

Université de Montpellier - Faculté des Sciences

Année Universitaire 2017-2018

HLMA206: Devoir Encadré 1

Vendredi 9 février 2018

La rédaction est une part importante du travail : toutes les affirmations doivent être justifiées, les raisonnements et les calculs présentés de façon claire.

Exercice 1. Soient a et b deux nombres complexes et, pour tout $n \in \mathbb{N}^*$, d_n le déterminant suivant (où n désigne la taille de la matrice) :

$$d_n = \begin{vmatrix} a+b & b & \cdots & b \\ a & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ a & \cdots & a & a+b \end{vmatrix}$$

- 1. Pour tout entier $n \geq 2$ déterminer une relation de récurrence entre d_n et d_{n-1} .
- 2. En déduire l'expression de d_n en fonction de n, a et b.

Exercice 2. On considère dans \mathbb{R}^4 les trois sous-espaces vectoriels suivant :

$$E = \{(x, y, z, t) \in \mathbb{R}^4 \mid x - y + t = 0\}, \quad F = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + 2z - t = 0\}$$

et

$$G = \text{vect}(u_1, u_2)$$
 où $u_1 = (1, 0, 1, 1)$ et $u_2 = (3, -1, 1, 0)$

- 1. On note $H = E \cap F$, déterminer une famille de deux vecteurs (v_1, v_2) qui engendre H.
- 2. Montrer que $G + H = \text{vect}(u_1, u_2, v_1, v_2)$ et en déduire une représentation cartésienne de G + H. La somme est-elle directe ?

Exercice 3. Soient $u, v, w, z \in \mathbb{R}^3$ donnés par u = (1, 0, -1), v = (3, -2, 3), w = (2, -1, 1) et z = (0, -1, 2). La famille (u, v, w) est-elle libre? Génératrice de \mathbb{R}^3 ? Si elle n'est pas génératrice de \mathbb{R}^3 , déterminer vect(u, v, w).

Même question pour la famille (v, w, z).

Exercice 4. Soit $\mathcal{F} = (u_1, \dots, u_p)$ une famille de \mathbb{K}^n .

- 1. On suppose qu'il existe $k \in \{1, ..., p\}$ tel que $u_k \in \text{vect}(\mathcal{G})$, où $\mathcal{G} = (u_1, ..., u_{k-1}, u_{k+1}, ..., u_p)$ est la famille \mathcal{F} privée de u_k . Montrer que la famille \mathcal{F} est liée.
- 2. Montrer la réciproque du point précédent.
- 3. On suppose que la famille \mathcal{F} est libre et qu'il existe $v \in \mathbb{K}^n$ tel que $v \notin \text{vect}(\mathcal{F})$. Montrer que la famille (u_1, \ldots, u_p, v) est libre.