

DE3 - HA8201H - 2021/2022

Intégration – Développements limités

Exercice 1. Calculer les développements limités suivants :

- a) $\sin(2x)e^{3x}$ à l'ordre 4 en zéro.
- b) $\frac{\ln(1+x)}{e^x \sin(x)}$ à l'ordre 3 en zéro.
- a) Soit $f(x) = \sin(2x) \exp[3x)$. On connaît les DL de sin et exp, d'où l'on déduit :

$$\sin(2x) = 2x - \frac{1}{6}(2x)^3 + o(x^4),$$

et

$$\exp(3x) = 1 + 3x + \frac{1}{2}(3x)^2 + \frac{1}{6}(3x)^3 + \frac{1}{24}(3x)^4 + o(x^4).$$

En faisant le produit de ces deux DL on obtien

$$f(x) = (2x - \frac{4}{3}x^3)(1 + 3x + \frac{9}{2}x^2 + \frac{9}{2}x^3 + \frac{25}{8}x^4 + o(x^4) = 2x + 6x^2 + \frac{23}{3}x^3 + 5x^4 + o(x^4)$$

en développant le produit et en tronquant au degré 4 la partie principale.

On aurait pu observer que du fait que x est en facteur dans le DL de $\sin(2x)$, le terme en x^4 du DL de $\exp(3x)$ n'intervient pas dans le calcul et que donc on aurait pu se contenter d'un DL à l'ordre 3 de $\exp(3x)$.

b) Soit
$$g(x) = \frac{\ln(1+x)}{e^x \sin(x)} = e^{-x} \frac{\ln(x+1)}{\sin(x)}$$
.

Le facteur de gauche a le DL à l'ordre 3 en 0 suivant :

$$e^x = 1 - x + \frac{1}{2}x^2 - \frac{1}{6}x^3 + o(x^3)$$

En revanche le facteur de droite est une forme indéterminée 0/0 car les DL du numérateur et du dénominateur commencent par x (ce sont des fonctions de valuation 1). On va donc devoir mettre x en facteur au numérateur et au dénominateur, et donc on aura besoin de DL à l'ordre 4 de ceux-ci :

$$\frac{\ln(1+x)}{\sin(x)} = \frac{x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + o(x^4)}{x - \frac{1}{6}x^3 + o(x^4)} = \frac{1 - \frac{1}{2}x + \frac{1}{3}x^2 - \frac{1}{4}x^3 + o(x^3)}{1 - \frac{1}{6}x^2 + o(x^3)}.$$

On obtient donc la partie principale A(x) de ce facteur en calculant le quotient dans la division de $1 - \frac{1}{2}x + \frac{1}{3}x^2 - \frac{1}{4}x^3$ par $1 - \frac{1}{6}x^2$ en s'arrêtant dès que le reste est un (x^3) . Ainsi on trouve pour quotient $A(x) = 1 - \frac{1}{2}x + \frac{1}{2}x^2 - \frac{1}{3}x^3$. Par conséquent

$$\frac{\ln(1+x)}{\sin(x)} = 1 - \frac{1}{2}x + \frac{1}{2}x^2 - \frac{1}{3}x^3 + o(x^3).$$

Une autre manière de calculer le DL de $\frac{\ln(1+x)}{\sin(x)}$ serait de le considérer comme le produit

$$(1 - \frac{1}{2}x + \frac{1}{3}x^2 - \frac{1}{4}x^3 + o(x^3)) \times \frac{1}{1 - \frac{1}{6}x^2 + o(x^3)}$$

et d'utiliser le DL $\frac{1}{1-u} = 1 + u + u^2 + o(u^2)$ en remplaçant u par $\frac{1}{6}x^2 + o(x^2)$, ce qui donne

$$\frac{1}{1 - \frac{1}{6}x^2 + o(x^3)} = 1 + \frac{1}{6}x^2 + o(x^3)$$

et ensuite de faire le produit de DL

$$(1 - \frac{1}{2}x + \frac{1}{3}x^2 - \frac{1}{4}x^3 + o(x^3))(1 + \frac{1}{6}x^2 + o(x^3))$$

avec le même résultat qu'en faisant la division selon les puissances croissantes, bien entendu.

Il ne reste plus qu'à multiplier les DL de e^{-x} et de $\frac{\ln(1+x)}{\sin x}$ obtenus pour obtenir celui de g(x): $g(x) = 1 - \frac{3}{2}x + \frac{3}{2}x^2 - \frac{5}{4}x^3 + o(x^3)$.

Exercice 2. Calculer la limite en 0 de $\frac{1}{x(e^x-1)} - \frac{1}{x^2}$ au moyen d'un développement limité.

On a affaire à une forme indéterminée $\frac{1}{0} - \frac{1}{0}$, donc la première chose à faire est de réduire au même dénominateur :

$$\frac{1}{x(e^x - 1)} - \frac{1}{x^2} = \frac{x^2 - x(e^x - 1)}{x^3(e^x - 1)} = \frac{x + 1 - e^x}{x^2(e^x - 1)}.$$

On a $e^x - 1 = x + o(x)$ donc le dénominateur s'écrit $x^3 + o(x^3)$. A l'ordre 2 le numérateur s'écrit $x + 1 - 1 - x - \frac{1}{2}x^2 + o(x^2) = -\frac{1}{2}x^2 + o(x^2)$. On note que le numérateur est de valuation 2 en 0 tandis que le dénominateur y est de valuation 3. On a donc

$$\frac{1}{x(e^x - 1)} - \frac{1}{x^2} = \frac{-\frac{1}{2}x^2 + o(x^2)}{x^3 + o(x^3)} = -\frac{1}{2x} \times \frac{1 + o(1)}{1 + o(1)}$$

ce qui montre que la limite est $-\infty$ à droite et $+\infty$ à droite.

Exercice 3. Soit f la fonction définie par

$$f(x) = 1 + 2\arctan(x) + 2(\sin(x))^2 - \exp(2x)$$

Pour quelles puissances $k \in \mathbb{N}$ a-t-on $f(x) = o(x^k)$ en 0.

On sait que la dérivée d'arctangente est la fonction $x \to 1/(1 + x^2)$ donc le D.L. à l'ordre 3 d'arctangente en l'origine est la primitive de celui d'ordre 2 de $x \to 1/(1 + x^2)$ c'est-à-dire :

$$\arctan(x) = x - \frac{x^3}{3} + o(x^3)$$

On connait le D.L. à l'ordre 3 de $x \to \sin(x)$ donc on a

$$2(\sin(x))^2 = 2(x - x^3/6)^2 + o(x^3) = 2x^2 + o(x^3).$$

En combinant avec le D.L de exp(x) on obient :

$$f(x) = 1 + 2x + 2x^2 - 2\frac{x^3}{3} + o(x^2) - (1 + 2x + \frac{(2x)^2}{2} + \frac{(2x)^3}{6}) + o(x^3) = -2x^3 + o(x^3).$$

On a donc $f(x) = -2x^3 + o(x^3)$. Par conséquent, on a $f(x) = o(x^k)$ pour k = 0, 1, 2.

Exercice 4. Déterminer et positionner par rapport au graphe l'asymptote oblique de la fonction $f(x) = ((x^2 + 1)(x + 1)^2)^{1/4}$ en $+\infty$.

On remarque que f(x) est bien définie pour tout $x \in \mathbb{R}$ (en particulier car on prend une racine quatrième d'un nombre positif quelque soit x). La fonction f est donc bien définie sur \mathbb{R} et donc pour x grand. De plus, par multiplicativité de la racine quatrième, on a :

$$f(x) = x \left(\left(1 + \frac{1}{x^2} \right) \left(1 + \frac{1}{x} \right)^2 \right)^{\frac{1}{4}}.$$

Posons

$$g(h) = ((1 + h^2)(1 + h)^2)^{\frac{1}{4}}.$$

si bien que f(x) = g(1/x). A nouveau, g est définie sur \mathbb{R} et on veut étudier son comportement en 0. En 0, en utilisant le D.L. à l'ordre 2 de $s \to (1+s)^{1/4}$ on obtient :

$$g(h) = ((1+h^2)(1+2h+h^2))^{1/4} = (1+2h+2h^2+o(h^2))^{\frac{1}{7}4}$$

$$= 1 + \frac{1}{4}(2h+2h^2) - \frac{3}{32}(2h+2h^2)^2 + o(h^2)$$

$$= 1 + \frac{h}{2} + (\frac{1}{2} - \frac{3}{8})h^2 + o(h^2)$$

$$= 1 + \frac{h}{2} + \frac{1}{8}h^2 + o(h^2)$$

Par substitution, on obtient donc que:

$$f(x) = x \left(1 + \frac{1}{2x} + \frac{1}{8x^2} + \frac{1}{x^2} \varepsilon(x) \right)$$
$$= x + \frac{1}{2} + \frac{1}{x} \left(\frac{1}{8} + \varepsilon(x) \right)$$

avec $\varepsilon(x) \to 0$ quand $x \to \infty$. En $+\infty$ le graphe de f admet donc pour asymptote oblique la droite d'équation y = d(x) = x + 1/2 la différence f(x) - d(x) est du signe de 1/8x pour x grand ce qui implique que la graphe de f est au-dessus de l'asymptote.

Exercice 5. Calculer les intégrales suivantes :

$$I_1 = \int_0^{\pi/2} \frac{1}{1 + \sin(x)} dt$$
 $I_2 = \int_0^1 \frac{x dx}{x^2 - 2x - 3}$

Pour I_1 on utilise le changement de variable $x = \tan(t/2)$ et on obtient que

$$I_1 = \int_0^1 \frac{2}{(1+t)^2} dt = 1.$$

Pour I_2 , on reconnaît que le dénominateur se factorise sous la forme :

$$x^{2}-2x-3=(x-1)^{2}-4=(x-3)(x+1)$$

Par conséquent, le dénominateur ne s'annule pas sur [0, 1]. En écrivant de plus que

$$x = \frac{(x-3) + 3(x+1)}{4}$$

on obtient que

$$I_2 = \ln(2) - \frac{3}{4}\ln(3).$$

Exercice 6. Soit

$$E = {\phi \in C([0, 1]) \text{ t.q. } \phi \in C^2(]0, 1/2[) \cap C^2(]1/2, 1[)}.$$

(1) Montrer que E est un \mathbb{R} -espace vectoriel

Il s'agit de montrer que E est un sous-espace vectoriel de C([0, 1]). La fonction nulle est bien dans E. De plus, si f et g sont dans E alors pour tout $\lambda \in \mathbb{R}$ on a que, les restrictions de f et g à

]0, 1/2[et]1/2, 1[étant C^2 la restriction de la somme $f + \lambda g$ (qui est la somme des restrictions) l'est également. On a donc bien que $f + \lambda g \in E$.

(2) Montrer que l'application

$$D_2: E \longrightarrow \mathcal{F}(]0,1[\backslash \{1/2\};\mathbb{R})$$

$$f \longmapsto f$$

est bien définie et linéaire.

Par définition, pour tout $f \in E$ on a que la restriction de f à]0, 1/2[et]1/2, 1[est C^2 . Par conséquent, on peut calculer la dérivée seconde de la restriction de f à ces deux intervalle c'est-à-dire $D_2[f]$. L'application est donc bien définie.

De plus, pour tout $(f,g) \in C^2(]0,1/2[)$ et $\lambda \in \mathbb{R}$ posant $h = f + \lambda g$ on sait que $h'' = f'' + \lambda g''$. Il en est de même sur]1/2,1[. On a donc que pour tout $(f,g) \in E$ et $\lambda \in \mathbb{R}$, pour tout $x \in]0,1/2[\cup]1/2,1[$:

$$D_2[f + \lambda g](x) = f''(x) + \lambda g''(x) = D_2[f](x) + \lambda D_2[g](x).$$

Ceci montre que $D_2[f + \lambda g] = D_2[f] + \lambda D_2[g]$ et donc que D_2 est linéaire.

(2) Montrer que $\operatorname{Ker} D_2$ est de dimension finie et préciser sa dimension.

Soit $f \in \text{Ker } D_2$ on donc que $f \in C^2(]0,1/2[)$ satisfait f" = 0. Par conséquent, il existe $a_- \in \mathbb{R}$ tel que $f'(x) = a_-$ et en intégrant à nouveau, il existe $b_- \in \mathbb{R}$ tel que $f(x) = a_-x + b_-$ pour tout $x \in]0,1/2[$. De même, on obtient qu'il existe $(a_+,b_+) \in \mathbb{R}^2$ tels que $f(x) = a_+x + b_+$ sur]1/2,1[. Puisque f est continue sur [0,1] on peut prolonger ces identités par continuité sur les bords des intervalles ouverts. Donc

$$f(x) = a_{-}x + b_{-} \quad \forall x \in [0, 1/2]$$

 $f(x) = a_{+}x + b_{+} \quad \forall x \in [1/2, 1].$

On a donc en particulier

$$\frac{a_{-}}{2} + b_{-} = \frac{a_{+}}{2} + b_{+} \Longrightarrow b_{+} = b_{-} + \frac{1}{2}(a_{-} - a_{+}).$$

et

$$f(x) = a_{-}x + b_{-} \qquad \forall x \in [0, 1/2]$$

$$f(x) = a_{+}(x - 1/2) + a_{-}/2 + b_{-} \qquad \forall x \in [1/2, 1].$$

Autrement dit, on peut écrire $f = b_- f_1 + a_- f_2 + a_+ f_3$ avec f_1, f_2, f_3 trois fonctions de E définies ponctuellement par :

$$f_1(x) = 1$$
, $f_2(x) = \begin{cases} x & \text{si } x \le 1/2 \\ 1/2 & \text{si } x > 1/2 \end{cases}$, $f_3(x) = \begin{cases} 0 & \text{si } x \le 1/2 \\ (x - 1/2) & \text{si } x > 1/2 \end{cases}$.

Par conséquent, (f_1, f_2, f_3) est une famille libre de Ker D_2 . Vérifions qu'elle est libre. Si $a_1f_1 + a_2f_2 + a_3f_3 = 0$ alors

- en évaluant en 0 on trouve que $a_1 = 0$,
- en évaluant en 1/2 on trouve que $a_2 = 0$,
- en évaluant en 1 on trouve que $a_3 = 0$.

Finalement (f_1, f_2, f_3) est une base de Ker D_2 et donc

$$\dim(\operatorname{Ker} D_2) = 3.$$