L2 - Techniques mathématiques EEA - HAE304X

Feuille de TD nº 1

Limites, continuité et dérivabilité

Exercice 1

Déterminer les limites suivantes :

(a)
$$\lim_{x \to 0} -x^2 + 3x - 2$$
;

(b)
$$\lim_{x \to -\infty} \frac{x^2 - 6x + 7}{3x^2 - 5}$$

(c)
$$\lim_{x \to 0} \frac{1 - \cos x}{x}$$
;

(d)
$$\lim_{x \to 1} \frac{\ln x}{x-1}$$

(e)
$$\lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos(x)}$$

(f)
$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$
;

$$\begin{array}{ll} \text{(a)} & \lim_{x \to +\infty} -x^2 + 3x - 2 \,; & \text{(b)} & \lim_{x \to -\infty} \frac{x^2 - 6x + 7}{3x^2 - 5} \,; & \text{(c)} & \lim_{x \to 0} \frac{1 - \cos x}{x} \,; & \text{(d)} & \lim_{x \to 1} \frac{\ln x}{x - 1} \,; \\ \text{(e)} & \lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos(x)} \,; & \text{(f)} & \lim_{x \to 0} \frac{x - \sin x}{x^3} \,; & \text{(g)} & \lim_{x \to +\infty} \sqrt{4x^2 + 2x - 1} - 2x + 3. \end{array}$$

Exercice 2

Calculer les dérivées des fonctions suivantes :

(a)
$$f(x) = x \ln x$$
; (b) $f(x) = \frac{x^2}{\cos x}$; (c) $f(x) = \sin x^2$; (d) $f(x) = x \left(x + \sqrt{1 + x^2}\right)$ et $g(x) = \sqrt{x} \left(x^2 + \frac{e^x}{\sqrt{x}}\right)$; (e) $f(x) = e^{\sqrt{x^2 + 1}}$; (f) $f(x) = \ln\left(\left(\frac{x^2 - 1}{x^2 + 1}\right)^{1/3}\right)$; (g) $f(x) = x \cdot 2^x$.

Exercice 3

Calculer les dérivées successives de la fonction $f:]-1, +\infty[\to \mathbb{R}$ définie par $f(x) = \ln(x+1)$.

Développements limités

Exercice 4

Ecrire les expressions suivantes sous la forme de développements limités.

1.
$$(1+3x-x^2+x^3\varepsilon_1(x))+(-2+5x^2-x^4+x^4\varepsilon_2(x))$$

2.
$$(2x+5x^2-4x^3+x^5\varepsilon_1(x))(-1+3x-x^2+x^3+2x^4+x^5\varepsilon_2(x))$$

Exercice 5

Déterminer les développement limités suivants.

1.
$$DL_5(0)$$
 de $f(x) = \cos 3x$

2.
$$DL_3(0)$$
 de $f(x) = \frac{e^x}{1+x}$

3.
$$DL_4(0) \text{ de } f(x) = \frac{\sin x}{x}$$
, puis de $g(x) = \frac{x}{\sin x}$

4.
$$DL_3(0)$$
 de $f(x) = \tan x$

Exercice 6

Déterminer les développement limités suivants.

1.
$$DL_5(0)$$
 de $f(x) = e^{\cos x}$

2.
$$DL_7(0) \text{ de } f(x) = \arctan(x)$$

3.
$$DL_2(0)$$
 de $f(x) = \sqrt{2+x}$

4.
$$DL_2(1)$$
 de $f(x) = \sqrt{3+x}$

5.
$$DL_1(0)$$
 de $f(x) = \frac{1}{1 + e^x}$

6.
$$DL_{15}(0)$$
 de $f(x) = \frac{1}{(1-x)^2}$. En déduire $f^{(10)}(0)$.

Exercice 7

A l'aide des développements limités, calculer la limite en 0 de

1.
$$f(x) = \frac{1 - \cos x}{x^2}$$
,

1.
$$f(x) = \frac{1 - \cos x}{x^2}$$
,
2. $f(x) = \frac{e^x - \sin x - \cos x}{x^2}$.