame in which
player 2 has the role of being the first player to make an offer. As a result, player
I’s payoff in any SPNE cannot be lower than the amount v, = v — 63, because, ifit
was, then player 1 could do better by making a period 1 offer that gives player 2
just slightly more than 65,. Player 2 is certain to accept any such offer because she
will earn only 65, by rejecting it (note that we are using subgame perfection here,
because we are requiring that the continuation of play after rejection is an SPNE in
the continuation subgame and that player 2’s response will be optimal given this fact).

Next, we claim that, in any SPNE, 5, cannot be larger than v — dp,. To see this,
note that in any SPNE, player 2 is certain to reject any offer in period 1 that gives
her less than dp, because she can earn at least &y, by rejecting it and waiting to make
an offer in period 2. Thus, player 1 can do no better than v — dp, by making an offer
that is accepted in period 1. What about by making an offer that is rejected in period
1?7 Since player 2 must earn at least 8y, if this happens, and since agreement cannot
occur before period 2, player 1 can earn no more than dv — u, by doing this. Hence,
we have §, < v — d,.

Next, note that these derivations imply that

6, £ v— 0y =(y, +00,) - vy,
so that
5 (1 -8 el -8
Given the definitions of v, and 7,, this implies that v, = 5, and so player 1's SPNE
payoff is uniquely determined. Denote this payoff by v. Since v} = v —~ dv], we find
that player I must earn vj = v/(1 +6) and player 2 must earn v3 =v — v} =
dv/(1 + &). In addition, recalling the argument in the previous paragraph, we sce

17. This maximum can be shown to be well defined, but we will not do so here.

A
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that an agreement will be reached in the first period (player 1 will find it worthwhile
to make an offer that player 2 accepts). The SPNE strategies are as follows: A player
who has just reccived an offer accepts it if and only if she is offered at least dvj, while
a player whose turn it is to make an offer offers exactly v} to the player receiving
the offer.

Note that the equilibrium strategies, outcome, and payoffs are precisely the limit
of those in the finite game in Example 9AAl as 7T — oo, =

The coincidence of the infinite horizon equilibrium with the limit of the finite
horizon cquilibria in this model is not a general property of infinite horizon games.
The discussion of infinitely repeated games in Chapter 12 provides an illustration of
this point.

We should also point out that the outcomes of game-thcoretic models of
bargaining can be quite sensitive to the precise specification of the bargaining process
and players’ preferences. Exercises 9.B.7 and 9.B.13 provide an illustration.

APPENDIX B: EXTENSIVE FORM TREMBLING-HAND PERFECT NASH
EQUILIBRIUM

In this appendix we extend the analysis presented in Section 9.C by discussing another
equilibrium notion that strengthens the consistency conditions on beliefs in the weak
PBE concept: extensive form trembling-hand perfect Nash equilibrium [due to Selten
(1975)]. In fact, this equilibrium concept is the strongest among those discussed in
Section 9.C.

The definition of an extensive form trembling-hand perfect Nash equilibrium
parallels that for the normal form (sec Scction 8.F) but has the trembles applied not
to a player’s mixed strategies, but rather to the player’s choice at each of her
information sets. A useful way to view this idea is with what Selten (1975) calls the
agent normal form. This is the normal form that we would derive if we pretended
that the player had a set of agents in charge of moving for her at each of her
information scts (a different one for each), each acting independently to try to
maximize the player’s payoff.

Definition 9.BB.1: Strategy profile ¢ in extensive form game [ is an extensive form

trembling-hand perfect Nash equilibrium if and only it it is a normal form
trembling-hand perfect Nash equilibrium of the agent normal form derived
from Tg.

To see why it is desirable to have the trembles occurring at each information set
rather than over strategies as in the normal-form concept considered in Section 8.F,
consider Figure 9.BB.1, which is taken from van Damme (1983). This game has
a unique subgame perfect Nash equilibrium: (¢,, 0,) = ((NR, L), /). But you can
check that ((NR, L), /) is not the only normal form trembling-hand perfect Nash
equilibrium: so are ((R, L), r) and ((R, M), r). The reason that these two strategy
profiles are normal form trembling-hand perfect is that, in the normal form, the
tremble to strategy (NR, M) by player 1 can be larger than that to (NR, L) despite
the fact that the latter is a better choice for player 1 at her second decision node.
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With such a tremble, player 2's best response to player 1I's perturbed strategy is r. It
is not difficult to sec, however, that the unique extensive form trembling-hand perfect
Nash equilibrium of this game is ((NR, L), /) because the agent who moves at player
I's second decision node will put as high a probability as possible on L.

When we compare Definitions 9.BB.1 and 9.C.4, it is apparent that every extensive
form trembling-hand perfect Nash equilibrium is a sequential equilibrium. In
particular, even though the trembling-hand perfection criterion is not formulated in
terms of beliefs, we can use the sequence of (strictly mixed) equilibrium strategies
{o*}#, in the perturbed games of the agent normal form as our strategy sequence
for deriving sequential equilibrium beliefs. Because the limiting strategies o in the
extensive form trembling-hand perfect equilibrium are best responses to every element
of this sequence, they are also best responses to each other with these derived beliefs.
(Every extensive form trembling-hand perfect Nash equilibrium is therefore also
subgame perfect.)

In essence, by introducing trembles, the extensive form trembling-hand perfect
equilibrium notion makes every part of the tree be reached when strategies are
perturbed, and because equilibrium strategies are required to be best responses to
perturbed strategies, it insures that equilibrium strategies are sequentially rational.
The primary difference between this notion and that of sequential equilibrium is that,
like its normal form cousin, the extensive form trembling-hand perfect equilibrium
concept can also eliminate some sequential equilibria in which weakly dominated
strategies are played. Figure 9.BB.2 (a slight modification of the game in Figure 9.C.1)
depicts a sequential equilibrium whose strategies are not extensive form trembling-
hand perfect.

In general, however, the concepts are quite close [see Kreps and Wilson (1982)
for a formal comparison]; and because it is much easier to check that strategies are
best responses at the limiting beliefs than it is to check that they are best responses
for a sequence of strategies, sequential equilibrium is much more commonly used.
For an interesting further discussion of this concept, consult van Damme (1983).

Figure 9.8B.1

Strategy profiles

{(R, L), r)and

((R, M), r) are normg]
form trembling-hand
perfect but are not
subgame perfect.
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EXERCISES

9.B.1* How many subgames are there in the game of Example 9.B.2 (depicted in Figure 9.B.3)?
9.B.2* In text.

9.B.3% Verify that the strategies identified through backward induction in Example 9.B.2
constitute a Nash equilibrium of the game studied there. Also, identify all other pure strategy
Nash equilibria of this game. Argue that each of these other equilibria does not satisfy the
principle of sequential rationality.

Figure 9.BB.2

A sequential
equilibrium need not
be extensive form
trembling-hand perfect.
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9.B.4% Prove that in a finite zero-sum game of perfect information, there are unique subgame
perfect Nash equilibrium payoffs.

9.B.5® (E. Maskin) Consider a game with two players, player 1 and player 2, in which each
player i can choose an action from a finite set M; that contains m; actions. Player i's payoff
if the action choices are (my, m,) is ¢,(m,, m,).

(a) Suppose, first, that the two players move simultancously. How many strategies docs
each player have?

(b) Now suppose that player 1 moves first and that player 2 observes player 1's move
before choosing her move. How many strategics does each player have?

(¢) Suppose that the game in (b) has multiple SPNEs. Show that if this is the case, then
there exist two pairs of moves (m,, m;) and (m, my) (where either m, # m\ or m, # m}) such
that either

@) @\(my, my) = ¢ ((m), my)
or
(ii)  ¢almy,my) = dy(m'y, mh).

(d) Suppose that for any two pairs of moves (m,, m,} and (m', m}) such that m, # m\ or
m, # nry, condition (if) is violated (i.e,, player 2 is never indifferent between pairs of moves).
Suppose also that there exists a pure strategy Nash equilibrium in the game in (a) in which r, is
player 1's payoff. Show that in any SPNE of the game in (b), player I's payofl is at least .
Would this conclusion necessarily hold for any Nash equilibrium of the game in (b)?

(¢) Show by example that the conclusion in (d) may fail either if condition (ii) holds for
some strategy pairs (m,, m,), (m}, my) with m, % m} or m, # m), or if we replace the phrase
pure strategy Nash equilibrium with the phrase mixed strategy Nash equilibrium.

9.B.6% Solve for the mixed strategy equilibrium involving actual randomization in the
post-entry subgame of the Niche Choice game in Example 9.B.4. Is there an SPNE that induces
this behavior in the post-entry subgame? What are the SPNE strategies?

9.B.7% Consider the finite horizon bilateral bargaining game in Appendix A (Example 9.AA.1);
but instead of assuming that players discount future payoffs, assume that it costs ¢ < v to make
an offer. (Only the player making an offer incurs this cost, and players who have made offers
incur this cost even if no agreement is ultimately reached.) What is the (unique) SPNE of this
alternative model? What happens as T approaches co?

9.B.8C Prove that every (finite) game [ has a mixed strategy subgame perfect Nash
equilibrium.
9.B.9® Consider a game in which the following simultaneous-move game is played twice:

Player 2
by b, by

a 10,10 | 2,12 § 0,13

Player 1 a, 12,2 55 0,0

a, 13,0 oo | 11

The players observe the actions chosen in the first play of the game prior to the second play.
What are the pure strategy subgame perfect Nash equilibria of this game?
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9.B.10" Reconsider the game in Example 9.B.3, but now change the post-entry game so that
when both players choose “accommodate”, instead of receiving the payofls (ug, u,) = (3, 1),
the players now must play the following simultaneous-move game:

Firm [
4 r

U 3,1 0,0
Firm £

D 0,0 x,3

What arc the SPNEs of this game when x > 0? When x < 0?

9.B.11% Two firms, A and B, are in a market that is declining in size. The game starts in period
0,and the firms can compete in periods 0, 1, 2, 3, . . . (i.e., indefinitely) if they so choose. Duopoly
profits in period ¢ for firm A are-equal to 105-101, and they are 10.5 — ¢ for firm B. Monopoly
profits (those if a firm is the only one left in the market) are 510 — 25¢ for firm A and 51 — 2¢
for firm B.

Suppose that at the start of each period, each firm must decide either to “stay in™ or “exit™
if it is still active (they do so simulianeously if both are still active). Once a firm exits, it is
out of the market forever and earns zero in each period thereafter. Firms maximize their
(undiscounted) sum of profits.

What is this game's subgame perfect Nash equilibrium outcome (and what are the firms'
strategics in the equilibrium)?

9.B.12€ Consider the infinite horizon bilateral bargaining model of Appendix A (Example
9.AA.2). Suppose the discount factors &, and &, of the two players differ. Now what is the
(unique) subgame perfect Nash equilibrium?

9.B.13% What are the subgame perfect Nash equilibria of the infinite horizon version of
Exercise 9.B.7?

9.B.148 At time 0, an incumbent firm (firm I) is already in the widget market, and a potential
entrant (firm E) is considering entry. In order to enter, firm E must incur a cost of K > 0.
Firm E's only opportunity to enter is at time 0. There are three production periods. In any
period in which both firms are active in the market, the game in Figure 9.Ex.1 is played. Firm
E moves first, deciding whether to stay in or exit the market. If it stays in, firm 1|
decides whether to fight (the upper payoff is for firm E). Once firm E plays “out,” it is out of

/Firm E

Figure 8.Ex.1
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the market forever; firm E earns zero in any period during which it is out of the market, and
firm I earns x. The discount factor for both firms is 6.
Assume that:

(A1) x>z>y.

(A2) y+ dx> (1 + &)z

(A3) 1 +6>K.

(a) What is the (unique) subgame perfect Nash equilibrium of this game?

(b) Suppose now that firm E faces a financial constraint. In particular, if firm I fights once
against firm E (in any period), firm E will be forced out of the market from that point on.
Now what is the (unique) subgame perfect Nash equilibrium of this game? (If the answer
depends on the values of parameters beyond the three assumptions, indicate how.)

9.C.1® Prove Proposition 9.C.1.
9.C.2% What is the set of weak PBEs in the game in Example 9.C.3 when ye (—1,0)?

9.C.3€ A buyer and a seller are bargaining. The selier owns an object for which the buyer has
value v > O (the selier's value is zero). This value is known to the buyer but not to the seller.
The value's prior distribution is common knowledge. There are two periods of bargaining.
The selier makes a take-it-or-leave-it offer (i.e., names a price) at the start of cach period that
the buyer may accept or reject. The game ends when an offer is accepted or after two periods,
whichever comes first. Both players discount period 2 payoffs with a discount factor of é € (0, 1).

Assume throughout that the buyer always accepts the seller’s offer whenever she is
indifferent.

(a) Characterize the (pure strategy) weak perfect Bayesian equilibria for a case in which
v can take two values v, and vy, with vy > v, > 0, and where 2 = Prob (vy).

(b) Do the same for the case in which v is uniformly distributed on [y, 5].

9.C.4€ A plaintiff, Ms. P, files a suit against Ms. D (the defendant). If Ms. P wins, she will
collect = dollars in damages from Ms. D. Ms. D knows the likelihood that Ms. P will win,
/€ [0, 1], but Ms. P does not (Ms. D might know if she was actually at fault). They both have
strictly positive costs of going to trial of ¢, and ¢,. The prior distribution of 2 has density f(4)
(which is common knowledge).

Suppose pretrial settlement negotiations work as follows: Ms. P makes a take-it-or-leave-it
settlement offer (a dollar amount) to Ms. D. If Ms. D accepts, she pays Ms. P and the game
is over. If she does not accept, they go to trial.

(a) What are the (pure strategy) weak perfect Bayesian equilibria of this game?

(b) What effects do changes in ¢,, c,, and m have?

(c) Now allow Ms. D, after having her offer rejected, to decide not to go to court after
all. What are the weak perfect Bayesian equilibria? What about the effects of the changes in (b)?
9.C.5€ Reconsider Exercise 9.C.4. Now suppose it is Ms. P who knows 4.

9.C.6% What are the sequential equilibria in the games in Exercises 9.C.3 to 9.C.5?
9.C.7% (Based on work by K. Bagwell and developed as an exercise by E. Maskin) Consider
the extensive form game depicted in Figure 9.Ex.2.

(a) Find a subgame perfect Nash equilibrium of this game. [s it unique? Are there any
other Nash equilibria?

(b) Now suppose that player 2 cannot observe player 1's move. Write down the new
extensive form. What is the set of Nash equilibria?
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/Playcr |

Player 2\\ Player 2

()~ G)

(¢) Now suppose that player 2 observes player 1's move correctly with probability pe (0, 1)
and incorrectly with probability 1 — p (e.g., if player 1 plays T, player 2 observes T with
probability p and observes B with probability 1 — p). Suppose that player 2's propensity to
observe incorrectly (i.c., given by the value of p) is common knowledge to the two players.
What is the extensive form now? Show that there is a unique weak perfect Bayesian
equilibrium. What is it?

G

9.D.1% Show that under the condition given in Proposition 9.B.2 for existence of a unique
subgame perfect Nash equilibrium in a finite game of perfect information, there is an order
of iterated removal of weakly dominated strategies for which all surviving strategy profiles
lead to the same outcome (i.c., have the same equilibrium path and payofis) as the subgame
perfect Nash equilibrium. [In fact, any order of deletion leads to this result; see Moutin (1981).]

Figure 9.Ex.2



pPART T HAREE

Market Equilibrium
and Market Failure

In Part I11, our focus shifts to the fundamental issue of economics: the organization

of production and the allocation of the resulting ¢ dities g ¢ s. This
fundamental issue can be addressed from two perspectives, one positive and the other
normative.

From a positive (or descriptive) perspective, we can investigate the determination
of production and consumption under various institutional mechanisms. The institu-
tional arrangement that is our central focus is that of a market (or private ownership)
economy. In a market economy, individual consumers have ownership rights to
various assets (such as their labor) and are free to trade these assets in the market-
place for other assets or goods. Likewise, firms, which are themselves owned by
consumers, decide on their production plan and trade in the market to secure
necessary inputs and sell the resulting outputs. Roughly speaking, we can identify a
market equilibrium as an outcome of a market economy in which each agent in the
economy (i.e., each consumer and firm) is doing as well as he can given the actions
of all other agents.

In contrast, from a normative (or prescriptive) perspective, we can ask what
constitutes a socially optimal plan of production and consumption (of course, we will
need to be more specific about what “socially optimal™ means), and we can then
examine the extent to which specific institutions, such as a market economy, perform
well in this regard.

In Chapter 10, we study competitive (or perfectly competitive) market economies
for the first time. These are market economies in which every relevant good is traded
in a market at publicly known prices and all agents act as price takers (recall that
much of the analysis of individual behavior in Part 1 was geared to this case). We
begin by defining, in a general way, two key concepts: competitive (or Walrasian)
equilibrium and Pareto optimality (or Pareto efficiency). The concept of competitive
equilibrium provides us with an appropriate notion of market equilibrium for
competitive market economies. The concept of Pareto optimality offers a minimal
and uncontroversial test that any social optimal economic outcome should pass. An
economic outcome is said to be Pareto optimal if it is impossible to make some
individuals better oflf without making some other individuals worse off. This concept
is a formalization of the idea that there is no waste in society, and it conveniently
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separates the issue of economic efficiency from more controversial (and political)
questions regarding the ideal distribution of well-being across individuals.

Chapter 10 then explores these two concepts and the relationships between them
in the special context of the partial equilibrium model. The partial equilibrium model,
which forms the basis for our analysis throughout Part III, offers a considerable
analytical simplification; in it, our analysis can be conducted by analyzing a single
market (or a small group of related markets) at a time. In this special context, we
establish two central results regarding the optimality properties of competitive
equilibria, known as the fundamental theorems of welfare economics. These can be
roughly paraphrased as follows: ‘

The First Fundamental Welfare Theorem. 1f every relevant good is traded in a
market at publicly known prices (i.., if there is a complete set of markets), and
if households and firms act perfectly competitively (i.e., as price takers), then the
market outcome is Pareto optimal. That is, when markets are complete, any
competitive equilibrium is necessarily Pareto optimal.

The Second Fundamental Welfare Theorem. If household preferences and firm
production sets are convex, there is a complete set of markets with publicly
known prices, and every agent acts as a price taker, then any Pareto optimal
outcome can be achieved as a competitive equilibrium if appropriate lump-sum
transfers of wealth are arranged.

The first welfare theorem provides a set of conditions under which we can be
assured that a market economy will achieve a Pareto optimal result; it is, in a sense,
the formal expression of Adam Smith's claim about the “invisible hand” of the
market. The second welfare theorem goes even further. It states that under the same
set of assumptions as the first welfare theorem plus convexity conditions, all Pareto
optimal outcomes can in principle be implemented through the market mechanism.
That is, a public authority who wishes to implement a particular Pareto optimal
outcome (reflecting, say, some political consensus on proper distributional goals)
may always do so by appropriately redistributing wealth and then “letting the market
work.”

In an important sense, the first fundamental welfare theorem establishes the
perfectly competitive case as a benchmark for thinking about outcomes in market
economies. In particular, any inefficiencies that arise in a market economy, and hence
any role for Pareto-improving market intervention, must be traceable to a violation
of at least one of the assumptions of this theorem.

The remainder of Part 111, Chapters 11 to 14, can be viewed as a development
of this theme. In these chapters, we study a number of ways in which actual markets
may depart from this perfectly competitive ideal and where, as a result, market
equilibria fail to be Pareto optimal, a situation known as market failure.

In Chapter 11, we study externalities and public goods. In both cases, the actions
of one agent directly affect the utility functions or production sets of other agents in
the economy. We see there that the presence of these nonmarketed “goods™ or “bads”
(which violates the complete markets assumption of the first welfare theorem)
undermines the Pareto optimality of market equilibrium.

In Chapter 12, we turn to the study of settings in which some agents in the
economy have market power and, as a result, fail to act as price takers. Once again,
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an assumption of the first fundamental welfare theorem fails to hold, and market
equilibria fail to be Pareto optimal as a result.

In Chapters 13 and 1[4, we consider situations in which an asymmetry of
information exists among market participants. The complete markets assumption of
the first welfare theorem implicitly requires that the characteristics of traded
commodities be observable by all market participants because, without this observ-
ability, distinct markets cannot exist for commodities that have different characteristics.
Chapter 13 focuses on the case in which asymmetric information exists between agents
at the time of contracting. Our discussion highlights several phenomena—adverse
selection, signaling, and screening—that can arise as a result of this informational
imperfection, and the welfare loss that it causes. Chapter 14 in contrast, investigates
the case of postcontractual asymmetric information, a problem that leads us to the
study of the principal-agent model. Here, too, the presence of asymmetric information
prevents trade of all relevant commaodities and can lead market outcomes to be Pareto
inefficient.

We rely extensively in some places in Part III on the tools that we developed in
Parts | and II. This is particularly true in Chapter 10, where we use material developed
in Part I, and Chapters 12 and 13, where we use the game-theoretic tools developed
in Part 11

A much more complete and general study of competitive market economies and
the fundamental welfare theorems is reserved for Part IV,




C HAPTEHR

Competitive Markets

10.A Introduction

In this chapter, we consider, for the first time, an entire economy in which consumers
and firms interact through markets. The chapter has two principal goals: first, to
formally introduce and study two kcy concepts, the notions of Pareto optimality and
competitive equilibrium, and second, to develop a somewhat special but analytically
very tractable context for the study of market equilibrium, the partial equilibrium
model.

We begin in Section 10.B by presenting the notions of a Pareto optimal (or Pareto
efficient) allocation and of a competitive (or Walrasian) equilibrium in a general
setting. )

Starting in Section 10.C, we narrow our focus to the partial equilibrium context.
The partial equilibrium approach, which originated in Marshall (1920), envisions the
market for a single good (or group of goods) for which each consumer’s expenditure
constitutes only a small portion of his overall budget. When this is so, it is
reasonable to assume that changes in the market for this good will leave the prices
of all other commodities approximately unaffected and that there will be, in addition,
negligible wealth effects in the market under study. We capture these features in the
simplest possible way by considering a two-good model in which the expenditure on
ali commodities other than that under consideration is treated as a single composite
commodity (called the numeraire commodity), and in which consumers’ utility
functions take a quasilinear form with respect to this numeraire. Our study of the
competitive cquilibria of this simple model lends itsell to extensive demand-and-
supply graphical analysis. We also discuss how to determine the comparative statics
effects that arise from exogenous changes in the market environment. As an
illustration, we consider the effects on market equilibrium arising from the introduc-
tion of a distortionary commodity tax.

In Section 10.D, we analyze the properties of Pareto optimal allocations in the
partial equilibrium model. Most significantly, we establish for this special context the
validity of the fundamental theorems of welfare economics: Competitive equilibrium
allocations are necessarily Pareto optimal, and any Pareto optimal allocation can
be achieved as a competitive equilibrium if appropriate lump-sum transfers are made.

.-

3N




312 CHAPTER 10: COMPETITIVE MARKETS

10.B

As we noted in the introduction to Part III, these results identify an important
benchmark case in which market equilibria yield desirable economic outcomes. At
the same time, they provide a framework for identifying situations of market failure,
such as those we study in Chapters 11 to 14.

In Section 10.E, we consider the measurement of welfare changes in the partial
equilibrium context. We show that these can be represented by areas between
properly defined demand and supply curves. As an application, we examine the
deadweight loss of distortionary taxation.

Section 10.F contemplates settings characterized by free entry, that is, settings in
which all potential firms have access to the most efficient technology and may enter
and exit markets in response to the profit opportunities they present. We define a
notion of long-run competitive equilibrium and then use it to distinguish between long-
run and short-run comparative static effects in response to changes in market conditions.

In Section 10.G, we provide a more extended discussion of the use of partial
equilibrium analysis in economic modeling.

The material covered in this chapter traces its roots far back in economic thought.
An excellent source for further reading is Stigler (1987). We should emphasize that
the analysis of competitive equilibrium and Pareto optimality presented here is very
much a first pass. In Part IV we return to the topic for a more complete and general
investigation; many additional references will be given there.

Pareto Optimality and Competitive Equilibria

In this section, we introduce and discuss the concepts of Pareto optimality (or Pareto
efficiency) and competitive (or Walrasian) equilibrium in a general setting.

Consider an economy consisting of I consumers (indexed by i = 1,...,[), J firms
(indexed by j=1,...,J), and L goods (indexed by ¢ =1,..., L). Consumer s
preferences over consumption bundles x; = (x,;, ..., x;;) in his consumption set
X, = R* are represented by the utility function u(-). The total amount of each good
¢ =1,..., L initially available in the economy, called the total endowment of good
/, is denoted by w, =0 for £ = 1,..., L. It is also possible, using the production
technologies of the firms, to transform some of the initial endowment of a good into
additional amounts of other goods. Each firm j has available to it the production
possibilities summarized by the production set ¥; = R%. An element of ¥, is a
production vector y; = (¥, ..., ¥;) € RE Thus, if (y.. .., ys) € R are the produc-
tion vectors of the J firms, the total (net) amount of good ¢ available to the economy
is w, + ¥; y,; (recall that negative entries in a production vector denote input usage;
see Section 5.B).

We begin with Definition 10.B.1, which identifies the set of possible outcomes in
this economy:

Definition 10.B.1: An economic allocation (x,, ..., X;. ¥y, . . .. ¥) is a specification of
a consumption vector x,€ X; for each consumer /=1,...,[ and a production
vector y; € Y; for each firm j=1,...,J. The allocation (x;, ..., X, ¥y, ..., ¥,) is
feasible if

i J
Y xi<w, + Yy, ford=1,... L.
=1 j=1
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Utility Pairs Associated with
Pareto Optimal Allocations
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Thus, an economic allocation is feasible if the total amount of each good
consumed does not exceed the total amount available from both the initial
endowment and production.

Pareto Optimality

It is often of interest to ask whether an economic system is producing an "optimal”
economic outcome. An essential requirement for any optimal economic allocation
is that it possess the property of Pareto optimality (or Pareto efficiency).

Definition 10.B.2: A feasible allocation (x,, ..., X, ¥y, ...,Y,) is Pareto optimal (or
Pareto efficient) it there is no other feasible allocation (x5, ..., x;, yi.....¥))
such that u;(x;) = uix;) tor all i =1, ..., 1 and u;(x}} > u,(x,) for some /.

An allocation that is Pareto optimal uses society’s initial resources and techno-
logical possibilities efficiently in the sense that there is no alternative way to organize
the production and distribution of goods that makes some consumer better off
without making some other consumer worse off.

Figure 10.B.1 illustrates the concept of Pareto optimality. There we depict the set
of attainable utility levels in a two-consumer economy. This set is known as a utility
possibility set and is defined in this two-consumer case by

U = {(u,, u) € R?: there exists a feasible allocation (x,, x5, yy, ..., y;)
such that u; < u(x;) fori = 1,2}.
The set of Pareto optimal allocations corresponds to those allocations that generate
utility pairs lying in the utility possibility set’s northeast boundary, such as point
(i2,, ;). At any such point, it is impossible to make one consumer better off without
making the other worse off.

It is important to note that the criterion of Pareto optimality does not insure
that an allocation is in any sense equitable. For example, using all of society’s
resources and technological capabilities to make a single consumer as well off as
possible, subject to all other consumers receiving a subsistence leve! of utility, results
in an allocation that is Pareto optimal but not in one that is very desirable on
distributional grounds. Nevertheless, Pareto optimality serves as an important
minimal test for the desirability of an allocation; it does, at the very least, say that
there is no waste in the allocation of resources in society.

Figure 10.B.1
A utility possibility set.
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Competitive Equilibria

Throughout this chapter, we are concerned with the analysis of competitive mar'ket
economies. In such an economy, society’s initial endowments and technological
possibilities (i.e., the firms) are owned by consumers. We suppose that colflsumer i
initially owns w,; of good ¢, where 3; w/; = @y We denote consumer i’s ‘vector
of endowments by @; = (@, . . ., wy,;). In addition, we suppose that.consumer i OWl:’:S
a share 0;; of firm j (where 3 0;; = 1), giving him a claim to fraction 0;; of firm j's
profits.

In a competitive economy, a market exists for each of the L good§, and ‘all
consumers and producers act as price takers. The idea behind the pn_ce-takmg
assumption is that if consumers and producers are small relative to fhc s:ze of the
market, they will regard market prices as unaffected by their own actions.

Denote the vector of market prices for goods 1,...,L by p={py--»PL)
Definition 10.B.3 introduces the notion of a competitive (or Walrasian) equilibrium.

i * e R
Definition 10.B.3: The allocation (x¥,...,x¥,y%,....y3) and price vector p™ € R

constitute a competitive (or Walrasian) equilibrium if the following conditions are
satisfied:
(i) Profit maximization: For each firm /. v} solves
Max p*-y;. (10.8.1)
vieY,
(i) Utility maximization: For each consumer i, x} solves

Max  u;(x;) (10.B.2)
xieX; J
st prx; < preai+ Y, 0;(p*ey}).
j=1
(iii) Market clearing: For each good £ =1,..., L,
1 J
Y xh=w 4 3 v (10.8.3)
i=1 j=1

Definition 10.B.3 delineates three sorts of conditions that must be met for a
competitive economy to be considered to be in equilibrium. Conditiops (i) and
(i) reflect the underlying assumption, common to nearly all economic moFif:ls,
that agents in the economy seek to do as well as they can for them:scl.ves. ?ondmon
(i) states that each firm must choose a production plan that maxnmlzes.ns profits,
taking as given the equilibrium vector of prices of its outputs ax}d inputs (for
the justification of the profit-maximization assumption, see Section 5.G). We
studied this competitive behavior of the firm extensively in Chapter 5.

Condition (ii) requires that each consumer chooses a consumption bunf.l?e t.hat
maximizes his utility given the budget constraint imposed by the equilibrium
prices and by his wealth. We studied this competitive behavior of the consume’r
extensively in Chapter 3. One difference here, however, is that thej conSl.xmer.s
wealth is now a function of prices. This dependence of wealth on prices arises in

1. Strictly speaking, it is equilibrium market prices that they will regard as unaffected by their
actions. For more on this point, sec the small-type discussion later in this section.
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two ways: First, prices determine the value of the consumer’s initial endowments;
for example, an individual who initially owns real estate is poorer if the price of
real estate falls. Second, the equilibrium prices affect firms’ profits and hence the
value of the consumer’s shareholdings.

Condition (iii) is somewhat different. It requires that, at the equilibrium prices,
the desired consumption and production levels identified in conditions (i) and (ii)
are in fact mutually compatible; that is, the aggregate supply of each commodity
(its total endowment plus its net production) equals the aggregate demand for it.
If excess supply or demand existed for a good at the going prices, the economy
could not be at a point of equilibrium. For example, if there is excess demand
for a particular commodity at the existing prices, some consumer who is not
receiving as much of the commodity as he desires could do better by offering to
pay just slightly more than the going market price and thereby get sellers to offer
the commodity to him first. Similarly, if there is excess supply, some seller will
find it worthwhile to offer his product at a slight discount from the going market
price.2

Note that in justifying why an equilibrium must involve no excess demand or supply,
we have actually made use of the fact that consumers and producers might not simply take
market prices as given. How are we to reconcile this argument with the underlying
price-taking assumption?

An answer to this apparent paradox comes from recognizing that consumers and
producers always have the ability to alter their offered prices (in the absence of any
institutional constraints preventing this). For the price-taking assumption to be appropriate,
what we want is that they have no incentive to alter prices that, if taken as given, equate
demand and supply (we have already seen that they do have an incentive to alter prices
that do not equate demand and supply).

Notice that as long as consumers can make their desired trades at the going market
prices, they will not wish to offer more than the market price to entice sellers to sell to them
first. Similarly, if producers are able to make their desired sales, they will have no incentive
to undercut the market price. Thus, at a price that equates demand and supply, consumers
do not wish to raise prices, and firms do not wish to lower them.

More troublesome is the possibility that a buyer might try to lower the price he pays or that
a seller might try to raise the price he charges. A seller, for example, may possess the ability
to raise profitably prices of the goods he sells above their competitive level (see Chapter 12).
In this case, there is no reason to believe that this market power will not be exercised. To rescue
the price-taking assumption, one needs to argue that under appropriate (competitive)
conditions such market power does not exist. This we do in Sections 12.F and 18.C, where
we formalize the idea that if market participants’ desired trades are small relative to the
size of the market, then they will have little incentive to depart from market prices. Thus,
in a suitably defined equilibrium, they will act approximately like price takers.

Note from Definition 10.B.3 that if the allocation (x¥,...,x}, y%,...,¥}) and
price vector p* » 0 constitute a competitive equilibrium, then so do the allocation

2. Strictly speaking, this second part of the argument requires the price to be positive; indeed,
il the price is zero (i.c.. if the good is free), then excess supply should be permissible at equilibrium.
In the remainder of this chapter, however, consumer preferences will be such as to preclude this
possibility (goods will be assumed to be desirable). Hence, we neglect this possibility here.
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(x¥,...,x}, y%, ..., yT) and price vector ap* = (ap¥,...,ap}) for any scalar « > 0

(see Exercise 10.B.2). As a result, we can normalize prices without loss of generality.

In this chapter, we always normalize by setting one good's price equal to 1.
Lemma 10.B.1 will also prove useful in identifying competitive equilibria.

Lemma 10.B.1: If the allocation (x,,...,X;, ¥, ..., ¥,) and price vector p » 0 satisfy

10.C

the market clearing condition (10.B.3) for all goods ¢ # k, and if every consumer's
budget constraint is satisfied with equality, so that p-x;, = p-w; + X; 0,0y, for all
i, then the market for good k also clears.

Proof: Adding up the consumers’ budget constraints over the [ consumers and
rearranging terms, we get

1 J I J
Z P/( E Xpg— Wp— z .V/j) = "Pk( Z Xpi — Wy — z }’u)

/#k i=1 i=t =1 j=1
By market clearing in goods ¢ # k, the left-hand side of this equation is equal to
zero. Thus, the right-hand side must be equal to zero as well. Because p, > 0, this
implies that we have market clearing in good k. =

In the models studied in this chapter, Lemma 10.B.1 will aliow us to identify
compelitive equilibria by checking for market clearing in only L — | markets.
Lemma 10.B.1 is really just a matter of double-entry accountancy. If consumers’
budget constraints hold with equality, the dollar value of each consumer’s planned
purchases equals the dollar value of what he plans to sell plus the dollar value
of his share (0;;) of the firms’ (net) supply, and so the total value of planned
purchases in the economy must equal the total value of planned sales. If those
values are equal to each other in all markets but one, then equality must hold
in the remaining market as well.

Partial Equilibrium Competitive Analysis

Marshallian partial equilibrium analysis envisions the market for one good (or several
goods, as discussed in Section 10.G) that constitutes a smail part of the overall
economy. The small size of the market facilitates two important simplifications for the
analysis of market equilibrium:® First, as Marshall (1920) emphasized, when the
expenditure on the good under study is a small portion of a consumer’s total
expenditure, only a small fraction of any additional dollar of wealth will be spent on
this good; consequently, we can expect wealth effects for it to be small. Second, with
similarly dispersed substitution effects, the small size of the market under study
should lead the prices of other goods to be approximately unaffected by changes in
this market.* Because of this fixity of other prices, we are justified in treating the
expenditure on these other goods as a single composite commodity, which we call
the numeraire (see Exercise 3.G.5).

3. The following points have been [ormalized by Vives (1987). (See Exercise 10.C.1 for an
illustration.)

4. This is not the only possible justification for taking other goods® prices as being unaflected
by the market under study; see Section 10.G.
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With this partial equilibrium interpretation as our motivation, we proceed to
study a simple two-good quasilinear model. There are two commodities: good £ and
the numeraire. We let x; and m; denote consumer i’s consumption of good ¢ and the
numeraire, respectively, Each consumer i = 1,..., [ has a utility function that takes
the quasilinear form (sce Sections 3.B and 3.C):

uimg, x;) = m; + ¢(x;).

We let each consumer’s consumption set be R x R,, and so we assume for
convenience that consumption of the numeraire commodity m can take negative
values. This is to avoid dealing with boundary problems. We assume that ¢,(-) is
bounded above and twice differentiable, with ¢/(x;) > 0 and ¢{(x;) <O atall x; > 0.
We normalize ¢,(0) = 0.

In terms of our partial equilibrium interpretation, we think of good ¢ as the good
whose market is under study and of the numeraire as representing the composite of
all other goods (m stands for the total money expenditure on these other goods).
Recall that with quasilinear utility functions, wealth effects for non-numeraire
commoditics are null.

In the discussion that follows, we normalize the price of the numeraire to equal
1, and we let p denote the price of good /.

Each firm j = 1,...,J in this two-good cconomy is able to produce good ¢ from
good m. The amount of the numeraire required by firm j to produce ¢; > 0 units of
good ¢ is given by the cost function ¢;(g;) (recall that the price of the numeraire is
1). Letting z; denote firm j's use of good m as an input, its production set is therefore

Y, ={(—-2;,9;): q;20 and z; > c{q,)}-

In what follows, we assume that cq-) is twice differentiable, with cj(q;) >0
and ¢j(g;) 2 0 at all ¢; 2 0. {In terms of our partial equilibrium interpretation, we
can think of c;(g;) as actually arising from some multiple-input cost function
¢;(W, g;), given the fixed vector of factor prices w.%]

For simplicity, we shall assume that there is no initial endowment of good 7, so
that all amounts consumed must be produced by the firms. Consumer i’s initial
endowment of the numeraire is the scalar w,, > 0, and we let w, = 3, w,,;.

We now proceed to identify the competitive equilibria for this two-good
quasilinear model. Applying Definition 10.B.3, we consider first the implications of
profit and utility maximization.

Given the price p* for good ¢, firm j’s equilibrium output level g4} must solve

Max p*q; —cfq;),

;20
which has the necessary and sufficient first-order condition
p* <cfqf), with equality if ¢} > 0.
On the other hand, consumer i's equilibrium consumption vector (m¥, x}) must

5. Some of the exercises at the end of the chapter investigate the effects of exogenous changes
in these factor prices.
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solve
Max m; + ¢x;)

mieR, xieR+

J
st.om+prx Swu+ Y 04(%af — c;(a})).
i=1

In any solution to this problem, the budget constraint holds with equality. Substitut-
ing for m; from this constraint, we can rewrite consumer i’s problem solely in terms
of choosing his optimal consumption of good /. Doing so, we see that x}* must
solve

J
Max  ¢i(x;) — p*x; + [wmi + sz Bi/(P'q}‘ = Ci(‘ﬁ ))]‘

x20
which has the necessary and sufficient first-order condition
di(x¥) < p*, with equality if x¥ > 0.

In what follows, it will be convenient to adopt the convention of identifying an
equilibrium allocation by the levels of good ¢ consumed and produced, (x7, ..., xf,
q*%....,q}), with the understanding that consumer i’s equilibrium consumption of
the numeraire is then m? = [w, + ¥, 0,(p*a} — c;(g} )] — p*x? and that firm j’s
equilibrium usage of the numeraire as an input is z} = c;(q}).

To complete the development of the equilibrium conditions for this model, recail
that by Lemma 10.B.1, we need only check that the market for good ¢ clears.® Hence,
we conclude that the allocation (x¥, ..., x¥, g%, ..., q}) and the price p* constitute a
competitive equilibrium if and only if

p* <cj(q¥), withequalityifg}f >0 j=1,...,J. (10.C.1)
di(x¥) < p*, with equality if x¥ >0 i=1,...,1 (10.C.2)
1 J
Y oxt=73 gt (10.C.3)
(=1 i=1

At any interior solution, condition (10.C.1) says that firm j's marginal benefit
from selling an additional unit of good £, p*, exactly equals its marginal cost ¢j(q}).
Condition (10.C.2) says that consumer i’s marginal benefit from consuming an
additional unit of good ¢, ¢j(x}¥), exactly equals its marginal cost p*. Condition
(10.C.3) is the market-clearing equation. Together, these I +J + 1 conditions
characterize the (I + J + 1) equilibrium values (x%,..., x},4},...,4}) and p*. Note
that as long as Max, ¢;(0) > Min, c(0), the aggregate consumption and production
of good 7 must be strictly positive in a competitive equilibrium [this follows from
conditions (10.C.1) and (10.C.2)). For simplicity, we assume that this is the case in
the discussion that follows.

Conditions (10.C.1) to (10.C.3) have a very important property: They do not
involve, in any manner, the endowments or the ownership shares of the consumers.
As a result, we see that the equilibrium allocation and price are independent of the

6. Note that we must have p* > 0 in any competitive equilibrium; otherwise, consumers would
demand an infinite amount of good £ [recall that ¢;(-) > 0].
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distribution of endowments and ownership shares. This important simplification
arises from the quasilinear form of consumer preferences.’

The competitive equilibrium of this model can be nicely represented using the
traditional Marshallian graphical technique that identifies the equilibrium price as
the point of intersection of aggregate demand and aggregate supply curves.

We can derive the aggregate demand function for good ¢ from condition (10.C.2).
Because ¢;(-) < 0 and ¢,(*) is bounded, ¢;(-) is a strictly decreasing function of x;
taking all values in the set (0, $;(0)]. Therefore, for each possible level of p > 0, we
can solve for a unique level of x;, denoted x(p), that satisfies condition (10.C.2). Note
that if p = ¢{(0), then x,(p) = 0. Figure 10.C.1(a) depicts this construction for a price
p > 0. The function x,(-) is consumer i's Walrasian demand function for good £ (see
Section 3.D) which, because of quasilinearity, does not depend on the consumer’s
wealth. It is continuous and nonincreasing in p at all p > 0, and is strictly decreasing
at any p < ¢{(0) [at any such p, we have x/(p) = 1/¢](x(p)) < 0].

The aggregate demand function for good ¢ is then the function x(p) = 3°; x/(p),
which is continuous and nonincreasing at all p > 0, and is strictly decreasing at any
p < Max; ¢{(0). Its construction is depicted in Figure 10.C.1(b) for the case in which

= 2; it is simply the horizontal summation of the individual demand functions and
is drawn in the figure with a heavy trace. Note that x(p) = 0 whenever p > Max; ¢;(0).

The aggregate supply function can be similarly derived from condition (10.C.1).%
Suppose, first, that every c(+) is strictly convex and that cj(q;) - c as q; — co. Then,
for any p > 0, we can let g{p) denote the unique level of g; that satisfies condition
(10.C.1). Note that for p < c{0), we have g4(p) = 0. Figure 10.C.2(a) illustrates this
construction for a price § > 0. The function g-) is firm j's supply function for good
¢ (see Sections 5.C and 5.D). It is continuous and nondecreasing at all p > 0, and is
strictly increasing at any p > ¢j(0) [for any such p, g{p) = 1/cj(g{p)) > 0].

The aggregate {or industry) supply function for good ¢ is then the function
q(p) = ¥; q{p), which is continuous and nondecreasing at all p > 0, and is strictly
increasing at any p > Min, ¢j(0). Its construction is depicted in Figure 10.C.2(b) for

7. See Section 10.G for a further discussion of this general feature of equilibrium in economies
with quasilinear utility functions.

8. See Section 5.D for an extensive discussion of individual supply in the one-input, one-output
case.

Figure 10.C.1
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the case in which J = 2; it is equal to the horizontal sum of the individual firms’
supply functions and is drawn in the figure with a heavy trace. Note that g(p) = 0
whenever p < Min; ¢j(0).

To find the equilibrium price of good ¢, we need only find the price p* at which
aggregate demand equals aggregate supply, that is, at which x(p*) = ¢(p*). When
Max; ¢i(0) > Min; c;(0) as we have assumed, at any p 2 Max, ¢;(0) we have x(p) = 0
and q(p) > 0. Likewise, at any p < Min;¢}(0) we have x(p) > 0 and g(p) = 0. The
existence of an equilibrium price p* € (Min; ¢j(0), Max; $;(0)) then follows from the
continuity properties of x(-) and g(-). The solution is depicted in Figure 10.C.3. Note
also that because x(-) is strictly decreasing at all p < Max; ¢;(0) and g(-) is strictly
increasing at all p > Min; cj(0), this equilibrium price is uniquely defined.® The
individual consumption and production levels of good ¢ in this equilibrium are then
given by x* = x(p*)fori=1,...,J and ¢} = q(p*)forj=1,...,J.

More generally, if some cf-) is merely convex [e.g. if ¢f-) is linear, as in the
constant returns case], then g,(-) is a convex-valued correspondence rather than a
function and it may be well defined only on a subset of prices.!® Nevertheless, the

9. Be warned, however, that the uniqueness of equilibrium is a property that need not hold in
more general settings in which wealth effects are present. (See Chapter 17.)

10. For example, if firm j has c{q;) = ¢;q; for some scalar ¢; > 0, then when p > c;, we have
4;(p) = o, As a result, il p > ¢;, the aggregate supply is q(p) = X, ¢;(p) = co; consequently g(*) is
not well defined for this p.

Figure 10.C.2
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basic features of the analysis do not change. Figure 10.C.4 depicts the determination
of the equilibrium value of p in the case where, for all j, c;(¢;) = cq; for some
scalar ¢ > 0. The only difference from the strictly convex case is that, when J > 1,
individual firms’ equilibrium production levels are not uniquely determined.

The inverses of the aggregate demand and supply functions also have interpreta-
tions that are of interest. At any given level of aggregate output of good , say 4, the
inverse of the industry supply function, ¢~'(§), gives the price that brings forth
aggregate supply ¢. That is, when each firm chooses its optimal output level facing
the price p = ¢~ '(§), aggregate supply is exactly . Figure 10.C.5 illustrates this point.
Note that in selecting these output levels, all active firms set their marginal cost
equal to ¢~ '(g). As a result, the marginal cost of producing an additional unit of
good ¢/ at G is precisely q7'(g), regardless of which active firm produces it.
Thus ¢~ *(-), the inverse of the industry supply function, can be viewed as the
industry marginal cost function, which we now denote by C'(-) = ¢~ }(-)."!

The derivation of C'(-) just given accords fully with our discussion in Section 5.E. We saw
there that the aggregate supply of the J firms, g(p), maximizes aggregate profits given p;
therefore, we can relate 4(-) to the industry marginal cost function C'(+) in exactly the same
manner as we did in Section 5.D for the case of a single firm’s marginal cost function and supply
behavior. With convex technologies, the aggregate supply locus for good ¢ therefore coincides
with the graph of the industry marginal cost function C'(+), and so ¢~ '(-) = C'(*)."?

Likewise, at any given level of aggregate demand X, the inverse demand function
P(X) = x ™ '(X) gives the price that results in aggregate demand of %. That is, when
each consumer optimally chooses his demand for good ¢ at this price, total demand
exactly equals x. Note that at these individual demand levels (assuming that they
are positive), each consumer’s marginal benefit in terms of the numeraire from an
additional unit of good ¢, ¢i(x;), is exactly equal to P(%). This is illustrated in Figure

11. Formally, the industry marginal cost function C'(+) is the derivative of the aggregate cost
function C(-) that gives the total production cost that would be incurred by a central authority
who operates all J firms and secks to produce any given aggregate level of good / at minimum
total cost. (See Exercise 10.C.3.)

12. More formally, by Proposition S.E.1, aggregate supply behavior can be determined by
maximizing profit given the aggregate cost function C(+). This yields first-order condition p=C’(q(p)).
Hence, g(-) = C'7'(+), or equivalently g™ '(*) = C'().

Figure 10.C.4 (left)

Equilibrium when
¢;(g;) = cq; for all
j=1....J

Figure 10.C.5 {right)
The industry marginal
cost function.
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10.C.6. The value of the inverse demand function at quantity %, P(x), can thus be
viewed as giving the marginal social benefit of good ¢ given that the aggregate quantity
% is efficiently distributed among the I consumers (see Exercise 10.C.4 for a precise
statement of this fact).

Given these interpretations, we can view the competitive equilibrium as involving
an aggregate output level at which the marginal social benefit of good ¢ is exactly
equal to its marginal cost. This suggests a social optimality property of the
competitive allocation, a topic that we investigate further in Section 10.D.

Comparative Statics

It is often of interest to determine how a change in underlying market conditions
affects the equilibrium outcome of a competitive market. Such questions may arise,
for example, because we may be interested in comparing market outcomes across
several similar markets that differ in some measurable way (e.g., we might compare
the price of ice cream in a number of cities whose average temperatures differ) or
because we want to know how a change in market conditions will alter the outcome
in a particular market. The analysis of these sorts of questions is known as
comparative statics analysis.

As a general matter, we might imagine that each consumer’s preferences are
affected by a vector of exogenous parameters « € R™, so that the utility function ¢,(-)
can be written as ¢,(x;, a). Similarly, each firm’s technology may be affected by a
vector of exogenous parameters f§ € RS, so that the cost function ¢(-) can be written
as ¢;(q;, f)- In addition, in some circumstances, consumers and firms face taxes or
subsidies that may make the effective (i.c., net of taxes and subsidies) price paid or
received differ from the market price p. We let §,(p, t) and p,(p, t) denote, respectively,
the effective price paid by consumer i and the effective price received by firm j given
tax and subsidy parameters t € RX. For example, if consumer i must pay a tax of #;
(in units of the numeraire) per unit of good i purchased, then p(p, 1) = p +t,. If
consumer i instead faces a tax that is a percentage ¢; of the sales price, then
Bilp, ) = p(1 + 1).

For given values (a, §,¢) of the parameters, the I +J equilibrium quantities
(x%,...,x} g% ...,q%) and the equilibrium price p* are determined as the solution
to the following I + J + 1 equations (we assume, for simplicity, that xf > 0 for all

Figure 10.C.6
The inverse deman,

function.
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jand g} > 0 for all j):

dixt o) = pip% ) i=1,...,1 (10.C.4)
gt By =plp* ) j=1,...,J (10.C.5)
I J
Y xr=1Y qr (10.C.6)
i=1 j=1

These | + J + 1 equations implicitly define the equilibrium allocation and price as
functions of the exogenous parameters (z, B, ). If all the relevant functions are
differentiable, we can use the implicit function theorem to derive the marginal change
in the equilibrium allocation and price in response to a differential change in the
values of these parameters (see Section M.E of the Mathematical Appendix). In
Example 10.C.1, we consider one such comparative statics exercise; it is only one
among a large number of possibilities that arise naturally in economic applications.
(The exercises at the end of this chapter include additional examples.)

Example 10.C.1: Comparative Statics Effects of a Sales Tax. Suppose that a new sales
tax is proposed under which consumers must pay an amount ¢ > 0 (in units of the
numeraire) for each unit of good ¢ consumed. We wish to determine the effect of
this tax on the market price. Let x(p) and g(p) denote the aggregate demand and
supply functions, respectively, for good ¢ in the absence of the tax (we maintain all
our previous assumptions regarding these functions).

In terms of our previous notation, the ¢,(-) and ¢;(-) functions do not depend
on any exogenous parameters, p;(p,t) = p + ¢ for all i, and p,(p,t) = p for all j. In
principle, by substituting these expressions into the system of equilbrium equations
(10.C4) to (10.C.6), we can derive the effect of a marginal increase in the tax on the
price by direct use of the implicit function theorem (see Exercise 10.C.5). Here,
however, we pursue a more instructive way to get the answer. In particular, note
that aggregate demand with a tax of t and price p is exactly x(p + t) because the tax
is equivalent for consumers to the price being increased by ¢. Thus, the equilibrium
market price when the tax is t, which we denote by p*(), must satisfy

x(p*(0) + 1) = g(p*(1)). (10.C.7)
Suppose that we now want to determine the effect on prices paid and received

of a marginal increase in the tax. Assuming that x(-) and g(*) are differentiable at
p = p*(t), differentiating (10.C.7) yields
x'(p*(0) + 1)

X (p*(1) + 1) — q'(p*(0)
It is immediate from (10.C.8) and our assumptions on x'(-) and ¢’(*) that —1 <
p*'(t) < 0 at any t. Therefore, the price p*(t) received by producers falls as ¢ increases
while the overall cost of the good to consumers p*(t) + ¢ rises (weakly). The totai
quantities produced and consumed fall (again weakly). See Figure 10.C.7(a), where
the equilibrium level of aggregate consumption at tax rate ¢ is denoted by x*(¢).
Notice from (10.C.8) that when ¢'(p*(r)) is large we have p*(t) = 0, and so the price
received by the firms is hardly affected by the tax; nearly all the impact of the tax is
felt by consumers. In contrast, when ¢'(p*(1)) = 0, we have p*'(t) = — 1, and so the
impact of the tax is felt entirely by the firms. Figures 10.C.7(b) and (c) depict these
two cases.

pr(t) =~

(10.C.8)
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Figure 10.C.7 Comparative statics effects of a sales tax.

By substituting into (10.C.8) for x’(-) and ¢'(-), the marginal change in p* can
be expressed in terms of derivatives of the underlying individual utility and cost
functions. For example, if we let p* = p*(0) be the pretax price, we see that

S40) = — The, [870(p* ]~ .
L Lol x(p* M) = Xde [efas(p* ]!

We have assumed throughout this section that consumers’ preferences and firms’ technologies
are convex (and strictly so in the case of consumer preferences). What if this is not the case?
Figure 10.C.8 illustrates one problem that can then arisc; it shows the demand function and

1y

a(p)
)
a LA oy Area A = Area B
P
xq

supply correspondence for an economy in which there is a single firm (so J = 1).'* This firm's
cost function c(-) is continuous and differentiable but not convex. In the figure, the light curve
is the graph of the firm's marginal cost function ¢'(-). As the figure illustrates, () fails to be
nondecreasing. The heavier curve is the firm’s actual supply correspondence ¢(*) (you should
verify that it is determined as indicated in the figure).'* The graph of the supply correspondence
no longer coincides with the marginal cost curve and, as is evident in the figure, no intersection
exists between the graph of the supply correspondence and the demand curve. Thus, in this
case, no competitive equilibrium exists.

3. We set J =1 here solely for expositional purposes.

14. See Section 5.D for a more detailed discussion of the relation between a firm's supply
correspondence and its marginal cost function when its technology is nonconvex.

Figure 10.C.8
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This observation suggests that convexity assumptions are key to the existence of a
competitive equilibrium. We shall confirm this in Chapter 17, where we provide a more general
discussion of the conditions under which existence of a competitive equilibrium is assured.

The Fundamental Welfare Theorems in a Partial
Equilibrium Context

In this section, we study the properties of Pareto optimal allocations in the framework
of the two-good quasilinear economy introduced in Section 10.C, and we establish
a fundamental link between the set of Pareto optimal allocations and the set of
competitive equilibria.

The identification of Pareto optimal allocations is considerably facilitated by the
quasilinear specification. In particular, when consumer preferences are quasilinear, the
boundary of the economy's utility possibility set is linear (see Section 10.B for the
definition of this set) and all points in this boundary are associated with consumption
allocations that differ only in the distribution of the numeraire among consumers.

To see this important fact, suppose that we fix the consumption and production
levels of good ¢ at (x,,...,X,§,,...,§,). With these production levels, the total
amount of the numeraire available for distribution among consumers is w,, — 3; ¢;(4;).
Because the quasilinear form of the utility functions allows for an unlimited
unit-for-unit transfer of utility across consumers through transfers of the numeraire,
the set of utilities that can be attained for the I consumers by appropriately
distributing the available amounts of the numeraire is given by

{ 1 J
{(u,,‘..,u,): Yusy ¢F)+w,— Y, c,-(qj)}.
i=1 i=1 j=1

The boundary of this set is a hyperplane with normal vector (1,..., 1). The set is
depicted for the case I = 2 by the hatched set in Figure 10.D.1.

Note that by altering the consumption and production levels of good ¢, we
necessarily shift the boundary of this set in a parallel manner. Thus, every Pareto
optimal allocation must involve the quantities (x},..., x7, g%, ..., g}) that extend
this boundary as far out as possible, as illustrated by the heavily drawn boundary
of the shaded utility possibility set in Figure 10.D.1. We call these quantities the
optimal consumption and production levels for good /. As long as these optimal
consumption and production levels for good ¢ are uniquely determined, Pareto
optimal allocations can differ only in the distribution of the numeraire among
consumers.'?

(10D.1)

15. The optimal individual production levels need not be unique if firms' cost functions are
convex but not strictly so. Indeterminacy of optimal individual production levels arises, for example,
when all firms have identical constant returns to scale technologies. However, under our assumptions
that the ¢,(-) functions are strictly concave and that the c,(-) functions are convex, the optimal
individual consumption levels of good ¢ are necessarily unique and, hence, so is the optimal aggregate
production level 3; g7 of good ¢. This implies that, under our ptions, the i
allocations in two different Pareto optimal allocations can differ only in the distribution of numeraire
among consumers. If, moreover, the ¢;(+) functions are strictly convex, then the optimal individual
production levels are also uniquely determined. (See Exercise 10.D.1.)
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It follows from expression (10.D.1) that the optimal consumption and production
levels of good ¢ can be obtained as the solution to

i J
Max ¥ ¢ilx) = X ci(g) + on (10.D.2)
(xe...ny x)20 i=1 i=1
Freeens 4,20
1 J
st. Y x— 3 q,=0.
i=1 i=1

The value of the term T; ¢,(x;) — X, ¢,(q;) in the objective function of problem
(10.D.2) is known as the Marshallian aggregate surplus (or, simply, the aggregate
surplus). It can be thought of as the total utility generated from consumption of good
¢ less its costs of production (in terms of the numeraire). The optimal consumption
and production levels for good ¢ maximize this aggregate surplus measure.

Given our convexity assumptions, the first-order conditions of problem (10.D.2)
yield necessary and sufficient conditions that characterize the optimal quantities. If
we let p be the multiplier on the constraint in problem (10.D.2), the I -+ J optimal

values (x¥,...,x}, g% ..., q¥) and the multiplier p satisfy the following I + J + 1
conditions:
p<ci(gl), withequalityifgf >0 j=1,...,J (10.D.3)
¢i(x*) < p, with equality if x} >0 i=1,...,1 (10.D.4)
1 4
Y xt=13 af (10.D.5)

i=1 =1

These conditions should look familiar: They exactly parallel conditions (10.C.1)
to (10.C.3) in Section 10.C, with u replacing p*. This observation has an important
implication. We can immediately infer from it that any competitive equilibrium
outcome in this model is Pareto optimal because any competitive equilibrium
allocation has consumption and production levels of good 7, (x¥, ..., xf, 4%, ..., q%),
that satisfy conditions (10.D.3) to (10.D.5) when we set u = p*. Thus, we have
established the first fundamental theorem of welfare economics (Proposition 10.D.1)
in the context of this quasilinear two-good model.

Proposition 10.D.1: (The First Fundamental Theorem of Welfare Economics) 1t the
price p* and allocation (x},...,xf, g}, ..., qJ) constitute a competitive equil-
ibrium, then this allocation is Pareto optimal.

Figure 10.0.1

Thg utility Possibility
set in a quasilinear
economy.
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The first fundamental welfare theorem establishes conditions under which market
equilibria are nccessarily Pareto optimal. It is a formal expression of Adam Smith’s
“jnvisible hand” and is a result that holds with considerable generality (see Section
16.C for a much more extensive discussion). Equally important, however, are the
conditions under which it fails to hold. In the models for which we establish the first
fundamental welfare theorem here and in Section 16.C, markets are “complete” in
the sense that there is a market for every relevant commodity and all market
participants act as price takers. In Chapters 11 to 14, we study situations in which
at least one of these conditions fails, and market outcomes fail to be Pareto optimal
as a result.

We can also develop a converse to Proposition 10.D.1, known as the second
fundamental theorem of welfare economics. In Section 10.C, we saw that good ¢'s
equilibrium price p*, its equilibrium consumption and production levels (x§, ..., xF,
q1,....4q}), and firms’ profits are unaffected by changes in consumers’ wealth levels.
As a result, a transfer of one unit of the numeraire from consumer i to consumer i’
will cause cach of these consumers’ equilibrium consumption of the numeraire
to change by exactly the amount of the transfer and will cause no other changes.
Thus, by appropriately transferring endowments of the numeraire commodity, the
resulting competitive equilibrium allocation can be made to yield any utility vector
in the boundary of the utility possibility set. The second welfare theorem therefore
tells us that, in this two-good quasilinear economy, a central authority interested in
achieving a particular Pareto optimal allocation can always implement this outcome
by transferring the numeraire among consumers and then “allowing the market to
work.” This is stated formally in Proposition 10.D.2.

Proposition 10.D.2: (The Second Fundamental Theorem of Welfare Economics) For
any Pareto optimal leveis of utility (uf,...,u}), there are transfers of the
numeraire commodity (7,,...,T,) satisfying 3 ; 7; = 0, such that a competitive
equilibrium reached from the endowments (w,,, + 7y, ..., @,,; + T;) yields pre-
cisely the utilities (vf,..., u}).

In Section 16.D, we study the conditions under which the second welfare theorem
holds in more general competitive economies. A critical requirement, in addition to
those needed for the first welfare theorem, turns out to be convexity of preferences
and production sets, an assumption we have made in the model under consideration
here. In contrast, we shall see in Chapter 16 that no such convexity assumptions are
needed for the first welfare theorem.

The correspondence between p and x in the equilibrium conditions (10.C.1) to
(10.C.3) and the Pareto optimality conditions (10.D.3) to (10.D.5) is worthy of
emphasis: The competitive price is exactly equal to the shadow price on the resource
constraint for good £ in the Pareto optimality problem (10.D.2). In this sense, then,
we can say that a good's price in a competitive equilibrium reflects precisely its
marginal social value. In a competitive equilibrium, each firm, by operating at a point
where price equals marginal cost, equates its marginal production cost to the marginal
social value of its output. Similarly, each consumer, by consuming up to the point
where marginal utility from a good equals its price, is at a point where the marginal
benefit from consumption of the good exactly equals its marginal cost. This
correspondence between equilibrium market prices and optimal shadow prices holds
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quite generally in competitive economies (see Section 16.F for further discussion of
this point).

An alternative way to characterize the set of Pareto optimal allocations is to solve

Max my + ¢y(x1) (10.D.6)
trmal, (],
st. () m+ddx)zd  i=2....1
' J
(2¢) Yoxi— Y 4,0
i=1 =1
i J
(2m) Sm+ Y <,
i=1 =1
3) z; 2 c;(q;) j=1...,J.

Problem (10.D.6) expresses the Pareto optimality problem as one of trying to maximize the
well-being of individual 1 subject to meeting certain required utility levels for the other
individuals in the economy [constraints (1)], resource constraints [constraints (2¢) and (2m)],
and technological constraints [constraints (3)]. By solving problem (10.D.6) for various
required levels of utility for these other individuals, (i,, . ... ), we can identify all the Pareto
optimal outcomes for this economy (see Exercise 10.D.3; more generally, we can do this
whenever consumer preferences are strongly monotone). Exercise 10.D.4 asks you to derive
conditions (10.D.3) to (10.D.5) in this alternative manner.

Welfare Analysis in the Partial Equilibrium Model

It is often of interest 10 measure the change in the level of social welfare that would
be generated by a change in market conditions such as an improvement in technology,
a new government tax policy, or the elimination of some existing market imperfection.
In the partial equilibrium model, it is particularly simple to carry out this welfare
analysis. This fact accounts to a large extent for the popularity of the model.

In the discussion that follows, we assume that the welfare judgments of society
are embodied in a social welfare function W(u,,...,u,) assigning a social welfare
value to every utility vector (u,,...,4;) (see Chapters 4, 16, and 22 for more
on this concept). In addition, we suppose that (as in the theory of the normative
representative consumer discussed in Section 4.D) there is some central authority
who redistributes wealth by means of transfers of the numeraire commodity in order
to maximize social welfare.!® The critical simplification offered by the quasilinear
specification of individual utility functions is that when there is a central authority
who redistributes wealth in this manner, changes in social welfare can be measured by
changes in the Marshallian aggregate surplus (introduced in Section 10.D) for any
social welfare function that society may have.

To see this point (which we have in fact already examined in Example 4.D.2), con-
sider some given consumption and production levels of good £, (xy, ..., X1, 415+ - -+ Gu)s

16. As in Section 4.D, we assume that consumers treat these transfers as independent of their
own actions; that is, in the standard terminology, they are lump-sum transfers. You should think of
the central authority as making the transfers prior to the opening of markets.

SECTION 10.E: WELFARE ANALYSIS IN THE PARTIAL EQUILIBRIUM MODEL 329

J
Z Cj(‘l,! )}

i=1

! ]
{(“n u): ‘Z:‘ U=, + .‘_Lq,l é(x}) -

“</{

1 ] J
(uy, u3): .ZI U=, + ‘Zl ¢i(x?) - z‘ fj(‘lf)}
i= i= i=

{(ug ) Wiy, u;) = W("l')}
{Cug,u): Wy uy) = W(u))

N Tuy

having ¥; x; = ¥; q;. From Section 10.D and Figure 10.D.1 we know that the utility
vectors (u,, ..., u;) that are achievable through reallocation of the numeraire given
these consumption and production levels of good ¢ are

1 I J
{("lv S M) Z U< w, + z di(x;) — Z Cj(qj)}-
i=1 i=1 i=1
Now, if a central authority is redistributing the numeraire to maximize W(u,, ..., u,),
the ultimate maximized value of welfare must be greater the larger this set is (ie.,
the farther out the boundary of the set is). Hence, we see that a change in the
consumption and production levels of good ¢ leads to an increase in welfare (given
optimal redistribution of the numeraire) if and only if it increases the Marshallian
aggregate surplus

i J

S(Xps e X1 qysensgy) = ‘Z‘ di(x;) — jzl C}(‘lj)- (10.E.1)
Figure 10.E.1 provides an illustration. It shows three utility vectors for the case
I =2: An initial utility vector u® = (u?, u9) associated with an allocation in which
the consumption and production levels of good ¢ are (x?,...,xy,4%...,49) and in
which the wealth distribution has been optimized, a utility vector u' = (u}, u}) that
results from a change in the consumption and production levels of good ¢ to
(x},...,x},ql,..., q}) in the absence of any transfers of the numeraire, and a utility
vector u'* = (ul* u}*) that results from this change once redistribution of the
numeraire occurs to optimize social welfare. As can be seen in the figure, the
change increases aggregate surplus and also increases welfare once optimal transfers
of the numeraire occur, even though welfare would decrease in the absence of the
transfers. Thus, as long as redistribution of wealth is occurring to maximize a social
welfare function, changes in welfare can be measured by changes in Marshallian

aggregate surplus (to repeat: for any social welfare function).!”
In many circumstances of interest, the Marshallian surplus has a convenient and

17. Notice that no transfers would be necessary in the special case in which the social welfare
function is in fact the “utilitarian™ social welfare function ¥, u;; in this case, it is sufficient that all
available units of the numeraire go to consumers (i.e., none goes to waste or is otherwise withheld).

Figure 10.E.1

With lump-sum
redistribution
occurring to
maximize social
welfare, changes in
welfare correspond to
changes in aggregate
surplus in a
quasilinear model.
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historically important formulation in terms of areas lying vertically between the
aggregate demand and supply functions for good 7.

To expand on this point, we begin by making two key assumptions. Denoting
by x =Y, x; the aggregate consumption of good ¢, we assume, first, that for any x,
the individual consumptions of good ¢/ are distributed optimally across consumers.
That is, recalling our discussion of the inverse demand function P() in Section 10.C
(see Figure 10.C.6), that we have ¢i(x;) = P(x) for every i. This condition will be
satisfied if, for example, consumers act as price-takers and all consumers face the
same price. Similarly, denoting by ¢ = X, q; the aggregate output of good 7, we
assume that the production of any total amount q is distributed optimally across
firms. That is, recalling our discussion of the industry marginal cost curve C'(*) in
Section 10.C (see Figure 10.C.5), that we have cj(g;) = C'(q) for every j. This will be
satisfied if, for example, firms act as price takers and all firms face the same price.
Observe that we do not require that the price faced by consumers and firms be the
same.'®

Consider now a differential change (dx,, ..., dx;, dq,,...,dq;) in the quantities
of good Z consumed and produced satisfying 3, dx; = 3_; dg;, and denote dx = Y, dx;.
The change in aggregate Marshallian surplus is then

13 J
dS= Y. $itx)dx — 3, ca;) da; (10E2)

I=1 j=1

Since ¢;(x;) = P(x) for all i, and cj(g;) = C'(q) for all j, we get
! J
dS=P(x) ¥ dx;— C'(g) ¥ da;. (10.E.3)
i=1 =1

Finally, since x = g (by market feasibility) and 3, dgq; = ¥, dx; = dx, this becomes
dS = [P(x) — C'(x)] dx. (10.E4)

This differential change in Marshallian surplus is depicted in Figure 10.E.2(a).
Expression (10.E.4) is quite intuitive; it tells us that starting at aggregate consumption
level x the marginal effect on social welfare of an increase in the aggregate quantity
consumed, dx, is equal to consumers’ marginal benefit from this consumption,
P(x) dx, less the marginal cost of this extra production, C’(x) dx (both in terms of
the numeraire).

We can also integrate (10.E4) to express the total value of the aggregate
Marshallian surplus at the aggregate consumption level x, denoted S(x), in terms of
an integral of the difference between the inverse demand function and the industry
marginal cost function,

S() = S, + J' [P(s) - C' ds, (10E3)
0

18. For example, consumers may face a tax per unit purchased that makes the price they pay
differ from the price received by the firms (sce Example 10.C.1). The assumptions made here also
hold in the monopoly model to be studied in Section 12.B. In that model, there is a single firm (and
so there is no issue of optimal allocation of production), and all act as price takers facing
the same price. An ple where the ption of an optimal allocation of production is not valid
is the Cournot duopoly model of Chapter 12 when firms have different efficiencies. There, firms
with different costs have different levels of marginal cost in an equilibrium.
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where S, is a constant of integration equal to the value of the aggregate surplus when
there is no consumption or production of good / [it is equal to zero if ¢;(0) = O for
all j]. The integral in (10.E.5) is depicted in Figure 10.E.2(b); it is exactly equal
to the area lying vertically between the aggregate demand and supply curves for good
¢ up to quantity x.

Note from (10.E.5) that the value of the aggregate Marshallian surplus is
maximized at the aggregate consumption level x* such that P(x*) = C’(x*), which
is exactly the competitive equilibrium aggregate consumption level.'? This accords
with Proposition 10.D.1, the first fundamental welfare theorem, which states that the
competitive allocation is Pareto optimal.

Example 10.E.1: The Welfare Effects of a Distortionary Tax. Consider again the
commodity tax problem studied in Example 10.C.1. Suppose now that the welfare
authority keeps a balanced budget and returns the tax revenue raised to consumers
by means of lump-sum transfers. What impact does this tax-and-transfer scheme have
on welfare?2°

To answer this question, it is convenient to let (x}(1),..., xF(t), q1(t), . .., ¢7(1))
and p*(1) denote the equilibrium consumption, production, and price levels of good
¢ when the tax rate is t. Note that ¢j(x¥*(t)) = p*(t)+1t for all i and that
cj(q1 ) = p*(t) for all j. Thus, letting x*(¢) = ¥ x¥(t) and S*(t) = S(x*(t)), we can
use (10.E.5) to express the change in aggregate Marshallian surplus resulting from

19. To see this, check first that $”(x) < 0 at all x. Hence, §(*) is a concave function and therefore
x* > 0 maximizes aggregate surplus if and only if $'(x*) = 0. Then verify that §'(x) = P(x) — C'(x)
atall x > 0.

20. This problem is closely related to that studied in Example 3.11 (we could equally well
motivate the analysis here by asking, as we did there, about the welfare cost of the distortionary
tax relative to the use of a lump-sum tax that raises the same revenue; the measure of deadweight loss
that emerges would be the same as that developed here). The discussion that follows amounts to
an exiension, in the quasilinear context, of the analysis of Example 3.11 to sitvations with many
consumers and the presence of firms. For an approach that uses the theory of a normative
representative consumer presented in Section 4.D, sce the small-type discussion at the end of this
sectioh.

Figure 10.E.2

(a) A differential
change in Marshallian
surplus. (b) The
Marshallian surplus at
aggregate consumption
level x.
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x*0)
S*(1) — S*(0) = J [P(s) — C'(s)] ds. (10.E.6)
x*{0}

Expression (10.E.6) is negative because x*(1) < x*(0) (recall the analysis of
Example 10.C.1) and P(x) 2 C'(x) for all x < x*(0), with strict inequality for
x < x*(0). Hence, social welfare is optimized by setting t = 0. The loss in welfare
from ¢ > 0 is known as the deadweight loss of distortionary taxation and is equal to
the area of the shaded region in Figure 10.E.3, called the deadweight loss triangle.

Notice that since $*'(1) = [P(x*(1)) — C'(x*(1)))x*'(1), we have $*'(0) = 0. That
is, starting from a position without any tax, the first-order welfare effect of an
infinitesimal tax is zero. Only as the tax rate increases above zero does the marginal
effect become strictly negative. This is as it should be: if we start at an (interior)
welfare maximum, then a small displacement from the optimum cannot have a
first-order effect on welfare.

It is sometimes of interest to distinguish between the various components of
aggregate Marshallian surplus that accrue directly to consumers, firms, and the tax
authority.?! The aggregate consumer surplus when consumers’ effective price is § and
therefore aggregate consumption is x(p) is defined as the gross consumer bencfits
from consumption of good ¢ minus the consumers’ total expenditure on this good
(the latter is the cost to consumers in terms of forgone consumption of the numeraire):

1
CS(p) = Y, dulx(B)) — px(p).
i=1
Using again the fact that consumption is distributed optimally, we have

x(p)
CS5(p) = J‘ P(s) ds — px(p)

o

x(3)
= J [P(s) — p] ds. (10.E.7)

[}

21. For example, if the set of active consumers of good ¢ is distinct {rom the set of owners of
the firms producing the good, then this distinction tells us something about the distributional effects
of the tax in the absence of transfers between owners and consumers.
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Finally, the integral in (10.E.7) is equal to?2

-]
CS(p) = J‘ x(s) ds. (10.E.8)
[
Thus, because consumers face an effective price of p*(t) + ¢ when the tax is ¢, the
change in consumer surplus from imposition of the tax is
(1) +1¢

CS(p*(t) + 1) — CS(p*(0)) = —J. x(s) ds.

PoO)

(10.E.9)

In Figure 10.E.3, the reduction in consumer surplus is depicted by area (dbef).
The aggregate profit, or aggregate producer surplus, when firms face effective
price p is
J

T1(p) = pad) = 3 c/(a().
P

Again, using the optimality of the allocation of production across firms, we have??

HP)
fI(py = Iy + J-” [6-C'(s)]ds (10.E.10)
[
=M, + qu(s) ds, (10.E.11)
0

where T1, is a constant of integration equal to profits when q;=0forallj[l, =0
if ¢{0) = O for all j]. Since producers pay no tax, they face price p*(t) when the tax
rate is t. The change in producer surplus is therefore

o

[(p*(®)) — N(p*(0)) = -J q(s) ds.

fadti)

(10.E.12)

The reduction in producer surplus is depicted by area (gdfh) in Figure 10.E.3.
Finally, the tax revenue is tx*(t); it is depicted in Figure 10.E.3 by area (gbch).
The total deadweight welfare loss from the tax is then equal to the sum of the

reductions in consumer and producer surplus less the tax revenue. m»

The welfare measure developed here is closely related to our discussion of normative
representative consumers in Section 4.D. We showed there that if a central authority is
redistributing wealth to maximize a social welfare function given prices P, leading to a wealth
distribution rule (w,(p, w),..., w,(p, w)), then there is a normative representative consumer
with indirect utility function v(p, w) whose demand x(p, w) is exactly equal to aggregate
demand [i.e, x(p, w) = 3; x;(p, w;(p, w))] and whose utility can be used as a measure of social
welfare. Recalling our discussion in Section 3.1, this means that we can measure the change
in welfare resulting from a price~wealth change by adding the representative consumer’s

22. This can be seen geometrically. For example, when § = p*(0), the integrals in both (10.E.7)
and (10.E.8) are equal to area (daf) in Figure 10.E.3. Formally, the equivalence follows from a
change of variables and integration by parts (see Exercise 10.E.2).

23. When p = p*(0), the integrals in both (10.E.10) and (10.E.11) are equal to area (idf) in
Figure 10.E.3. The equivalence of these two integrals again follows formally by a change of variables
and integration by parts.
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compensating or equivalent variation for the price change to the change in the representative
consumer’s wealth (see Exercise 3..12). But in the quasilinear case, the representative
consumer’s compensating and equivalent variations are the same and can be calculated by
direct integration of the representative consumer’s Walrasian demand function, that is, by
integration of the aggregate demand function. Hence, in Example 10.E.1, the representative
consumer’s compensating variation for the price change is exactly equal to the change in
aggregate consumer surplus, expression (10.E.9). The change in the representative consumer’s
wealth, on the other hand, is equal to the change in aggregate profits plus the tax revenue
rebated to consumers. Thus, the total welfare change arising from the introduction of the
tax-and-transfer scheme, as measured using the normative representative consumer, is exactly
equal to the deadweight loss calculated in Example 10.E.1.2¢

Another way to justify the use of aggregate surplus as a welfare measure in the quasilinear
model is as 2 measure of potential Pareto improvement. Consider the tax example. We could
say that a change in the tax represents a potential Pareto improvement if there is a set of
lump-sum transfers of the numeraire that would make all consumers better off than they were
before the tax change. In the present quasilinear context, this is true if and only if aggregate
surplus increases with the change in the tax. This approach is sometimes referred to as the
comiy ion principle b it asks whether, in principle, it is possible given the change
for the winners to compensate the losers so that all are better off than before. (See also the
discussion in Example 4.D.2 and especially Section 22.C.)

We conclude this section with a warning: When the numeraire represents many goods, the
welfare analysis we have performed is justified only if the prices of goods other than good ¢
are undistorted in the sense that they equal these goods’ true marginal utilities and production
costs. Hence, these other markets must be competitive, and all market participants must face
the same price. If this condition does not hold, then the costs of production faced by producers
of good ¢ do not refiect the true social costs incurred from their use of these goods as inputs.
Exercise 10.G.3 provides an illustration of this problem.

Free-Entry and Long-Run Competitive Equilibria

Up to this point, we have taken the set of firms and their technological capabilities
as fixed. In this section, we consider the case in which an infinite number of firms
can potentially be formed, each with access to the most efficient production
technology. Moreover, firms may enter or exit the market in response to profit
opportunities. This scenario, known as a situation of free entry, is often a reasonable
approximation when we think of long-run outcomes in a market. In the discussion
that follows, we introduce and study a notion of long-run competitive equilibrium and
then discuss how this concept can be used to analyze long-run and short-run
comparative statics effects.

To begin, suppose that each of an infinite number of potential firms has access
to a technology for producing good ¢ with cost function c(g), where q is the individual
firm’s output of good . We assume that ¢(0) = 0; that is, a firm can earn zero profits
by simply deciding to be inactive and setting ¢ = 0. In the terminology of Section

24. This deadweight loss measure corresponds also to the measure developed for the one-
consumer case in Example 3.11, where we implicitly limited ourselves 1o the case in which the taxed
good has a constant unit cost.
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5.B, there are no sunk costs in the long run. The aggregate demand function is x(-),
with inverse demand function P(-).

In a long-run competitive equilibrium, we would like to determine not only the
price and output levels for the firms but also the number of firms that are active in
the industry. Given our assumption of identical firms, we focus on equilibria in which
all active firms produce the same output level, so that a long-run competitive
equilibrium can be described by a triple (p, g, J) formed by a price p, an output per
firm ¢, and an integer number of active firms J (hence the total industry output is
Q = Jg).** The central assumption determining the number of active firms is one of
free entry and exit: A firm will enter the market if it can earn positive profits at the
going market price and will exit if it can make only negative profits at any positive
production level given this price. If all firms, active and potential, take prices as
unaffected by their own actions, this implies that active firms must earn exactly zero
profits in any long-run competitive equilibrium; otherwise, we would have either no
firms willing to be active in the market (if profits were negative) or an infinite number
of firms entering the market (if profits were positive). This leads us to the formulation
given in Definition 10.F.1.

Detinition 10.F.1: Given an aggregate demand function x(p) and a cost function ¢(q)
for each potentially active firm having ¢(0) = 0, a tripte (p*, g*,J*) is a fong-run
competitive equilibrium if

(i) g* solves Max p*q — ¢lq) (Profit maximization)
q20

(i) x(p*) = J*q*
(iii) p*g* —c(g*) =0

(Demand = supply)
(Free Entry Condition}.

The long-run equilibrium price can be thought of as equating demand with
long-run supply, where the long-run supply takes into account firms' entry and exit
decisions. In particular, if g( ) is the supply correspondence of an individual firm with
cost function ¢(+) and =n(-) is its profit function, we can define a long-run aggregate
supply correspondence by?®

© if n(p) >0,

o(p) = { .
{Q > 0: Q = Jq for some integer J > 0 and g € g(p)} if a(p) = 0.

If z{p) > O, then every firm wants to supply an amount strictly bounded away from

zero. Hence, the aggregate supply is infinite. If n(p) = 0 and Q = Jq for some q € q(p),

then we can have J firms each supply g and have the rest remain inactive {since

c(0) = 0, this is a profit-maximizing choice for the inactive firms as well]. With this

25. The assumption that all active firms produce the same output level is without loss of
generality whenever c() is strictly convex on the set (0, o). A firm's supply correspondence can
then include at most one positive output level at any given price p.

26. In terms of the basic properties of production sets presented in Section 5.B, the long-run
supply correspondence is the supply correspondence of the production set Y*, where Y is the
production set associated with the individual firm {i.e,, with ¢(-)), and Y* is its “additive closure™
(i.e., the smallest set that contains Y and is additive: Y* + Y* < Y*; see Exercise 5.B.4).
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notion of a long-run supply correspondence, p* is a long-run competitive equilibrium
price if and only if x(p*) € Q(p*).*’

We now investigate this long-run competitive equilibrium notion. Consider first
the case in which the cost function c(-) exhibits constant returns to scale, so that
c(q) = ¢q for some ¢ > 0, and assume that x(c) > 0. In this case, condition (i) of
Definition 10.F.1 teils us that in any long-run competitive equilbrium we have p* < ¢
(otherwise, there is no profit-maximizing production). However, at any such price,
aggregate consumption is strictly positive since x(c) > 0, so condition (ii) requires
that ¢* > 0, By condition (iii), we must have (p* — ¢)q* = 0. Hence, we conclude
that p* = ¢ and aggregate consumption is x(c). Note, however, that J* and ¢* are
indeterminate: any J* and g* such that J*g* = x(c) satisfies conditions (i) and (ii).

Figure 10.F.1 depicts this long-run equilibrium. The supply correspondence of an
individual firm g(-) is illustrated in Figure 10.F.1(a); Figure 10.F.1(b) shows the
long-run equilibrium price and aggregate output as the intersection of the graph of
the aggregate demand function x(-) with the graph of the long-run aggregate supply

correspondence
© ifp>c
o) ={[0,00) ifp=c
0 ifp<ec.

We move next to the case in which ¢(+) is increasing and strictly convex (i.e., the
production technology of an individual firm displays strictly decreasing returns to
scale). We assume also that x(c’(0)) > 0. With this type of cost function, no long-run
competitive equilibrium can exist. To sce why this is so, note that if p > ¢'(0), then
n(p) > 0 and therefore the long-run supply is infinite. On the other hand, if p < ¢'(0),
then the long-run supply is zero while x(p) > 0. The problem is illustrated in Figure
10.F.2, where the graph of the demand function x(-) has no intersection with the

27. In particular, if (p*, ¢*, J*) is a long-run equilibrium, then condition (i) of Definition 10.F.1
implies that ¢* € q(p*) and condition (iii} implies that =(p*) =0. Hence, by condition (i),
x(p*) € @(p*). In the other direction, if x(p*) € Q(p*). then n(p*) = 0 and there exists g* € g(p*)
and J* with x(p*) = J*q*. Therefore, the three conditions of Definition 10.F.1 are satisfied.

Figure 10.F.1
Loqg-run COmMpetitive
equilibrium with
constant returns tg
scale. (a) A firm's
supply correspondence
(b) Long-run
equilibrium.
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Figure 10.F.2

Nonexistence of
fong-run competitive
equilibrium with
strictly convex costs.
(a) A firm's supply
x() correspondence.

(b) No intersection of

c'(0) ¢'(0)

L 00) \

xq x,Q long-run supply and
(a) (b) demand.
graph of the long-run aggregate supply correspondence
©0 if p> c'(0)
o(p) = { , ,
0 if p < c'(0).
The difficulty can be understood in a related way. As discussed in Exercise 5.B.4, the
fong-run aggregate production set in the situation just described is convex but not closed.
This can be scen in Figure 10.F.3, where the industry marginal cost function with J firms,
P <(Q) <(Q/3)
(Q/10)
c'(0) Figure 10.F.3
The limiting behavior
of industry marginal
cost as J — oo with
x, @ strictly convex costs.

c'(Q/J), is shown for various values of J (in particular, for J =1, J = 3, and J = 10). Note
that as J increases, this marginal cost function approaches but never reaches the marginal cost
function corresponding to a constant marginal cost of ¢'(0).

Perhaps not surprisingly, to generate the existence of an equilibrium with a
determinate number of firms, the long-run cost function must exhibit a strictly
positive efficient scale; that is, there must exist a strictly positive output level § at which
a firm's average costs of production are minimized (see Section 5.D for a further
discussion of the efficient scale concept).

Suppose, in particular, that ¢(-) has a unique efficient scale § > 0, and let the
minimized level of average cost be ¢ = ¢()/§. Assume, moreover, that x(¢) > 0. If at
a long-run equilibrium (p*, ¢*, J*) we had p* > ¢, then p*§ > &G, and so we would
have n(p*) > 0. Thus, at any long-run equilibrium we must have p* < é In contrast,
if p* < ¢, then x(p*) > 0; but since p*q — c(q) = p*q — (c(9)/9)9 < (p* — C)g <0
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for all ¢ > 0, a firm would earn strictly negative profits at any positive level of output.
So p* < ¢ also cannot be a long-run equilibrium price. Thus, at any long-run
equilibrium we must have p* = ¢. Moreover, il p* = ¢, then each active firm's supply
must be g* = 7 (this is the only strictly positive output level at which the firm earns
nonnegative profits), and the equilibrium number of active firms is therefore
J* = x(¢)/4.2® In conclusion, the number of active firms is a well-determined quantity
at long-run equilibrium. Figure 10.F.4 depicts such an equilibrium. The long-run
aggregate supply correspondence is

© ifp>¢
0(p) = { {Q =2 0: Q = Jg for some integer J 20}  ifp=¢
0 ifp<é.

Observe that the equilibrium price and aggregate output are exactly the same as if
the firms had a constant returns to scale technology with unit cost ¢.

Several points should be noted about the equilibrium depicted in Figure 10.F 4.
First, if the efficient scale of operation is large relative to the size of market demand,
it could well turn out that the equilibrium number of active firms is small. In these
cases, we may reasonably question the appropriateness of the price-taking assumption
(e.g, what if J* = 17). Indeed, we are then likely to be in the realm of the situations
with market power studied in Chapter 12.

Second, we have conveniently shown the demand at price &, x(¢), to be an
integer multiple of §. Were this not so, no long-run equilibrium would exist because
the graphs of the demand function and the long-run supply correspondence would

28. Note that when ¢(+) is differentiable, condition (i) of Definition 10.F.1 implies that
¢'(q*) = p*, while condition (jii) implies p* = c(q*)/q*. Thus, a necessary condition for an
equilibrium is that ¢'(¢*) = c(g*)/q*. This is the condition for q* to be a critical point of average
costs [differentiate c(g)/q and see Exercise 5.D.1]. In the case where average cost c(q)/q is U-shaped
(i.e., with no critical point other than the global minimum, as shown in Figure 10.F.4), this implies
that q* = 4, and so p* = ¢ and J* = x(£)/§. Note, however, that the argument in the text does not
require this assumption about the shape of average costs.

Figure 10.F.4

Long-run competitiy,
equilibrium when
average costs exhibi ,
strictly positive
efficient scale. (a) A
firm’s supply
correspondence.

(b) Long-run
equilibrium.
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not intersect.?° The nonexistence of competitive equilibrium can occur here for the
same reason that we have already alluded to in small type in Section 10.C: The
long-run production technologies we are considering exhibit nonconvexities.

1t seems plausible, however, that when the efficient scale of a firm is small relative
to the size of the market, this “integer problem” should not be too much of a concern.
In fact, when we study oligopolistic markets in Chapter 12, we shall see that when
firms' cfficient scales arc small in this sense, the oligopolistic equilibrium price is
close to ¢ the equilibrium price we would derive if we simply ignored the integer
constraint on the number of firms J*. Intuitively, when the efficient scale is small,
we will have many firms in the industry and the equilibrium, although not strictly
competitive, will involve a price close to ¢. Thus, if the efficient scale is small relative
to the size of the market [as measured by x()], then ignoring the integer problem
and treating firms as price takers gives approximately the correct answer.

Third, when an equilibrium exists, as in Figure 10.F.4, the equilibrium outcome
maximizes Marshallian aggregate surplus and therefore is Pareto optimal. To see
this, note from Figure 10.F.4 that aggregate surplus at the considered equilibrium is
equal to

x
Max J P(s)ds —- éx,
x20 Jo

the maximized value of aggregate surplus when firms' cost functions are ¢q. But
because ¢(gq) = éq for all g, this must be the largest attainable value of aggregate
surplus given the actual cost function c(+); that is,

Max J- P(s)ds — ¢x 2 J P(s) ds — Je(x/J),
x20 Jo 0

for all % and J. This fact provides an example of a point we raised at the end of
Section 10.D (and will substantiate with considerable generality in Chapter 16): The
first weifare theorem continues to be valid even in the absence of convexity of
individual production sets.

Short-Run and Long-Run Comparative Statics

Although firms may enter and exit the market in response to profit opportunities
in the long run, these changes may take time. For example, factories may need to be
shut down, the workforce reduced, and machinery sold when a firm exits an industry.
1t may even pay a firm to continue operating until a suitable buyer for its plant and
equipment can be found. When examining the comparative statics effects of a shock
to a market, it is therefore important to distinguish between long-run and short-run
effects.

Suppose, for example, that we are at a long-run equilibrium with J* active firms

29, An intermediate case between constant returns (where any scale is efficient) and the case of
a unique efficient scale occurs when there is a range (4, §] of efficient scales (the average cost curve
has a flat bottom). In this case, the integer problem is mitigated. For a long-run competitive
equilibrium 1o exist, we now only need there to be some ¢ € (7, §] such that x(¢)/q is an integer.
Of course, as the interval [, §) grows larger, not only are the chances of a long-run equilibrium
existing greater, but so are the chances of indeterminacy of the equilibrium number of firms (ie., of
multiple equilibria involving differing numbers of firms).
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each producing g* units of output and that there is some shock to dema'nd (similar
points can be made for supply shocks). In the short run, it may be impossible for any
new firms to organize and enter the industry, and so we will continue to have J*
firms for at least some period of time. Moreover, these J* firms may face a short-run
cost function ¢,(+) that differs from the long-run cost function c(-) because various
input levels may be fixed in the short run. For example, firms may have the long-run

cost function
. {K + (@)
“@=1 ifg=0,

if 0
na= (10.F.1)

where Y(0) = 0, ¢’(g) > 0, and ¥"(g) > 0. But in the short run, it may be impqssiblc
for an active firm to recover its fixed costs if it exits and sets ¢ =0. Hence, in the
short run the firm has the cost function

c(q) =K+ ¥(q) forallg = 0. (10.F.2)
Another possibility is that ¢(q) might be the cost function of some mulliplc-inp}]l
production process, and in the short run an active firm may be unable to vary its
level of some inputs. (See the discussion in Section 5.B on this point and also Exercises
10.F.5 and 10.F.6 for illustrations.)

Whenever the distinction between short run and long run is significant, the
short-run comparative statics effects of a demand shock may best be determined by
solving for the competitive equilibrium given J* firms, each with cost function c,g )
and the new demand function. This is just the equilibrium notion studied in Section
10.C, where we take firms’ cost functions to be ¢,(*). The long-run comparative statics
effects can then be determined by solving for the long-run (i.e., free entry) equilibrium
given the new demand function and long-run cost function ¢().

Example 10.F.1: Short-Run and Long-Run Comparative Statics with Lumpy Fixed
Costs that Are Sunk in the Short Run. Suppose that the long-run cost function (")
is given by (10.F.1) but that in the short run the fixed cost K is sunk so tha.t c()is
given by (10.F.2). The aggregate demand function is initially x(-, o), and the industry
is at a long-run equilibrium with J, firms, each producing ¢ units of output [the
efficient scale for cost function ¢(+)], and a price of p* = & = ¢(§)/4. This equilibrium
position is depicted in Figure 10.F.5.

Initial Long-Run

p New Equilibrium .0
Long-Run
Equilibrium )
pr=< - —-— —.—

Ps \ x(-
¥'(0) "/ I~ Short-Run Equitibrium

x(-. %)

—_—

©d Jods Jod x,Q

Figure 10.F.5
Short-run and
long-run comparative
statics in Example
10.F.1.
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Now suppose that we have a shift to the demand function x(-, «,) shown in Figure
10.F.5. The short-run equilibrium is determined by the intersection of the graph of
this demand function with the graph of the industry supply correspondence of the
Jo firms, each of which has short-run cost function ¢,(-). The short-run aggregate
supply correspondence is depicted as Q () in the figure. Thus, in the short run, the
shock to demand causes price to fall to p, and output per firm to fall to g,. Firms’
profits also fall; since p, < ¢, active firms lose money in the short run.

In the long run, however, firms exit in response to the decrease in demand, with
the number of firms falling to J; < J,, each producing output 4. Price returns to
p* = ¢, aggregate consumption is x(¢, a,), and all active firms once again earn zero
profits. This new long-run equilibrium is also shown in Figure 10.F.5. =

This division of dynamic adjustment into two periods, although useful as a first approxima-
tion, is admittedly crude. It may often be reasonable 1o think that there are several distinct
short-run stages corresponding to different levels of adjustment costs associated with different
decisions: in the very short run, production may be completely fixed; in the medium run, some
inputs may be adjusted while others may not be; perhaps entry and exit take place only in
the “very long run.” Moreover, the methodology that we have discussed treats the two neriods
in isolation from each other. This approach ignores, for example, the possibility of intertemporal
substitution by consumers when tomorow's price is expected to differ from today’s (inter-
temporal substitution might be particularly important for very short-run periods when the
fact that many production decisions are fixed can make prices very sensitive to demand shocks).

These weaknesses are not flaws in the competitive model per se, but rather only in the
somewhat extreme methodological simplification adopted here. A fully satisfactory treatment
of these issues requires an explicitly dynamic model that places expectations at center stage.
In Chapter 20 we study dynamic models of competitive markets in greater depth. Nevertheless,
this simple dichotomization into long-run and short-run periods of adjustment is often a useful
starting point for analysis.

Concluding Remarks on Partial
Equilibrium Analysis

In principle, the analysis of Pareto optimal outcomes and competitive equilibria
requires the simultaneous consideration of the entire economy (a task we undertake
in Part 1V). Partial equilibrium analysis can be thought of as facilitating matters on
two accounts. On the positive side, it allows us to determine the equilibrium outcome
in the particular market under study in isolation from all other markets. On the
normative side, it allows us to use Marshallian aggregate surplus as a welfare measure
that, in many cases of interest, has a very convenient representation in terms of the
area lying vertically between the aggregate demand and supply curves.

In the model considered in Sections 10.C to 10.F, the validity of both of these
simplifications rested, implicitly, on two premises: first, that the prices of all
commodities other than the one under consideration remain fixed; second, that there
are no wealth effects in the market under study. We devote this section to a few
additional interpretative comments regarding these assumptions. (See also Section
15.E for an example illustrating the limits of partial equilibrium analysis.)
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The assumption that the prices of goods other than the good under consideration
(say, good ¢) remain fixed is essential for limiting our positive and normative analysis
to a single market. In Section 10.B, we justified this assumption in terms of the market
for good ¢ being small and having a diffuse influence over the remaining markets.
However, this is not its only possible justification. For example, the nonsubstitution
theorem (see Appendix A of Chapter 5) implies that the prices of all other goods will
remain fixed if the numeraire is the only primary (ie., nonproduced) factor, all
produced goods other than ¢/ are produced under conditions of constant returns
using the numeraire and produced commodities other than ¢ as inputs, and there is
no joint production.*®

Even when we cannot assume that all other prices are fixed, however, 2
generalization of our single-market partial cquilibrium analysis is sometimes possible.
Often we are interested not in a single market but in a group of commodities that
are strongly interrelated either in consumers’ tastes (tea and coffec are the classic
examples) or in firms' technologies. In this case, studying one market at a time
while keeping other prices fixed is no longer a useful approach because what
matters is the simultaneous determination of all prices in the group. However, if the
prices of goods outside the group may be regarded as unaffected by changes within
the markets for this group of commodities, and if there are no wealth effects for
commodities in the group, then we can extend much of the analysis presented in
Sections 10.C to 10.F.

To this effect, suppose that the group is composed of M goods, and let x; e RY
and g;€ R™ be vectors of consumptions and productions for these M goods. Each
consumer has a utility function of the form

w(my, x;) = my + @i(x,),

where m, is the consumption of the numeraire commodity (i.e,, the total expenditure
on commodities outside the group). Firms' cost functions are c,(q;). With this
specification, many of the basic results of the previous sections go through unmodified
(often it is just a matter of reinterpreting x; and q; as vectors). In particular, the
results discussed in Section 10.C on the uniqueness of equilibrium and its independence
from initial endowments still hold (see Exercise 10.G.1), as do the welfare theorems
of Section 10.D. However, our ability to conduct welfare analysis using the areas lying
vertically between demand and supply curves becomes much more limited. The
cross-effects among markets with changing and interrelated prices cannot be

30. A simple example of this result arises when all produced goods other than ¢ are produced
directly from the numeraire with constant returns to scale. In this case, the equilibrium price of
each of these goods is equal to the amount of the numeraire that must be used as an input in its
production per unit of output produced. More generally, prices for produced goods other than ¢
will remain fixed under the conditions of the bstitution th b all efficient
production vectors can be generated using a single set of techniques. In any equilibrium, the price
of each produced good other than ¢ must be equal to the amount of the numeraire embodied in a
unit of the good in the efficient production technique, cither directly through the use of the numeraire
as an input or indirectly through the use as inputs of produced goods other than / that are in turn
produced using the numeraire (or using other produced goods that are themselves produced using
the numeraire, and so on).
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ignored.*! (Exercises 10.G.3 to 10.G.5 ask you to consider some issues related to this
point.)

The assumption of no wealth effects for good ¢, on the other hand, is critical for
the validity of the style of welfare analysis that we have carried out in this chapter.
Without it, as we shall see in Part IV, Pareto optimality cannot be determined
independently from the particular distribution of welfare sought, and we already
know from Section 3.1 that area measures calculated from Walrasian demand
functions are not generally correct measures of compensating or equivalent variations
(for which the Hicksian demand functions should be used). However, the assumption
of no wealth effects is much less critical for positive analysis (determination of
equilibrium, comparative statics effects, and so on). Even with wealth effects, the
demand-and-supply apparatus can still be quite helpful for the positive part of the
theory. The behavior of firms, for example, is not changed in any way. Consumers,
on the other hand, have a demand function that, with prices of the other goods
kept fixed, now depends only on the price for good ¢/ and wealth. If wealth is
determined from initial endowments and shareholdings, then we can view wealth as
itself a function of the price of good ¢ (recall that other prices are fixed), and so we
can again express demand as a function of this good’s price alone. Formally, the
analysis reduces to that presented in Section 10.C: The equilibrium in market £ can
be identified as an intersection point of demand and supply curves.’?

31. A case in which the single-market analysis for good / is still fully justified is when utility
and cost functions have the form

wi{my, X)) = my+ @) + o y(x2p )

and
g =ci(@r) + c_p 9.4 4),

where x_, ; and q., ; are consumption and production vectors for goods in the group other than
‘. With this additive separability in good 7, the markets for goods in the group other than ¢ do
not influence the equilibrium price in market /. Good ¢ is effectively independent of the group, and
we can treat it in isolation, as we have done in the previous sections. (In point of fact, we do not
even need to assume that the remaining markets in the group keep their prices fixed. What happens
in them is simply irrelevant for equilibrium and welfare analysis in the market for good ¢.) See
Exercise 10.G.2.

32. The presence of wealth effects can lead, however, to some interesting new phenomena on
t'he consur.ncr‘s side. One is the backward-bending demand curve, where demand for a good is
increasing in its price over some range. This can happen if consumers have endowments of good 7,
pccausc then an increase in its price increases consumers’ wealth and could lead to a net increase
in their demands for good /, even if it is a normal good.
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EXERCISES

10.B.1* The concept defined in Definition 10.B.2 is sometimes known as strong Par‘elo
efficiency. An outcome is weakly Pareto efficient if there is no alternative feasible allocation
that makes all individuals strictly better off.

(a) Argue that if an outcome is strongly Pareto efficient, then it is weakly Pareto efficient
as well.

(b) Show that if all consumers’ preferences are continuous and strongly monotone, then
these two notions of Pareto efficiency are equivalent for any interior outcome (i.e., an outcome
in which each consumer’s consumption lies in the interior of his consumption set). Assume
for simplicity that X; = R% for all i.

(c) Construct an example where the two notions are not equivalent. Why is the strong
monotonicily assumption important in (b)? What about interiority?

10.B.2* Show that if allocation (x%,..., xf, y%, ..., y¥) and price vector p* » 0 constitute a
competitive equilibrium, then allocation (x},...,xf, yt.... ,¥%) and price vector ap* also
constitute a competitive equilibrium for any scalar a > 0.

10.C.1% Suppose that consumer i's preferences can be represented by the utility function
u(x,i- - -» X)) = 3, 10g (x,;) (these are Cobb-Douglas preferences).

(a) Derive his demand for good /. What is the wealth effect?

(b) Now consider a sequence of situations in which we proportionately increase both the
number of goods and the consumer's wealth. What happens to the weaith effect in the limit?

10.C.2% Consider the two-good quasilinear model presented in Section 10.C with one
consumer and one firm (so that / = 1 and J = 1). The initial endowment of the numeraire is
w,, > 0, and the initial endowment of good ¢ is 0. Let the consumer’s quasilinear utility function
be ¢(x) + m, where ¢(x) = « + f1In x for some (x, f) » 0. Also, let the firm’s cost function be
() = aq for some scalar ¢ > 0. Assume that the consumer receives all the profits of the firm.
Both the firm and the consumer act as price takers. Normalize the price of good mt to equal
1, and denote the price of good ¢ by p.
(a) Derive the consumer’s and the firm's first-order conditions.

(b) Derive the competitive equilibrium price and output of good /. How do these vary
with %, #, and ¢?

10.C.3% Consider a central authority who operates J firms with differentiable convex cost
functions ¢;(q;) for producing good ¢ from the numeraire. Define C(q) to be the central
authority’s minimized cost level for producing aggregate quantity q; that is
J
Clg) = Min z c;(4;)

[LITEEeN Wwzo  j=1
J
st. Y. q;24
i=1

(a) Derive the first-order conditions for this cost-minimization problem.

(b) Show that at the cost-minimizing production allocation ..., q3) C'(q) = ci(q})
for all j with g¢ > 0 (i, the central authority’s marginal cost at aggregatc output .level q
equals each firm's marginal cost level at the optimal production allocation for producing ¢).

(c) Show that if firms all maximize profit facing output price p = C'(g) (with the price of
the numeraire equal to 1), then the consequent output choices result in an aggregate output
of ¢. Conclude that C’(-) is the inverse of the industry supply function g(*).
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10.C.4® Consider a central authority who has x units of good ¢ to allocate among I consumers,
each of whom has a quasilinear utility function of the form ¢;(x;) + m;, with ¢,(-) a
differentiable, increasing, and strictly concave function. The central authority allocates good
¢ to maximize the sum of consumers’ utilities 3, u;.

(a) Set up the central authority’s problem and derive its first-order condition.

(b) Let y(x) be the value function of the central authority’s problem, and let P(x) = y'(x)
be its derivative. Show that if (x},..., x}) is the optimal allocation of good ¢ given available
quantity x, then P(x) = ¢;(x}) for all i with x} > 0.

(c) Argue that if all consumers maximize utility facing a price for good ¢ of P(x) (with the
price of the numeraire equal to 1), then the aggregate demand for good ¢ is exactly x. Conclude
that P(:) is, in fact, the inverse of the aggregate demand function x(-).

10.C.5% Derive the differential change in the equilibrium price in response to a differential
change in the tax in Example 10.C.1 by applying the implicit function theorem to the system
of equations (10.C.4) to (10.C.6).

10.C.6"* A tax is to be levied on a commodity bought and sold in a competitive market.
Two possible forms of tax may be used: In one case, a specific tax is levied, where an amount
¢ is paid per unit bought or sold (this is the case considered in the text); in the other case, an
ad valorem 1ax is levied, where the government collects a tax equal to t times the amount the
seller receives from the buyer. Assume that a partial equilibrium approach is valid.

(a) Show that, with a specific tax, the ultimate cost of the good to consumers and the
amounts purchased are independent of whether the consumers or the producers pay the tax.

(b) Show that this is not generally true with an ad valorem tax. In this case, which collection
method leads to a higher cost to consumers? Are there special cases in which the collection
method is irrelevant with an ad valorem tax?

10.C.7% An ad valorem tax of t (seec Exercise 10.C.6 for a definition) is to be levied on
consumers in a competitive market with aggregate demand curve x(p) = Ap", where 4 >0
and £ <0, and aggregate supply curve g(p) = ap’, where a > 0 and y > 0. Calculate the
percentage change in consumer cost and producer receipts per unit sold for a small
(“marginal”) tax. Denote x = (1 + 7). Assume that a partial equilibrium approach is valid.

Compute the elasticity of the equilibrium price with respect to x. Argue that when y =0
producers bear the full effect of the tax while consumers' total costs of purchase are unaffected,
and that when ¢ = 0 it is consumers who bear the full burden of the tax. What happens when
each of these elasticities approaches oo in absolute value?

10.C.8" Suppose that there are J firms producing good ¢, cach with a differentiable cost
function c(q, 2) that is strictly convex in g, where « is an exogenous parameter that affects
costs (it could be a technological parameter or an input price). Assume that dc(q, a)/da > 0.
The diflerentiable aggregate demand function for good ¢ is x(p), with x'(-) < 0. Assume that
partial equilibrium analysis is justified.

Let g*(a) be the per firm output and p*(x) be the equilibrium price in the competitive
equilibrium given a.

(a) Derive the marginal change in a firm's profits with respect to a.

(b) Give the weakest possible sufficient condition, stated in terms of marginal and average
costs and/or their derivatives, that guarantees that if a increases marginally, then firms’
equilibrium profits decline for any demand function x(+) having x(-) < 0. Show that if this
condition is not satisfied, then there are demand functions such that profits increase when
increases.
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(c) In the case where a is the price of factor input , interpret the condition in (b) in terms
of the conditional factor demand for input k.

10.C.9% Suppose that in a partial equilibrium context there are J identical firms that produce
good ¢ with cost function c(w, g), where w is a vector of factor input prices. Show that an
increase in the price of factor k, w,, lowers the equilibrium price of good ¢ if and only if factor
k is an inferior factor, that s, if at fixed input prices, the use of factor k is decreasing in a firm's
output level.

10.C.10® Consider a market with demand curve x(p) = ap® and with J firms, each of which
has marginal cost function c'(g) = Bg", where («, , 1) » 0 and ¢ < 0. Calculate the competitive
equilibrium price and output levels. Examine the comparative statics change in these variables
as a result of changes in « and B. How are these changes aflected by  and #?

10.C.11® Assume that partial equilibrium analysis is valid. Suppose that firms 1 and 2
are producing a positive level of output in a competitive equilibrium. The cost function for
firm j is given by c(g, a;), where a; is an exogenous technological parameter. If «, differs from
a, marginally, what is the difference in the two firms’ profits?

10.D.1® Prove that under the assumptions that the ¢,() functions are strictly concave and
the cost functions c/-) are convex, the optimal individual consumption levels of good ¢ in
problem (10.D.2) are uniquely defined. Conclude that the optimal aggregate production level
of good ¢ is therefore also uniquely defined. Show that if the cost functions ¢/(-) are strictly
convex, then the optimal individual production levels of good ¢ in problem (10.D.2) are also
uniquely defined.

10.D.2® Determine the optimal consumption and production levels of good ¢ for the economy
described in Exercise 10.C.2. Compare these with the equilibrium levels you identified in that
exercise.

10.D.38 In the context of the two-good quasilincar economy studied in Section 10.D, show
that any allocation that is a solution to problem (10.D.6) is Pareto optimal and that any
Pareto optimal allocation is a solution to problem (10.D.6) for some choice of utility levels
(g, ..., ;).

10.D.4® Derive the first-order conditions for problem (10.D.6) and compare them with
conditions (10.D.3) to (10.D.5).

10.E.1€ Suppose that J, > 0 of the firms that produce good £ are domestic firms, and J, > 0
are foreign firms. All domestic firms have the same convex cost function for producing good
¢, c,(q;). All foreign firms have the same convex cost function c¢,(g;). Assume that partial
equilibrium analysis is valid.

The government of the domestic country is considering imposing a per-unit tariff of t on
imports of good /. The government wants to maximize domestic welfare as measured by the
domestic Marshallian surplus (i.e., the sum of domestic consumers’ utilities iess domestic firms’
costs).

(a) Show that if c,(-) is strictly convex, then imposition of a small tariff raises domestic
welfare.

(b) Show that if ¢,(-) exhibits constant returns to scale, then imposition of a small tariff
lowers domestic welfare.

10.E2® Consumer surplus when consumers face effective price § can be written as

CS(p) = (57 [P(s) — p ds.
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Prove by means of a change of variables and integration by parts that this integral is equal
to L’," x(5) ds.

10.E.3€ (Ramsey tax problem) Consider a fully separable quasilinear model with L goods in
which cach consumer has preferences of the form u;(x;) = x,; + 3., ¢,(x,;) and each good
2,.... L is produced with constant returns 1o scale from good 1, using ¢, units of good 1 per
unit of good ¢ produced. Assume that consumers initially hold endowments only of the
numeraire, good 1. Hence, consumers are net sellers of good 1 to the firms and net purchasers
of goods 2,..., L.

In this setting, consumer i's demand for each good ¢ # 1 can be written in the form x(p/)
so that demand for good ¢ is independent of the consumer's wealth and all other prices, and
welfare can be measured by the sum of the Marshallian aggregate surpluses in the L — 1
markets for nonnumeraire commodities (see Section 10.G and Exercise 10.G.2 for more
on this).

Suppose that the government must raise R units of good 1 through (specific) commodity
taxes. Note, in particular, that such taxes involve taxing a transaction of a good, not an
individual’s consumption level of that good.

Let 1, denote the tax to be paid by a consumer in units of good 1 for each unit of good
¢ # I purchased, and let 1, be the tax in units of good 1 to be paid by consumers for each
unit of good 1 sold to a firm. Normalize the price paid by firms for good 1 to equal 1. Under
our assumptions, each choice of t = (1,,..., ) results in a consumer paying a total of ¢, + t,
per unit of good / # 1 purchased and having to part with (1 + t;) units of good 1 for each
unit of good 1 sold to a firm.

(a) Consider two possible tax vectors t and r’. Show that if ¢ is such that (c, + 1) =
alc, + 1) and (1 + 1}) = (1/a)(1 + t,) for some scalar a > 0, then the two sets of taxes raise
the same revenue. Conclude from this fact that the government can restrict attention to tax
vectors that leave one good untaxed.

(b) Let good 1 be the untaxed good (i.e., set t, = 0). Derive conditions describing the taxes
lh.al. should be set on goods 2,..., L if the government wishes to minimize the welfare loss
arising from this taxation. Express this formula in terms of the elasticity of demand for each
good.

() Under what circumstances should the tax rate on all goods be equai? In general, which
goods should have higher tax rates? When would taxing only good 1 be optimal?

10.F.1* Show that if ¢(g) is strictly convex in g and ¢(0) = 0, then n(p) > 0 if and only if
p>c'(0).

10.F.2% Consider a market with demand function x(p) = A ~ Bp in which every potential firm
has cost function c(q) = K + aq + Bq?, where 2 > 0 and g > 0.

(a) Calculate the long-run competitive equilibrium price, output per firm, aggregate
output, and number of firms. Ignore the integer constraint on the number of firms. How does
each of these vary with 4?

(b) Now examine the short-run competitive equilibrium response to a change in A starting
from the fong-run equilibrium you identified in (a). How does the change in price depend on
the level of 4 in the initial equilibrium? What happens as 4 — c0? What accounts for this
effect of market size?

10.F.3% (D. Pearce) Consider a partial equilibrium setting in which each (potential) firm has
a long-run cost function c(-), where ¢(q) = K + ¢(q) for q >0 and ¢(0) = 0. Assume that
#'(q) > 0 and ¢"(q) < 0, and denote the firm's efficient scale by 4. Suppose that there is initially
a long-run equilibrium with J* firms. The government considers imposing two different types
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of taxes: The first is an ad valorem tax of t (see Exercise 10.C.6) on sales of the good. The
second is a tax T that must be paid by any operating firm (where a firm is considered to be
“operating™ if it sells a positive amount). If the two taxes would raise an equal amount of
revenue with the initial level of sales and number of firms, which will raise more after the
industry adjusts to a new long-run equilibrium? (You should ignore the integer constraint on
the number of firms.)

10.F.4% (J. Panzar) Assume that partial equilibrium analysis is valid. The single-output,
many-input technology for producing good ¢ has a differentiable cost function c(w, q), where
w=(w,,..., wg) is a vector of factor input prices and g is the firm's output of good /. Given
factor prices w, let (w) denote the firm’s efficient scale. Assume that §(w) > 0 for all w. Also
let p#(w) denote the long-run equilibrium price of good ¢ when factor prices are w. Show that
the function p}(w) is nondecreasing, homogeneous of degree one, and concave. (You should
ignore the integer constraint on the number of firms.)

10.F.5C Suppose that there are J firms that can produce good ¢ from K factor inputs with
differentiable cost function c(w, q). Assume that this function is strictly convex in q. The
differentiable aggregate demand function for good ¢ is x(p, a), where dx(p, a)/op < 0 and
dx(p, a)/da > O (x is an exogenous parameter affecting demand). However, although c(w, g) is
the cost function when all factors can be freely adjusted, factor k cannot be adjusted in the
short run.

Suppose that we are initially at an equilibrium in which all inputs are optimally adjusted
to the equilibrium level of output ¢* and factor prices w so that, letting z,(w, q) denote a
firm's conditional factor demand for input k when all inputs can be adjusted, z§ = z,(w, ¢*).

(2) Show that a firm's equilibrium response 1o an increase in the price of good ¢ is larger
in the long run than in the short run.

(b) Show that this implies that the long-run equilibrium response of p, to a marginal
increase in « is smaller than the short-run response. Show that the reverse is true for the
response of the equilibrium aggregate consumption of good ¢ (hold the number of firms equal
to J in both the short run and long run).

10.F.6® Suppose that the technology for producing a good uses capital (z,) and labor (z,)
and takes the Cobb-Douglas form f(z;, z;) = 2{z} ™%, where a & (0, 1). In the long run, both
factors can be adjusted; but in the short run, the use of capital is fixed. The industry demand
function takes the form x(p) = a — bp. The vector of input prices is (w,, w;). Find the long-run
equilibrium price and aggregate quantity. Holding the number of firms and the level of capital
fixed at their long-run equilibrium levels, what is the short-run industry supply function?

10.F.7® Consider a case where in the short run active firms can increase their use of a factor
but cannot decrease it. Show that the short-run cost curve will exhibit a kink (ie., be
nondifferentiable) at the current (long-run) equilibrium. Analyze the implications of this fact
for the relative variability of short-run prices and quantities.

10.G.1® Consider the case of an interrelated group of M commodities. Let consumer i's utility
function take the form u(x,, ..., Xpu) = M + §i(X 14 . . ., Xp;)- Assume that ¢(-) is differen-
tiable and strictly concave. Let firm j’s cost function be the differentiable convex function
[FICIVSION ) 8

Normalize the price of the numeraire to be 1. Derive (I + J + 1)M equations characterizing
the (/ +J + 1)M equilibrium quantities (x§,...,x%) for i=1,...,1, (gfs....q%;) for
j=1,...,J,and (p%,..., pk). [Hint: Derive consumers’ and firms’ first-order conditions and
the M — | market-clearing conditions in parallel to our analysis of the single-market case.}
Argue that the equilibrium prices and quantities of these M goods are independent of
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consumers’ wealths, that equilibrium individual consumptions and aggregate production levels
are unique, and that if the ¢;(*) functions are strictly convex, then equilibrium individual
production levels are also unique.

10.G.2¥ Consider the case in which the functions ¢;(*) and ¢;(-) in Exercise 10.G.1 are
separable in good ¢ (one of the goods in the group): ¢,(*) = $,(x,) + ¢, (x-,,;) and
ci(*)=¢,;(4,;) + c-; (-, ;). Argue that in this case, the equilibrium price, consumption, and
production of good / can be determined independently of other goods in the group. Also
argue that under the same assumptions as in the single-market case studied in Section 10.E,
changes in wellare caused by changes in the market for this good can be captured by the
Marshallian aggregate surplus for this good, T, ¢/i(x,) — T, ¢¢;(4,;), which can be represented
in terms of the areas lying vertically between the demand and supply curves for good ¢. Note
the implication of these results for the case in which we have separability of all goods:

(") =2, ¢silx,;) and () = s ¢, (40)-

10.G.3% Consider a three-good economy (¢ = 1, 2, 3) in which every consumer has preferences
that can be described by the utility function u(x) = x, + ¢(x,, x3) and there is a single
production process that produces goods 2 and 3 from good 1 having ¢(q,, 4;) = ¢24; + ¢34;.
Suppose that we are considering a tax change in only a single market, say market 2.

(a) Show that if the price in market 3 is undistorted (ie., if t; = 0), then the change in
aggregate surplus caused by the tax change can be captured solely through the change in the
area lying vertically between market 2's demand and supply curves holding the price of good
3 at its initial level.

(b) Show that if market 3 is initially distorted because ¢y > 0, then by using only the
single-market measure in (a), we would overstate the decrease in aggregate surplus if good 3
is a substitute for good 2 and would understate it if good 3 is a complement. Provide an
intuitive explanation of this result. What is the correct measure of welfare change?

10.G.4* Consider a three-good economy (¢ = 1, 2, 3) in which every consumer has preferences
that can be described by the utility function u(x) = x, + ¢(x,, x,) and there is a single
production process that produces goods 2 and 3 from good 1 having c(g;, q;) = ¢4 + ¢34
Derive an expression for the welfare loss from an increase in the tax rates on both goods.

10.G.58 Consider a three-good economy (¢ = 1, 2, 3) in which every consumer has preferences
that can be described by the utility function u(x) = x, + ¢(x,, x3) and there is a single
production process that produces goods 2 and 3 from good 1 having &(q,, §;) = ¢2(4,) + ¢3(4s),
where ¢,(*) and c,(*) are strictly increasing and strictly convex.

(a) 1f goods 2 and 3 are substitutes, what effect does an increase in the tax on good 2 have
on the price paid by consumers for good 3? What if they are complements?

(b) What is the bias from applying the formula for welfare loss you derived in part (b) of
Exercise 10.G.3 using the price paid by consumers for good 3 prior to the tax change in both
the case of substitutes and that of complements?




CHAPTEHR

Externalities and Public Goods

11.A Introduction

In Chapter 10, we saw a close connection between competitive, price-taking equilibria
and Pareto optimality (or, Pareto efficiency).! The first welfare theorem tells us that
competitive equilibria are necessarily Pareto optimal. From the second welfare
theorem, we know that under suitable convexity hypotheses, any Pareto optimal
allocation can be achieved as a competitive allocation after an appropriate lJump-sum
redistribution of wealth. Under the assumptions of these theorems, the possibilities
for welfare-enhancing intervention in the marketplace are strictly limited to the
carrying out of wealth transfers for the purposes of achieving distributional aims.

With this chapter, we begin our study of market failures: situations in which some
of the assumptions of the welfare theorems do not hold and in which, as a
consequence, market equilibria cannot be relied on to yield Pareto optimal outcomes.
In this chapter, we study two types of market failure, known as externalities and
public goods.

In Chapter 10, we assumed that the preferences of a consumer were defined solely
over the set of goods that she might herself decide to consume. Similarly, the
production of a firm depended only on its own input choices. In reality, however, a
consumer or firm may in some circumstances be directly affected by the actions of
other agents in the economy; that is, there may be external effects from the activities
of other consumers or firms. For example, the consumption by consumer i's neighbor
of loud music at three in the morning may prevent her from sleeping. Likewise, a
fishery's catch may be impaired by the discharges of an upstream chemical plant.
Incorporating these concerns into our preference and technology formalism is, in
principle, a simple matter: We need only define an agent's preferences or production
set over both her own actions and those of the agent creating the external effect. But
the effect on market equilibrium is significant: In general, when external effects are
present, competitive equilibria are not Pareto optimal.

Public goods, as the name suggests, are commodities that have an inherently
“public” character, in that consumption of a unit of the good by one agent does not
preclude its consumption by another. Examples abound: Roadways, national defense,

1. See also Chapter 16.
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flood-control projects, and knowledge all share this characteristic. The private
provision of public goods generates a special type of externality: if one individual
provides a unit of a public good, all individuals benefit. As a result, private provision
of public goods is typically Pareto inefficient.

We begin our investigation of externalities and public goods in Section 11.B by
considering the simplest possible externality: one that involves only two agents in
the economy, where one of the agents engages in an activity that directly affects the
other. In this setting, we illustrate the inefficiency of competitive equilibria when an
externality is present. We then go on to consider three traditional solutions to this
problem: quotas, taxes, and the fostering of decentralized bargaining over the extent
of the externality. The last of these possibilities also suggests a connection between
the presence of externalities and the nonexistence of certain commodity markets, a
topic that we explore in some detail.

In Section 11.C, we study public goods. We first derive a condition that
characterizes the optimal level of a public good and we then illustrate the inefficiency
resulting from private provision. This Pareto inefficiency can be seen as arising from
an externality among the consumers of the good, which in this context is known as
the free-rider problem. We also discuss possible solutions to this free-rider problem.
Both quantity-based intervention (here, direct governmental provision) and price-
based intervention (taxes and subsidies) can, in principle, correct it. In contrast,
decentralized bargaining and competitive market-based solutions are unlikely to be
viable in the context of public goods.

In Section 11.D, we return to the analysis of externalities. We study cases in which
many agents both produce and are affected by the externality. Multilateral externalities
can be classified according to whether the externality is depletable (or private or
rivalrous) or nondepletable (or public or nonrivalrous). We argue that market
solutions are likely to work well in the former set of cases but poorly in the latter,
where the externality possesses the characteristics of a public good (or bad). Indeed,
this may well explain why most externalities that are regarded as serious social
problems (e.g., water pollution, acid rain, congestion) take the form of nondepletable
multilateral externalities.

In Section 11.E, we examine another problem that may arise in these settings:
Individuals may have privately held information about the effects of externalities
on their well-being. We see there that this type of informational asymmetry may
confound both private and government efforts to achieve optimal outcomes.

In Appendix A, we study the connection between externalities and the presence
of technological nonconvexities, and we examine the implications of these nonconvexi-
ties for our analysis.

The literature on externalities and public goods is voluminous. Useful introduc-
tions and further references to these subjects may be found in Baumol and Oates
(1988) and Laffont (1988).

A Simple Bilateral Externality

Surprisingly, perhaps, a fully satisfying definition of an externality has proved
somewhat elusive. Nevertheless, informal Definition 11.B.1 provides a serviceable
point of departure.
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Definition 11.B.1; An externality is present whenever the weli-being of a consumer or

the production possibilities of a firm are directly affected by the actions of another
agent in the economy.

Simple as Definition 11.B.1 sounds, it contains a subtle point that has been a
source of some confusion. When we say “directly,” we mean to exclude any effects
that are mediated by prices. That is, an externality is present if, say, a fishery’s
productivity is affected by the emissions from a nearby oil refinery, but not simply
because the fishery’s profitability is affected by the price of oil (which, in turn, is to
some degree affected by the oil refinery’s output of oil). The latter type of effect
{referred to as a pecuniary externality by Viner (1931)] is present in any competitive
market but, as we saw in Chapter 10, creates no inefficiency. Indeed, with price-taking
behavior, the market is precisely the mechanism that guarantees a Pareto optimal
outcome. This suggests that the presence of an externality is not merely a technological
phenomenon but also a function of the set of markets in existence. We return to this
point later in the section.

In the remainder of this section, we explore the implications of external effects
for competitive equilibria and public policy in the context of a very simple two-agent,
partial equilibrium model. We consider two consumers, indexed by i = 1,2, who
constitute a small part of the overall economy. In line with this interpretation, we
suppose that the actions of these consumers do not affect the prices p e R” of the L
traded goods in the economy. At these prices, consumer i's wealth is w;.

In contrast with the standard competitive model, however, we assume that each
consumer has preferences not only over her consumption of the L traded goods
(X,a- .., X1;) but also over some action h € R, taken by consumer 1. Thus, consumer
i’s (differentiable) utility function takes the form u;(xy; ..., Xy, h), and we assume
that duy(X,, . - . » Xy, h)/6h # 0. Because consumer 1's choice of h affects consumer
2’s well-being, it generates an externality. For example, the two consumers may live
next door to each other, and h may be a measure of how loudly consumer 1 plays
music. Or the consumers may live on a river, with consumer 1 further upstream. In
this case, h could represent the amount of pollution put into the river by consumer
1; more pollution lowers consumer 2's enjoyment of the river. We should hasten to
add that external effects need not be detrimental to those affected by them. Action
h could, for example, be consumer I's beautification of her property, which her
neighbor, consumer 2, also gets to enjoy.?

In what follows, it will be convenient to define for each consumer i a derived
utility function over the level of h, assuming optimal commodity purchases by
consumer i at prices p € R” and wealth w;:

v,(p, wi, h) = Max  u;(x;, h)
x 20

stopox; < wp.

For expositional purposes, we shall also assume that the consumers’ utility functions

2. Anexternality favorable to the recipient is usually called a positive externality, and conversely
for a negative externality.

SECTION 11.B: A SIMPLE BILATERAL

EXTERNALITY

353

take a quasilinear form with respect to a numeraire commodity (we comment below,
in small type, on the simplifications afforded by this assumption). In this case, we
can write the derived utility function v,(*) as v,(p, w;, h) = ¢;(p, h) + w,.? Since prices
of the L traded goods are assumed to be unaffected by any of the changes we are
considering, we shall suppress the price vector p and simply write ¢;(h). We assume
that ¢;(-) is twice differentiable with ¢?(-) <0. Be warned, however, that the
concavity assumption is less innocent than it looks: see Appendix A for further
discussion of this point.

Although we shall speak in terms of this consumer interpretation, everything we
do here applies equally well to the case in which the two agents are firms (or, for
that matter, one firm and one consumer). For example, we could consider a firm j
that has a derived profit function 7;(p, h) over h given prices p. Suppressing the price
vector p, the firm’s profit can be written as n;(h), which plays the same role as the
function ¢.(h) in the analysis that follows.

Nonoptimality of the Competitive Qutcome

Suppose that we are at a competitive equilibrium in which commodity prices are p.
That is, at the equilibrium position, each of the two consumers maximizes her utility
limited only by her wealth and the prices p of the traded goods. It must therefore
be the case that consumer 1 chooses her level of h > 0 to maximize ¢,(h). Thus, the
equilibrium level of h, h*, satisfies the necessary and sufficient first-order condition

$1(h*) <0, with equality if h* > 0. (11.B.1)

For an interior solution, we therefore have ¢j(h*) = 0.
In contrast, in any Pareto optimal alfocation, the optimal level of h, h°, must
maximize the joint surplus of the two consumers, and so must solve*

Max  ¢,(h) + é,(h).
h>0

This problem gives us the necessary and sufficient first-order condition for A° of
¢1(h°) < — ¢5(h°), with equality if h° > 0. (11.B.2)
Hence, for an interior solution to the Pareto optimality problem, ¢;(h°) = — ¢3(h°).
When external effects are present, so that ¢(h) 0 at all h, the equilibrium level

of h is? not. optimal unless h° = h* = 0. Consider, for example, the case in which we
have interior solutions, that is, where (h*, h°) » 0. If ¢5() < 0, so that & generates

3. Indeed, suppose that w;(x,, h) = g,(x_,;, h) + x,;, where x_,, is consumer i's consumption

of traded goods other than good 1. Then, the consumer's Walrasian demand function for these
L -1 traded goods, x_,(*), is independent of her wealth, and v,(p, w;, h) = gi{x_,.(p, h), h) —
p'x.,“(p. h) + w;. Thus, denoting ¢,(p, h) = g,(x _,,(p. 1), h) — px_,p, h), we have o‘blainod the
desired form.
) 4. Recalt the reasoning of Sections 10.D and 10.E, or note that at any Pareto optimal allocation
in which h° is the level of h and w, is consumer i’s wealth level for i = 1,2, it must be impossible
to change h and reallocate wealth so as to make one consumer better off without making the other
v_vorse off. Thus, (4°, 0) must solve Max, ; ¢,(h) + w, — T subject to ¢,(h) + w; + T > i,, for some
;. Because the constraint holds with equality in any solution to this problem, substituting from
the constraint for T in the objective function shows that A° must maximize the joint surplus of the
two consumers @, (h} + ¢4(h).

-




354

CHAPTER 11:

EXTERNALITIES AND PUBLIC GOODS

=3tk

=Y

7 A"
o

AN
$y(h)

a negative externality, then we have ¢1(h°) = —$5(h°) > 0; because ¢4(+) is decreasing
and ¢)(h*) = 0, this implies that #* > h°. In contrast, when ¢5(-) > 0, h represents
a positive externality, and ¢j(h°) = —$3(h°) < 0 implies that h* < h°.

Figure 11.B.1 depicts the solution for a case in which h constitutes a negative
external effect, so that ¢5(k) < 0 at all h. In the figure, we graph ¢}(") and —¢3()
The competitive equilibrium level of the externality h* occurs at the point where the
graph of ¢/(+) crosses the horizontal axis. In contrast, the optimal externality level
k® corresponds to the point of intersection between the graphs of the two functions.

Note that optimality does not usually entail the complete elimination of a negative
externality. Rather, the externality’s level is adjusted to the point where the
marginal benefit to consumer 1 of an additional unit of the externality-generating
activity, ¢}(k°), equals its marginal cost to consumer 2, —@5(h°).

In the current example, quasilinear utilities lead the optimal level of the externality to be
independent of the consumers’ wealth levels. In the absence of quasilinearity, however, wealth
effects for the consumption of the externality make its optimal level depend on the consumers’
wealths. See Exercise 11.B.2 for an illustration. Note, however, that when the agents under
consideration are firms, wealth effects are always absent.

Traditional Solutions to the Externality Problem

Having identified the inefficiency of the competitive market outcome in the presence
of an externality, we now consider three possible solutions to the problem. We
first look at government-implemented quotas and taxes, and then analyze the
possibility that an efficient outcome can be achieved in a2 much less intrusive manner
by simply fostering bargaining between the consumers over the extent of the externality.

Quotas and taxes
To fix ideas, suppose that h generates a negative external effect, so that h° < h*. The
most direct sort of government intervention to achieve efficiency is the direct control
of the externality-generating activity itself. The government can simply mandate that
h be no larger than °, its optimal level. With this constraint, consumer 1 will indeed
fix the level of the externality at h°

A second option is for the government to attempt to restore optimality by
imposing a tax on the externality-generating activity. This solution is known as

Figure 11.B.1

The equilibrium (hs)
and optimal (h°) leyey
of a negative
externality.
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Pigouvian taxation, after Pigou (1932). To this effect, suppose that consumer 1 is
made to pay a tax of 1, per unit of h. It is then not difficult to see that a tax of

th= —3(h°) > 0

will implement the optimal level of the externality. Indeed, consumer 1 will then
choose the level of h that solves

Max  ¢(h) — t,h, (11.B.3)
hz0
which has the necessary and sufficient first-order condition
¢y(h) <t,, with equality if h > 0. (11.B.4)

Given t, = —¢5(h°), h = h° satisfies condition (11.B.4) [recall that h° is defined by
the condition: ¢1(h°) < —¢3(h°), with equality if h° > 0]. Moreover, given ¢7(+) < 0,
h° must be the unique solution to problem (11.B.3). Figure 11.B.2 illustrates this
solution for a case in which h° > 0.

Note that the optimality-restoring tax is exactly equal to the marginal externality
at the optimal solution.® That is, it is exactly equal to the amount that consumer 2
would be willing to pay to reduce h slightly from its optimal level h°. When faced
with this tax, consumer 1 is effectively led to carry out an individual cost-benefit
computation that internalizes the externality that she imposes on consumer 2,

The principles for the case of a positive externality are exactly the same, only
now when we set t, = —¢3(h°) <0, ¢, takes the form of a per-unit subsidy (ie.,
consumer | receives a payment for each unit of the externality she generates).

Several additional points are worth noting about this Pigouvian solution. First,
we can actually achieve optimality either by taxing the externality or by subsidizing
its reduction. Consider, for example, the case of a negative externality. Suppose the
government pays a subsidy of s, = —@5(h°) > 0 for every unit that consumer 1's
choice of h is below h*, its level in the competitive equilibrium. If so, then consumer
1| will maximize ¢,(h) + s,(h* — h) = ¢,(h) — t,h + t,h*. But this is equivalent to a
tax of ¢, per unit on h combined with a lump-sum payment of t,h*. Hence, a subsidy
for the reduction of the externality combined with a lump-sum transfer can exactly
replicate the outcome of the tax,

Second, a point implicit in the derivation above is that, in general, it is essential

5. In the case where h° = 0, any tax greater than — ¢'(0) also implements the optimal outcome.

Figure 11.B.2

The optimality-
restoring Pigouvian
tax.
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to tax the externality-producing activity directly. For instance, suppose that, in the
example of consumer 1 playing loud music, we tax purchases of music equipment
instead of taxing the playing of loud music itself. In general, this will not restore
optimality. Consumer | will be led to lower her consumption of music equipment
(perbaps she will purchase only a CD player, rather than a CD player and a tape
player) but may nevertheless play whatever equipment she does purchase too loudly.
A common example of this sort arises when a firm pollutes in the process of
producing output. A tax on its output leads the firm to reduce its output level but
may not have any effect (or, more generally, may have too little effect) on its pollution
emissions. Taxing output achieves optimality only in the special case in which
emissions bear a fixed monotonic relationship to the level of output. In this special
case, emissions can be measured by the level of output, and a tax on output is
essentially equivalent to a tax on emissions. (See Exercise 11.B.5 for an illustration.)

Third, note that the tax/subsidy and the quota approaches are equally eflective
in achieving an optimal outcome. However, the government must have a great deal
of information about the benefits and costs of the externality for the two consumers
to set the optimal levels of either the quota or the tax. In Section 11.E we will see
that when the government does not possess this information the two approaches
typically are not equivalent.

Fostering bargaining over externalities: enforceable property rights

Another approach to the externality problem aims at a less intrusive form of
intervention, merely seeking to insure that conditions are met for the parties to
themselves reach an optimal agreement on the level of the externality.

Suppose that we establish enforceable property rights with regard to the
externality-generating activity. Say, for example, that we assign the right to an
“externality-free” environment to consumer 2. In this case, consumer 1| is unable to
engage in the externality-producing activity without consumer 2's permission. For
simplicity, imagine that the bargaining between the parties takes a form in which
consumer 2 makes consumer 1 a take-it-or-leave-it offer, demanding a payment of
T in return for permission to generate externality level h.% Consumer 1 will agree to
this demand if and only if she will be at least as well off as she would be by rejecting
it, that is, if and only if ¢,(h) — T = ¢,(0). Hence, consumer 2 will choose her offer
(h, T) to solve

Max ¢,(h+ T

hzo0.T
st. ¢, (h) — T2 ¢,(0).

Since the constraint is binding in any solution to this problem, T' = ¢,(h) — ¢,(0).
Therefore, consumer 2’s optimal offer involves the level of i that solves

Max  ¢;(h) + ¢,(h) — ¢,(0). (11.B.5)
h20

But this is precisely h°, the socially optimal level.
Note, moreover, that the precise allocation of these rights between the two

6. Either of the bargaining processes discussed in Appendix A of Chapter 9 would yield the
same conclusions.
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consumers is inessential to the achievement of optimality. Suppose, for example, that
consumer | instead has the right to generate as much of the externality as she wants.
In this case, in the absence of any agreement, consumer 1 will generate externality
level h*. Now consumer 2 will need to offer a T < 0 (i.e., to pay consumer 1) to have
h < h*. In particular, consumer | will agree to externality level h if and only if
¢(h) — T = ¢,(h*). As a consequence, consumer 2 will offer to set h at the level that
solves Max, o (9:(h) + ¢,(h) — ¢,(h*)). Once again, the optimal externality level
h° results. The allocation of rights affects only the final wealth of the two consumers
by altering the payment made by consumer ! to consumer 2. In the first case,
consumer | pays ¢,(h°) — ¢,(0) > 0 to be allowed to set h° > 0; in the second, she
“pays” ¢,(h°) — ¢,(h*) < 0 in return for setting h° < h*,

We have here an instance of what is known as the Coase theorem [for Coase
(1960)]: If trade of the externality can occur, then bargaining will lead to an efficient
outcome no matter how property rights are allocated.

All this is illustrated in Figure 11.B.3, in which we represent the utility possibility
set for the two consumers. Every point in the boundary of this set corresponds to
an allocation with externality level h°. The points a and b correspond to the utility
levels arising, respectively, from externality levels O and h* in the absence of any
transfers. They constitute the initial situation after the assignment of property rights
(to consumers 2 and 1, respectively) but before bargaining. In the particular
bargaining procedure we have adopted (which gives the power to make a take-it-or-
leave-it offer to consumer 2), the utility levels after bargaining are points f and
e, respectively. If the bargaining power (i.c., the power to make the take-it-or-leave-it
offer) had been instead in the hands of consumer 1, the post-bargaining utility
levels would have been points d and ¢, respectively. Other bargaining procedures
(such as the ones studied in Appendix A of Chapter 9) may yield other points in the
segments [ f, d] and [e, c], respectively.

Note that the existence of both well-defined and enforceable property rights is
essential for this type of bargaining to occur. If property rights are not well defined,
it will be unclear whether consumer 1 must gain consumer 2’s permission to generate
the externality. If property rights cannot be enforced (perhaps the level of h is not
easily measured), then consumer | has no need to purchase the right to engage in
the externality-generating activity from consumer 2. For this reason, proponents of
this type of approach focus on the absence of these legal institutions as a central
impediment to optimality.

Figure 11.B.3

The final distribution of
utilities under different
property rights
institutions and
different bargaining
procedures.
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This solution to the externality problem has a significant advantage over the tax
and quota schemes in terms of the level of knowledge required of the government.
The consumers must know each other’s preferences, but the government need not.
We should emphasize, however, that for bargaining over the externality to lead to
efficiency, it is important that the consumers know this information. In Section 11.E,
we will see that when the agents are to some extent ignorant of each others’
preferences, bargaining need not lead to an efficient outcome.

Two further points regarding these three types of solutions to the externality problem are
worthy of note. First, in the case in which the two agents are firms, one form that an efficient
bargain might take is the sale of one of the firms to the other. The resulting merged firm would
then fully internalize the externality in the process of maximizing its profits.”

Second, note that all three approaches require that the externality-generating activity be
measureable. This is not a trivial requirement; in many cases, such measurement may be cither
technologically infeasible or very costly (consider the cost of measuring air poltution or noise).
A proper computation of costs and benefits should take these costs into account. 1If
measurement is very costly, then it may be optimal to simply allow the externality to persist.

Externalities and Missing Markets

The observation that bargaining can generate an optimal outcome suggests a
connection between externalities and missing markets. After all, a market system can
be viewed as a particular type of trading procedure.

Suppose that property rights arc well defined and enforceable and that a
competitive market for the right to engage in the externality-generating activity exists.
For simplicity, we assume that consumer 2 has the right to an externality-free
environment. Let p, denote the price of the right to engage in one unit of the activity.
In choosing how many of these rights to purchase, say h,, consumer 1 will solve

Max ¢,(h,) — pyhy,

n20

which has the first-order condition

¢i(h,) < py, with equality if h, > 0. (11.B.6)
In deciding how many rights to sell, h,, consumer 2 will solve
Max  ¢,(hy) + pahys
h220
which has the first-order condition
@4(h) < —p,, with equality if k, > 0. (11.B.7)

7. Note, however, that this conclusion presumes that the owner of a firm has full control over
all its functions. In more complicated (but realistic) settings in which this is not true, say because
owners must hire managers whose actions cannot be perfectly controlled, the results of a merger
and of an agreement over the level of the externality need not be the same. Chapters 14 and 23
provide an introduction to the topic of incentive design. See Holmstrom and Tirole (1989) for a
discussion of these issues in the theory of the firm.
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In a competitive equilibrium, the market for these rights must clear; that is, we must
ha.ve hy = h_z. Hence, (11.B.6) and (11.B.7) imply that the level of rights traded in
this competitive rights market, say h**, satisfies

P (h**) < —P5(h**), with equality if h** > 0.

Comparing this expression with (11.B.2), we see that h** equals the optimal level h°.,
The equilibrium price of the externality is p§ = ¢7(h°) = —@3(h°).

Consumer | and 2's equilibrium utilities are then ¢,(k°)— p?h° and ¢,(k°) + p2 h°,
respectively. The market therefore works as a particular bargaining procedure for
splitting the gains from trade; for example, point g in Figure 11.B.3 could represent
the utilities in the competitive equilibrium.

We sce that if a competitive market exists for the externality, then optimality
results. Thus, externalities can be seen as being inherently tied to the absence of
certain competitive markets, a point originally noted by Meade (1952) and substan-
tially extended by Arrow (1969). Indeed, recall that our original definition of an
externality, Definition 11.B.1, explicitly required that an action chosen by one agent
must directly aflect the well-being or production capabilities of another. Once a
market exists for an externality, however, each consumer dec