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“It	is	easy	to	lie	with	statistics,	but	easier	to	lie	without	them”	
Frederick	Mosteller	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Reference:	(https://www.pinterest.com/jillthompsong/stats-jokes/)	
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1-	Why	should	we	use	statistics	in	Earth	sciences?	
	
• Statistics	 are	 useful	 to	 characterize	 and	 understand	 complex	 systems	 through	 the	

acquisition,	analysis,	and	modeling	of	incomplete	observations.	
	
• Nearly	all	Earth	science	studies	are	based	on	limited,	incomplete	observations;	statistics	

provide	tools	for	quantitative	analysis	of	the	system	attributes	and	their	uncertainties.	
	
• Statistics	are	only	a	set	of	tool	to	be	used	with	others	in	the	Earth	science	toolbox.	When	

possible,	 statistics	 should	 be	 used	 to	 derive	 robust	 results	 in	 our	 studies,	 but	 they	
cannot	be	used	as	the	only	element.	

	
• Example	1.	You	have	measured	two	marker	displacements	of	12.1	m	and	10.75	m	along	

a	fault	trace.	How	do	you	characterize	and	analyze	this	data?	
o Answer	1	(bad):	The	average	fault	displacement	must	lie	between	10.75	and	12.1	

m.	
o Answer	2	(slightly	better,	but	still	bad):	The	average	fault	displacement	is	11.425	

m.	
o Answer	3	(better,	but	way	too	optimistic):	The	average	fault	displacement	is	11.4	

±	0.7	m.	
o Answer	 4	 (correct,	 but	 not	 satisfying…):	Ours	 observations	 suggest	 an	 average	

fault	displacement	near	11	–	12	m,	but	the	sample	is	too	small	to	derive	robust	
estimations	of	its	uncertainty.	

	
• Example	2.	Two	granitic	plutons	are	dated	at	128	(±	10)	Ma	and	142	(±	5)	Ma.	Do	they	

have	the	same	age	or	do	they	represent	two	distinct	phases	of	magmatic	activity?	
o Answer	1	(bad):	128	Ma	is	clearly	different	from	142	Ma,	so	they	must	be	distinct	

phases.	
o Answer	2	(slightly	better):	128	±	10	and	142	±	5	don’t	overlap,	so	the	ages	are	

different.	
o Answer	3	(correct,	but	requires	explanations…):	The	hypothesis	that	the	plutons	

are	of	the	same	age	can	be	rejected	with	95%	confidence,	so	the	two	ages	can	be	
considered	different.	

o Answer	4	 (also	 correct,	 but	 gives	 the	opposite	 interpretation!):	The	hypothesis	
that	the	plutons	are	of	the	same	age	cannot	be	rejected	with	99%	confidence,	so	
the	two	ages	cannot	be	considered	different.	

	
• For	most	 of	 you,	 this	 “Basic	 data	 analysis	 and	 statistics”	 course	will	 be	 a	 refresher	 of	

high	 school	 and	 first-year	 university	math	 (for	 the	 others,	 hang	 in	 there…),	 but	we’ll	
implement	all	the	concepts	using	“python	3”.	So	before	we	start,	let’s	make	sure	that:	

o “python	 3”	 (version	 3.6	 or	 close)	 is	 installed	 on	 your	 computer	 (if	 not,	 go	 to		
https://www.python.org/downloads)	

o You	have	installed	the	libraries		“numpy”,	“scipy”,	and	“matplotlib”	(for	example,	
using	 the	 python	 tool	 “pip”.	 Cf.	 https://www.scipy.org/scipylib/download.html	
and	https://matplotlib.org/users/installing.html)	
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o You	can	import	the	required	libraries	after	launching	python	in	your	terminal	(or	
GUI).	For	the	rest	of	this	course,	python	command	will	be	given	like	this:	

	
# text following a “#” is just comments 
import numpy as np   # imports “numpy” with short name “np” 
from scipy import stats 
import matplotlib.pyplot as plt 
plt.ion()    # makes graphics interactive 

	
	
• Learning	outcomes:	If	all	goes	well,	at	the	end	of	this	short	course,	you	will	be	able	to	

1. Describe	a	set	of	observations	using	
§ location	(mean,	median,	…)	
§ dispersion	(standard	deviation,	…)	
§ histogram	
§ boxplot	

2. Describe	circular	data	(modulo	π	or	2π).	
3. Analyze	observations	using	simple	statistical	tests.	
4. Quote	uncertainties	and	confidence	intervals	for	basic	data	analysis	(regressions,	

…).	
5. Handle	data	files,	variables,	arrays,	and	basic	functions	and	graphs	in	python	3.	

	
	 	



Basic	data	analysis	and	statistics	–	M1	–	Integration	module	

	 4	

2-	Before	we	start,	a	few	definitions	
	
• Population:	the	total	set	of	all	possible	observations	that	can	be	made	regarding	a	given	

system.	
o Example:	 studying	 the	 direction	 of	 extension	 during	 the	 Golf	 du	 Lion	 Eocene	

rifting,	 a	 population	 would	 be	 all	 the	 directions	 of	 extension	 on	 all	 the	 faults	
associated	with	this	episode.	

	
• Sample:	a	finite	set	of	observations	drawn	from	a	population.	

o Example:	In	the	case	of	Golf	du	Lion	rifting,	a	sample	would	be	a	finite	number	of	
measurements	of	extension	directions	on	a	set	of	observed	faults.	

	
	
• Accuracy	≠	Precision	

o Accuracy:	 an	 estimation	 of	 the	 bias	
between	 a	 set	 of	 observations	 and	 the	
true	 value;	 i.e.,	 how	 close	 to	 the	 true	
value	the	observations	are.	

	
o Precision:	 an	 estimation	 of	 the	

dispersion	 /	 tightness	 of	 a	 set	 of	
observations;	i.e.,	the	ability	to	replicate	
the	 same	 result	 under	 the	 same	
condition.	It	is	related	to	the	number	of	
significant	 digits	 in	 the	 numerical	
values.	

	
o Example:	Relative	to	the	measurement	of	π,	observation	p1	=	3.1	 is	accurate	but	

not	precise,	whereas	observation	p2	=	3.523416	is	not	accurate	but	very	precise.	
	
• Significant	 digits:	 the	 numerals	 in	 a	 quantitative	 value	 that	 are	 supported	 by	 the	

precision	 of	 the	 observation.	 A	 common	 mistake	 consists	 overstating	 the	 significant	
digits,	leading	to	a	false	sense	of	high	precision	in	the	result.	

o Example:	Two	tributary	rivers	have	measured	drainage	basins	of	130.1	km2	and	
231.5378	km2.	The	total	drainage	area	is	361.6	km2	(not	361.	6378).	

	
• Hypothesis	 testing:	 a	 formal	 statistical	procedure	used	 to	 accept	or	 reject	 a	working	

hypothesis	with	a	 specified	 significance	 (confidence)	 level.	 It	 typically	 consists	 in	 four	
stages:	state	the	null	and	alternate	hypotheses,	 formulate	an	analysis	plan,	analyze	the	
sample	data,	and	interpret	the	results.	

	
o Null	hypothesis:	a	statement	(usually	denoted	H0)	that	observations	in	a	sample	

or	 in	 different	 samples	 show	 no	 relationship,	 i.e.	 that	 they	 result	 purely	 from	
chance.	The	null	hypothesis	is	the	“simplest”	(no	causal	relationship)	and	should	
generally	be	considered	true	until	proven	otherwise.	
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o Alternative	 hypothesis:	 a	 statement	 (usually	 denoted	H1	 or	Ha)	 that	 sample	

observations	 are	 influenced	 by	 some	 non-random	 cause,	 i.e.	 that	 they	 show	 a	
relationship.	H0	and	H1	should	be	exclusive.	

	
o Significance	level:	the	probability	(usually	denoted	α)	of	falsely	rejecting	a	true	

hypothesis.	 It	 is	 chosen	 by	 the	 scientist	 to	 represent	 its	 tolerance	 for	 a	 false	
interpretation.	 Commonly,	 α	 =	 0.05	 or	 α	 =	 0.01,	 i.e.,	 we	 tolerate	 a	 5%	 or	 1%	
chance	of	error.	

	
o Confidence	 level:	 the	 complement	 probability	 of	 the	 significance	 level,	 i.e.	 the	

probability	that	the	interpretation	is	true.	Commonly,	it	is	set	to	95%	or	99%	(α	=	
0.05	or	α	=	0.01).	

	
o Example:	 In	 the	case	of	 the	granites,	 the	null	hypothesis	H0	would	be	 that	 they	

have	the	same	age	and	the	observed	difference	(128	±	10	versus	142	±	5)	results	
from	randomness	(noise)	in	the	date	measurements.	The	alternate	hypothesis	H1	
would	be	that	they	are	of	different	ages.	
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3	-	Basic	data	characterization	
	
3.1	-	Data	visualization	
• Open	 the	 test	dataset	 “datatest1.txt”,	 load	 in	 the	 array	variable	 “samp”,	 look	 at	 it,	 and	

check	how	many	elements	it	comprises.	
	

samp = np.loadtxt("datatest1.txt") 
samp     # returns the content of the variable 
len(samp)    # returns the length of the variable 

	
• Generate	a	histogram	of	the	dataset.	The	histogram	represents	the	number	(default)	or	

probability	density	/	frequency	(option	“normed=True”)	of	observations	in	each	bin.	In	
first	example,	 the	number	of	bins	 is	defined	automatically	based	on	the	dataset.	 In	the	
second	example,	the	number	of	bins	is	set	to	50.	Note	that	the	command	“plt.hist”	also	
generates	two	arrays	containing	the	counts	and	bin	edges	that	can	be	saved	in	variables.	
Cf.	“matplotlib.pyplot.hist”.	

	
plt.hist(samp, edgecolor='black') 
plt.hist(samp, edgecolor='black', bins=50) 
count, bin, dummy = plt.hist(samp, bins=50) 

	
• Generate	 a	 boxplot	 /	 whiskerplot	 of	 the	 dataset.	 The	 boxplot	 represents	 the	 non-

parametric	 distribution	 of	 the	 dataset:	 median,	 quartiles,	 range,	 outliers	 (we’ll	 get	 to	
that	in	section	3b).	Cf.	“matplotlib.pyplot.boxplot”.	

	
plt.boxplot(samp) 

	
• Let’s	 visualize	 both	 graphs	 together	 and	 spend	 a	 few	 minutes	 playing	 with	 the	

visualization.	What	can	we	say	about	the	dataset	“samp”	and	its	distribution?	
	

plt.subplot(1,2,1) 
plt.hist(samp, edgecolor='black') 
plt.title('Histogram') 
plt.ylabel('Count') 
plt.subplot(1,2,2) 
plt.boxplot(samp) 
plt.title('Whisker plot') 
plt.ylabel('Observations') 
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3.2	-	Location,	dispersion,	and	outliers	
	
§ In	 statistics,	 a	 sample	or	population	 is	 commonly	described	by	 its	 location,	which	 is	a	

measure	of	its	central	tendency	or	average	position,	and	its	dispersion,	which	measures	
its	tightness	or	spread	around	the	location.	
	

§ Let’s	 start	 with	 the	 location.	 The	 arithmetic	mean	 (or	 average)	µ	 is	maybe	 the	most	
common	measure	of	location.	It	represents	the	central	tendency	or	central	value	of	the	
discrete	set	of	observations.	For	a	sample	with	N	observations	x,	the	arithmetic	mean	is		

	

𝜇 =
𝑥!!

!!!

𝑁 	
 

np.mean(samp) 
np.round(np.mean(samp), 2)   # for a cleaner output	

	
NB:	Other	means	exist	(geometric,	harmonic),	but	we	won’t	consider	them	here.	

A few words about graphs using “matplotlib” in python 
 
The command “plt.subplot{x, y, z)” defines graphics regions for multiple graphics on 
a grid of x lines and y columns. The next graph will be drawn in z position (plot 
number). 
 
The commands “plt.title” and “plt.ylabel” generate a title and a label on the y-axis of 
the graph. Guess what “plt.xlabel” does? 
 
cf. “matplotlib.pyplot” for details. 
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• For	a	different	quantification	of	the	location,	calculate	the	median	Q2,	which	is	the	value	
that	separates	the	lower	50%	from	the	upper	50%	of	the	sample	distribution.	NB:	µ	≠	Q2.	

	
np.median(samp) 

	
• A	 third	estimation	of	 the	 sample	 location	 is	 its	mode.	 The	mode	 is	 the	most	 frequent	

(most	 probable)	 value	 of	 the	 sample,	 but	 it’s	 a	 tricky	 estimation.	 In	 our	 test	 dataset,	
there	is	no	mode	(all	values	occur	only	once)	although	the	python	command	returns	the	
first	element…	Using	the	histogram,	check	that	the	mode	of	“samp”	should	be	~123.	

	
stats.mode(samp) 
stats.mode([1,2,3,3,4,4,5,6,6,6,6,7])  # mode of a simpler vector 

	
• Let’s	go	one	step	beyond	and	consider	dispersion	by	calculating	the	sample	quartiles.	

The	quartiles	Q1,	Q2,	and	Q3	are	the	three	values	that	divide	the	sample	distribution	into	
four	quarters.	They	correspond	to	probabilities	of	25,	50,	and	75%.	The	second	quartile	
Q2	(50%)	is	the	median.	

	
np.percentile(samp, [25, 50, 75]) 
 

Note	that	in	practice,	any	percentile	can	be	calculated.	
 
np.percentile(samp, [10, 30, 99]) 

	
Using	Q1	and	Q3,	we	can	calculate	the	interquartile	range	(also	called	midspread)	IQR	=	
Q3	–	Q1,	which	is	a	common	measure	of	the	data	dispersion.	

	
np.percentile(samp, [75]) - np.percentile(samp, [25]) 

	
• The	interquartile	range	is	often	used	to	find	outliers	in	the	data,	i.e.,	values	that	are	“too	

far”	from	the	bulk	of	the	sample.	Outliers	can	correspond	to	experimental	errors,	or	they	
can	indicate	complex	(mixed)	observations.	Outliers	are	values	that	fall	below	Q1	–	1.5	*	
IQR,	or	above	Q3	–	1.5	*	IQR.	

	
• Let’s	 visualize	 these	 numbers	 for	 our	 test	 dataset.	 Note	 that	 the	 mean,	 median,	 and	

mode	 are	 not	 identical.	 Note	 also	 that	 the	 two	 observations	 around	 100	 –	 105	 are	
considered	outliers.	

	
plt.subplot(1,2,1) 
plt.hist(samp, edgecolor='black') 
plt.plot(np.mean(samp), [6], 'ro') 
plt.plot(np.percentile(samp, [25, 50, 75]), [5, 5, 5], 'y^') 
plt.plot([123], [8], 'gs') 
plt.subplot(1,2,2) 
plt.boxplot(samp, showmeans=True) 
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§ So,	how	do	we	describe	our	dataset?	Several	options:	

o The	sample	mean	and	standard	deviation	are	125.3	and	9.1.	
	

print("The sample mean and standard deviation are", 
np.round(np.mean(samp),1), "and", np.round(np.std(samp), 1)) 
 

o The	sample	mean	is	125.3	±	9.1	(standard	deviation	is	implicit	here).	
 

print("The sample mean is", np.round(np.mean(samp),1), "±", 
np.round(np.std(samp), 1)) 

 
o The	sample	median	and	IQR	are	126.7	and	9.3.	

 
print("The sample median and IQR are", np.round(np.median(samp),1), 
"and", np.round(np.percentile(samp, [75]) - np.percentile(samp, [25]) 
, 1)) 

A few words about graphs using “matplotlib” in python 
 
The command “plt.plot(x, y)” generates a scatter or line plot of the two vectors (or 
arrays) x and y of the same length (e.g., x = [1, 2, 3, 4], y = [1, 4, 9, 16] for the 
curve y = x^2 between 1 and 4). 

• plt.plot(x, y) – with no additional argument will generate a line joining the 
array values 

• plt.plot(x, y, ' ab…') with arguments a, b, etc. between '  '  will generate a line 
or scatter plot using the argument letters to define the symbol color (r = red, 
g = green, y = yellow, …) and shape (o = circle, s = square, ^ = triangle, -- = 
dashed curve, …) 

 
cf. “matplotlib.pyplot.plot” for details. 
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3.3	–	Very	basic	circular	statistics	
	
• In	Earth	sciences,	many	observations	consist	in	circular	(or	directional)	data,	i.e.	data	

that	are	defined	modulo	π	(180	°)	or	2π	(360	°).	Numerous	mathematical	tools	exist	to	
deal	with	this	kind	of	data;	we’ll	only	check	a	couple	of	basic	implementations	in	python	
3.	

	
• Example:	Let’s	say	we	measured	four	velocity	directions	(azimuth)	at	N010°,	N013°,	

N005°,	and	N348°.	Clearly,	the	average	direction	of	this	dataset	is	close	to	North,	but	a	
classic	mean	calculation	yields	N094°!	We	must	treat	them	as	a	set	of	N	angles	α	and	
transform	them	into	polar	coordinates	(X,	Y)	to	calculate	the	mean	angle	θ	and	the	
angular	dispersion	r.	NB:	The	angular	dispersion	ranges	from	0	(uniform	dispersion	
over	the	circle)	to	1	(concentration	in	the	mean	direction).	

	

𝑋 =
sin𝛼!!

!!!

𝑁 ,𝑌 =
cos𝛼!!

!!!

𝑁 	
	

𝑟 = 𝑋! + 𝑌!, cos𝛽 =
𝑋
𝑟 , sin𝛽 =

𝑌
𝑟 	

	

𝜃! = tan!!
sin𝛽
cos𝛽 	

	
𝜃 = 𝜃! , 𝑠𝑖 sin𝛼! > 0 𝑒𝑡 cos𝛼! > 0	

𝜃 = 180− 𝜃! , 𝑠𝑖 sin𝛼! > 0 𝑒𝑡 cos𝛼! < 0	

𝜃 = 180+ 𝜃! , 𝑠𝑖 sin𝛼! < 0 𝑒𝑡 cos𝛼! < 0	

𝜃 = 360− 𝜃! , 𝑠𝑖 sin𝛼! < 0 𝑒𝑡 cos𝛼! > 0	
	
• This	is	clearly	more	complex	than	simple	non-circular	statistics.	The	“stats”	library	in	

python	has	a	few	simple	functions	to	obtain	the	circular	mean	and	standard	deviation	of	
a	dataset	(with	any	upper	and	lower	boundaries	for	the	circular).	

	
v = [10, 13, 5, 348] 
np.mean(v), np.std(v)    # classic (incorrect) µ and σ 
stats.circmean(v, high = 360)   # µ modulo 360 
stats.circstd(v, high = 360)    # σ modulo 360 
 

The	correct	mean	and	standard	deviation	of	our	set	of	directions	are	N004	±	10	°.	
	

• Be	careful	to	differentiate	“direction”	and	“orientation”.	The	former	(direction)	refers	to	
vector-type	data	(i.e.,	modulo	360	°),	whereas	the	latter	refers	to	line-type	data	(i.e.	
modulo	180	°).	
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o Example:	A	fault	plane	azimuth	can	be	defined	as	an	orientation	(depending	on	
the	convention),	such	that	N045°	=	N225°	(i.e.,	NE	-	SW).	In	this	case,	you	can	use	
the	“stats”	functions	with	the	option	“high	=	180”.	

	
• The	problem	with	circular	data	is	also	evident	with	histograms.	A	regular	histogram	will	

not	account	for	the	circularity	of	the	data,	we	must	use	a	rose	or	wind	diagram	(“circular	
histogram”).	The	example	below	shows	a	set	of	velocity	direction	centered	near	N000°	
(North)	using	a	hand-made	rose	diagram.	There	are	several	more	elegant	wind	and	rose	
diagrams	in	python,	but	they	require	specific	libraries	(cf.	“windrose”,	
https://pypi.python.org/pypi/windrose).	

 
v = v + [5, 15, 357, 335, 13, 22, 341, 342] # adds a few numbers 
plt.subplot(1,2,1) 
nb, bin, dummy = plt.hist(v, bins = 36, edgecolor='black') 
plt.title("Regular histogram") 
ax = plt.subplot(122, projection='polar')  # make a polar plot ... 
ax.set_theta_direction(-1)    # ... clockwise and rotated 
ax.set_theta_offset(np.pi/2)                              # … and rotated 90 degres 
bin = np.arange(5, 365, 10) 
ax.plot(bin/360*2*np.pi, nb, 'rs') 
plt.title("Quick-and-dirty rose diagram") 
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4	-	Probability	distributions	(density	functions)	
	
4.1	-	Normal	distribution,	standard	deviation,	uncertainty	and	confidence	
interval	
• The	 normal	 (or	 Gaussian)	 distribution	 is	 one	 of	 the	 most	 common	 continuous	

probability	 distributions	 in	 Earth	 sciences.	 Most	 sets	 of	 independent	 observations	
follow	the	central	limit	theorem	and	converge	to	a	normal	distribution	when	the	sample	
is	sufficiently	large.	

	
• A	 normal	 distribution	 is	 characterized	 by	 its	 mean	 µ	 and	 standard	 deviation	 σ.	 The	

standard	deviation	 is	 a	measure	of	 the	 variation	or	dispersion	of	 the	data	 around	 the	
mean	of	normally	distributed	sample.	

	

𝑓 𝑥, 𝜇,𝜎 =
1

𝜎 2𝜋
𝑒𝑥𝑝 −

𝑥 − 𝜇 !

2𝜎! ,−∞ < 𝑥 < ∞	

	

𝜎 =
𝑥! − 𝜇 !!

!!!
𝑁 	

	
np.std(samp)   # calculates the standard deviation of “samp”	

	
• A	few	characteristics	of	the	normal	distribution:	

o It	is	symmetric	about	its	mean.	
o mean	=	median	=	mode.	
o It	is	infinite	on	both	ends.	
o 68.2%	 of	 the	 distribution	 is	 within	 +/-	

one	standard	deviation	of	the	mean.	
o 95.4%	 of	 the	 distribution	 is	 within	 +/-	

two	standard	deviations	of	the	mean.	
	
• Getting	back	to	our	test	dataset	“samp”,	its	mean	and	standard	deviation	are	125.3	and	

9.1.	Let’s	see	how	well	it	fits	a	normal	distribution	and	discuss	the	result.	Note	how	the	
observations	around	100	–	105	are	not	explained	by	the	normal	distribution	(reminds	
you	of	something?).	

	
plt.hist(samp, edgecolor='black', normed=True) 
mu = np.mean(samp) 
sigma = np.std(samp) 
x = np.arange(80,160,1) 
pdf = 1 / (sigma*np.sqrt(2*np.pi)) * np.exp(-1 * (x-mu)**2 / (2*sigma**2)) 
plt.plot(x, pdf, '--r') 
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• Uncertainty	 and	 confidence	 interval.	 We	 very	 commonly	 assume	 that	 a	 sample	

follows	a	normal	distribution	to	quote	the	observation	uncertainty	in	terms	of	standard	
deviation,	68%,	or	95%	confidence	intervals.	

o Example:	Our	test	dataset	correspond	to	30	measurements	of	ages	on	a	granite	
pluton.	Assuming	the	sample	follows	a	normal	distribution,	we	define	the	pluton	
average	age	as:	

§ The	pluton	age	is	125.3	±	9.1	Ma	(µ	±	σ).	
§ The	 pluton	 age	 is	 between	 116.2	 Ma	 and	 134.4	 Ma	 (68%	 confidence	

interval	=	(µ	-	σ)	–	(µ	+	σ)).	
§ The	pluton	age	falls	within	the	range	(107.1	–	143.5)	Ma	(95%	confidence	

interval	=	(µ	-	2*σ)	–	(µ	+	2*σ)).	
	
	
	
	

Woah, how did we do that? 
 
The command “np.arange{x, y, z)” generates a 1D array (vector) of real values 
ranging from x (included) to y (excluded) every z. In the example above, we created 
an array from 80 to 159 every 1 (80, 81, 82, …). 
 
The expression “pdf = …” calculates the theoretical normal probability distribution 
using 

o standard “numpy” function (np.pi, np.sqrt, np.exp) 
o the sample “samp” mean (mu) and standard deviation (sigma) 
o the array x (80 to 159) 

The calculation is performed on each element of x, resulting in a 1D array pdf of the 
same length with the normal distribution function. 
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4.2	-	Law	of	large	numbers,	minimum	sample	size	for	useful	statistics	
	
• Clearly,	 the	dataset	 “samp”	does	not	perfectly	 fit	a	normal	distribution.	 It	 contains	 too	

many	observations	at	the	lower	end	(100	–	105)	and	around	the	mean	(120	–	135),	and	
it	lacks	observations	in	several	ranges	(110	–	120,	upper	end).	

	
• In	 statistics,	 the	 law	 of	 large	 numbers	 states	 that	 the	 mean	 of	 sample	 with	 a	 large	

number	of	independent	observations	is	close	to	the	population	mean,	and	will	get	closer	
as	 more	 observations	 are	 added.	 The	 central	 limit	 theorem	 further	 states	 that	 the	
sample	will	converge	towards	a	normal	distribution	when	it	is	sufficiently	large…		

	
• In	practice,	the	minimum	sample	size	depends	on	the	applications	and	on	the	tolerated	

margin	of	error,	which	 is	gets	much	 too	detailed	 for	us.	Let’s	generate	of	 few	random	
samples	from	a	normal	distribution	(µ	=	100,	σ	=	10)	to	get	a	general	idea.	

o Repeat	the	last	three	steps	to	discuss	how	the	results	vary	with	different	random	
samples.	

o Repeat	with	larger	sample	sizes	(20,	50,	100,	1000).	
o What	is	the	minimum	size	of	a	sample	to	get	a	“good”	estimation	of	the	mean	and	

standard	deviation	of	the	parent	population?	
	

mu = 100 
sigma = 10 
x = np.arange(60,140,1) 
pdf = 1 / (sigma*np.sqrt(2*np.pi)) * np.exp(-1 * (x-mu)**2 / (2*sigma**2)) 
plt.plot(x, pdf, '--r') 
obs = np.random.normal(mu, sigma, 10) 
plt.hist(obs, normed=True) 
np.mean(obs), np.std(obs) 

	

	
	
4.3	-	Lognormal	distribution,	skewness,	multimodal	distribution,	and	other	
weird	things	
	
• Another	 very	 common	 continuous	 probability	 distribution	 in	 Earth	 sciences	 is	 the	

lognormal	 distribution.	 As	 its	 name	 suggests,	 it	 corresponds	 to	 the	 distribution	 of	 a	
variable	whose	logarithm	is	normally	distributed.	

Generating random samples with “numpy” 
 
The command “np.random.normal(x, y, z)” generates a 1D array of z elements 
randomly drawn from a normal distribution of mean x and standard deviation y. A 
whole variety of probability distributions (lognormal, chi2, …) exist in “numpy” to 
play with. 
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• The	lognormal	distribution	can	represent	processes	driven	by	the	accumulation	of	many	

small	percentage	changes,	resulting	in	population	with	more	frequent	small	values	and	
less	frequent	large	ones	

o Examples:	daily	rainfall,	fault	length,	…	
	
• A	 lognormal	 distribution	 is	 characterized	 by	 two	 parameters	 µ	 and	 σ	 (mean	 and	

standard	deviation	of	 the	 logarithm	of	 the	observations).	σ	 is	 often	 referred	 to	 as	 the	
scale,	which	defines	the	width	(and	skewness)	of	the	distribution.	

	

𝑓 𝑥, 𝜇,𝜎 =
1

𝑥𝜎 2𝜋
𝑒𝑥𝑝 −

ln (𝑥)− 𝜇 !

2𝜎! , 0 < 𝑥 < ∞	

	
	
• A	few	characteristics	of	the	lognormal	distribution:	

o It	 is	 asymmetric	 and	 skewed	 positively	 (to	
the	right)	

o Its	skewness	increases	with	the	scale	
o mean	≠	median	≠	mode	
o It	strictly	positive	and	infinite	to	the	right	

	
	
	
	
• Let’s	 compare	 the	 normal	 and	 lognormal	 distributions	 applied	 to	 a	 new	dataset.	 This	

time,	we’ll	 look	 at	 return	periods	of	 very	 large	 (MW	~	9)	 earthquakes	 in	 the	Cascadia	
subduction	zone.	

o Open	 the	CSV	 file	 containing	 the	data	 and	 load	 it	 into	 a	new	1D	array	variable	
“eq”	

	
eq = np.loadtxt("datatest2.csv", delimiter=',')  # note the ',' 

	
o Find	the	parameters	of	the	normal	and	lognormal	distributions	that	best	fit	our	

dataset.	Verify	that	these	results	fit	with	the	mean	and	standard	deviations	of	the	
sample.	

	
mu, sigma = stats.norm.fit(eq) 
logsigma, dummy, logmu = stats.lognorm.fit(eq, floc = 0) 

	
o Plot	the	data	histogram,	best-fit	normal	and	lognormal	distributions,	and	discuss	

the	result.	
	

plt.hist(eq, normed=True, edgecolor='black') 
x = np.arange(-200, 1300, 1) 
norm = 1 / (sigma*np.sqrt(2*np.pi)) * np.exp(-1 * (x-mu)**2 / (2*sigma**2)) 
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plt.plot(x, norm, '--r') 
x = np.arange(1, 1300, 1) 
mu = np.log(logmu) 
sigma = logsigma 
log = 1 / (x*sigma*np.sqrt(2*np.pi)) * np.exp(-1 * (np.log(x)-mu)**2 / 
(2*sigma**2)) 
plt.plot(x, log, '-.y') 

	
	
• More	complex	processes	can	lead	to	more	complex	distributions	that	can	be	difficult	to	

deal	 with.	 Let’s	 consider	 “datatest3.txt”,	 which	 shows	 an	 example	 of	 a	 bimodal	
distribution.	How	well	is	it	characterized	by	its	mean	and	standard	deviation?	

	
samp = np.loadtxt("datatest3.txt") 
plt.hist(samp, edgecolor='black') 
# now you’re on your own… 

	

	
	 	



Basic	data	analysis	and	statistics	–	M1	–	Integration	module	

	 17	

5	-	Basic	statistical	analysis	
	
5.1	 -	 Does	 one	 (two)	 sample(s)	 follow	 a	 (the	 same)	 normal	 distribution?	
The	Student’s	t	test	
	
• Let’s	 get	 back	 to	 the	 issue	of	 result	 accuracy.	The	 following	dataset	 (4.3,	 4.9,	 6.0,	 6.2)	

represent	 four	measurements	 of	 slip	 rate,	 in	mm/a,	 on	 a	 given	 fault.	We	 can	 state	 an	
average	slip	rate	of	5.3	±	0.8	mm/a	(µ	±	σ),	but	how	confident	are	we	that	the	result	is	
accurate?	 I.e.,	 can	 we	 reject	 the	 hypothesis	 that	 the	 true	 slip	 rate	 is	 much	 larger	 or	
smaller	than	5.3	mm/a?	

	
• The	t	test	can	be	used	to	address	this	kind	of	question.	

o State	the	null	and	alternate	hypotheses:	
§ H0	=	the	sample	follows	a	normal	distribution	of	mean	5.3	(i.e.,	the	true	slip	

rate	is	5.3	mm/a).	
§ H1	=	the	sample	true	mean	is	different	from	5.3.	

	
• Calculate	the	p-value	for	a	one-sample	t	test	and	compare	with	the	desired	significance	

level.	The	p-value	can	be	viewed	as	the	probability	of	making	an	error	in	accepting	the	
null	hypothesis.	

	
slip = [4.3, 4.9, 6.0, 6.2] 
np.mean(slip), np.std(slip) 
stats.ttest_1samp(slip, 5.3) 

	
In	 this	 example,	 p	 =	 0.92.	 Let’s	 say	 we	 want	 a	 significance	 level	 α	 =	 0.05	 	 (95%	
confidence	 level	 of	 not	 making	 a	 mistake).	 p	 >	 α,	 so	 we	 cannot	 reject	 the	 null	
hypothesis	(that	the	true	mean	is	5.3).	

	
§ Let’s	check	a	different	H0	=the	sample	follows	a	normal	distribution	of	mean	6.0.	
	

stats.ttest_1samp(slip, 6.0) 
	

In	this	case,	p	=	0.25.	p	>	α,	and	we	cannot	reject	the	null	hypothesis	that	the	true	slip	
rate	is	6.0	mm/a	!	

	
§ One	more	round	with	a	more	extreme	H0	=	the	sample	true	mean	is	10.0.	
	

stats.ttest_1samp(slip, 10.0) 
	

Here,	p	=	0.002	<	α.	In	this	case,	we	can	reject	the	null	hypothesis	and	state	with	95%	
confidence	that	the	true	sample	mean	is	not	10.0.	

	
§ Verify	 that	 any	 slip	 rate	 within	 the	 range	 (3.9	 –	 6.8)	 cannot	 be	 rejected	with	 a	 95%	

confidence.	 How	 does	 that	 compare	 with	 the	 sample	 mean	 and	 standard	 deviation?	



Basic	data	analysis	and	statistics	–	M1	–	Integration	module	

	 18	

What	 does	 that	 tell	 you	 about	 the	 using	 two	 standard	deviations	 as	 a	measure	 of	 the	
95%	confidence	interval?	

	
mrange = np.arange(0, 12, 0.1) 
stat, p = stats.ttest_1samp(slip, mrange) 
plt.plot(mrange, p*100) 
plt.grid() 
plt.plot([0, 12], [5, 5], '--r') 
plt.plot([np.mean(slip) - 2 * np.std(slip), np.mean(slip) + 2 * np.std(slip)], [5, 
5], 'yo') 

	
	
§ The	t	test	is	also	commonly	used	to	address	questions	such	our	very	first	example	(two	

plutons	with	the	same	age	or	not).	In	this	kind	of	problem,	we	use	a	two-sample	t	test	to	
check	if	two	independent	samples	have	identical	means. 

	
§ Do	the	two	Cevennes	plutons	dated	at	128	(±	10)	Ma	and	142	(±	5)	Ma	have	the	same	

age?	
o Null	hypothesis	H0	=	 the	 two	samples	have	 identical	expected	means	 (i.e.,	 they	

are	drawn	from	the	same	population).	
	
§ In	fact,	the	t	test	cannot	answer	this	question	without	further	information:	
	

o Case	1:	We	have	the	actual	observations.	
	

a1 = [116, 145, 127, 123, 128] 
a2 = [141, 149, 137] 
stats.ttest_ind(a1, a2) 

 
The	 p-value	p	=	0.079	 is	 larger	 than	 the	 significance	 level	 (set	 to	α	 =	0.05),	 so	we	
cannot	 reject	 the	null	hypothesis	with	95%	confidence.	 In	other	words,	we	 cannot	
exclude	 the	 fact	 that	 the	 two	 plutons	 have	 the	 same	 age	 and	we	 have	 to	 use	 as	 a	
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working	hypothesis	that	the	ages	are	similar.	
	

o Case	 2:	 We	 don’t	 have	 the	 actual	 observations,	 but	 we	 have	 the	 number	 of	
observations	in	both	samples.	

	
stats.ttest_ind_from_stats(128, 10, 5, 142, 5, 4) 

	
The	 p-value	p	=	0.039	 is	 smaller	 than	 the	 significance	 level	 (α	=	0.05)	 and	we	 can	
reject	 the	 null	 hypothesis	with	 95%	 confidence.	 In	 other	words,	we	 are	 confident	
that	that	the	two	plutons	have	different	ages.	

	
§ But	wait,	what	if	we	had	chosen	a	significance	level	α	=	0.01	in	order	to	be	sure	at	99%	

of	our	interpretation?	Then	we	could	not	have	rejected	the	null	hypothesis	in	both	cases.	
Conclusion:	

o Low	significance	levels	(high	confidence	levels)	provide	more	drastic	–	but	safer	
–	interpretations.	

o Statistics	are	a	useful	tool,	but	in	the	end,	they	always	require	an	arbitrary	choice	
by	the	scientist	(confidence	level,	threshold).	

o There	is	nothing	magic	at	95%	confidence.	In	fact,	recent	discussions	in	scientific	
communities	 (especially	 medical	 sciences)	 propose	 to	 use	 more	 drastic	
confidence	levels	(99%	or	99.9%)	to	avoid	false	interpretations.	

	
	
5.2	-	Correlation	between	two	samples	
	
• The	coefficient	of	correlation	is	a	measure	of	the	statistical	relationship	or	dependence	

between	two	random	variables.	There	are	several	methods	to	calculate	correlation.	The	
most	 common	 is	 the	 Pearson	 product-moment	 correlation,	 which	 we’ll	 just	 call	
“correlation”	and	note	“r”.	For	two	samples	of	observations	x	and	y	of	the	same	length	N,	
specific	mean	µ	x	/	y,	and	standard	deviation	σ	x	/	y:	

	

𝑟 =
𝑥! − 𝜇! 𝑦! − 𝜇!!

!!!

𝑁 − 1 𝜎!𝜎!
	

	
x = np.random.normal(0, 1, 10) 
y = np.random.normal(0, 1, 10) 
plt.plot(x, y, 'or') 
plt.ylim([-5, 5]), plt.xlim([-5, 5]) 
np.corrcoef(x, y)[0, 1] 

	
Depending	on	the	random	samples,	the	coefficient	of	correlation	will	vary	between	-1	
and	1.	 r	=	0	 indicates	no	 relationship	 /	dependence	between	 the	 samples.	 r	=	1	(-1)	
indicates	a	full	positive	(negative)	relationship	/	dependence.	

	
• The	python	function	“corrcoef”	allows	calculating	the	correlation	between	several	arrays	
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(x,	y,	z,	…),	and	returns	the	respective	coefficients	of	correlation	rxy,	rxz,	etc.	
	

x = np.random.normal(0, 1, 10) 
y = np.random.normal(0, 1, 10) 
z = np.random.normal(0, 1, 10) 
np.corrcoef([x, y, z]) 

	
• The	phrase	“Correlation	does	not	imply	causation”	is	often	found	in	statistics	textbooks.	

It	 is	meant	to	warn	that	inferring	a	causative	relationship	between	two	samples	based	
on	 a	 strong	 coefficient	 of	 correlation	 is	 a	 logical	 fallacy.	 As	 seen	 above,	 two	 purely	
random	 samples	 can	 have	 a	 high	 correlation	 (say,	 r	 >	 0.5)	 without	 any	 causal	
relationship.	

o Check	 that	 this	 is	partly	 related	 to	 the	 sample	 size	but	 rerunning	 the	 functions	
above	 with	 samples	 of	 100	 observations.	 You	 will	 have	 a	 much	 harder	 time	
finding	correlation	values	larger	than	0.2.	

	
	
5.3	-	Does	a	dataset	show	a	significant	trend?	Simple	linear	regression	
	
§ Linear	regressions	are	very	classical	problems	in	Earth	sciences.	They	are	used	to	study	

systems	with	linear	rates	of	changes,	expressed	as	y	=	a	*	x	+	b,	with	a	the	rate	of	change	
(slope,	 gradient,	 velocity,	 etc.)	 of	 a	 set	 of	 observations	 y	 explained	 by	 a	 set	 of	
explanatory	values	x.	

	
§ Example.	The	tide	gauge	in	Seattle,	USA,	measures	relative	sea	level	height	since	1900.	

We	want	 to	 know	 the	 rate	 of	 relative	 sea	 level	 change	 during	 the	 20th	 century	 using	
heights	measured	every	month.	

	
vanc = np.loadtxt("datatest4.txt") 
date = vanc[:, 0]  # extracts the 1st column of the 2D array “vanc” 
rsl = vanc[:, 1] * 1e3 # convert the 2nd column to mm 
plt.plot(date, rsl, '.-g') 
a, b, rval, pval, ste = stats.linregress(date, rsl) 
x = np.array([1900, 2006]) 
plt.plot(x, a * x + b, '--r') 
print("The 20th century rate of sea-level rise in Seattle is", np.round(a, 2), 
"±", np.round(aste, 2), "mm/a.") 
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• There	are	several	indicators	to	measure	the	robustness	of	the	linear	regression.	

o The	 standard	 error	 on	 the	 slope	 (here	 ste	=	0.08	mm/a).	 It	 is	 close	 to,	 but	 not	
identical,	 to	 a	 standard	 deviation	 (it	 is	 in	 fact	 the	 standard	 deviation	 of	 the	
sampling	distribution,	but	let’s	not	worry	about	that…).	In	most	cases,	we	can	use	
this	standard	error	as	we	would	the	standard	deviation	of	a	normal	distribution	
(68%	confidence	interval,	etc.,	cf.	section	4.1).	
	

o The	p-value	of	a	the	test	whose	null	hypothesis	H0	is	that	the	slope	is	zero.	In	this	
example,	the	p-value	is	extremely	small	(pval	=	.6	*	10^-24)	so	we	can	reject	the	
null	hypothesis	with	a	very	high	confidence.	

	
o The	coefficient	of	correlation	R	and	the	associated	coefficient	of	determination	R2.	

The	latter	measures	the	proportion	of	the	variance	in	the	dependent	variable	(y)	
that	 is	 predictable	 from	 the	 explanatory	 variable	 (x).	 In	 other	 words,	 in	 our	
example	R2	=	rval**2	=	0.35,	meaning	that	the	linear	model	explains	about	35%	of	
the	dispersion	in	the	data.	

A few words on working with arrays in python 
 
If we define test = [10, 20, 30, 40], then test[2] returns the third element of test (30) . 
Remember that python starts counting at 0! The array can be subsampled over a 
range a – b using test[a : b]. For example test[0:2] returns [10, 20, 30] and test[:] 
returns the whole array. 
  
2D arrays can be subsampled in the same fashion, but with two indices. For 
example, test = np.array([10, 20, 30, 1, 2, 3]).reshape((2,3)) creates a 2D, 2 lines / 
3 columns array. test[1, :] returns values in second line, all columns (1, 2, 3). 
 
Arrays can be tricky things to play with. Let’s wait for the “computing” course to find 
more. 
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o OK,	so	what	does	that	tell	us?	Well,	we	can	state	the	following:	

§ The	 rate	 of	 sea-level	 rise	 is	 2.06	 ±	 0.08	 mm/a	 (well	 constrained,	 small	
uncertainty)	

§ We	can	reject	with	over	99.9%	confidence	the	hypothesis	 that	 the	rate	of	
sea-level	change	is	0	mm/a.	

§ This	linear	trend	only	explains	about	35%	of	the	dispersion	/	spread	in	the	
data.	As	can	be	seen	on	from	the	graph,	about	65%	of	the	dispersion	in	not	
explained	by	/	related	to	a	linear	trend.	

	
• What	if	we	want	to	study	non-linear	processes	(logarithmic,	exponential,	sinusoidal,	…)?	

o One	way	to	deal	with	some	non-linear	problems	is	to	linearize	them	by	changing	
variables.	

§ Example:	You	want	 to	 find	 the	parameters	of	an	exponential	decay	curve				
y	=	b	+	a	*	exp(-x).	By	 taking	 the	 logarithm	of	both	sides	of	 the	equation,	
you	can	define	the	linear	equation	y1	=	a1	–	x,	with	y1	=	ln(y	–	b)	and	a1	=	
ln(a),	which	you	can	solve	using	a	linear	regression	function.	

	
o python	also	comprises	non-linear	regression	functions,	which	can	deal	with	more	

complex	problems,	and	provide	more	correct	statistics	than	linearization.	Cf.	for	
example	“curve_fit”	from	the	library	“scipy.optimize”.	

	
	


