TD 6: Diagonalisation

Exercice 1:

Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'application linéaire définie par

$$f\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3x + 4y \\ 4x - 3y \end{pmatrix}.$$

- 1. Écrire la matrice de f dans la base canonique de \mathbb{R}^2 . On la notera A.
- 2. Montrer que le vecteur $v_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ est vecteur propre de f. Quelle est la valeur propre associée?
- 3. Montrer que le vecteur $v_2 = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ est vecteur propre de f. Quelle est la valeur propre associée?
- 4. Déterminer graphiquement l'image du vecteur $v_3 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$. Retrouver ce résultat par le calcul.
- 5. Montrer que la famille (v_1, v_2) forme une base de \mathbb{R}^2 .
- 6. Quelle est la matrice de f dans la base (v_1, v_2) ? On la notera D.
- 7. Soit P la matrice dont la première colonne est le vecteur v_1 et la deuxième le vecteur v_2 . Calculer P^{-1} .
- 8. Quelle relation y a-t-il entre A, P, P^{-1} et D?
- 9. Calculer A^n pour $n \in \mathbb{N}$.

Exercice 2:

Rechercher les valeurs propres et vecteurs propres des matrices suivantes :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 & -1 & -1 \\ -1 & a^2 & 0 \\ -1 & 0 & a^2 \end{pmatrix}, \quad (a \neq 0).$$

Exercice 3:

Trouver une matrice carrée inversible P telle que $B=PAP^{-1}$ soit diagonale et écrire la matrice B obtenue, pour les matrices A suivantes

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & -4 \\ 0 & -4 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 7 & 3 & -9 \\ -2 & -1 & 2 \\ 2 & -1 & -4 \end{pmatrix}.$$

Exercice 4:

Soit la matrice

$$A = \begin{pmatrix} -3 & -2 & -2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}.$$

- 1. Montrer que A admet une valeur propre double, notée λ_0 , et une simple, noté λ_1 .
- 2. (a) Donner une base de $Ker(A \lambda_0 I)$ et de $Ker(A \lambda_1 I)$.
 - (b) A est diagonalisable. Justifier cette affirmation et diagonaliser A.

Exercice 5:

Soient

$$M = \begin{pmatrix} 0 & 1 \\ 2 & -1 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

- 1. Calculer Mv_1 et Mv_2 .
- 2. En déduire la valeur de $M^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, pour tout $n \in \mathbb{N}^*$.

Exercice 6:

Soit

$$M = \begin{pmatrix} -\frac{1}{2} & -\frac{3}{4} & \frac{3}{4} \\ 0 & 1 & 0 \\ 3 & \frac{3}{2} & -\frac{1}{2} \end{pmatrix}.$$

- 1. Déterminer $\mu \in \mathbb{R}$ tel que $M^2 + M \mu \mathbb{I}_3$ est la matrice nulle.
- 2. En déduire que M est inversible et que M^{-1} se calcule simplement en fonction de M.
- 3. On pose $\chi(\lambda) = \det(M \lambda \mathbb{I}_3)$. Factoriser χ et comparer avec les racines de $\pi(\lambda) = \lambda^2 + \lambda 2$.