

Université de Montpellier - Faculté des Sciences

Année Universitaire 2017-2018

HLMA206

Chapitre 1 : Calcul Matriciel et Déterminants

Philippe Castillon ¹

Exercice 1. On identifie \mathbb{R}^2 à \mathbb{C} de la façon usuelle : le vecteur (x,y) est identifié au nombre complexe x+iy, le nombre complexe z est identifié au vecteur $(\mathfrak{Re}(z),\mathfrak{Im}(z))$. Cela revient à considérer la bijection $\phi: \mathbb{R}^2 \to \mathbb{C}$ définie par $\phi(x,y) = x+iy$, et sa réciproque $\phi^{-1}: \mathbb{C} \to \mathbb{R}^2$ donnée par $\phi^{-1}(z) = (\mathfrak{Re}(z),\mathfrak{Im}(z))$.

- 1. A quels nombres complexes sont identifiés les vecteurs (1,0) et (0,1) de \mathbb{R}^2 ? A quel vecteur est identifié le nombre complexe $2e^{i\frac{\pi}{6}}$?
- 2. Soit $\alpha = a + ib \in \mathbb{C}$. On considère l'application $F : \mathbb{C} \to \mathbb{C}$ définie par $F(z) = \alpha z$. En composant F avec ϕ et ϕ^{-1} , montrer qu'on obtient une application linéaire $\tilde{F} : \mathbb{R}^2 \to \mathbb{R}^2$. Écrire sa matrice.
- 3. Même question pour $G: \mathbb{C} \to \mathbb{C}$ définie par $G(z) = \bar{z}$.
- 4. Quelle est la transformations géométriques du plan définie par \tilde{F} si $\alpha={\rm e}^{i\theta}$? Par \tilde{G} ?

Exercice 2. Soient
$$A = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$
 et $B = \begin{pmatrix} \mu_1 & 0 & \dots & 0 \\ 0 & \mu_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \mu_n \end{pmatrix}$ deux matrices diagonales.

Calculer le produit AB. Pour tout $k \in \mathbb{N}$, calculer A^k .

Exercice 3. On considère les matrice $A = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} 1 & -4 \\ 1 & 3 \end{pmatrix}$.

- 1. Montrer que P est inversible. Déterminer P^{-1} et calculer $D = P^{-1}AP$.
- 2. exprimer A en fonction de D, puis A^n en fonction de D^n . En déduire A^n .
- 3. Mêmes questions pour les matrices $A = \begin{pmatrix} 0 & -2 \\ 1 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} -2 & -2 \\ 1+i & 1-i \end{pmatrix}$.

Exercice 4. Soit $A = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ et $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Calculer A^2 , B^2 , AB et BA. En déduire $(A+B)^k$ pour tout $k \in \mathbb{N}$.

Exercice 5. On considère la matrice $A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & -2 & 1 \\ -2 & 3 & 0 \end{pmatrix}$. Calculer A^2 et A^3 , puis $-A^3 - 2A^2 + 6A$.

En déduire que A est inversible et exprimer son inverse en fonction de A

¹Pour toutes remarques ou commentaires : philippe.castillon@umontpellier.fr

Exercice 6. Calculer les déterminants des matrices suivantes :

$$3\begin{pmatrix} a-1 & a-b \\ 1 & b \end{pmatrix} \qquad \begin{pmatrix} t & 0 & 2 \\ -1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 2 \\ -1 & t & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 1 & 2 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 6 \\ 0 & 0 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 11 & 22 & 33 \\ 0 & 55 & 66 \\ 77 & 88 & 99 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 3 \\ 3 & 0 & 1 & 2 \\ 2 & 3 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{pmatrix} \qquad \begin{pmatrix} x & -1 & 0 & 0 \\ 0 & x & -1 & 0 \\ 0 & 0 & x & -1 \\ d & c & b & a+x \end{pmatrix}$$

Exercice 7. Calculer les déterminants des matrices suivantes, où n désigne la taille de la matrice.

$$a_{n} = \begin{vmatrix} x & y & 0 & \cdots & 0 \\ 0 & x & y & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \ddots & x & y \\ y & 0 & \cdots & 0 & x \end{vmatrix} \qquad b_{n} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{vmatrix} \qquad c_{n} = \begin{vmatrix} t & 1 & \cdots & \cdots & 1 \\ 1 & t & 1 & \cdots & 1 \\ \vdots & 1 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 1 & 1 & \cdots & 1 & t \end{vmatrix}$$

Indication : on pourra, éventuellement, développer ces déterminants pour obtenir une relation de récurrence.

Exercice 8. Soient a et b deux nombres complexes et, pour tout $n \in \mathbb{N}^*$, d_n le déterminant suivant (où n désigne la taille de la matrice) :

$$d_n = \begin{vmatrix} a & 0 & \cdots & 0 & 1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & a & 1 \\ b^{n-1} & \cdots & b^2 & b & a \end{vmatrix}$$

- 1. Pour tout entier $n \geq 2$ déterminer une relation de récurrence entre d_n et d_{n-1} .
- 2. En déduire l'expression de d_n en fonction de n, a et b.

Pour s'entrainer

2

Exercice 9. Traiter les questions 1. et 2. de l'exercice 3 dans les cas suivants :

1.
$$A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.

2.
$$A = \begin{pmatrix} 0 & -2 & 4 \\ -2 & 0 & 2 \\ -1 & -1 & 3 \end{pmatrix}$$
 et $P = \begin{pmatrix} 0 & 1 & 1 \\ 2 & -1 & 2 \\ 1 & 0 & 1 \end{pmatrix}$

Exercice 10. On considère la matrice $A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 1 \\ 2 & 0 & 2 \end{pmatrix}$. Calculer A^2 et A^3 , puis $A^3 - A^2 - A$. En déduire que A est inversible et exprimer son inverse en fonction de A.

Exercice 11. On considère la matrice $A = \begin{pmatrix} -1 & -2 & -2 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Calculer A^4 . En déduire que A et A^2 sont inversibles et calculer leurs inverses.

Exercice 12. Calculer les déterminants des matrices suivantes :

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \qquad \begin{pmatrix} 2 & 2 & 0 \\ 0 & 5 & 3 \\ 6 & 4 & 0 \end{pmatrix} \qquad \begin{pmatrix} 20 & 20 & 0 \\ 0 & 50 & 30 \\ 60 & 40 & 0 \end{pmatrix} \qquad \begin{pmatrix} a & -2 & 3 \\ 3 & -6 & 12 \\ a & -7 & -5 \end{pmatrix} \qquad \begin{pmatrix} i & 3 & 1+i & 0 \\ 2i & 0 & -1 & 3 \\ 1-i & 0 & 0 & 2 \\ 1 & 1 & -1 & 3 \end{pmatrix}$$

$$\begin{pmatrix} a^2 & ab & b^2 \\ b^2 & a^2 & ab \\ ab & b^2 & a^2 \end{pmatrix} \qquad \begin{pmatrix} t & 2 & 3 & 0 \\ 0 & t & 5 & 6 \\ 7 & 8 & t & 0 \\ 1 & 1 & 1 & t \end{pmatrix} \qquad \begin{pmatrix} a^2 + b^2 & ab & (a-b)^2 \\ b^2 + c^2 & bc & (b-c)^2 \\ c^2 + a^2 & ca & (c-a)^2 \end{pmatrix} \qquad \begin{pmatrix} x & -1 & 0 & 0 \\ 0 & x & -1 & 0 \\ 0 & 0 & x & -1 \\ d & c & b & a+x \end{pmatrix}$$

Exercice 13 (extrait d'un CC, 2015). Soient a et b deux nombres complexes. On souhaite calculer le déterminant suivant, où $n \in \mathbb{N}^*$ désigne la taille de la matrice :

$$d_n = \begin{vmatrix} a & -1 & 0 & \cdots & \cdots & 0 \\ 0 & a & -1 & 0 & \cdots & 0 \\ \vdots & 0 & a & -1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & a & -1 \\ b & b & \cdots & \cdots & b & a \end{vmatrix}$$

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, on a la formule de récurrence $d_{n+1} = ad_n + b$.
- 2. Si a = 1, déterminer d_n pour tout $n \in \mathbb{N}^*$.
- 3. On suppose désormais que $a \neq 1$. Calculer les premiers termes de la suite $(d_n)_{n \in \mathbb{N}^*}$. En déduire une expression de d_n en fonction de n (on demande de trouver l'expression et de démontrer qu'elle est vraie pour tout $n \in \mathbb{N}^*$).

Exercice 14 (extrait d'examen, 2016, session 1). Soit $a \in \mathbb{R}_+^*$ un réel strictement positif. Pour tout $n \in \mathbb{N}^*$ on note d_n le déterminant suivant (où n désigne la taille de la matrice) :

$$d_n = \begin{vmatrix} a & 2 & \cdots & \cdots & 2 \\ 1 & a & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & 0 & \cdots & 0 & a \end{vmatrix}$$

- 1. Soit $n \in \mathbb{N}^*$. En développant le déterminant, exprimer d_{n+1} en fonction de d_n .
- 2. En déduire que, pour tout $n \in \mathbb{N}^*$, on a $d_n = a^n 2(n-1)a^{n-2}$. Déterminer, suivant les valeurs de a, la limite $\lim_{n \to \infty} d_n$.

Exercice 15 (extrait d'un CC, 2017). Pour $a \in \mathbb{C}$ et $n \geq 2$, on note d_n le déterminant

$$d_n = \begin{vmatrix} a & 0 & \cdots & 0 & n-1 \\ 0 & a & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & 2 \\ 0 & \cdots & 0 & a & 1 \\ n-1 & \cdots & 2 & 1 & a \end{vmatrix}$$

où n désigne la taille de la matrice.

- 1. Calculer d_{n+1} en fonction de d_n .
- 2. Montrer que, pour tout $n \ge 2$, on a $d_n = a^n a^{n-2} \sum_{k=1}^{n-1} k^2$.

Exercice 16 (extrait d'examen, 2017, session 1). Soient a un nombre complexe. On considère le déterminant suivant, où $n \in \mathbb{N}^*$ désigne la taille de la matrice :

$$d_n = \begin{vmatrix} 1 & 0 & \cdots & \cdots & 0 & a \\ -2 & 1 & 0 & \cdots & 0 & a \\ 0 & -2 & \ddots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 1 & 0 & a \\ \vdots & & \ddots & \ddots & -2 & 1 & a \\ 0 & \cdots & \cdots & 0 & -2 & 1 \end{vmatrix}$$

- 1. En développant le déterminant, exprimer d_{n+1} en fonction de d_n et n.
- 2. Montrer que, pour tout $n \in \mathbb{N}^*$, on a $d_n = 1 2a + a2^n$.