

DE2 - HLMA206 - 2018/2019

FACULTÉ DES SCIENCES

ALGÈBRE LINÉAIRE – INTÉGRATION

Exercice 1. Soit E un K-espace vectoriel. On suppose que $\pi \in \mathcal{L}(E)$ satisfait $\pi \circ \pi = \pi$.

- (1) Monter que $\operatorname{Ker} \pi \cap \operatorname{Im} \pi = \{0_E\}.$
- (2) On suppose que E est de dimension finie, en déduire que $\operatorname{Ker} \pi$ et $\operatorname{Im} \pi$ sont supplémentaires par un argument de dimension.
- (3) On ne suppose plus que E est de dimension finie, en écrivant que tout $\mathbf{x} \in \mathbf{E}$ sécrit $\mathbf{x} = \mathbf{x} \pi(\mathbf{x}) + \pi(\mathbf{x})$ montrer que Ker π et Im π sont supplémentaires.

Exercice 2. Soit

$$\pi: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} 2x + y + z \\ -x - z \\ -x - y \end{pmatrix}$$

- (1) Ecrire la matrice A de π dans la base canonique \mathcal{E} de \mathbb{R}^3 .
- (2) Montrer que $\pi \circ \pi = \pi$. Que peut-on dire de Ker π et Im π (sans calcul)?
- (3) Calculer une base $\hat{\mathcal{E}}$ de \mathbb{R}^3 dont le premier vecteur est un vecteur de Ker π et le dernier un vecteur de Im π .
- (4) Calculer la matrice de π dans la base $\hat{\mathcal{E}}$.
- (5) Etant donné $\lambda \in \mathbb{R}$ calculer $\det(A \lambda \mathbb{I}_3)$.

Exercice 3. Soit $f:[0,1] \to \mathbb{R}$ la fonction définie par

$$f: [0,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \sin(1/x) & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- (1) Montrer que f n'est pas continue sur [0, 1]
- (2) Etant donné $\alpha \in]0, 1[$, montrer que la restriction de f à $[\alpha, 1]$ est intégrable.
- (3) Expliciter deux constantes m et M telles que, pour tout $\alpha \in]0,1[$ on a :

$$m \le f(t) \le M \quad \forall t \in]0, \alpha[.$$

(4) En combinant les résultats des questions (2) et (3), montrer que f est intégrable sur [0, 1] en revenant à la définition.

Exercice 4. Dans cet exercice f est une fonction continue sur [0, 1]. On veut montrer que cette fonction est intégrable. On fixe donc $\varepsilon > 0$ et on veut construire deux fonctions en escalier u, U telles que

•)
$$u(t) \le f(t) \le U(t)$$
 $\forall t \in [0, 1],$ •) $\int_0^1 (U(t) - u(t)) dt \le \varepsilon.$

(1) On se propose de construire tout d'abord une fonction auxiliaire ϕ_{ε} : $[0,1] \rightarrow [0,1]$. Soit $x \in [0,1]$

- (a) Montrer que $\{z \in [x, 1] \text{ t.q. } |f(t) f(x)| < \varepsilon/2 \text{ pour tout } t \in [x, z]\}$ est non vide et majoré.
- (b) En déduire qu'on peut poser

$$\phi_{\varepsilon}(x) = \sup\{z \in [x, 1] \text{ t.q. } |f(t) - f(x)| < \varepsilon/2 \text{ pour tout } t \in [x, z]\}$$

et qu'avec ce choix, on a :

- $\phi_{\varepsilon}(x) > x \operatorname{si} x < 1$.
- $\max\{f(x), x \in [x, \phi(x)]\} \min\{f(x), x \in [x, \phi(x)]\} < \varepsilon$.
- (2) Soit maintenant la suite $(x_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence :

$$\begin{cases} x_0 = 0 \\ x_{n+1} = \phi_{\varepsilon}(x_n) & \forall \, n \in \mathbb{N}. \end{cases}$$

- (a) Montrer que $x_n = 1$ a partir d'un certain rang (qu'on note N dans la suite). <u>Indication</u>: On pourra montrer que la suite $(x_n)_{n \in \mathbb{N}}$ converge et utiliser sans démontrer qu'alors, pour tout $\alpha > 0$, il existe $N_0 \in \mathbb{N}$ tel que $|x_n - \ell| < \alpha$ pour tout $n \ge N_0$.
- (b) Montrer que $(x_0, ..., x_N)$ est une subdivision de [0, 1].
- (3) On pose dans cette question:

$$u = \min\left(f, \sum_{k=0}^{N-1} \min\{f(\sigma), \sigma \in [x_k, x_{k+1}]\} \mathbf{1}_{[x_k, x_{k+1}]}\right)$$

$$U = \max\left(f, \sum_{k=0}^{N-1} \max\{f(\sigma), \sigma \in [x_k, x_{k+1}]\} \mathbf{1}_{[x_k, x_{k+1}]}\right).$$

- (a) Montrer que u et U sont en escalier
- (b) Montrer que $u \le f \le U$
- (c) Montrer que

$$\int_0^1 (U(t) - u(t)) \mathrm{d}t \le \varepsilon.$$