Atomes Molécules et Rayonnement

Travaux Dirigés 1: Rappels de Mécanique Quantique, le puits de potentiel

On considère le potentiel suivant:

$$V(x) = \begin{cases} 0 & \text{si } 0 \le x \le a, \\ \infty & \text{sinon} \end{cases}$$
 (1)

- 1) Déterminer les énergies accessibles E_n et les fonctions d'onde stationnaires $\phi_n(x)$ pour une particule de masse m dans ce potentiel.
 - 2) Vérifier que les fonctions propres $\phi_n(x)$ sont orthogonales entre elles.
 - 3) Calculer $\langle x \rangle$, $\langle x^2 \rangle$, $\langle p \rangle$ et $\langle p^2 \rangle$ dans chaque état stationnaire de fonction d'onde $\phi_n(x)$.
 - 4) En déduire les variances σ_x et σ_p des opérateurs position et impulsion.
 - 5) Vérifier le principe d'incertitude. Quel état est-il le plus proche du minimum?

A l'instant t=0, la particule est placée dans l'état $\Psi(x,t=0)=\phi_1(x)\cos\theta+\phi_2(x)\sin\theta$ où θ est une constante.

- 6) Déterminer la fonction d'onde $\Psi(x,t)$ de la particule à l'instant t.
- 7) Si l'on effectue une mesure de l'énergie de la particule à l'instant t, quelles valeurs peut-on trouver et avec quelles probabilités? En déduire la valeur moyenne de l'énergie E.
 - 8) Quelles valeurs de θ conduisent à des probabilité égales ?

Dans la suite du problème, on prendra $\theta = \frac{\pi}{4}$.

- 9) On considère l'opérateur "moment dipolaire" $D=q(x-\frac{a}{2})$ (q est la charge de la particule). Montrer que $\langle \phi_1 | D | \phi_1 \rangle = \langle \phi_2 | D | \phi_2 \rangle = 0$.
- 10) On pose $\langle \phi_1 | D | \phi_2 \rangle = d$. Calculer en fonction de d la valeur moyenne de l'opérateur D à l'instant t: $\langle \Psi(t) | D | \Psi(t) \rangle$. Montrer qu'elle oscille dans le temps à une fréquence et une amplitude qu'on déterminera.