

Université de Montpellier - Faculté des Sciences

Année Universitaire 2017-2018

HLMA206: Devoir Encadré 3

Vendredi 13 avril 2018

La rédaction est une part importante du travail : toutes les affirmations doivent être justifiées, les raisonnements et les calculs présentés de façon claire.

Exercice 1. Soit $f:]0, +\infty[\to \mathbb{R}$ définie par

$$f(x) = \begin{cases} \frac{x^2 - 1}{x \ln x} & \text{si } x \neq 1\\ 2 & \text{si } x = 1 \end{cases}$$

- 1. Montrer que f est continue sur $]0, +\infty[$ et calculer $\lim_{x\to 0} f(x)$ et $\lim_{x\to +\infty} f(x)$.
- 2. On s'intéresse à la dérivabilité de f en 1.
 - (a) Donner le DL à l'ordre 3 en 0 de la fonction $g: y \mapsto (1+y) \ln(1+y)$ et en déduire un équivalent simple en 0 de $y(y+2) 2(1+y) \ln(1+y)$.
 - (b) En utilisant ce qui précède, étudier la dérivabilité de f en 1.

Exercice 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que $u_n=o(n)$ en $+\infty$.

- 1. Calculez $\lim_{n \to +\infty} \ln \left(\frac{n+u_n}{n-u_n} \right)$.
- 2. Trouver un équivalent simple en $+\infty$ à $\ln\left(\frac{n+u_n}{n-u_n}\right)$ et calculer $\lim_{n\to+\infty}\sqrt{n}\ln\left(\frac{n-\sqrt{n}}{n+\sqrt{n}}\right)$.

Exercice 3. Calculer les développements limités suivant :

- 1. $\frac{xe^{-x}}{1+x}$ en 0 à l'ordre 3.
- 2. $\ln(\cos x)$ en 0 à l'ordre 4.
- 3. $e^{\sqrt{x}}$ en 1 à l'ordre 3.