Département	
General de Mécanique Faculté des Sciences	
COURS RDM - HLME501	
Equipe enseignante : P. Cañadas, L. Daridon & V. Huon	
MCC : (1ère session)*80% + 20% TP ou 2nde session*80% + 20% TP	

COURS RDM	LME501
• Objectifs	
 Déterminer les déplacements et la déformée 	
Premiers pas vers le Dimensionnement d'une pou	tre
 Premiers pas vers les EF Méthodes 	
– Méthode des coupures (Rappel)	
- Écrire les équations d'équilibre dans le cas des po	utres
 Résoudre les équations d'équilibre locale 	
– Utiliser les méthodes énergétiques	
– PFS OU PFV – MFF	
	2

HLME501	
• Merci à :	
– Pierre Alain Boucard	
 – R. Boudet et P. Stephan - Vous avez dit : «Résistance des Matériaux »- ISBN 2.854284801 	
– P. Ballard Mec553 «structures élancées»	

Second de Mécani	HLME501
	1. Équations d'équilibre
	1.1.MMC 1.2.RDM
S	2. Conditions aux limites
	2.En déplacement
	3. Loi de comportement
Le comportement du n	natériau est <u>élastique linéaire</u> le Hooke).
(1010	6

HLME501	
Poutre : le solide occupant dans son état de référence (non déformé) le domaine engendré par la surface plane (S) lorsque G décrit un arc de courbe GrG1. (S) restant	
normale en G à cet arc.	
G ₁ La fibre moyenne est le lieu des	
G ₀ (S) centres de gravité des sections.	
La section droite est la section perpendiculaire à la ligne moyenne.	
La section droite ne peut varier que continûment.	
10	

HIMESOT Hypothèses de RDM	
 Hypothèse de Saint Venant Hypothèse de Navier Bernoulli 	
Hypothèse des Petites Perturbations.(HPP)	
Saint Venant : Tous les efforts sont schématisés par leur torseur résultant. On ne connaît pas la répartition des efforts en chaque point de la section mais seulement leur moyenne et la moyenne des moments en un point.	
<u>Navier-Bernoulli</u> : les sections droites restent, après déformation, planes et indéformables dans leur propre plan. Autrement dit, il n'y a pas gauchissement des sections ; cette hypothèse n'est pas toujours valable. Elle est cependant justifiée en	
hypothèse des petites déformations (HPP).	
<u>HPP</u> : La poutre s'écarte «peu» de la configuration de référence. On assimile la configuration de référence et la configuration déformée.	
12	

Liaisons : Con Conditions aux limites Le Champs de Déplacement :	ditions aux lim s en déplaceme $\underline{U}(x,y) = \begin{cases} U_1\\U_2 \end{cases}$	HLMEGOT hites - cas Rect-plan ht $= u(x) - (y - y_g)v'(x)$ = v(x)
بک	S	Encastrement
Linéaire annulaire	Rotule	
$v(x_A) = 0$	$u(x_B) = 0$ $v(x_B) = 0$	$\begin{aligned} u(x_C) &= 0\\ v(x_C) &= 0 et v'(x_C) = 0 \end{aligned}$
Appui simpl	e Articulation	Encastrement
	В	C
		17

€⊖S RDM - %£**¥¥€%##@@&§ !!!!	HLME501	
Qu'est ce qu'un Pb de mécanique ?	Ŭ	
Qu'est ce qu'une poutre?	La fibre moyenne ?	
	La section droite ?	
Hypothèse de Bernouilli ?		
Champs cinématique d'une poutre gauche res	pectant les Hyp. Ber. ?	
Champs cinematique d'une poutre droite	respectant les Hyp. Ber. ?	
	18	

HLME501 → SRDM - %£**¥¥€%##@@&§ !!!!	
Qu'est ce qu'un Pb de mécanique ?	
Hypothèse de Bernouilli ?	
Champs cinematique d'une poutre gauche respectant les Hyp. Ber. ?	
Champs cinématique d'une poutre droite respectant les Hyp. Ber. ?	
19	

HLME501 PFS : Exemple d'une force uniformément répartie	
$\overline{f(x)}$	
L/2 $U/2$ $L/2$	
1) Bilan des Efforts Extérieurs	
Effort Appliqué	
Force linéique	
Efforts de Liaison Réaction et moment d'encastrement	
2) Calcul des Eléments de Réduction des Torseurs	
21	
21	

Efforts extérieurs - 2	2D -pl	an	HLME501	
Effort Ponctuel en A	=	Glisseur	$\left\{\begin{array}{ccc}F_x & 0\\F_y & 0\\0 & 0\end{array}\right\}$	
Couple Ponctuel en A	=	Couple	$\left\{\begin{array}{c c} 0 & 0 \\ 0 & 0 \\ 0 & C_z \end{array}\right\}_A$	
Effort réparti entre A et B	=	$\begin{cases} \int_{x_A}^{x_B} \overrightarrow{f}(x) dx \\ \overrightarrow{M}_{(A)} = \int_{x_A}^{x_B} (x) dx \end{cases}$	$(x-x_A).f_y(x)dx \overline{z}$	
$\overrightarrow{M}_{(B)} = \overrightarrow{M}$	$\vec{I}_{(A)}$ +	$\overrightarrow{BA}\wedge\overrightarrow{R}_{(A)}$	22	

RLMESOT 2 Méthodes	
Les efforts internes dépendent fortement du type du chargement	
Méthode sténique ou des coupures (IUT, BTS, EI,)	
Méthode des équations locales un premier pas vers la MMD et les EF	
29	

fos	Sollicitations Élé	mentaires	HLME501	(Toto
MONTPELLIER			(m) coh	\smile
-	Sollicitation élémentaire	Composante(s) non nulle(s)	$\{T\}_{G}$	
-	Traction/Compression	N	$\frac{\left\{\begin{array}{c}\overrightarrow{0}\end{array}\right\}_{G}}{\left(\begin{array}{c}T_{u}\overrightarrow{y}\end{array}\right)}$	
-	Cisaillement pur	T_y	$\frac{\left\{\begin{array}{c} -\overrightarrow{g},\overrightarrow{g}\\ \overrightarrow{0}\end{array}\right\}_{G}}{\left(\begin{array}{c} \overrightarrow{0}\\ \end{array}\right)}$	
-	Torsion	M_t	$\frac{\left\{\begin{array}{c} 0\\ M_t \overrightarrow{x}\end{array}\right\}_G}{\left(\overrightarrow{0}\right)}$	
	Flexion pure On montrera que dans	M_{fz} ce cas, M_{fz} , est constant.	$\left\{\begin{array}{c} 0\\ M_{fz}\overrightarrow{z}\end{array}\right\}_{G}$	
-	Flexion simple	$T_y ext{ et } M_{fz}$	$\left\{\begin{array}{c}T_y \overrightarrow{y}\\M_{fz} \overrightarrow{z}\end{array}\right\}_C$	
-				
				33

Noms de la composantes	$Composante(s) \ non \ nulle(s)$	$\{T\}_G^{coh}$	
Effort Normal	Ν	$\left\{\begin{array}{c} N\overrightarrow{x}\\ \overrightarrow{0}\end{array}\right\}_{G}$	
Effort Tranchant	T_y	$\left\{ \begin{array}{c} T_y \overrightarrow{y} \\ \overrightarrow{0} \end{array} \right\}_G$	
Moment de Torsion	M_t	$\left\{ \begin{array}{c} \overrightarrow{0} \\ M_t \overrightarrow{x} \end{array} \right\}_G$	
Moment de Flexion	M_{fz}	$\left\{\begin{array}{c} \overrightarrow{0} \\ M_{fz} \overrightarrow{z} \end{array}\right\}_{G}$	

Exemples	
$ \{T\}_{G}^{coh} = \{T\}_{G}^{P_{2} \to P_{1}} $ $ \{T\}_{G}^{coh} = -\{T\}_{G}^{ext \to P_{1}} = \{T\}_{G}^{ext \to P_{2}} $	
L/3 2L/3 ȳ ȳ	
Rotule en O	
1) Bilan des Efforts Extérieurs	
35	

KDM - %£**¥¥€%##@@&§ !!!!	
Qu'est ce qu'un Pb de mécanique ?	
Hypothèse de Bernouilli ?	
Champs cinématique dans un repère Cartésien d'une poutre droite	
respectant les nyp. del. :	
Définition du Torseur de cohésion	
Nombre de coupure dans le cas suivant ou de zones d'étude	
<u>*************************************</u>	
A	
A D 45	

Mise en place des équation Section S ₀ : s=s ₀		
	$\vec{f}(s)$ G_0 S_0 Bilan des efforts :	
On applique le PFS à la partie de poutre comprise entre S_0 et S_1 en supposant qu'il	>Les actions de la partie $\{s>s_1\}$ en s_1	
n'y a pas de charges ponctuelles et sous l'effet d'une charge répartie	≻Les actions de la partie {s <s₀} en="" s₀<br="">≻La densité linéique $\overrightarrow{f}(s)$</s₀}>	
	49	

fos Mise en place des	équations
MONTPELLER	PFS Résultante
$\int_{s_0} f(s) \int_{s_0} \vec{f}(s)$	$(s)ds + \vec{R}(s_1) - \vec{R}(s_2) = \vec{0}$
$\int J \langle s_0 \rangle s_1$	$5/us + it(s_1) - it(s_0) = 0$
$\int_{s_0} (\overrightarrow{f}(s$	$)+rac{d}{ds}\overrightarrow{R}(s))ds=\overrightarrow{0}\forall s_{0},s_{1}$
$\overrightarrow{f}(c)$	$d \vec{R}(c) = \vec{0}$ $\forall c c$
J (8	$(1+\frac{1}{ds}) + \frac{1}{ds} = 0$ (s_0, s_1)
	51

Mise en place des équations	(2005) (2005)
$F(s^*)$ PFS Résultante	
$\int_{s_0}^{s_1} \vec{f}(s) ds + \vec{R}(s_1) - \vec{R}(s_0) + \vec{F}(s^*) = \vec{0}$	
$ \begin{array}{c} J \\ s_0 \\ c \\ $	
$\int_{s_{-}^{*}} (f(s)ds) + R(s_{+}^{*}) - R(s_{-}^{*}) + F(s^{*}) = 0$	
$[[\overrightarrow{R}(s)]]_{s^*} + \overrightarrow{F}(s^*) = \overrightarrow{0}$	
53	53

fos	Mise en place des équations
MONTPELLI	$\overrightarrow{M(s)}$ PFS Moment en O
s	s _o
\int_{s_0}	$\overrightarrow{OG(s)} \wedge \overrightarrow{f}(s) + \frac{a}{ds}\overrightarrow{M(s)} + \frac{a}{ds}(\overrightarrow{OG} \wedge \overrightarrow{R}(s))ds = \overrightarrow{0}$
	$\int_{s_0} \frac{d}{ds} \overrightarrow{M(s)} + \overrightarrow{x_1} \wedge \overrightarrow{R}(s) ds = \overrightarrow{0}$
	$\frac{d}{ds} \overrightarrow{M(s)} + \overrightarrow{x_1} \wedge \overrightarrow{R}(s) = \overrightarrow{0}$
	as
	56

₹ F	S Mise en place des équations
MONTPI	$\vec{C}^{(s^*)}_{\vec{M}(s)}$ PFS Moment
	$\vec{M}(s) = M_{torsion}(s)\vec{x}_1 + \vec{M}_{flexion}$
	$\frac{d}{M(\epsilon)} + \overrightarrow{x_{i}} \wedge \overrightarrow{R}(\epsilon) = \overrightarrow{0} \qquad \forall s \in]s_{0} s^{*}[1]s^{*} s_{1}[$
	$\frac{ds}{ds} \frac{M(s) + x_1 \wedge H(s) = 0}{[[\vec{M}(s)]]_{s^*} + \vec{C}(s^*) = \vec{0}}$
	57

Les équations vectorielles RDM]
$\vec{x}_1 = \text{Vecteur unitaire tangent à la ligne moyenne}$ $\vec{B}(s) = N(s)\vec{r}_1 + \vec{T}(s) \qquad \frac{d}{ds}\vec{x}_1 = r\vec{n}; \vec{n} \text{ Normale principale unitaire}$	
$\vec{M}(s) = M(s)\vec{x}_1 + T(s)$ $\vec{M}(s) = M_{torsion}(s)\vec{x}_1 + \vec{M}_{flexion}$	
$\frac{d}{ds} \overrightarrow{R}(s) + \overrightarrow{f}(s) = \overrightarrow{0}$ $\frac{d}{ds} \overrightarrow{M(s)} + \overrightarrow{rs} \wedge \overrightarrow{R}(s) = \overrightarrow{0}$	
$\overrightarrow{ds}^{M}(s) + x_1 \wedge K(s) = 0 \qquad \forall s \in]s_0, s^*[\cup]s^*, s_1[$ $[[\overrightarrow{R}(s)]]_{s^*} + \overrightarrow{F}(s^*) = \overrightarrow{0}$	
$[[\dot{M}(s)]]_{s^*} + \dot{C}(s^*) = \vec{0}$	

RDM - %£**¥¥€%##@@&§ !!!!	
Champs cinématique dans un repère Cartésien d'une poutre droite respectant les Hyp. Ber. ?	
Résoudre par la méthode des coupures et tracer le diagramme des efforts	
<u>+++++++++++++++++++++++++++++++++++++</u>	
A B	
A B	

KDM - %£**¥¥€%##@@&§ !!!!	
Équations vectorielles d'équilibre en coordonnée cartésienne	
Équations d'équilibre scalaires en coordonnée cartésienne	
73	

HLME501 HLME501 RDM - %£**¥¥€%##@@&§ !!!!	
Équations vectorielles d'équilibre en coordonnée cartésienne	
$\frac{d}{dx}\overrightarrow{R}(x) + \overrightarrow{f}(x) = \overrightarrow{0}$	
$\frac{d}{dx}\vec{M}(x) + \vec{x} \wedge \vec{R}(x) = \vec{0}$	
Équations d'équilibre scalaires en coordonnée cartésienne	
74	

Equations vectorielles d'équilibre en coordonnée curviligne

$$\frac{d}{ds}\vec{R}(s) + \vec{f}(s) = \vec{0}$$

$$\frac{d}{ds}\vec{M}(s) + \vec{x}_{1} \wedge \vec{R}(s) = \vec{0}$$
Equations scalaires en coordonnée cartésienne

$$\frac{d}{dx}\vec{R}(x) + \vec{f}(x) = \vec{0}$$

$$\frac{d}{dx}\vec{M}(x) + \vec{x} \wedge \vec{R}(x) = \vec{0}$$

Poutre droite - Pb Plan - (Flexion - Traction)	
$\overset{y}{\checkmark}$	
$ \begin{array}{c} \mathbf{A} \\ N(0) &= -F_x^A \\ T(0) &= -F_u^A \\ \end{array} \begin{array}{c} u(0) &= u_d^A \\ u(0) &= v_d^A \end{array} \end{array} \begin{array}{c} \mathbf{B} \\ \text{Cas des poutres droites} \\ \text{Chargement plan} \\ \text{Chargement plan} \end{array} $	
$M(0) = -\dot{M}_z^A \qquad \omega(0) = \omega_d^A \qquad 6 \text{ conditions aux limites}$ $\int \frac{d}{dx} N(x) + f_x = 0$	
$\begin{cases} \frac{dx}{dx}T(x) + f_y = 0 \end{cases}$	
$\frac{d}{dx}M(x) + T(x) = 0$	
$ \begin{array}{rcl} N(L) &=& F_x^B & u(L) &=& u_d^B \\ T(L) &=& F_y^B & \text{ou} v(L) &=& v_d^B \\ M(L) &=& M_z^B & \omega(L) &=& \omega_d^B \end{array} $	

fos	Les Conditions	s aux limites RDM - I	PB Plan
MONTPELLIE	Ponctuelle	Pivot Glissant	Encastrement
lacements	$\left\{\begin{array}{c c} \omega_x & u_x \\ \omega_y & u_y \\ \omega & 0 \end{array}\right\}$	$\left\{ egin{array}{c c} \omega_x & u_x \\ 0 & 0 \\ 0 & 0 \end{array} ight\}$	$\left\{\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right\}$
Dépl	$\left(\begin{array}{cc}\omega_z & 0\end{array}\right)$		(0 0)
Efforts connus	$\left\{\begin{array}{ccc} 0 & & 0 \\ 0 & & 0 \\ R & & 0 \end{array}\right\}$	$\left\{\begin{array}{c c}0&0\\R_y&M_y\\B&M\end{array}\right\}$	$\left\{\begin{array}{cc c} R_x & M_x \\ R_y & M_y \\ R & M \end{array}\right\}$
<u>c</u>	$(n_z \mid 0)$	$\begin{pmatrix} n_z \mid M_z \end{pmatrix}$	$\begin{pmatrix} n_z \mid m_z \end{pmatrix}$

	roite - Pb Plan - (Flexion - $ec{x}$	• Traction)	Res Contraction
$N(0) = -F_x^A$ $T(0) = -F_y^A$	\mathbf{B} $u(0) = u_{d}^{A}$ ou $v(0) = v_{d}^{A}$	Cas des poutres droites Chargement plan	tes
$M(0) = -M_z^A$	$\omega(0) = \omega_d^A$ $\left(\frac{d}{dx}N(x) + f_x = 0\right)$	6 conditions aux limites	mites
	$\begin{cases} \frac{d}{dx}T(x) + f_y = 0 \end{cases}$		
	$\int \frac{d}{dx}M(x) + T(x) = 0$		
	$egin{array}{rcl} N(L) &=& F_x \ T(L) &=& F_y \ M(L) &=& M \end{array}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	u_d^B v_d^B ω_d^B

HIME501 Poutre droite - Pb Plan - (Traction)	
$\underbrace{u(0)}_{u(0)} = 0$	
$N(x) = Cste$ $\frac{d}{dx}N(x) = 0$ $N(x) = F$	
$ \begin{array}{c} \downarrow \\ \hline \\$	
\overrightarrow{x} Densité d'effort interne	
$\sigma = \frac{1}{S} = \frac{1}{S}$	

Notion de vecteur contrainte	HLME501
Notion de I Vecteur Contrainte	Densité de force de cohésion au sein du matériau
$\overrightarrow{\sigma}$	
Efforts Généralisés	The second secon
$N(s) = \int \overrightarrow{\sigma} \cdot \overrightarrow{x}_1 dS$	
$\overrightarrow{T}(s) = \int \overrightarrow{\sigma} - (\overrightarrow{\sigma} \cdot \overrightarrow{x}_1) \overrightarrow{x}_1 dS$	
J Sec	~

HLME301 FOS RDM - %£**¥¥€%##@@&§ !!!!	
Équations d'équilibre locales de la résultante en coordonnée curviligne sous forme vectorielle	
Équations d'équilibre locales du moment en coordonnée curviligne sous forme vectorielle	
Équations d'équilibre locales scalaire dans le cas d'une poutre rectiligne	
Combien de zones à étudier ?	
Conditions aux limites et de raccords en effort du ce problème :	
Á B	
92	

HLME501 ₩ RDM - %£**¥¥€%##@@&§ !!!!	
MONTPELLER	
Définition des efforts généralisés	
Équations d'équilibre scalaire en coordonnée cartésienne	
Combien de zones à étudier ?	
Conditions aux limites et de raccords en effort du problème :	
†	
A m B	
103	

cas plan - Poutre rectiligne - HPP -Elasticité linéaire homogène Equations scalaire d'équilibre Efforts généralisés Déplacements Déformations	FOS Récapitulatif				
Equations scalaire d'équilibre Efforts généralisés Déplacements Déformations	cas plan - Poutre rectiligne - HPP -Elasticite	é linéaire homogène			
Equations scalaire d'equilibre Elloits generalises Déplacements Déformations	Faustione ecoloire d'équilibre	Efforto généraliaéa			
Déplacements Déformations	Equations scalaire d equilibre	Enons generalises			
Déplacements Déformations					
Déplacements Déformations					
Déplacements Déformations					
Déplacements Déformations					
104	Déplacements	Déformations			
104					
104					
104					
104					
		10	04		

Récapitulatif	(From
cas plan - Poutre rectiligne - HPP -Elasticit	té linéaire homogène
Equations scalaire d'équilibre	Efforts généralisés
$\int \frac{d}{dx}N(x) + f_x = 0$	$N(s) = \int\limits_{Sec} \sigma_{x_1} dS$
$\begin{cases} \frac{d}{dx}T(x) + f_y = 0\\ \frac{d}{dx}M(x) + T(x) = 0 \end{cases}$	$\overrightarrow{T}\left(s\right) = \int\limits_{Sec} \overrightarrow{\sigma} - \sigma_{x_{1}} \overrightarrow{x}_{1} dS$
$\int dx dx dx = 0$ Déplacements	$M(s) = -\int\limits_{Sec} y\sigma_{x_1} ds$
	Déformations
Navier-Bernouilli :	ð
$\underline{U}(x,y) = \left\{ \begin{array}{l} U_1 = u(x) - (y - y_g)v'(x) \\ U_2 = v(x) \end{array} \right.$	$\epsilon_{11} = \frac{\partial}{\partial x} U_1(x, y)$ $= u'(x) - (y - y_q)v''(x)$
	105

Relation Déformation- Contrainte	
Traction uniaxial:	
Éprouvette de traction	
Courbe N/AL poor Penal de traction	
$\sigma = \frac{F}{S}$ $\epsilon = \frac{\delta L}{L_0}$ Figures : P.A Boucard	
J LU	

Relation Déformation- Contrainte	
Traction uniaxial : $(-\omega_0)_0$	
Éprouvette de traction	
Control ALL poor loss de traction Grander X ALL poor loss de traction Figures : PA Boucard	
$\sigma = rac{F}{S} = E \epsilon$ E = Module d' Young	
107	

Relation Déformation- Contrainte	
Éprouvette de traction	
Figures : P.A Boucard	
$E = \frac{\sigma(x)}{\varepsilon(x)}$ E = Module d' Young	
108	

Récapitulatif - TRA	ACTION Simple -
cas plan - Poutre rectiligne - HPP -	Elasticité linéaire homogène
Equation d'équilibre	Loi de comportement locale
Déplacements	Loi de comportement macro
	109

Selons VOus !!	HLMEGOT
$\underbrace{1}_{y}$	
ho g ec x	L
\overrightarrow{x}	$u(L) = u_d$
Déterminer E telque	Déterminer E telque
$u(L) \le u_{max}$	$\sigma \leq \sigma_{max}$
	111

RDM - %£**¥¥€%##@@&§ !!!!	
Équations d'équilibre locales de la résultante en coordonnée curviligne sous forme vectorielle	
Équations d'équilibre locales du moment en coordonnée curviligne sous forme vectorielle	
Équations d'équilibre locales scalaire dans le cas d'une poutre rectiligne	
Combien de zones à étudier ?	
Conditions aux limites et de raccords en effort du ce problème :	
$A \xrightarrow{x} B$	

Récapitulatif - TRACT as plan - Poutre rectiligne - HPP -Elas	ION Simple -
Equation d'équilibre	Loi de comportement locale
Déplacements	Loi de comportement macro
	113

fos	Exemple		HLME501
MONTPELLIER	\overrightarrow{y} $\overrightarrow{f}_{y} =$	$= -f_0 \vec{y}$	Équation d'équilibre
			$\begin{cases} \frac{d}{dx}I(x) - f_0 &= 0\\ \frac{d}{dx}M(x) + T(x) &= 0 \end{cases}$
		<u>х</u>	loi de comportement
v	(0) = 0	v(L) = 0	Loi de comportement $M(x) = EIv''(x)$
v'	(0) = 0 Conditions aux li	v'(L) = 0mites	III (w) EIO (w)
			Y'a plus qu'à résoudre
			119

Récapitulatif - FLEXIC	DN Simple -
cas plan - Poutre rectiligne - HPP -Elas	ticité linéaire homogène
Equations scalaire d'équilibre	Loi de comportement locale
Díplacamento	
Deplacements	Loi de comportement macro
	121

(Contraction of the second se	
homogène	
limites :	
acements	
$(y-y_g)v'(x)$	
FEXAN FEXAN	
123	

Torsion SIMPLE - Mat hor	HLME501 (C)	
VOLUME	Cours de Dimensionnement des Structures Résistance des Matériaux Pierre-Alanibouard http://meca.iut/achan.free.fr	
	Loi de comportement Locale	
Répartition de la contrainte dans la section	$ au = G\gamma$	
$\overrightarrow{T} = \tau \overrightarrow{e_{\theta}}$	$G = \frac{E}{2(1+\nu)}$	
Cisaillement = f(angle unitaire de rotation) $\gamma_{\rm c}=r heta$	au(r) = G heta r	
	130	

Cours de Dimensionnement des Structures Résistance des Matériaux Pierre-AlinBouard bitter (Jence) lutrachon ten fr
$\prod_{\sigma \in \mathcal{F}} T' ds = \prod_{\sigma \in \mathcal{F}} \tau \overline{e_{\theta}} ds = \overline{0}$
Loi de comportement
$\overrightarrow{M_t} = \iiint_S \overrightarrow{GM} \wedge \overrightarrow{T} ds = \iiint_S \overrightarrow{re_r} \wedge G \theta \overrightarrow{re_\theta} ds \qquad \tau = G\gamma$
$\overrightarrow{M_t} = G \theta \iint_S r^2 ds \overrightarrow{x} \qquad \qquad$
$\overrightarrow{I_0} = \iint_S r^2 ds \qquad \qquad \overrightarrow{M_t} = G \theta I_0 \overrightarrow{x}$
Moment de Tortion ou Moment Polaire

HLME501	
La broche d'une fraiseuse transmet un couple maximal de 80 N.m.	
On l'assimile à un tube en acier pour lequel D = 2d et G = 8.104 Mpa.	
La déformation est limitée à 0,25 degré par mètre.	
🖬 calaulas la discriètes, autóriaus Distintérious d'als sotts burghs	
Calculez le diametre, exterieur D et interieur d, de cette broche.	
Calculez la contrainte maximale dans le tube soumis a un moment de	
133	

Récapitulatif - FLEX	(ION et Torsion SIMPLE		
cas plan - Poutre rectiligne - HPP -El	lasticité linéaire homogène		
Equation d'équilibre	Loi de comportement locale		
Déplacements	Loi de comportement macro		
	134		

Énergie Potentielle	
$W_d(u) = \int_{-\infty}^{L} \vec{f}(x).\vec{U}(x)dx + \vec{F}(x_0).\vec{U}(x_0)$	
O Force linéique Force ponctuelle	

Itéréme de MenabreaImage: Complex particular de degré
p, on peut exprimer les efforts intérieure
en fonction de p inconnues. Ces
inconnues presentationes
les laisons sont parfaites).Image: Ces
peut exprimer les efforts intérieure
de pincennues presentationes
les laisons sont parfaites).Image: T
Image: T
Image: T
Image: Ces
peut exprimer les efforts intérieure
de pincennues presentationes
les laisons sont parfaites).Image: Ces
peut exprimer les efforts intérieure
de pincennues presentationes
les laisons sont parfaites).Image: T
Image: T
Image: T
Image: Ces
peut exprimer les efforts intérieure
de pincennues presentationes
de pincennues presentationes
les laisons sont parfaites).Image: Ces
peut exprimer les efforts intérieure
de pincennues presentationes
les laisons sont parfaites).Image: T
Image: T
Image: Ces
Image: Ces<br/

Théorème de Castigliano	
Théorème de Castigliano	
Si une structure est soumise à une force (respectivement un couple) concentré alors la dérivée de l'énergie de déformation par rapport à cette force (resp. ce couple) donne le déplacement	
(resp. la rotation) de son point d'application dans sa direction	
y' $(v(L) = \frac{\partial W}{\partial F})$	
/ · 	

Théorème de Castigliano	
Méthode des charges fictives : Calcul de déplacements et de rotations autre part que sous les charges	
Méthode	
Pour calculer, U(A), la projection du déplacement dans la $ec{x}$ direction On applique sur la structure un charge fictive $ec{F}_{fic}=F_{fic}ec{x}$ en A	
On calcule l'énergie élastique due au chargement réel et au chargement	
fictif $U(A) = \frac{\partial W}{\partial \Sigma} _{E_{\rm cons}}$	
OF_{fic} F_{fic}	
159	

Kernel Méthodes énergétiques		
NGNYS LTTE	Ŭ	
	THE REAL PROPERTY OF	
E.		
	165	

Principe des Puissances virtuelles		
Théorème des puissances virtuelles	Ŭ	
$\forall u^*(x) \in C.A. \{0\}$		
$P_{int}(u^*(x)) + P_{ext_{don}}(u^*(x)) = P_{acc}(u^*(x))$		
$orall \underline{U}^* \in C.A. \{0\}$ et		
$\underline{U} \in C.A.$ $P_{int}(\underline{U}^*) + P_{ext_{don}}(\underline{U}) = 0$		

MORTPELLINK
$\underline{U} \qquad \iff \qquad \underline{U}$
Solution d'un problème Solution du PPV de mécanique
1. Équations d'équilibre $\forall U^* \in C(A_1(0))$
2. Conditions aux limites $U \in C.A.$
4. Loi de comportement $P_{int}(\underline{U}^*) + P_{ext_{don}}(\underline{U}) = 0$

