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Avant-propos

Ce cours s’inscrit dans un enseignement d’informatique, discipline scientifique dispensée a la faculté des sciences de
I'université de Montpellier. L’évolution des connaissances scientifiques dans ’histoire depuis la Gréce antique jusqu’a
nos jours a souvent remis en cause des connaissances plus anciennes ou des dogmes religieux. Au IVe siécle avant
notre ére, le grec Anaxagore de Clazomeénes est le premier savant de ’histoire & étre accusé d’impiété par les autorités
religieuses de I’époque ["Bruno et Galilée au regard de linfini" de Jean-Pierre Luminet]. Il ne doit sa liberté qu’a
son amitié avec Périclés. Plus tard, Giordano Bruno (1548-1600) invente la cosmologie infinitiste mais également le
principe d’inertie. Ses idées et ses écrits contraires a la doctrine chrétienne le conduisent & étre incarcéré au total
pendant huit ans dans les geodles de I'Inquisition. Aprés de multiples procés, le 16 Février de I'an de grace 1600,
Giordano BRUNO est torturé et briilé vif, par I'inquisition catholique, & Rome, sur le Campo dei Fiori, pour avoir
refusé d’abjurer ses idées. Plus tard, Galilée, Kepler auront également des problémes juridiques liés a ’expression de
leurs idées scientifiques révolutionnaires.

En France, le siécle des lumiéres puis la révolution frangaise de 1789 ont permis de donner la liberté d’expression aux
scientifiques (et aux autres) afin que leurs travaux de recherche puissent étre publiés, discutés, réfutés ou approuveés.
La loi de séparation des Eglises et de I'Etat a été adoptée le 9 décembre 1905 & Dinitiative du député républicain-
socialiste Aristide Briand. Elle prend parti en faveur d’une laicité sans excés. Elle est avant tout un acte fondateur
dans Daffrontement violent qui a opposé deux conceptions sur la place des Eglises dans la société francaise pendant
presque vingt-cing ans.

La liberté de pensée et d’expression constituent donc les fondements d’un enseignement universitaire de qualité.
D’autres part, les scientifiques étant des citoyens comme les autres, il convient de rappeler quelques lois frangaises qui
nous gouvernent.

Quelques lois fondamentales

Art. 1 de la constitution du 4 octobre 1958 La France est une République indivisible, laique, démocratique
et sociale. Elle assure I’égalité devant la loi de tous les citoyens sans distinction d’origine, de race ou de religion.
Elle respecte toutes les croyances. Son organisation est décentralisée. La loi favorise ’égal accés des femmes
et des hommes aux mandats électoraux et fonctions électives, ainsi qu’aux responsabilités professionnelles et
sociales.

Art. 4 de la Déclaration des Droits de ' Homme et du Citoyen de 1789 La liberté consiste a pouvoir faire
tout ce qui ne nuit pas & autrui : ainsi, ’exercice des droits naturels de chaque homme n’a de bornes que celles
qui assurent aux autres Membres de la Société la jouissance de ces mémes droits. Ces bornes ne peuvent étre
déterminées que par la Loi.

Art. 5 de la Déclaration des Droits de ' Homme et du Citoyen de 1789 La Loi n’a le droit de défendre
que les actions nuisibles & la Société. Tout ce qui n’est pas défendu par la Loi ne peut étre empéché, et nul ne
peut étre contraint & faire ce qu’elle n’ordonne pas.

Art. 10 de la Déclaration des Droits de ’'Homme et du Citoyen de 1789 Nul ne doit étre inquiété pour
ses opinions, méme religieuses, pourvu que leur manifestation ne trouble pas l'ordre public établi par la Loi.
Art. 11 de la Déclaration des Droits de ’'Homme et du Citoyen de 1789 La libre communication des pen-
sées et des opinions est un des droits les plus précieux de I'Homme : tout Citoyen peut donc parler, écrire,

imprimer librement, sauf a4 répondre de I'abus de cette liberté dans les cas déterminés par la Loi.
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Chapitre 1

Introduction

1.1 Objectifs

— Mise en oeuvre de la théorie des langages formels.

— Compréhension des techniques de compilation.

— Utilisation d’outils de génération de code (flex, bison).

— Utilité des traducteurs : compilateurs, interpréteurs, convertisseurs de format (rtfToLatex, LaTeXToHtml, post-
script To ...).

— Reéalisation d’un projet : compilateur d’un langage a objets “Sool”.

1.2 Bibliographie

Vous trouverez en fin d’ouvrage, un certain nombre de références de livres vous permettant d’aller plus loin dans
l'étude des compilateurs et des langages de programmation. La bible de ces ouvrages [I] est extrémement complet
et détaille les techniques algorithmiques a appliquer aux langages. Tout au contraire, ouvrage [2] est une étude
mathématique des langages formels. En ce qui concerne le langage Java, le livre de référence [3] décrit le langage et sa
bibliothéque fournie tandis que [4] décrit le byte-code. Quant & C++, les livres [B [6] décrivent le modeéle objet de ce
langage. Enfin, ne pas oublier le livre [7] qui est un manuel technique de ces deux outils.

1.3 Rappels théoriques

1.3.1 Familles de grammaires et de langages : hiérarchie de Chomsky

On classe les grammaires G = (V, Vv, R, S) en quatres grandes familles (ou types ou classes) numérotés de 0 a 3,
de la plus large a la plus petite au sens de I'inclusion stricte. Les quatres familles se distinguent par les restrictions
imposées aux régles de production de chaque famille.

Type 0 aucune restriction. Les langages engendrés sont qualifiés de récursivement énumérables.

Type 1 toute régle r de R est de la forme : r = X8 — amB avec a,3€ V*; X € Vy;me VT,
Attention m ne peut étre le mot vide! Ces grammaires sont dites contextuelles ou dépendant du contexte («
et 5 représentant ce contexte). Le mot vide ne pouvant étre généré par ces grammaires, une exception existe : la
régle S — € peut exister & condition que S ne soit pas présente dans une partie droite d’une régle de production.

Exemple 1
le P garcon — le petit garcon; la P N — la petite N; N — fille.

Type 2 toute régle r de R est de la forme : r = X — aaveca € V*; X € Vy.
Ces grammaires sont dites algébriques, ou indépendantes du contexte (“context-free”), ou grammaires de
Chomsky, ou C-grammaires.

Exemple 2
P — (P)|e|PP : une grammaire de parenthéses.

Type 3 toute régle r de R est de la forme : r = X — « avec « € VpVy U Vr U{e}; X € Vy;
Ces grammaires sont dites réguliéres, ou rationnelles, ou grammaires de Kleene, ou K-grammaires.

Exemple 3
P — 0]1E|2E|...|9E; E — 0E|...|9E|e : une grammaire réguliére d’indices.
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Théoréme 1 On note L; l'ensemble des langages engendrés par les grammaires de type i. On a alors l'inclusion
stricte : L3 C Lo C L1 C Lyg.

1.3.2 Langages réguliers : propriétés et caractérisations

Théoréme 2 Les 4 propositions suivantes sont équivalentes :

1. le langage L est défini par une expression réguliére ;

2. le langage L est généré par une grammaire réguliére ;

3. le langage L est reconnu par un automate fini déterministe ;
4. le langage L est reconnu par un automate fini indéterministe.

Théoréme 3 (Théoréme de Kleene) La famille des langages réguliers L3 est la plus petite famille de langages qui
contient les langages finis et qui est fermée pour les opérations réunion, produit et étoile.

Théoréme 4 (la pompe, version 2a) Soit L, un langage régulier infini sur V. Alors, 3k € N — {0} tel que Vm €
L,im| > k,3z,u,y € V* tel que u # e, m = zuy, |zu| <k et Yn € N,zu"y € L.

Théoréme 5 Le langage inverse, complémentaire d’un langage régqulier est régulier. L’intersection de deux langages
réguliers est régqulier.

1.3.3 Langages algébriques : propriétés et caractérisations

Définition 1 L’ensemble des arbres de dérivation (ou arbres syntaziques) associé a une grammaire G = (Vp, Vy, R, S),
noté A(G) est un esemble d’arbres étiquetés construits par le schéma d’induction suivant.

Univers Ensemble de tous les arbres dont les neeuds sont étiquetés par des symbole de V U {e}.

Base Ensemble de tous les arbres réduits & une unique racine étiquetée par un symbole de V' U {e}.

Reégles Soit une regle de production quelconque X — y1ya...yn avec X € Vy,y; € V U {e}. Soient n arbres
syntaxiques ay, as, . . ., a, dont les racines sont étiquetées par y1,ys, ..., Yn. Alors Uarbre de racine étiquetée par
X et de sous-arbres ay,as,...,a, est un arbre de dérivation de G.

Théoréme 6 L’ensemble des dérivations gauches d’une grammaire algébriqgue G = (Vp,Vn, R, S) est équipotent a

AG).

Définition 2 Une grammaire G = (Vp,Vn, R, S) est ambigué si et seulement s’il existe deux dérivations gauches
distinctes partant de S et aboutissant au méme mot terminal m.

Théoréme 7 Tout langage régulier est non ambigu.

Théoréme 8 (d’Ogden) Soit L un langage algébrique infini sur V. Alors, 3k € N — {0} tel que Ym € L,|m| >
k, 3z, u,y,v,z € V* tel que uv # e,m = zuyvz, |luyv| < k et Vn € N,zu"yv"z € L.

Théoréme 9 La famille des langages algébriques Lo est fermée pour 'union, la concaténation, ’opération *.

Théoréme 10 La famille des langages algébriques Lo n’est pas fermée pour lintersection ni la complémentation.

1.4 Types de traducteurs

— Préprocesseurs (macro, directives).

— Assembleurs (pentium x86, DEC alpha, ...).

— Compilateurs (C, C++, javac, visual Basic, .. .).

— Interpréteurs (basic, shells Unix, SQL, java, ...).

— Convertisseurs (dvips, asciiToPostscript, rtfToLaTeX, ...).
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1.5 Modéle classique de compilation

1. Analyse du source :

(a) lexicale : découpage en “jetons” (tokens);

(b) syntaxique : vérification de la correction grammaticale et production d’une représentation intermédiaire
(souvent un arbre) ;

(c) sémantique : vérification de la correction sémantique du programme (contrdle de type (conversions), non
déclarations, protection de composants (privé, public), ...).

L’analyse génére une table des symboles qui sera utilisée tout au long du processus de compilation. De plus,
I’apparition d’erreurs dans chaque phase peut interrompre le processus ou générer des messages d’avertissements
(“warnings”).

2. Synthese de la cible :
(a) génération de code intermédiaire : machine abstraite (ou virtuelle), p-code du Pascal, byte-code de java,

basic tokenisé de Visual Basic, .. .;

(b) optimisation de code : optimiseur de requétes SQL, optimiseurs C et C++, .. .;
(c) génération de code cible : langage machine (C, C++), ou autre.

A la fin de ce processus, il reste encore :

— soit a lier les différents fichiers objets et bibliothéques (C, C++) en un fichier exécutable (code machine
translatable). Le chargeur du systéme d’exploitation n’aura plus qu’a créer un processus en mémoire cen-
trale, lui allouer les ressources mémoires nécessaires, puis lancer son exécution. Attention, certaines liaisons
(linking) peuvent étre retardées jusqu’a 'exécution (DLL Microsoft, ELF Unix).

— Soit a interpréter le code cible. C’est la solution choisie par le langage Java. Cela permet au compilateur
javac de générer un code cible indépendant de la plateforme. II suffit qu'un interpréte java (dépendant de la
plateforme) soit installé pour exécuter un fichier cible (un .class). Les navigateurs (“browser” Netscape ou
Internet Explorer) contiennent tous un interpréte intégré ce qui leur permet d’exécuter les “applets” java.

1.6 Remarques

[15

— L’analyse lexicale est souvent réalisée “a la demande” de ’analyse syntaxique, jeton par jeton. Ainsi la décompo-
sition en phase (analyse lexicale, syntaxique, sémantique, . ..) n’engendre pas forcément la méme décomposition
en “passes”, une passe correspondant a la lecture séquentielle du résultat de la phase précédente. Les problémes
de “référence en avant” (“forward reference”) pose tout de méme des problémes & la compilation en une seule
passe. Il faut pouvoir laisser des “blancs” qu’on pourra reprendre plus tard quand on connaitra la valeur de
cette référence.

— Le compilateur est souvent décomposé en une partie “frontale” indépendante de la plateforme de développement,
et une partie “finale” dépendante de la plateforme de développement. Ainsi, ’écriture d’un compilateur du méme
langage source pour une autre plateforme est moins couteuse.

1.7 Vocabulaire des langages de programmation

On définit ci-aprés un certain nombre de concepts linguistiques fondamentaux dans 1’étude des langages de pro-
grammation. Bien entendu, selon le langage (C, Python, langage d’assemblage, ...), les différences sont énormes aussi
nous nous référerons principalement aux langages “a la C” :

mot-clé (keyword) mot réservé par un langage et qui ne peut étre utilisé pour identifier une variable, une fonction,
... Exemples : if, while, do, class
identificateur nom d’un objet de programmation (variable, fonction, classe, méthode,...) généralement composé
d’une lettre suivie de chiffres et /ou de lettres. Exemples : i, Etudiant, _Etudiant_h, factorielle
littéral valeur possible d’un type exprimée littéralement dans le code. Exemples de littéraux :
entiers 123, OxFF, 0
chaines de caractére "Bonjour", "", "Monsieur %s,\n"
flottants 13.5, .12, O.
booléens true, false

instruction (statement) constituant de base d’un programme qui est généralement une instruction. On distingue
les constructions : alternative (if then else), itératives (for, while, do), les expressions, I'instruction vide
(5)-

expression construction syntaxique ayant une valeur. Exemples : 3%i, j++, char**, fact(12). Selon les lan-

gages, laffectation est une expression (on peut alors réaliser des affectations multiples i=j=5) ou bien une
instruction let i = 5.
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opérateur il permet de construire une expression complexe & partir d’expressions de base (littéraux, identifica-
teurs). Exemples : +, -, /, *, ++, [1, O

bloc suite d’instructions généralement entouré d’accolades {...}.

définition de type, de variable, de fonction, de classe : elle permet de spécifier un objet de programmation.



Chapitre 2

Analyse lexicale

Avant d’aborder I’analyse lexicale, rappelons les résultats sur les Automates d’états Finis Déterministes (AFD).

2.1 Reconnaissance d’un mot par un AFD

Rappelons qu'un AFD posséde un unique état initial et aucun couple de transitions (e;,a,e;), (e;,a,ex) tels
que j # k. Ainsi, 'ensemble des transitions peut étre implémenté simplement par une table a double entrée :
TRAN S[etatCourant][carCourant]. L’algorithme [1| en page [5| décrit la reconnaissance d’un mot par un AFD.

Algorithme 1 : Reconnaissance d’un mot par un AFD
Données : B= (V,E,D = {d}, A,T) un AFD; mot une chaine de caractéres ou un flot
Reésultat : Booléen
Fonction accepter (B, mot) : Booléen;
début

etat=d;

tant que (c=carSuivant(mot))# $ faire

si Jde € E tel que (etat,c,e) € T alors
| etat—e;

sinon
L retourner FAUX;

retourner test(etat € A);

2.2 Implémentation des Automates Finis Déterministes AFD

L’implémentation la plus simple d’'un AFD consiste a construire la table de transitions dans un tableau. Le pro-
gramme C de I'exemple [4| illustre un AFD reconnaissant I’expression réguliére a(bc)?|bd.

Exemple 4
Soit 'AFD suivant :

FIGURE 2.1 — AFD

Nous le représentons par le fichier d’en-téte C suivant :

5
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/**@file afd.h
*Q@author Michel Meynard
*Q@brief Définition d’un AFD
*/

#define EINIT O

#define EA 1

#define EAB 2

#define EABC 3

#define EB 4

#define EBD 5

#define NBETAT 6

int TRANS[NBETAT] [256]; /* table de transition : état suivant */
int FINAL[NBETAT]; /* final (1) ou non (0) 7 %/

void creerAfd(){ /* Construction de 1’AFD */

int i;int j; /* variables locales */

for (i=0;i<NBETAT;i++){
for(j=0;j<256;j++) TRANS[il[jl=-1; /* init vide */
FINAL[i]=0; /* init tous états non finaux */

}

/* Transitions de 1’AFD */

TRANS [EINIT] [’a’]=EA;TRANS [EA] [’b’]=EAB; TRANS [EAB] [’b’]=EAB;

TRANS [EAB] [?c’]=EABC;TRANS[EINIT] [’b’]=EB;TRANS[EB] [°d’]=EBD;

FINAL [EA]=FINAL[EABC]=FINAL[EBD]=1; /* états finaux */

L’implémentation de I'algorithme [I] de reconnaissance est codé dans le fichier C suivant.

/**@file accepter.c

*Qauthor Michel Meynard

*Q@brief Définition de la fon accepter

*/
#include <stdio.h>
#include "defafd.h" /* définition de 1’automate */

/** reconnait un mot suivi de EOF sur 1’entrée standard
*Q@return 0 si non reconnu, 1 sinon
*/
int accepter(){
int etat=EINIT; /* unique état initial */
int c; /* caractére courant */
while ((c=getchar())!=EQOF) /* Tq non fin de fichier */
if (TRANS[etat] [c]!=-1) /* si transition définie */
etat=TRANS[etat] [c]; /* Avancer */
else return 0; /* sinon Echec de reconnaissance */
return FINAL[etat]; /* OK si dans un état final */
}
int main(){ /* Programme principal */
creerAfd(); /* Construction de 1’AFD */
printf ("Saisissez un mot matchant a(b+c)?|bd suivi de EOF (CTRL-D) SVP : ");
if (accepter())
printf ("\nMot reconnu !\n");
else
printf ("\nMot non reconnu !\n");
return O;

Si I'on compile ce programme C et qu’on I'exécute, on obtient les résultats suivants :

> accepter
Saisissez un mot matchant a(b+c)?|bd suivi de EOF (CTRL-D) SVP : abbbc
Mot reconnu !
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> accepter
Saisissez un mot matchant a(b+c)?|bd suivi de EOF (CTRL-D) SVP : abd
Mot non reconnu !

Il existe d’autres types d’implémentation de la table de transition d’'un AFD :

— par un multigraphe étiqueté chainé (pointeurs),

— par une table de transition plus petite; la taille de la table est alors : taille(TRANS) = |E|*|V|. Cette solution
est adoptée par le programme lex (voir section , avec une structure de données réduisant la taille de la table
qui est souvent “creuse”.

2.3 Analyseur lexical

L’analyse lexicale est bien plus complexe que la simple reconnaissance d’un mot.

— Suite a la reconnaissance d’'un mot ou lexéme, I’analyseur lexical doit retourner un jeton entier associé a la
catégorie lexicale du mot accepté. Un jeton (token) est généralement représenté par un entier positif. Les
entiers inférieurs & 256 sont réservés aux mots clés composés d’un seul caractére : (“{7, “;”, “]”, ...). Leur code
(ASCII, ISO Latinl, ...) correspondra ainsi a leur jeton. Chaque mot clé de plus d’une lettre est également
associé a son jeton : (if, 300), (else, 301), (while, 302), ... On définira également un jeton pour chaque catégorie
lexicale variable : (littéral entier, 303), (littéral chaine, 304), ... Pour les catégories lexicales variables, il faudra
également “retourner” une valeur sémantique associée. Par exemple, pour les littéraux entiers on pourrait
retourner la valeur entiére correspondante, pour les identificateurs le lexéme lui-méme ou lindice d’entrée
correspondant dans la table des symboles.

— De plus, un analyseur lexical doit reconnaitre une suite de lexémes dans un flot de caractéres. Dans I’automate
d’états finis déterministe (AFD), chaque état terminal est associé a un jeton retournable. C’est le chemin
parcouru dans I'automate qui déterminera le jeton & retourner. Cela peut poser probléme lorsque un mot du
langage est préfixe d’un autre. Lorsqu’on est sur le dernier caractére du préfixe, pour savoir quel jeton retourner,
il est nécessaire de regarder le caractére suivant : si celui-ci étend le lexéme reconnu, on le lira et on avancera dans
Pautomate (régle du mot le plus grand possible), sinon on reconnaitra le préfixe. Par exemple, while(
est reconnu comme un mot clé puis une parenthése, alors que whilel est reconnu comme un identificateur.
Attention, si on a avancé dans ’AFD et que 'on se retrouve dans un état non terminal sans pouvoir avancer,
il faudra reculer afin de retourner dans le dernier état terminal parcouru! Ce recul nécessite de rejeter dans le
flot d’entrée (ungetc) les caractéres qui ont été lus en trop. En reprenant exemple [4] précédent, le mot “abd”
doit étre analysé comme une suite des jetons A, BD méme si & un moment l'analyseur avait avancé jusqu’a
I’état EAB. Enfin, une convention habituelle permet de retourner le jeton 0 lorsqu’on est arrivé a la fin du flot.

— Enfin, Panalyseur lexical doit filtrer un certain nombre de mots inutiles pour I’analyseur syntaxique (blancs
(espace, tabulations, retour a la ligne), commentaires, ...).

Prenons ’exemple du morceau de code correspondant a la fonction main() du fichier accepter.c précédent et

voyons la suite de couple (jeton, valeur sémantique) que doit successivement retourner la fonction d’analyse lexicale
du compilateur C :

(INT,) (ID,’main’) (>(’,) ()’,) ({’,) (ID,’creerAfd’) C(C,) (°)’,) (;’,)
(ID,’printf’) (’(’,) (LITTERALCHAINE,’Saisis...’) (’)?,) (’;?,)

(IF,) (°(C,) (ID,’accepter’) C(,) (°)’,) (*)*,)

(ID, ’printf’) (°(’,) (LITTERALCHAINE,’\nMot...’) (*)?,) (’;’,)

(ELSE,) (ID,’printf’) (’(’,) (LITTERALCHAINE,’\nMot...’) (’)?,) (’;?,)
(RETURN,) (LITTERALENTIER,0) (°;’,) (°}?)

L’algorithme [2] en page [§ décrit le fonctionnement d’un tel analyseur lexical.

Quelques remarques sur cet algorithme [2]:

— la gestion des mots non reconnus est la suivante : retourner le jeton correspondant au code ASCII du premier
caractére. Contrairement a cela, Lex lui ne retourne aucun jeton mais envoie ce premier caractére sur la sortie
standard et tenter de se resynchroniser sur le caractére suivant ;

— on suppose dans cet algorithme que le symbole § est retourné a I'infini par carSuivant() lorsqu’on est parvenu
a la fin du flot;

— Remarquons que dans le cas ot I’état initial est également final, le mot vide est donc acceptable. Par conséquent,
sur un mot non acceptable ou sur le mot vide, 'analyseur lexical retournera une suite infinie de jetons associés
a l’état initial!

— le caractére minimal d’un AFD n’est pas une bonne propriété pour les analyseurs lexicaux dans la mesure ou la
minimisation d’'un AFD fusionne plusieurs états terminaux ce qui interdit le retour de jetons distincts. Il suffit
de construire ’AFDM du langage {< b >, < /b >} pour s’en persuader !

— cet algorithme ne gére pas le filtrage (suppression des lexémes inutiles (blancs, commentaires)).
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Algorithme 2 : Analyseur lexical

Données : B= (V,E,D ={d},A,T) un AFD; JETON|[A] le tableau des jetons associés a chaque état final;
flot un flot de caractéres terminé par $
Résultat : (Entier : le jeton reconnu, Chaine : le lexéme reconnu)
Fonction analex (B, JETON/[A], flot) : (Entier, Chaine);
début
// Initialisations;
etat=d;
lexeme="";
efinal=-1;
lfinal=0;
tant que ((c=carSuivant(flot))# $) et (etat,c,e) € T faire
lexeme=lexeme . c;
etat—=e;
si e € A alors
efinal=e;
L lfinal=|lexeme|;
ietat € A alors
rejeter(flot, ¢);
retourner (JETON etat],lexeme);
sinon
si efinal > —1 alors
rejeter(flot, ¢);
rejeter(flot, sous-chaine(lexeme,lfinal,|lexemel));
retourner (JETON efinal],lexemel0,lfinal — 1]);
sinon
// pas d’état final;
si lezeme="" et c=$ alors
| retourner (0,"");
sinon
si lezeme="" alors
| retourner (c,c);
sinon
rejeter(flot, ¢);
rejeter(flot, sous-chaine(lexeme,1,|lexemel|));
// tout sauf le ler car;
retourner (lexeme[0], lexeme[0]);

w0

nn
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2.4 Implémentation des analyseurs lexicaux

L’implémentation d’une fonction d’analyse lexicale int analex() et de ’AFD de I'exemple [ est décrite dans
I’exemple [l Quelques remarques :

— En C, une seule valeur pouvant étre retournée par une fonction, on choisit de retourner le jeton entier et
d’implémenter la valeur sémantique dans une variable globale lexeme de type chaine;

— le filtrage des séparateurs (blancs : espaces, tabulations, ...) et des commentaires est réalisée par un jeton
négatif affecté aux états finaux a filtrer. Il suffit alors de modifier le retour d’un jeton négatif en appel récursif a
analex() : return JETON[etat]; devient alors return (JETON[etat]<0 ? analex() : JETON[etat]);. On
trouvera ces changements dans le fichier analex.h.

Exemple 5
Soit PAFD de I'exemple |4 On transforme la définition de I'automate pour ajouter la définition des jetons dans un
tableau entier JETON remplagant le tableau FINAL :

JETON [EA]=300; JETON [EABC]=301; JETON[EBD]=-302; /* jetons des états finaux */

Remarquons, que les lexémes “bd” seront filtrés car le jeton correspondant est négatif! Nous représentons la fonction
d’analyse lexicale int analex () dans le fichier analex.h suivant :

/**%0@file analex.h

*Qauthor Michel Meynard

*Q@brief Définition de la fon analex
*/

char lexeme[1024]; /* lexéme courant de taille maxi 1024 */

/** reconnait un mot (lexéme) sur 1l’entrée standard et retourne un jeton
* correspondant d la catégorie lexicale du lexéme.
* Le filtrage est permis géce aux jetons négatifs.
*Qreturn un entier négatif si erreur, positif si 0K, O si fin de fichier
*/
int analex(){
int etat=EINIT; /* unique état initial */
int efinal=-1; /* pas d’état final déja vu */
int 1final=0; /* longueur du lexéme final */
int c;char sc[2];int i; /* caractére courant */
lexeme[0]=>\0’; /* lexeme en var globale (pour le main)*/
while ((c=getchar())!=EOF && TRANS[etat] [c]!=-1){ /* Tq on peut avancer */
sprintf (sc,"%c",c); /* transforme le char c en chaine sc */
strcat(lexeme,sc); /* concaténation */
etat=TRANS[etat] [c]; /* Avancer */
if (JETON[etat]){ /#* si état final */
efinal=etat; /* s’en souvenir */
1final=strlen(lexeme); /* longueur du lexeme egalement */
} /* fin si */
} /* fin while */
if (JETON[etat]){ /* état final */
ungetc(c,stdin); /* rejeter le car non utilisé */
return (JETON[etat]<0 ? analex() : JETON[etat]);/* ret le jeton ou bouclex/
}
else if (efinal>-1){ /* on en avait vu 1 */
ungetc(c,stdin); /* rejeter le car non utilisé */
for(i=strlen(lexeme)-1;i>=1final;i--)
ungetc(lexeme[i],stdin); /* rejeter les car en trop */
lexeme[1final]=>\0’; /* voici le lexeme reconnu */
return (JETON[efinal]l<0 7 analex() : JETON[efinall);/* ret jeton ou bouclex/
}
else if (strlen(lexeme)==0 && c==EOF)
return 0; /* cas particulier */
else if (strlen(lexeme)==0){
lexeme[0]=c;lexeme[1]="\0’; /* retourner (c,c) */
return c;

}
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else {
ungetc(c,stdin); /* rejeter le car non utilisé */
for(i=strlen(lexeme)-1;i>=1;i--)
ungetc(lexeme[i] ,stdin); /* rejeter les car en trop */
return lexemel[0];
}
}

Enfin la fonction principale est codé dans le programme C suivant :

/**Q@file analex.c
*Q@author Michel Meynard
x@brief Prog principal appelant itérativement analex()
*/
#include <stdio.h>
#include <string.h>
#include "afd.h" /* Définition de 1’AFD et des JETONS x*/
#include "analex.h" /* Définition de la fon : int analex() */

int main(){
int j; /* jeton retourné par analex() */
char *invite="Saisissez un(des) mot(s) matchant a(b+c)?|bd suivi de EOF (CTRL-D) SVP : ";
creerAfd(); /* Construction de 1°AFD & jeton */
printf("%s",invite); /* prompt */
while((j=analex())!=0){ /* analyser tq pas jeton 0 */
printf ("\nRésultat : Jeton = Jd ; Lexeme = %s\nls",j,lexeme,invite);
}

return O;

Si I'on compile ce programme C' et qu’on 'exécute, on obtient les résultats suivants.

Saisissez un(des) mot(s) matchant a(b+c)?|bd suivi de EOF (CTRL-D) SVP : abdbdabbc
Résultat : Jeton = 300 ; Lexeme = a

Résultat : Jeton 301 ; Lexeme = abbc

Saisissez un(des) mot(s) matchant a(b+c)?|bd suivi de EOF (CTRL-D) SVP : Oab
Résultat : Jeton = 48 ; Lexeme = 0O

Résultat : Jeton = 300 ; Lexeme = a

Résultat : Jeton = 98 ; Lexeme b

Résultat : Jeton = 10 ; Lexeme

Remarquons que sur ’entrée standard Unix le CTRL-D tapé en début de ligne génére un EOF, mais aprés une
chaine de caractéres, le CTRL-D (parfois doublé a cause des ungetc) génére un vidage (flush) du tampon d’entrée sans
caractére supplémentaire a la différence du ENTREE qui envoie un retour a la ligne (°\n’ codé par 10).

Pour conclure, avec un langage réel de taille importante, il devient difficile de construire manuellement ’AFD
sans se tromper (plusieurs centaines de transitions). De plus, I’évolution permanente de la grammaire d’un langage
en cours de conception rend nécessaire I'utilisation d’un outil informatique pour modéliser le langage lexical a l'aide
d’expressions réguliéres. L’outil aura comme mission de transformer ces expressions en AFD a jeton et de fournir une
fonction d’analyse lexicale.

2.5 Un langage et un outil pour 'analyse lexicale : (f)lex

Pour plus d’informations sur flex, faire man flex. Lex est un outil permettant de générer un programme d’ana-
lyse lexicale a partir de définitions réguliéres de modéles (expressions réguliéres) et d’actions a exécuter lors de la
reconnaissance de ces modéles. Il existe différentes versions de lex (lex, flex, pclex,...) sur différentes plateformes et
permettant l'utilisation de différents langages d’actions (C, ada, ...). Les plus usuelles tournent sous Unix et utilisent
le C. Nous utiliserons “Flex” qui est une version gratuite, rapide, n’ayant pas besoin de bibliothéque. Ce logiciel peut
facilement étre téléchargé depuis Internet.

2.5.1 Un exemple

Exemple 6
Analyseur lexical de I’exemple |4 réécrit en lex :
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/* ZONE DE DEFINITION (OPTIONNELLE) */

/* evite la definition de yywrap() */
%option noyywrap

/* ZONE DES REGLES apres le double pourcent (OBLIGATOIRE) */

YA

a {return 300; /* ret un jeton */}

ab+c {return 301; /* ret un jeton */}

bd {/* ne rien faire : filtrer */}

.I\n {return yytext[0]; /* ret le code ASCII pour tout le reste */}
YA

/* ZONE DES FONCTIONS C (OPTIONNELLE) */

int main(){

int j; char *invite="Saisissez un(des) mot(s) matchant a(b+c)?|bd; finissez par EOF (CTRL-D) SVP :

printf (invite) ;
while ((j=yylex())!=0)

printf("\nJeton : %i; de lexeme %s\nJs",j,yytext,invite);
return 0; /* 0 en fin de fichier */

Aprés compilation flex, flex analflex.l, puis compilation C gcc -o analflex lex.yy.c, il ne reste plus qu’a
lancer 'exécutable analflex obtenu :

Saisissez ... : abbbbcbdbdabdabbc
Jeton : 301; de lexeme abbbbc
Jeton : 300; de lexeme a

Jeton : 301; de lexeme abbc
<CTRL>-<D>

L’analyseur lexical généré tente, de maniére itérative, de reconnaitre une expression réguliére (pattern matching)
puis exécute les instructions C correspondantes. L’analyseur termine sur la fin de fichier (EOF) de l’entrée standard
(CTRL-D pour le terminal). Les mots ne correspondant & aucune expression réguliére sont rejetés dans la sortie
standard sans aucun traitement particulier. C’est pourquoi la derniére régle . |\n a été ajoutée : par défaut, tout
cartactére non reconnu est retourné.

Au cceur du source C lex.yy.c généré par flex, la fonction C : int yylex() d’analyse lexicale permet de retourner
un jeton entier correspondant au modéle reconnu. Dans ’exemple précédent, la fonction principale : int main()
appelle yylex () itérativement jusqu’au caractére de fin de fichier. La résolution de 'ambiguité de reconnaissance est
obtenue d’une part, par la tentative de toujours reconnaitre le mot le plus long possible, d’autre part par 'ordre des
expressions réguliéres dans le source lex.

Si l'on observe le code C généré dans lex.yy.c, on s’apercoit que 'automate fini déterministe calculé par flex est
codé dans un tableau statique du programme C.

2.5.2 Syntaxe et sémantique des sources Flex
Architecture

Un source lex comprend 3 parties séquentielles :

— une partie optionelle de définitions. Elle contient :
— les directives d’inclusion et de définition globales C (variables, types, ...) entre %{ et %} situés en début

de ligne;

— les définitions spécifiques a flex (abbréviations, start condition, options) ;

— Une partie obligatoire de régles lex délimitée par %% au début. C’est la partie centrale du source lex qui définit
I’analyseur lexical en associant des instructions C & des expressions réguliéres.

— Une partie optionelle de fonctions C définies par 'utilisateur délimitée par %% au début. C’est 14 que 'on peut
définir le main().

Les régles lex

Une régle lex se présente de la fagon suivante : une expression réguliére, suivie de séparateur(s), suivie de
— d’un bloc d’instructions C ou C++ encadré par des accolades ou bien

— 37 (ne rien faire) ou bien

— d’une instruction C a exécuter.
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L’espace et la tabulation sont les séparateurs qui divise la régle en deux. Le modéle lexical doit commencer en
début de ligne et la régle doit se terminer par un “;” ou une fin de bloc C “}”.
Représentation des expressions réguliéres

Soit e et r deux expressions réguliéres quelconques, ¢ et d deux caractéres, m et n deux nombres entiers positifs, le
tableau suivant indique les opérateurs utilisés par lex.

Exemple Signification Opérateur(s)
abc concaténation implicite er
Monsieur|Madame union elr
b* opération * : 0 an b’ e*
b+ opération + : 1 an’b’ e+
cartons ? optionnel : carton ou cartons e?
(abc)* parenthésage pour priorités (e)
[ace] classe de car : 1 caractére parmi [dc]
[a-z] [0-9] 1 caractére minuscule suivi d’un chiffre [c-d]
[~abc] 1 caractére sauf a, b ou ¢ [~cd]
L) (" évite l'interprétation des opérateurs "dc"
\* le caractére * (et non pas opérateur) \¢
\x41 le caractére de code hexa 0x41 ("A’) \xC2
. un car quelconque hormis newline .
[0-9]1{3} trois chiffres e{n}
a{1,10} entre 1 & 10 ’a’ contigus e{mn}
a{3,} au moins 3 ’a’ contigus e{m,}
~Bonjour Bonjour en début de ligne ~e
Au revoir$ Au revoir en fin de ligne (pas en EOF) e$
~“Bonjour, Au revoir$ interdit (1 seul opérateur contextuel)
Bonjour/(Monsieur) Bonjour seulement si suivi par Monsieur e/r
<etat1>Dupont Dupont seulement si on est dans 1’état etatl <state>e
<<EOF>> fin de fichier (seulement dans flex) <<EQF>>
<state><<EQF>> fin de fichier dans un certain état (seulement dans flex) <state><<EQOF>>
{chiffre} chiffre est une définition (alias) dans la lére partie du source lex {def}

Instruction(s) C

La partie droite de chaque régle correspond & une suite de longueur quelconque d’instructions C. Le texte inclu entre
accolades sera recopié intégralement dans lex.yy.c sans aucune analyse ni modification. Il doit donc correspondre a
un source C correct.

Les instructions C peuvent faire appel a des fonctions prédéfinies par lex ou définies par l'utilisateur dans la
troisiéme partie du source lex. En particulier, avec flex, on peut ne pas utiliser la librairie flex 1ibfl.a a condition
de définir la fonction principale main() ainsi que la fonction int yywrap(). Par exemple, pour éviter I’édition de liens
avec la librairie flex, on pourra simplement écrire dans la troisiéme partie :

int yywrap() {return 1;} /* pas d’enchainement sur un autre fichier */
main() {while (yylex()'!=0) {} } /* boucle sans rien faire jusqu’a eof */

Les instructions C peuvent référerencer une variable :

— soit prédéfinie par lex : la chaine char* yytext de longueur int yyleng correspond au mot reconnu dans le
texte & analyser (lexéme);

— soit définie en partie définitions : dans ce cas, la variable est globale;

— soit définie juste aprés ’accolade : dans ce cas, la variable est locale & la régle.

Exemple 7
Le source lex suivant illustre I'utilisation des variables :

%{ int glob=0;
ht
Tt
-7[1-9]+ {int loc=5; glob++;loc++;
printf("%d éme entier de taille %d; loc= ’%d",glob,yyleng,loc);
}
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Une exécution de ce programme donne :

12

1 éme entier de taille 2; loc= 6
123
2 éme entier de taille 3; loc= 6

1

3 éme entier de taille 2; loc= 6

Variables prédéfinies

yytext chaine de car (char *) contenant le lexéme en cours de reconnaissance ;

yyleng longueur (int) de yytext;

yyin flot d’entrée des caractéres de type FILE#* (par défaut stdin); On peut rediriger le flot d’entrée sur le premier
argument du main en faisant : yyin=fopen(argv[1],"r");

yyout sortie standard de type FILE*. Pour y afficher, faire : fprintf (yyout, "...");

Fonctions prédéfinies

int yylex() lit un lexéme depuis le flot d’entrée et retourne le jeton associé. Retourne le jeton 0 pour finir.

int input() lecture d’un caractére depuis le flot d’entrée (yyinput en C++); input () équivaut a fgetc(yyin) ;

void unput(int) retour dans le flot d’entrée d’un car; unput (c) équivaut a ungetc(c,yyin) ;

int yywrap() lorsque lanalyseur yylex () arrive en fin de fichier (EOF), il appelle yywrap (). Si yywrap retourne
1 (par défaut) alors yylex() retourne 0 (fin d’analyse). Si on voulait enchainer sur un autre fichier, il faut
redéfinir dans la partie “définitions” du source lex, la fonction yywrap() afin qu’elle fasse pointer yyin sur le
nouveau fichier puis retourne 0

yymore() concaténe dans yytext le prochain lexéme avec celui en cours;

yyless(int n) replace le lexéme reconnu yytext dans le flot d’entrée a 1’exception de ses n premiers caractéres;

ECHO affiche yytext ; ECHO équivaut a fprintf (yyout,yytext) ;

REJECT rejette le lexéme reconnu dans le flot d’entrée et s’interdit de reconnaitre la régle courante au prochain
essai (appel de yylex()).

BEGIN((etat) positionne l'automate dans la condition de départ etat. Cet état doit avoir été défini dans la
premiére partie grace a %Start etat ou & %x etat. BEGIN(0O) permet de revenir a I’état normal.

int main() par défaut, la librairie de lex (1ibl.a) ou de flex (1ibfl.a) définissent une fonction pricipale qui
appelle yylex () jusqu’a ce que celle-ci retourne 0.

Ambiguités de correspondance

Reégle de la plus longue correspondance (match) si un préfixe (début de chaine) correspond a plusieurs ex-
pressions réguliéres possibles, lex choisira I’expression réguliére correspondant a la plus longue extension. Par
exemple, avec les régles suivantes :

end {return 300;}
[a-z]+ {return 301;}

Le mot endemique se verra appliquer la seconde régle (identificateur) et yylex() retournera 301.

Attention aux opérateurs contextuels en avant qui comptabilisent les caractéres en avant : par exemple, 1'ex-
pression réguliére a$ sera préféré a I'expression a pout tout a en fin de ligne.

Régle du premier trouvé si la longueur de correspondance est égale pour plusieurs régles, alors c’est la pre-
miére dans la liste qui est déclenchée. Dans I'exemple précédent, le mot end déclenchera le retour de 300. Par
conséquent, pour un langage donné, il faut toujours placer les régles concernant les mots-clés au début.

Attention aux opérateurs contextuels qui provoquent parfois des “erreurs” ! En effet, 'utilisation des 2 régles suivantes
provoque un conflit gagné par la premiére régle (a 'encontre de la régle du plus long lexéme) :

a+$ {return 300; /* ret un jeton */}
~at\n  {return 301; /* ret un jeton */}

En inversant I'ordre de ces deux régles, tout se passe cependant comme prévu. En fait, les opérateurs contextuels de
suffixe ($, /) sont consommeés aprés le lexéme et c’est ce mot qui doit étre considéré comme le plus long possible.
Ensuite, le suffixe sera rejeté dans yyin.
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Partie définitions

Il existe différentes sortes de définitions :

Définitions C toute ligne de la partie définitions débutant par un espace ou une tabulation est recopiée au
début du source C généré par lex. Ces lignes seront donc externes a toute fonction C du code correspondant
a Pautomate. Il en va exactement de méme pour tout ce qui est inclus entre %{ et %} seuls et en début de
ligne, ces délimiteurs étant détruits dans lex.yy.c. A part les variables globales, cette partie permet d’inclure
des macros #include #define, des typedef, .. ..

Abbréviation de modéle certaines parties de modéles revenant fréquemment dans les régles, on peut en définir
des alias selon la syntaxe suivante : nomAlias séparateur(s) modéle. Par exemple :

chiffre  ([0-9])
minuscule ([a-z])
exposant ([DEde] [-+]?{chiffre}+)

Dans cet exemple, chiffre désigne 1’alias de [0-9]. Ces alias seront principalement utilisés dans les expressions
réguliéres en les entourant d’accolades. Le parenthésage sera utilisé systématiquement pour éviter des problémes
liés aux priorités.

Start Condition permet de conditionner la reconnaissance de certaines expressions réguliéres selon la condition
dans lequel ’analyseur se trouve. Par exemple, %x DANSCHAINE DANSCOMMENT définit deux conditions exclusives.
Celles-ci pourront étre utilisés en préfixe des expressions réguliéres comme dans ’exemple suivant :

("] {BEGIN(DANSCHAINE) ;}
<DANSCHAINE>[~"]+ {yylval.s=strdup(yytext);}
<DANSCHAINE>["] {BEGIN(INITIAL); return LITCHAINE;}

Au départ la condition initiale s’appelle INITTIAL et vaut 0. Lorsque flex reconnait le guillemet, il passse dans
la condition DANSCHAINE ou il va reconnaitre I'intérieur de la chaine. Aprés avoir reconnu le guillemet final,
il retournera le jeton de littéral chaine.

La définition des états peut également se faire par %s s1 s2 (inclusif). La différence entre les conditions
inclusives et exclusives réside dans le fait que dans le cas inclusif, les régles préfixées de condition sont prioritaires
mais les autres régles (sans conditions) seront utilisées s’il n’y a pas de correspondance possible! Il est souvent
préférable d’utiliser 'exclusivité %x s1 s2.

Options flex commengant toujours par le mot %option telles que %option noyywrap : un seul fichier, joption yylineno :
numéro de ligne, ...

Troisiéme partie

Cette partie permet d’écrire des fonctions C utilisées dans les parties droites des régles. On peut également redéfinir
les fonctions main(), yywrap(), input(), unput(char), ... afin de surcharger leur version flex. Ces fonctions
peuvent également étre redéfinies dans un fichier inclus.

2.5.3 La commande flex

Principales options de la commande flex :

flex -d débogue un source flex en affichant lors de I'exécution la régle reconnue (ligne) et le lexéme;

flex -T trace 'automate construit en donnant : 'AFN (nfa), 'AFD (dfa), et les classes de caractéres définies ;
flex -v (verbose) donne des informations statistiques sur 'automate généré ;

flex -s supprime la régle par défaut qui consiste a envoyer sur la sortie standard tout caractére non reconnu.

makefile

Voici la partie du makefile correspondant & la génération d’applications & partir de source flex d’extension .1.
Si Pon veut utiliser flex sans sa bibliothéque (extension .f1), il suffit de définir les fonctions int main() et int

yywrap().

.SUFFIXES:.fl

CC=gcc

CFLAGS=-g

LEX=flex

LEXLIBRARY=-1f1

.1: # avec la librairie LEX
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@echo debut $(LEX)-compil : $<

$(LEX) $<

Q@echo debut compil ¢ avec edition de liens de lex.yy.c
$(CC) $(CFLAGS) -o $* lex.yy.c $(LEXLIBRARY)

Q@echo fin $(LEX)-compil de : $<

@echo Vous pouvez executer : $x

Jf1: # sans librairie (seulement flex) -> main et yywrap
Q@echo debut flex-compil : $<
flex $<

Q@echo debut compil c avec edition de liens de lex.yy.c
$(CC) $(CFLAGS) -o $* lex.yy.c

@echo fin flex-compil de : $<

@echo Vous pouvez executer : $x*

2.5.4 Actions C++

Il est possible d’utiliser flex avec des actions en C+-. Il suffit alors de compiler lex.yy.c avec un compilateur
C++. Soit le source flex suivant :

yAl
#include <iostream.h>
class A{
public:
void essai(){cout<<"Identif ";
}
};
ht
Yy
[a-z] ([a-z] | [0-9])* {return 4;}
. {return 5;}
W
int main(){
A a; int i;
while ((i=yylex())!=0)
if (i==4) a.essai();

Aprés compilation par flex exempleC++.1+ puis g++ -g -o exempleC++ lex.yy.c -1fl, on obtient un exécu-
table.

makefile pour le C+—+

Voici les 2 entrées de makefile pour les sources flex contenant des instructions C++ :

CPP=g++
CPPFLAGS=-g
A+ # C++ avec la librairie LEX
$(LEX) $<
$(CPP) $(CPPFLAGS) -0 $* lex.yy.c $(LEXLIBRARY)
f1+: # C++ sans la librairie LEX
$(LEX) $<

$(CPP) $(CPPFLAGS) -o $* lex.yy.c

2.5.5 Liaison avec un analyseur syntaxique

Lorqu’il est utilisé avec un analyseur syntaxique généré par yacc ou bison, c’est la fonction d’analyse syntaxique
yyparse () qui appelle itérativement yylex() pour obtenir les jetons correspondants au fichier analysé. La fonction
principale int main() appelle alors yyparse (). Une ou plusieurs variables globales, yylval par exemple, peuvent étre
alors partagées par les 2 fonctions yylex() et yyparse().

2.5.6 Flex et ’encodage utf-8

Flex accepte en entrée un flot de char donc rien ne 'empéche de lire des encodages multi-octets (utf-8 ou 16 ou
32) pour un point de code. Cependant, cela n’est pas trés simple de définir par exemple une classe des lettres utf-8'!
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Cependant les déclarations flex suivantes permettent de définir des alias pour les caractéres utf-8 codés sur 1 octet
(ASC), sur 1 ou plusieurs octets (UANY), ...

ASC [\x00-\x7f]
ASCN [\x00-\t\v-\x7f]
U [\x80-\xbf]
U2 [\xc2-\xdf]
U3 [\xe0-\xef]
U4 [\xf0-\xf4]

UANY {ASC} | {U2}{U} | {U3}{U{U} [{U4}{U}{U}{U}
UANYN  {ASCN}|{U2}{U} [{U3}{U}{U} | {Uu4}{UI{U}{U}
voNLY  {U2}{U}|{U3}{U}{U} | {U4}H{UMHUMHU}

D’autres générateurs d’analyseurs lexicaux compatibles avec Bison tels que RE/flex permettent plus facilement de
scanner les fichiers multi-bytes.
Enfin ANTLR v4 est un générateur d’analyseur syntaxique en Java qui gére le codage utf-8.

2.6 Algorithmique

Nous allons étudier les différents algorithmes utilisés par Flex pour construire “’automate” déterministe codé en

C.

2.6.1 Traduction des expressions réguliéres

On utilise la construction de “Thompson” qui admet des AFN possédant des e-transitions mais ayant un unique
état initial et un unique état final. La donnée est constituée d’une expression réguliére r (sans ()) sur l'alphabet V. Le
résultat est un AFN construit par 1’algorithme [3] Le principe de celui-ci revient & associer récursivement un automate
a chaque noeud de 'arbre syntaxique de ’expression réguliére.

Algorithme 3 : construction d’un automate équivalent & une expression réguliére

Données : r une expression réguliére sur V

Résultat : B= (V,E,D,A,T)
1 Construire 'arbre a de construction inductive de r // arbre syntazique de r;
2 i=0 // numéro d’état;
3 B=arbreVersAF(a) // appel a la fonction définie dans l’algorithme;

Quelques propriétés de 1'algorithme [3] :

— Correction : 'AF construit reconnait le langage L(r) défini par I’expression réguliére r.

— L’AF construit a au plus deux fois plus d’états que |r|.

— L’AF construit a un état initial et un état final.

— Chaque état (non final) posséde, soit 1 ou 2 e-transitions sortantes, soit une transition sortante étiquetée par

un symbole de V.
— Chaque état (non initial) posséde, soit 1 ou 2 e-transitions entrantes, soit une transition entrante étiquetée par
un symbole de V.

— L’état final n’a pas de transition sortante, ’état initial n’a pas de transition entrante.

Les preuves de ces propriétés sont réalisées par I’analyse de la fonction récursive arbreVersAF.

La difficulté de mise en oeuvre de cet algorithme réside dans la construction de I’arbre de dérivation. En effet,
la grammaire des expressions réguliére est algébrique non rationnelle. Une programmation récursive ad hoc permet
cependant de le réaliser. Il ne reste plus ensuite qu’a déterminiser ’AF ainsi construit pour construire un AFD
équivalent & une expression réguliére.

2.6.2 Deéterminisation

On va écrire 1’algorithmede déterminisation d’'un AFN N = (V, E, D, A, T) ; I'idée consiste a fusionner 1’ensemble
des états ot ’AFN peut étre & un “instant” donné en un seul état de PAFD D = (V,DE, {d}, DA, DT). Pour cela,
un état de DE sera modélisé dans ’algo. par un ensemble d’états de E. Il reste a la fin de 'algorithme [5| & numéroter
ces ensembles. L’Epsilon fermeture d’un ensemble d’états consiste & effectuer la fermeture réflexo-transitive par des
epsilon transitions depuis ces états.

A tout chemin menant d’un état initial & un état final de N, donc & tout mot de L(N), correspond un chemin de
d & un état final dans D. De plus, pour un chemin menant & un état final, I'état {...ep41 ...} est final (Voir dans
lalgorithme[f]: DA ={Y € DE/Y N A # 0}).
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Algorithme 4 : construction d’un automate a partir d’'un arbre

Données : a un arbre syntaxique d’une expression réguliére r
Résultat : B= (V,E,D, A, T)

Fonction arbreVersAF (a) : automate;

si a est une feuille étiquetée par un symbole s € V U {e¢} alors
B=(V,{i,i+ 1}, {i}, {i + 1}, {(@, s, i+ 1)});

i=i+2;

retourner B;

si a est étiquetée par e alors

B, =arbreVersAF (sous-arbre-gauche(a)) // (V,Eq4,{dg},{ag}, Ty);

B, =arbreVersAF (sous-arbre-droit(a)) // (V,Eq,{da},{aa}, Ta);

retourner B = (V, Eg U Ey,{dg}, {aa}, Ty UTq U {agedq}) // Vétat final de B, est “fusionné” a U'état initial
de Bd;

si a est étiquetée par | alors

B, =arbreVersAF (sous-arbre-gauche(a)) // (V,Eq4,{dg},{ag}, Ty);

B, =arbreVersAF (sous-arbre-droit(a)) // (V,Eq,{da},{aa}, Ta);

B=(V,E,UEqU{i,i+ 1}, {i}, {i + 1}, T, UTy U{iedy,iedq, agei + 1, aqei + 1}) // on parallelise By et By;
i=i+2;

retourner B;

si a est étiquetée par x alors

B, =arbreVersAF (sous-arbre(a)) // (V,Eq4,{d¢},{ag},Ty);

B=(V,E,U{i,i+ 1}, {i},{t + 1}, T, U {iedgy,ici + 1,a4ei + 1,a4ed,}) // on crée un circuit sur By;
i=i+2;

retourner B;

Remarquons que cette déterminisation permet de supprimer tous les chemins inaccessibles.

Exemple 8

Déterminisons 'AFN N suivant : N = {{a, b}, {1..4},{1,2},{3,4}, {1a3, 1a4, 2a3,2b4} }
tracons I’algorithme :

DE = {{1.2)+};

r=a;X ={3,4}; DE = {{1,2}%,{3,4}}; DT = {({1,2}a{3,4})}

v =0b;X ={4}; DE = {{1,2}x,{3,4},{4}}; DT = {({1, 2}a{3,4}), ({1, 2}0{4})}

DE = {{1,2}%,{3, 4}* {4}};

r =a puis b; X =

DE = {{172}*,{3,4}*’{4} b

r=a puisbh; X =0

DA ={{3,4},{4}}

numérotation : {1,2} — 1;{3,4} — 2;{4} — 3; D = {{a, b}, {1..3},{1},{2,3}, {1a2, 153} }.

2.6.3 Minimisation

Rappelons que la forme canonique d’un langage régulier est son AFD minimal. Etudions l'algorithme [6] de mini-
misation d'un AFD B = (V, E,{d}, A, T). On suppose en entrée un AFD complet en ajoutant si nécessaire un état
puits. On va construire incrémentalement une suite de partitions P;, composées de classes d’états. On dit que 2 états
i, j d'une méme classe C sont distinguables par un symbole = € V ssi la reconnaissance de x n’aboutit pas pour ces
deux états a la méme classe de la partition courante. On va partitionner les états de 'automate en classes d’états
distinguables les unes par rapport aux autres puis ces classes représenteront les états du nouvel AFD Minimal M.

Remarquons qu’un état d’arrivée de M ne contient que des états d’arrivée de B a cause de la partition initiale.

Exemple 9
Soit un AFD complet :

B = ({a,b},[1,6],{1},{3,4,5}, {1a2, 163, 242, 2b3, 3a4, 3b6, 4a5, 466, 5a5, 5b6, 66, 666 })

On obtient la partition initiale : Py = {{3,4,5},{1,2,6}}. La classe {3,4,5} n’est pas distinguable ni par a (classe
{3,4,5}), ni par b (classe {1,2,6}). Par contre, la classe {1,2,6} se distingue sur b. Par conséquent :

P = {{35475}7{172}7{6}} =P,
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Algorithme 5 : déterminisation d’un automate
Données : N = (V,E,D,A,T)
Résultat : B= (V,DE,{d}, DA, DT)
d=EpsilonFermeture(D) ; // on initialise l’ensemble des états initiaux comme unique état de départ non marqué;
DE={d};
tant que il existe un état G = {ey,ea,...,e,} non marqué dans DE faire
marquer G // on traite une seule fois chaque état de ’AFD B;
pour chaque z € V faire
X = EpsilonFermeture(|J;_,{e;}) tel que e; € G et (e;ze;) €T // X est l'ensemble des états
atteignables par © a partir de G,
si X # () alors
DE =DEU{X};
L DT = DT U {(GzX)} // ajouter la transition dans ’AFD;

DA={Y e DE/YNA#Q} // les états finauzx de B sont ceux qui contiennent au moins un état final de N
numéroter les états de DE et substituer ces numéros dans DE, DA DT ;

Algorithme 6 : Minimisation d’'un AFD
Données : B = (V,E,{d},A,T), un AFD complet
Résultat : M = (V,ME,{nd}, MA, MT), un AFD minimal
i=0;
Initialiser la partition P, = {A, E — A};
répéter
pour chaque C € P, faire
si il existe plusieurs états de C distinguables par un x € V alors
partitionner C en C1,Cy,...,C,, dans P;;1 de maniére a ce que ces sous-classes ne soient plus
distinguables par x;
sinon
| recopier C dans P;y1;

i=i+1;

jusqu’a P; = P;_y;

numéroter chaque classe C' € P; pour former les états de ME;

le nouvel état de départ nd est le numéro de la classe qui contient d;

MA est ’ensemble des numéros de classes contenant des états d’arrivée de A;
MT est constitué des transitions entre les classes de P;;

supprimer les états puits non finaux ainsi que les états non accessibles;

I ne reste plus qu’a supprimer la classe {6} qui est un puits non final pour obtenir ’AFD minimal :
M = ({a,b},{12,345}, {12}, {345}, {12a12, 120345, 345a345})

Exercice 1 Soit lexpression réguliére (a|bc)*. Calculer TAFDM correspondant en passant par la construction de
Thompson.



Chapitre 3

Analyse syntaxique

L’analyse syntaxique du programme source doit vérifier que celui-ci est bien un mot du langage de programmation.
Pour cela, la grammaire du langage est utilisée. Cette grammaire G = (Vp, Vv, R, S) est algébrique (insensible au
contexte). Toutes les régles de R sont donc de la forme : X — a avec X € Viy et a € (Vr UVy)*. De plus, G doit étre
non ambigiie afin d’éviter différentes sémantiques pour un méme programme. Ainsi, il existe une unique dérivation
gauche depuis 'axiome S de la grammaire et conduisant au programme. C’est-a-dire qu’il existe un unique arbre de
dérivation dont la frontiére soit le programme. Cette analyse peut se faire selon deux approches :

— l’analyse syntaxique descendante consiste & étudier I'unique dérivation gauche possible en partant de 'axiome

et en allant vers le programme. L’arbre de dérivation est construit (ou pas) depuis la racine S vers les feuilles.

— L’analyse syntaxique ascendante consiste, au contraire, & partir du programme et & remonter vers l'axiome S.
L’arbre de dérivation est construit (ou pas) depuis les feuilles vers la racine S.

De plus, la phase d’analyse syntaxique peut générer selon les cas :

— un résultat booléen indiquant la correction syntaxique. C’est le cas des vérificateurs syntaxiques tels que lint,
qui est un vérificateur pour le C.

— Un arbre syntaxique représentant le programme. Celui-ci est soit un arbre de dérivation (arbre complet), soit
un arbre abstrait (arbre simplifié). Cet arbre servira ensuite pour analyse sémantique puis la synthése de la
cible.

— Le programme cible directement compilé par la phase d’analyse syntaxique. On parle de traduction dirigé par
la syntaxe. Cette traduction utilise fréquemment des grammaires attribuées.

— Le résultat de I’évaluation du programme source. C’est le cas des interpréteurs de programme et des évaluateurs
d’expressions (calculette).

3.1 Analyse descendante récursive

C’est une méthode de programmation qui associe une fonction, pouvant étre récursive, & chaque symbole non
terminal de la grammaire. Ces fonctions s’appellent suite & la reconnaissance de certains jetons du flot d’entrée
correspondant aux début des parties droites des régles de production. Ces jetons permettent donc de prédire la régle
de production a choisir. Il est nécessaire que la grammaire posséde un certains nombre de propriétés pour permettre
I’analyse descendante prédictive.

La propriété fondamentale des grammaires pouvant donner lieu & I’analyse descendante est la non récursivité a
gauche. En effet, celle-ci générerait des appels récursifs infinis. La récursivité a droite étant permise, il est toujours
possible de transformer une grammaire récursive & gauche en une grammaire équivalente non récursive a gauche.

Le nombre de symboles terminaux nécessaires a la prédiction de la régle de production & choisir est une caractéris-
tique des analyses descendantes prédictives. Dans le cas ot ce nombre est 0, on choisit une production quelconque et
on tente la descente. Si celle-ci échoue, il faudra revenir sur le(s) choix effectués (backtracking). Le backtracking étant
cotiteux du point de vue de Pefficacité, on utilise toujours au moins un symbole (jeton) de prédiction (prévision). Ce
jeton doit étre lu avant d’entrer dans une fonction afin de permettre le retour sans effet dans le cas d’une production
epsilonesque.

Exemple 10
Soit la grammaire d’expressions arithmétiques Gg = ({0,1,...,9,+,%,(,)},{E}, R, E) avec les régles de R suivantes :

E — E+E|E+E|(E)0[]]...]9

Cette grammaire G étant ambigiie, on écrit une grammaire équivalente non ambigiie selon le schéma Expression
Terme Facteur (ou ETF) :

— une expression est quelconque, par exemple 1+2*3+4;

— un terme est un élément d’une somme : dans ’exemple précédent, 1, 2*3 et 4 sont trois termes ;
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— un facteur est un élément d’un produit : dans ’exemple précédent, 2 et 3 sont des facteurs du produit 2*3.
Gegrr = ({0,1,...,9,4+,%,(,)},{E,T,F}, R, E) avec les régles de R suivantes :

E — E+T|T
T — TxF|F
F — (E)01]...]9

Cette grammaire Ggrp n’est pas ambigué : pour un méme niveau de parenthésage, les opérateurs + doivent étre
tous générés avant de générer un opérateur *. Ggrp étant récursive a gauche, on écrit une grammaire équivalente non
récursive a gauche Ggnr = ({0,1,...,9,+,%,(, )}, {E,R,T,S,F}, X, E) avec les régles de X suivantes :

E —- TR

R — +4TRle

T — FS

S = *FS|e

F — (E)O[1]...]9

Enfin, il reste a écrire un vérificateur (reconnaisseur) syntaxique récursif utilisant un jeton de prédiction. Le
programme C suivant effectue cette vérification syntaxique en calquant la structure de ses fonctions sur la grammaire
GENR-

/** @file analdesc.c
*Q@author Michel Meynard
*Q@brief Analyse descendante récursive d’expression arithmétique

*x
* Ce fichier contient un reconnaisseur d’expressions arithmétiques composée de
* littéraux entiers sur un car, des opérateurs +, * et du parenthésage ().
* Remarque : soit rediriger en entrée un fichier, soit terminer par deux
*x caractéres EOF (Ctrl-D), un pour lancer la lecture, l’autre comme "vrai" EOQF.
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
/* les macros sont des blocs : pas de ’;’ apres */
#define AVANCER {jeton=getchar () ;numcar++;}
#define TEST_AVANCE(prevu) {if (jeton==(prevu)) AVANCER else ERREUR_SYNTAXE}
#define ERREUR_SYNTAXE {printf("\nMot non reconnu : erreur de syntaxe \
au caractére numéro %d \n",numcar); exit(1);}

void E(void) ;void R(void) ;void T(void) ;void S(void);void F(void); /* déclars */

int jeton; /* caractére courant du flot d’entrée */
int numcar=0; /* numero du caractére courant (jeton) */

void E(void){
TO; /* regle : E->TR */
RO;
}
void R(void){
if (jeton==’+’) { /* regle : R->+TR */
AVANCER
TO;
RO
}
else ; /* regle : R->epsilon */
}
void T(void){
FO;
SO; /* regle : T->FS */
}
void S(void){
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if (jeton==’%’) { /* regle : S->*FS x/
AVANCER
FO;
SO
}
else ; /* regle : S->epsilon */
}
void F(void){
if (jeton==>(’) { /* regle : F->(E) */
AVANCER
EQ;
TEST_AVANCE(?) )
}
else
if (isdigit(jeton)) /* regle : F->0[1]...]9 */
AVANCER
else ERREUR_SYNTAXE
}
int main(void){ /* Fonction principale */
AVANCER /* initialiser jeton sur le premier car */
EQ; /* axiome */
if (jeton==EOF) /* expression reconnue et rien aprés */
printf ("\nMot reconnu\n");
else ERREUR_SYNTAXE /* expression reconnue mais il reste des car */
return O;
}
L’exécution de ce vérificateur donne les résultats suivants :
>analdesc

1+2%3+ (4+ (5% (2+ (1) +2) *3) ) <Ctrl>-<D>

Mot reconnu

>analdesc

1+2%4)+5<Ctrl>-<D>

Mot non reconnu : erreur de syntaxe au caractére numéro 6

Exercice 2 Ecrire un vérificateur syntaxique pour le langage de Dyck & un couple de parenthéses : S — S5S|aSble

3.2 Analyse descendante par automate a pile

3.2.1 Introduction

Un automate a pile est une machine lisant itérativement des symboles terminaux (jetons) depuis le flot d’entrée,
gérant une pile de symboles, et exécutant des actions en fonction d’une table d’analyse ou table d’actions. Le flot
d’entrée est constitué d’une suite de jetons terminée par un symbole spécial de fin symboliquement représenté par $
(jeton 0 retourné par yylex()). La pile est toujours initialisée avec le symbole spécial $ puis est manipulée par des
empilements et dépilements dépendant de la table d’actions. La table d’actions est une table & 2 dimensions indicées
par les non terminaux d’une part, et les symboles terminaux (jetons du flot) et $ d’autre part. Ainsi, en fonction du
symbole de sommet de pile et du jeton courant, la table indique ’action a réaliser.

Les automates & pile sont utilisés en analyse descendante comme en ascendante avec des différences au niveau
des types d’actions et des types de symboles de pile. En analyse descendante, la pile de 'automate simule les appels
récursifs des fonctions.

3.2.2 Fonctionnement de ’automate a pile en analyse descendante

La table M[Vy, VU {$}] contient une régle de production ou I'action ERREUR dans chacune de ces cases. A tout
moment, 'analyse du flot d’entrée consiste a regarder la régle de production correspondant au sommet de pile et au
jeton d’entrée. Puis, selon les cas, 'automate soit :

— s’arréte en générant une erreur de syntaxe,

— avance sur le flot et dépile un jeton,

— empile a I’envers la partie droite de la régle,

— termine en indiquant la réussite de I’analyse.
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Algorithme 7 : Fonctionnement de "automate

Données : Une table d’analyse M [V, Vr U {$}], un flot de jetons terminé par $, une grammaire
G = (Vr,Va, R, S)
Résultat : Erreur ou Succés
Pile=construirePileVide() // contenu : terminauz, non terminaux et §
empiler(Pile,$) // initialisation
empiler(Pile,S) // l'aziome de la grammaire
jeton=lireFlot() // jeton courant du flot
tant que vrai faire
si sommet(Pile)=jeton et jeton=$ alors
| terminer lalgorithme avec succés // return true
sinon
si sommet(Pile)=jeton alors
dépiler(Pile) // avangons
jeton=lireFlot() // jeton suivant du flot
sinon
si sommet(Pile)e Vi U {$} alors
| terminer lalgorithme en échec // return false
sinon
si M[sommet(Pile), jeton] = ERREUR alors
| terminer lalgorithme en échec // return false
sinon
s=sommet(Pile)
dépiler(Pile) // remplagons le non terminal
empiler dans Pile la partie droite de la régle en M|s, jeton] de droite a gauche

L’algorithme [7] précise le fonctionnement exact de 'automate a pile.

Exemple 11

Un exemple simple de fonctionnement d’une analyse descendante a 'aide d’un automate & pile consiste a étudier
une grammaire de Dyck a un couple de parenthéses. Soit la grammaire Gp = ({a,b},{S}, R, S) avec les régles de R
suivantes :

S — aSbS|e
On obtient la table d’analyse suivante (voir a]gorithme :

a b $
S|S—aSbS | S —e|S—e¢

Etudions le fonctionnement de I'automate, c’est-a-dire de sa pile, sur le mot d’entrée abaababb$ indicé a partir de 1 :

indice | la | la| 2b | 2b | 3a | 3a | 4a | 4a | 5b | 5b | 6a| 6a | 7b | 7b | 8b | 8b | 9 | 9%

a a
S| S S| S
a a| | b|b|b b | b | b
S| S S| S| S|S|S|S|S|S|S|S
b| b | b b|b|b|b|b|b|b|b|b|b]|b
S|s|S|S|S|S|S|S|S|S|S|S|S|S|S|S|S
$ | 8| 5| 5| 8|5 5|85 5|8 |55 5|5 |85|85|8

Remarquons encore une fois que les empilements de partie droite de régle se font a l’envers, c’est-a-dire de droite a
gauche.

3.2.3 Algorithmique

La grammaire doit posséder certaines propriétés de forme de ses régles afin de permettre ’analyse descendante.
Nous allons examiner les différentes transformations de régles susceptibles de mettre une grammaire G = (Vp, Vi, R, S)
quelconque en “bonne forme”, c’est-a-dire non récursive & gauche, non ambigué et factorisée! Attention, la désambi-
guation d’une grammaire étant non décidable, celle-ci devra étre réalisée par une méthode ad hoc.



3.2. ANALYSE DESCENDANTE PAR AUTOMATE A PILE 23

Suppression des e-productions

Les symboles non terminaux effagables, c’est-a-dire pouvant dériver en €, sont détectés de la maniére suivante.
Un symbole non terminal effacable :

— soit dérive directement en ¢,

— soit dérive en un mot constitué exclusivement de symboles non terminaux effagables.

Soit G = (Vpr, VN, R, S), soit E; une suite d’ensembles Effacables de symboles non terminaux définie comme suit :

— B ={XeVn/(X —¢)ER}

— Ei+1 :EZU{XEVN/(X%CY) ERetaEEZ-*}
On prouve que les ensembles F; ne contiennent que des symboles non terminaux effagables, c’est a dire dérivant en
€. On prouve également que la suite F; converge et est donc constante au-deld d’un certain rang n : In € N, E,, =
B4k, Vk € N. Par conséquent, VX € Vi, X = ¢ si et seulement si X € E,,.

Il reste & construire une grammaire Gsg ne contenant (presque) plus d’e-production et équivalente & G. Il peut
rester une e-production dans le cas ot le langage de la grammaire contient le mot vide. ..

Soit Gor = (Vr, Vv, R1,.5) avec un ensemble de régles défini comme suit :

Ry ={X — atel que a # ¢ et IX — 5 € R tel que «a s’obtient a partir de 8 en supprimant un nombre quelconque
(k €[0,|8]]) d’occurrences d’éléments effagables (de E,,)}

On prouve que L(Gor) = L(G) — {e}. Si S est un symbole effagable de G, S € E,,, on obtient Ggg en ajoutant un
nouvel axiome S7 et deux nouvelles régles :

Ggg = (VT, VN U {51}, Ry U {Sl — E|S}7 51)

Sinon, S ¢ En, on a GSE = G0E~

Exemple 12
Soit la grammaire G = ({a,b},{S, X,Y}, R, S) avec les régles de R suivantes :

S — aX|Y|XX
X — | XX
Y — aXb

On calcule les ensembles d’effagables : By = {X}, E3 = {X, S}, E5 = {X, S}. On obtient donc un nouvel ensemble de
régles Ry :

S — aX|aYV|XX|X
X - bXX|X
Y — aXblab

Pour finir, voici la grammaire équivalente a G et ne contenant qu’une e-production :

Gsp = (Vp, VN U{S1}, R1 U{S; — ¢|S}, S1).

Remarquons que notre construction n’admet au plus qu’une e-production et que celle-ci se trouve en partie droite
de I'axiome qui ne peut lui-méme étre atteint par aucune autre production.

Dans les algorithmes suivants on supposera U'inexistence d’e-production et/ou de cycle (X £ X ). Remarquons
d’abord qu’il ne peut exister de cycle sur X;. Si la grammaire Ggg posséde, S; — ¢|S, on appliquera ces algorithmes a
la grammaire Gop = (V, Vi, R1, S), puis on rajoutera axiome S; et ses deux régles tout a fait a la fin du processus.

Suppression des cycles

On suppose une grammaire sans e-production. L’algorithme |8 supprime les cycles de dérivation : X £ X. Une
production est appelée substitution de non terminal ou plus simplement substitution lorsqu’elle est de la forme :
X — Y. Seules les substitutions engendrant des cycles doivent étre supprimées. Dans I’algorithme [§ on calcule la
Fermeture Transitive des non terminaux Substituables & chaque symbole non terminal. Ce calcul partitionne Vy en
classes d’équivalence correspondant aux cycles de non terminaux substituables. Puis on filtre les productions selon
I’appartenance de leur partie gauche & un cycle.

La preuve de ’élimination des cycles effectuée par cet algorithme tient a ce que les seules régles de substitutions
(X; — X;) autorisées dans Rgc impliquent que X; et X; ne soient pas dans le méme cycle. Remarquons que les non
terminaux membres d’'un méme cycle peuvent étre représentés par un seul non terminal du cycle car ils auront tous
les mémes régles de production.

Exemple 13

Soit la grammaire G = ({a, b, c,d}, {X1, X2, X3}, R, X1) avec les régles de R suivantes :
X1 — X2|a
XQ — X1|X2‘X3|b
X3 — leng(L
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Algorithme 8 : Suppression des cycles

Données : Gog = (Vr,Vy = {X1, Xo,..., X}, R, S) une grammaire sans e-production
Résultat : Gsc = (Vr, Vy, Rsc, S) une grammaire sans cycle
Rsc =0 /* initialisation */
Construire la Fermeture Transitive des non terminaux Substituables & chaque X; € Vi :

FTS(X;) ={X; € Vy/X; = X}
pour i=1 ¢ n faire
si X; € FTS(X;) /* pas de cycle */ alors
pour chaque production X; — « € R faire

| Rsc = Rsc U{X; — a} /* ne rien faire */
sinon
pour chaque X; € FT'S(X;) /* traitons les non terminaux substituables, y compris X; */ faire
si X; & FTS(X,) /* X; pas dans le cycle */ alors

‘ Rsc = Rsc U {Xl — Xj}
sinon

pour chaque production X; — a € R faire
L sial > 1 ou «a[l] € Vp alors
| Rsc = Rsc U{X; — a} /* transitivité pour les non substitutions */

On calcule les fermetures transitives des substituables : FTS(X;) = {X1,Xs, X3}, FTS(X3) = {X1, X2, X3},
FTS(X3) = 0. On obtient donc un nouvel ensemble de régles sans cycle Rgc :

XT — a|b|X3

X2 — a|b|X3

X3 — bX1|X2a

Remarquons que X et X5 peuvent étre remplacés par X, qui les représente tous deux. Ce qui donne :
X1 — a|b|X3
X3 — bXy |X1a

Suppression de la récursivité a gauche immédiate

Une récursivité a gauche immédiate d’un symbole non terminal X se matérialise par au moins une régle de produc-
tion X — Xa. La suppression de cette récursivité a gauche immédiate nécessite de transformer I’ensemble des régles
de production ayant X comme partie gauche (les X-productions). L’algorithme @] réalise cette transformation.

Remarquons que 'appel de cet algorithme nécessite d’avoir au moins une récursivité a gauche immeédiate (n # 0)
et au moins une autre production (k # 0). Cette derniére condition est indispensable dans une grammaire sans
e-production. Sinon, le non terminal X ne peut dériver en un mot terminal !

Algorithme 9 : Suppression de la récursivité a gauche immédiate

Données : Un ensemble de productions : P = X — Xy |Xag|...|Xa,|B1]82] ... |8k sans e-production et telles
quen #0et k#£0
Reésultat : Un nouveau symbole non terminal Rx et un ensemble de productions P’ sans récursivité a gauche
immédiate
P’ ={Rx — ¢} // initialisation
pour i=1 a k faire
L P = P/U{X _>51RX}
pour j=1 a n faire
L P = P/U{RX — Oéij}

L’algorithme@]crée un nouveau symbole Rx (Reste de X), pour remplacer la récursivité a gauche par une récursivité
a droite sur Ry . Remarquons que Rx posséde une e-production donc est effagable. La correction de l'algorithme, c’est-
a~dire I’équivalence des deux ensembles de productions P et P’, se démontre par une double récurrence sur i et j.

Exemple 14
Soit la grammaire d’expressions arithmétiques Gg = ({0,1,...,9,+,%,(,)},{E}, P, E) avec les régles de P suivantes :

E — E+E|E«E|(B)0[1]...]9
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Aprés application de l’algorithme@ on obtient la grammaire suivante : Ggngrr = ({0,1,...,9,+,%,(,)},{E,Rg}, P, E)
avec les régles de P’ suivantes :

E — (E)Rp|0Rg|1Rg|...|9RE
Rp — e|+ERg|+ERg

Remarquons que Ggnpgy n’est plus récursive a gauche, mais elle reste ambigué.

Exercice 3 Soit la grammaire Ggrrp = ({0,1,...,9,4+,%,(,)},{E, T, F}, R, E) avec les régles de R suivantes :

E — E+T|T
T — TxF|F
F — (E)0[1]...|9

Supprimer la récursivité a gauche dans cette grammaire.

Dans certains cas, la suppression de la récursivité & gauche immeédiate ne suffit pas car il peut subsister des
récursivités plus complexes : dans les productions X; — Xsala, Xo — X3b|b il n’y pas de récursivité a gauche
immédiate mais il y a de la récursivité a gauche!

Suppression de la récursivité a gauche

L’algorithme |10 s’applique & une grammaire sans cycle, sans e-production et sans récursivité a gauche immeédiate.
. . . RYIEN < g L. . +
Il produit une grammaire sans récursivité a gauche, c’est-a-dire sans dérivation de la forme X = Xa.

Algorithme 10 : Suppression de la récursivité a gauche

Données : G = (Vp, Vy = {X1, X5, ..., X, }, R, S) une grammaire sans cycle, sans e-production et sans
récursivité & gauche immeédiate

Résultat : Gyr = (Vp, Vg, Rvg, S) une grammaire sans récursivité a gauche
Ryr=10
pour i=1 a n faire
P ={X; —» v € R} // ensemble des productions X; — ...
tant que 3X; — X,;a € P telle que i > j faire

P=P—{X, = X;a} // suppression

pour chaque production X; — € Ryg faire

| P=PU{X, = pa} // remplacement

P’=Supprimer la récursivité immeédiate dans P (algo. E[)
| RNr=RnrUP’

La preuve de la correction de 'algorithme tient en ce qu’a la fin, il est impossible d’avoir une production de la
forme X; — Xja telle que 7 > j.

Remarquons qu’il est toujours possible mais pas toujours nécessaire, en analyse descendante, de transformer la
grammaire initiale de la facon suivante :

1. suppression des e-productions,

2. suppression des cycles,

3. suppression des récursivités a gauche immeédiates,
4. suppression des récursivités a gauche.

La seule propriété a respecter est la non récursivité & gauche. Le moyen par lequel on obtient cette propriété
est indifférent. Remarquons qu’aprés la dérécursivation, on obtient souvent des grammaires ayant des e-productions.
Ainsi, dans ’exemple la grammaire Ggypg est non récursive a gauche et contient des e-productions. Ceci n’est pas
génant. En effet, ces productions ne peuvent en aucun cas impliquer une récursivité a gauche d’un non terminal.

Exemple 15
Soit la grammaire G = ({a,b,d}, {X1, X2, X3}, P, X1) avec les régles de P suivantes :

X1 — X2a|d
XQ — X3a|X1b
X3 — Xja
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Aprés application de I'algorithme[10, on obtient la grammaire suivante G’ = ({a,b,d}, {X1, X2, R2, X3, R3}, P', X1)
avec les régles de P’ suivantes :

X1 = Xsald

X, — XsaRs|dbR,
Ry — elabRy

X3 — dbRsaaRs|daRs
Rs — ¢laRsaaRs

Factorisation a gauche

Si plusieurs parties droites de X-productions ont méme préfixe, la prédiction de la régle a choisir est retardée
jusqu’a ce qu'un jeton permette de déterminer la “bonne” régle. Il faudra donc pouvoir lire plusieurs jetons en avance.
La factorisation des parties droites est destinée a réduire & 1 ce nombre de jetons de prévision.

Algorithme 11 : Factorisation & gauche
Données : G = (Vp,Vy = {X1,Xs,..., X, }, R, S) une grammaire
Résultat : Ggp = (Vr, Vg, Rp, S) une grammaire factorisée a gauche
Ve =V // initialisation
Rr=R
pour chaque symbole non terminal X non marqué de Vp faire
calculer «, le plus long préfixe commun des parties droites des X-productions de Rp
tant que «a # ¢ faire
Ve = Ve U{X'} // nouveau non terminal
soit X — afi|apfa|...|aBn|1l.-. |y Pensemble des X-productions de Rp
remplacer ces productions par : {X — oX'|v1|... |7k, X" — B1|B2| ... |8n}
calculer «, le plus long préfixe commun des parties droites des X-productions de Rp
| marquer X

Exemple 16
Soit la grammaire du “if then else” G = ({i,t,e,a,b},{S, E}, R, S) avec les régles de R suivantes :

S — iEtS|iEtSeS|a
E — b

Aprés application de I’algorithme on obtient la grammaire : Gp = ({i,t,e,a,b},{5,5’, E}, Rp,S) avec les régles
de Rp suivantes :

S — iEtSS'la
S = eleS
E — b

Remarquons que cette grammaire factorisée reste ambigué, ce qui posera probléme & I’analyse.

Premiers

La fonction premiers est nécessaire a la construction de la table d’analyse qu’utilise 'automate a pile. Elle re-
tourne un ensemble de terminaux (jetons). premiers suppose une grammaire non récursive a gauche mais pouvant
admettre des e-productions.

La fonction premiers(«) retourne I’ensemble des terminaux qui débute un mot dérivant de a. Si « est effacable
alors ¢ fait partie de ses premiers. Pour calculer premiers(a), il faut commencer par calculer premiers(X), quel
que soit X un symbole de V. L’algorithme [12| réalise cette fonction.

L’algorithme [12| est trivial pour les terminaux. Pour les non terminaux, il consiste & accumuler les premiers(Y;)
tant que Y;_; est effagable. € n’est ajouté que dans le cas ou une partie droite de production est entiérement effacable.

Exemple 17
Soit la grammaire non récursive a gauche Ggng = ({0,1,...,9,+,%,(,)},{E,R,T,S,F}, X, E) avec les régles de X
suivantes :

E —- TR
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Algorithme 12 : premiers(X)

Données : X € V un symbole de V7 U Vi, et une grammaire non récursive a gauche G = (Vr, Vi, R, S)
Résultat : Resultat C Vp U {e} un ensemble de symboles (terminaux ou ¢)

si X € Vr alors
| retourner {X}

sinon
Resultat = 0 // initialisation

si k=0 et « = ¢ alors

sinon
si k = 0 alors

sinon
i=1

1=1+1

n

iit=k etY; est effacable alors
si |a| =0 alors

sinon
| Resultat = Resultat U {a(1]}

L retourner Resultat

| Resultat = Resultat U{e} // e-production

tant que i < k et Y; est effacable faire

pour chaque production X — Y1Ys... Yo telle que Y; € Viy et a € {e} UV ¢ V* faire

| Resultat = Resultat U{«a[l]} // € ou le premier terminal de «

Resultat = Resultat U (premiers (Y1) — {e}) // non réc. gauche

| Resultat = Resultat U (premiers(Y;) — {e}) // non réc. gauche

| Resultat = Resultat U {e} // tous les Y; s’effacent

o wn N X
L1 4l

On obtient par 'application de I’algorithme[I12] :

premiers (F)
premiers(S)
premiers(T)
premiers(R)

premiers(F)

+TRle

FS

*xFS|e
(E)|0[1]...19

{(,0,1,...,9}
(e}
premiers (F)

{+:e}

premiers (F)

Remarquons la récursivité de I’algorithme et la terminaison de celui-ci uniquement si la grammaire est non récursive
a gauche. Cette propriété reste fondamentale pour le calcul des premiers(a) qui fait appel aux premiers(X).

L’algorithme [13] calcule justement ces premiers(a).

Suivants

L’algorithme[T4] est nécessaire a la construction de la table d’analyse qu’utilise automate a pile. Il utilise une gram-
maire G et calcule un tableau d’ensembles de terminaux, et éventuellement $ le symbole de fin d’entrée. Chaque case du
tableau est associé & un non terminal de G. Son contenu est ’ensemble des terminaux pouvant suivre immédiatement
ce symbole non terminal X; de G dans un mot dérivant de axiome : TabSuivants[X;] = {x € Vo U{$}/S = a Xz}

L’algorithme [14] calcule ce tableau TabSuivants[X;].

Exemple 18

Soit la grammaire non récursive a gauche Ggnpg de 1 ’exemple On obtient par 'application de I ’algorithme :

TabSuivants|E
TabSuivants[T

TabSuivants|F
TabSuivants|S

]
]
TabSuivants|R)
]
]

{3,)}
{+3,)}
= {8)}
{x,+,8,)}
= {+7 8, )}
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Algorithme 13 : premiers(a)

Données : « = Y Y;...Y} avec Y; € V| ainsi qu'une grammaire non récursive a gauche G = (Vr, Vy, R, S)
Résultat : Resultat C Vp U{e} un ensemble de symboles
si a = ¢ alors
| retourner {e}
sinon
Resultat =0 // initialisation
Resultat = Resultat U (premiers(Y;) — {¢})
i=1
tant que i < k et € € premiers(Y;) faire
t=1+1
Resultat = Resultat U (premiers(Y;)—{e}) // non réc. gauche
sit=Fk et e € premiers(Y;) alors
| Resultat = Resultat U {e} // tous les Y; s’effacent

retourner Resultat

Algorithme 14 : Suivants
Données : G = (Vp,Vy = {X1, Xs,..., X, }, R, X1), une grammaire
Résultat : un tableau TabSuivants[X;] d’ensembles de symboles {z1,x2,...,zm} C (Vr U{$})
TabSuivants|X1] = {3} // initialisation pour laxiome
pour i=2 ¢ n faire
| TabSuivants[X;] =0 // initialisation
répéter
stable=vrai // booléen testant la stabilité du tableau
pour chaque production Y — v de R faire
pour chaque non terminal X de v : Y — aXf avec v = aXp faire
si = ¢ alors

si TabSuivants[Y] € TabSuivants[X] alors
stable=faux

| TabSuivants|X] = TabSuivants[X] U TabSuivants[Y]

sinon
i premiers(f) — {e}  TabSuivants[X] alors

stable=faux
| TabSuivants|X] = TabSuivants[X] U (premiers(8) — {e})

i e €premiers(3) // f est effagable alors
si TabSuivants[Y] € TabSuivants[X] alors
stable=faux
L TabSuivants[X] = TabSuivants[X]| U TabSuivants[Y]

)]

wn

jusqu’a stable;
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3.2.4 Construction de la table d’analyse

L’algorithme [I5|réalise la construction de la table d’analyse qu’utilise 'automate a pile. Dans cette table, l'existence
de plus d’une production dans une case est appelée un conflit et signifie que ’automate a pile aura un choix a réaliser !
Ceci n’est pas envisageable pour des raisons d’efficacité (backtrack).

Algorithme 15 : Construction de la table d’analyse

Données : Une grammaire G = (Vp, Vi, R, S)
Résultat : Une table d’analyse M[Vy, Vrr U {$}] contenant des ensembles de productions
pour chaque case M[i, j] faire
L M[i,j] =0

pour chaque production X — « faire

pour chaque z € premiers(a) — {¢} faire

| MX,z|=M[X,z]UX — «
si € € premiers(a) alors

pour chaque y € TabSuivants|X] faire
| M[X,y] = M[X,5]UX > a

pour chaque case M|i, j] == () faire
| M[i,j] = {ERREUR}

Exemple 19

Reprenons 1 ’exemple de la grammaire de Dyck a un couple de parenthéses. Soit la grammaire Gp = ({a,b},{S},R =
{S — aSbS|e}, S). La premiére régle S — aSbS ne pose aucun probléme car premiers(aSbS) = a, donc M|[S,a] =
S — aSbS. Quant a la seconde production S — ¢, elle génére le calcul de TabSuivants[S] = {b,$}. On obtient donc
la table d’analyse suivante :

a b $
S|S—aSbS | S—e|S—e¢

Reprenons la grammaire plus complexe de 'exemple [17] et voyons la table d’analyse générée.

Exemple 20
Soit la grammaire non récursive a gauche Ggnr = ({0,1,...,9,+,%,(,)},{E,R,T, S, F}, X, E) avec les régles de X
suivantes :

EFE — TR

R — +TR|e

T — FS

S — *FS|e

F — (B)0]1]...]9

11 nous faut rappeler les premiers() des non terminaux débutant des parties droites :

premiers(F) = {(,0,1,...,9}

premiers(7T) = premiers(F)
11 nous faut également rappeler les suivants des non terminaux effagables :

TabSuivants[R] = {$,)}
TabSuivants[S] = {+,%,)}

On obtient finalement par Iapplication de I’algorithme [I5, la table suivante :

01]...19 ( ) + * $
EF—TR E—TR

R—¢| R—+TR R—¢

T—FS T—FS

S —e¢ S —e¢ S—xFS | S—e

| L S| |

F—0[1...]9| F = (F)
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Si on choisit de placer un ensemble de productions et pas seulement une production, dans l’algorithme c’est
pour permettre a 'utilisateur de déterminiser ’automate a pile généré avec certaines grammaires ambigués ou non
LL(1) en choisissant la régle a appliquer parmi celles qui sont proposées. L’exemple suivant illustre ce probléme.

Exemple 21
Soit la grammaire du “if then else” apres factorisation : Grp = ({i,t,e,a,b},{S,S', E}, Rrr,S) avec les régles de Rrp
suivantes :

S — iEtSS|a

S — eleS

E — b
Apreés calcul, on obtient les premiers() :
premiers(S) = {i,a}
premiers(S) = {e,¢}
premiers(E) = {b}

11 nous faut également rappeler les suivants des non terminaux effacables :

TabSuivants[S] = {e,$}
TabSuivants[S'] = {e,$}
TabSuivants[E] = {t}

On obtient finalement par 'application de I'algorithme[I5] la table suivante :

a b e i t $
S|S—a S — iEtSS’
S’ S —eS 8 —¢ S — ¢
E E—b

Dans cette table, I'entrée M|[S’, e] contient deux productions possibles. Il faut, dans ce cas, choisir de conserver la
production S’ — eS pour deux raisons. D’abord, parce qu’en l’absence de cette production, la partie “else” ne serait
jamais reconnu ! Ensuite, parce que que Pambiguité de la grammaire (a quel “if” associer le “else”) est ainsi supprimée
dans 'analyseur. En effet, la partie “else” sera toujours associée syntaxiquement au “if”” le plus proche, ce qui correspond
a la sémantique choisie par tous les langages de programmation.

3.2.5 Grammaires LL(1)

Définition 3 Une grammaire dont la table d’analyse peut étre calculée et dont toutes les entrées ont une unique
production ou bien ERREUR, est appelée LL(1).

La signification de cet acronyme est :
— Left to Right scanning of the input,
— Leftmost derivation,

— 1 symbole de prévision.

Théoréme 11 Aucune grammaire ambigué et aucune grammaire récursive & gauche n'est LL(1).

Théoréme 12 Une grammaire G est LL(1) si et seulement si les conditions suivantes sont respectées. Quelle que soit
X — «|B, deuz productions de G :

— il n’existe pas deux dérivations de o et B ayant un préfize commun terminal ;

— wune partie droite seulement, a ou bien B, peut s’effacer;

— si « peut s’effacer, alors § ne dérive pas en un mot ayant un préfixe commun terminal avec suivants(X).

3.2.6 Conclusion sur analyse descendante

Examinons les grammaires qui ne sont pas LL(1). Toutes les grammaires ambigués ne sont pas LL(1). Certaines
grammaires non ambigués ne sont pas LL(1). Par exemple, Go = ({a,b},{S, A},{S — Ablaa, A — a},S) est une
grammaire simple produisant 2 mots aa et ab et n’est pas LL(1). En effet, sur la lecture du premier a, on ne peut pas
déterminer quelle production de S utiliser.

Cependant, on peut parfois utiliser un automate a pile en analyse descendante pour reconnaitre le langage généré
par une grammaire non LL(1). Par exemple, la grammaire ambigué du si ... alors ... sinon ... de 'exemple
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[21] géneére une table d’analyse ayant un conflit. On peut déterminiser cette table en réussissant a reconnaitre le méme
langage. Malheureusement, ce probléme du choix est indécidable et nécessite donc une réflexion ad hoc. Dans ’exemple
précédent de Go, le choix de 'une ou de I'autre des productions de S a privilégier aboutit a un langage reconnu réduit
de moitié!

D’un point de vue plus pratique, le probléme principal des grammaires LL(1) résulte dans le fait qu’elles sont
souvent obtenues par de multiples transformations qui les rendent difficilement lisibles pour le concepteur du langage.
Aussi, les actions sémantiques qu’il faut associer a ces régles deviennent difficiles & mettre en oeuvre.

3.3 Un langage et un outil pour I’analyse syntaxique : yacc

Yace (“Yet Another Compiler Compiler”) est un outil d’analyse syntaxique permettant d’écrire des grammaires
algébriques LALR(1) assez générales (“Look Ahead Left to right scanning of the input, Rightmost derivation in reverse,
1 look-ahead token”). Il génére un analyseur syntaxique ascendant utilisant un automate a pile. Associés a chaque régle
de grammaire, des actions peuvent étre associées. Ces actions sont des instructions d’un langage de programmation
(C ou C++) ainsi que des actions spécifiques de yacc. Il existe de nombreuses versions de yace, dont bison que nous
utiliserons et qui est une version gratuite du projet GNU accessible sur le Web. Bien entendu, yacc peut étre utilsé
conjointement & lex qui fournit lui les jetons consommés par ’analyseur généré par yacc.

3.3.1 Un exemple

Soit la grammaire ambigué d’expressions booléennes G == ({0,1,&,1],!,(,)},{E}, R, E) avec les régles de R
suivantes :

E — (BE)|E|E|E&E|E|01

On va construire un vérificateur syntaxique, en utilisant yacc, reconnaissant les mots du langage généré par cette
grammaire.

Exemple 22
Voici le source yacc obtenu :

W{ /* veriflog.y */
#include <stdio.h>
int yylex(void); void yyerror(char *s);

hY
hhh
expr : > (7 expr )’
{3
| expr ’|’ expr
{3
| expr ’&’ expr
{}
| 717 expr
{3
I 707
{3
| 710
{3
%% /* debut des fonctions C */
int yylex(void) { /* analyseur lexical filtrant les blancs */
int c;

while(((c=getchar())==> ) || (c==’\t’))
return (c);
}
void yyerror(char *s) { /* appelée par yyparse sur erreur de syntaxe */
fprintf (stderr,"%s\n",s);
}
int main(void){ /* fonction principale */
if (!yyparse()) /% appel & 1’analyseur généré par yacc */
printf ("\nExpression reconnue\n");
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else
printf ("\nExpression non reconnue\n");
return O;

}

Aprés compilation bison, bison -y veriflog.y, puis compilation C et éditions de liens gcc -o veriflog y.tab.c,
il ne reste plus qu’a lancer ’exécutable veriflog obtenu :

1&01 ((0) 011D
Expression reconnue

En relancant a nouveau veriflog :

1&01 ((0) |0l1]a)parse error

Expression non reconnue

L’analyseur syntaxique généré tente, de reconnaitre un mot du langage défini par la grammaire. Il exécute les
instructions correspondantes & chaque régle reconnue. Dans cette exemple, il n’y a aucune action associée aux régles.
L’analyseur termine sur la fin de fichier (EOF) de I'entrée standard (CTRL-D pour le terminal).

Au coeur du source C y.tab.c généré par bison, la fonction C : int yyparse() d’analyse syntaxique permet de
retourner la valeur 1 en cas d’erreur syntaxique, 0 sinon. La fonction principale : int main() appelle yyparse() qui
va appeler yylex() itérativement au fur et & mesure de la reconnaissance des régles de grammaires.

En cas d’erreur de syntaxe, yyparse() fait appel & yyerror(char *) pour informer l'utilisateur puis yyparse )
retourne 1.

L’option -y de bison permet de générer un fichier nommeé y.tab.c, comme en yacc. Sans cette option, le fichier
généré se nommerait veriflog.tab.c.

3.3.2 Syntaxe et sémantique des sources yacc
Architecture

Un source yacc comprend 3 parties séquentielles :

— une partie déclaration contenant des déclarations C contenues entre %{ et %}, et des déclarations spécifiques a
yacc.

— Délimitée par %% au début, une partie constituées de régles de grammaire et des actions associées a la recon-
naissance de chaque régle. C’est la partie centrale du source yacc qui définit I’analyseur syntaxique.

— Délimitée par %% au début, une partie de fonctions C définies par 'utilisateur. Dans le cas de Bison, on doit
définir au moins trois fonctions : le main(), yyerror() et yylex(). Remarquons que ces fonctions peuvent étre
définies dans un autre fichier qui sera lié aprés compilation. Dans le cas de Yacc, une librairie liby.a contient
des définitions par défaut de ces trois fonctions.

Les régles de grammaires yacc

(S

Une régle yacc se présente de la fagon suivante : un symbole non terminal, le caractére “ :”, une séquence de

symboles (terminaux (jetons) ou non terminaux) et de blocs d’actions {. ..}, terminé par un”;”".
L’espace, la tabulation et le retour & la ligne ne sont pris en compte que comme séparateurs. La régle doit commencer
en début de ligne et terminer par un “;”.

Symboles terminaux (jetons) et non terminaux
Les symboles terminaux ou jetons sont représentés par un entier (int) retourné par la fonction d’analyse lexicale
yylex(). Les jetons peuvent étre

non nommeés comme ‘&’, '1’ dans I'exemple précédent. En fait dans cet exemple, tous les jetons étaient non
nommes.

ou bien nommeés . Dans ce cas, yylex() et yyparse() doivent partager une définition (#define) commune de ces
jetons. La maniére la plus simple consiste a

1. les déclarer, dans la premiére partie du source yacc a ’aide du déclarateur yacc : %token NAME. Par conven-
tion, les noms de jeton sont en majuscules.

2. Générer un fichier y.tab.h contenant les #define correspondant grace a ’option -d du compilateur yacc.
3. Inclure ce fichier dans la partie définition du source lex.

Bien entendu, si I'on n’utilise pas lex, cette derniére opération est inutile.



3.3. UN LANGAGE ET UN OUTIL POUR L’ANALYSE SYNTAXIQUE : YACC 33

Dans I’exemple précédent, on remplace les jetons non nommés ’0’ et '1’ par ZERO et UN.

%token UN ZERO
W

I ZERO
{3
| UN
{3
%% /* debut des fonctions C */
int yylex() { /* analyseur lexical filtrant les blancs */
int c;

while(((c=getchar())==> ?) || (c==’\t?))

if (¢c==°07)
return ZERO;
else
if (c==’1’)
return UN;
else
return (c);

}

Si l’on regarde le fichier y.tab.h aprés la commande bison -yd ..., on observe :

#define UN 258
#define ZERO 259

Rappelons que yylex() généré par lex retourne 0 en fin de fichier. Les caractéres ascii ont un numéro de jeton égal
a leur code ascii! Enfin, un jeton spécial error est réservé pour la gestion des erreurs.
Les symboles non terminaux sont conventionnellement écrits en minuscules (expr, statement, ...).

Exercice 4 Ecrire le source yacc de vérification du langage de Dyck.

Partie droite de régle

Les différentes productions associées au méme non-terminal seront séparées par une barre verticale “|”. Une partie
droite peut étre vide afin d’indiquer une epsilon-production. Par exemple :

list : /* epsilon-production */
list ’,’ stat

>

Les différentes productions pourraient cependant étre écrites séparément (1:;1:1° s;). La récursivité a gauche et a
droite est permise dans les régles yacc, cependant il est fortement recommandé d’écrire des grammaires récursives a
gauche pour optimiser le fonctionnement de l'analyseur.

Valeur sémantique ou attribut

Associée a chaque symbole, terminal ou non, une valeur sémantique (attributs des grammaires attribuées) est
définie automatiquement par yacc. Le type YYSTYPE (Y'Y Semantic TYPE) par défaut de cet attribut est entier (int)
mais peut étre défini de deux fagons :

— si 'on a besoin que d’un seul type sémantique pour tous les symboles de la grammaire, il suffit de définir
YYSTYPE par une macro dans les déclarations C : #define YYSTYPE double; attention a répéter cette macro
également dans le source lex avant I'inclusion de y.tab.h sinon lex utilisera le type par défaut int.

— si l'on a besoin de plusieurs types sémantiques pour différents symboles, par exemple int et float, on utilisera
la déclaration yacc union. Par exemple,

%union {
int typeEntier;
float typeFlottant;
}

dans la section déclaration, redéfinit YYSTYPE comme suit :
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typedef union {
int typeEntier;
float typeFlottant;
} YYSTYPE;

La variable globale yylval est lattribut que yylex() peut affecter aux jetons. Ainsi, par exemple, toutes les
littéraux entiers seront associés au méme jeton LITINT mais auront une valeur sémantique yylval.typeEntier dif-
férente correspondant & leur valeur. De méme pour les littéraux flottants qui correspondront au jeton LITFLOT mais
qui différeront sur yylval.typeFlottant. La déclaration de yylval dans y.tab.h est de la forme : extern YYSTYPE
yylval;.

Actions

N’importe quelle instruction C peut apparaitre dans un bloc d’actions. De plus, yacc admet des ations spécifiques
permettant d’utiliser les attributs. L’attribut associé a la partie gauche de la régle de production courante est nommé
$$, tandis que 'attribut du niéme élément de la partie droite est nommé $n.

Exemple 23
Un exemple d’utilisation de ces attributs est I'amélioration du vérificateur de Gg en un interpréteur d’expression
booléenne :

%{ /* interlog.y =/
#include <stdio.h>

#define YYSTYPE int /* inutile */

int yylex(void); void yyerror(char *s);

hY

he

ligne : expr ’\n’ {printf ("\nRésultat : %d\n",$1);}
expr : >(? expr )’ {$$ = $2;}

| expr ’|’ expr {$$ = $1 || $3;}
| expr &’ expr {$$ = $1 && $3;3}

| ’1 expr {$$ = ! $2;}
| ’0° {$$ = 0;%
I 712 {$$ = 1;%

Yy

int yylex(void) {
int c;
while(((c=getchar())==> ) || (c==’\t’))
return c;

}

void yyerror(char *s) {
fprintf (stderr,"%s\n",s);

}

int main(void){
printf("Veuillez entrer une expression booléenne S.V.P. : ");
return yyparse();

3

Un exemple d’utilisation de cet interpréte :

0l'0&1
Résultat : 1
11&0
Résultat : 1

Le dernier résultat n’est pas cohérent en logique mais est le résultat de la non définition de priorité d’opérateur dans
notre source bison.
Actions a l’intérieur de la partie droite

Un bloc d’actions peut apparaitre au début et/ou au milieu de la partie droite de la régle. Ces actions peuvent
faire référence aux attributs associés aux symboles les précédants. Ces actions sont exécutées apres la reconnaissance
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des symboles les précédant et avant la reconnaissance des symboles suivants. Attention, un bloc d’action intermédiaire
est comptabilisé comme un autre symbole dans la numérotation des attributs $$n. En effet, un bloc intermédiaire est
lui-méme associé a un attribut $n correspondant & sa position dans la partie droite. A 'intérieur du bloc intermédiaire,
la valeur de l'attribut associé a ce bloc peut étre défini en affectant 'attribut $$. Attention, $$ référence I'attribut
de bloc et non pas I'attribut de la partie gauche de régle! Ce dernier ne peut étre défini que par une action de fin de
régle. Le type d’un bloc intermédiaire ne peut qu’étre explicitement donné lors de son utilisation par : $<typeBloc>$
ou $<typeBloc>n. Le typeBloc pouvant étre n’importe lequel des types définis par YYSTYPE. Prenons l'exemple du
langage C, dans lequel un bloc d’instructions est composé de déclarations (optionnelles) suivies d’instructions, le tout
entre accolades :

bloc: ’{’ {initPourDeclarations();} decls insts ’}’
| °{’ insts ’}’

>

Dans cet exemple, le symbole non terminal decls a un attribut référencé par $3.

Actions prédéfinies

$8$ attribut du non terminal en partie gauche de régle;

$n attribut associé au n iéme composant de la partie droite;

$<typeAutre>n permet de spécifier un autre type que le type par défaut du n iéme composant ;
YYABORT retourne immédiatement de yyparse avec un résultat 1 (erreur);
YYACCEPT retourne immédiatement de yyparse avec un résultat nul 0;
YYBACKUP (jeton, valeurAttribut) dépile un jeton de automate ...

yychar variable entiére contenant le jeton de prévision courant;

YYEMPTY valeur stockée dans yychar quand il n’existe pas de jeton de prévision;
YYERROR provoque une erreur de syntaxe immédiate ;

YYRECOVERING variable valant 1 si on est dans une récupération d’erreur, 0 sinon ;
yyclearin supprime le le jeton de prévision courant;

yyerrok force le retour de la récupération d’erreur vers I’état normal de I'analyseur syntaxique. Il faut étre sur
d’étre & un bon “endroit” du flot de jeton pour appeler cette fonction. Dans les interpréteurs ligne a ligne, un
bon endroit se situe aprés le retour ligne.

La partie déclaration

Le type YYSTYPE des attributs doit étre défini par la déclaration %union :

hunion {
int typeEntier;
float typeFlottant;
by

Les jetons nommeés doivent étre déclarés dans cette section ainsi que le type de leur attribut par une déclaration du
genre : Jtoken <typeFlottant> LITTERALFLOTTANT. Il est inutile de spécifier le code numérique du jeton, car yacc
s’en charge, ce qui évite des erreurs de conflits.

En cas de types multiples des attributs, les symboles non terminaux doivent étre tous typés par une déclaration :
htype <typeFlottant> nonterminall nonterminal2 ....

Par défaut, 'axiome de la grammaire est le premier non terminal rencontré dans la partie des régles. On peut
définir explicitement ’axiome par la déclaration : %start nonterminal.

Associativité et priorité des opérateurs

Dans la partie déclaration, on peut définir des conventions de priorité d’opérateurs et les régles définissant leur type
d’associativité. Rappelons qu’un opérateur binaire infixe * est associatif & gauche (“left”) lorsque x *y*z = (z*y) * 2z
et associatif a droite (“right”) lorsque = * y * z = = * (y * z). Lorsqu’un opérateur est associatif & gauche et a droite, il
faudra choisir I'une des deux associativités pour indiquer I'ordre d’évaluation des expressions. Si un opérateur est non
associatif, c’est-a-dire x * y * z n’est pas défini, il faudra également 'indiquer & yacc. La déclaration de ’associativité
a gauche est effectuée par : %left JETONOP1 JETONOP2 JETONOP3 ... ou JETONOPi est un jeton nommé ou non
d’opérateur. On utilise de méme %right et %nonassoc pour 'associativité a droite et la non associativité. Dans ce
dernier cas, si analyseur trouve = * y * 2z alors que * est non associatif, une erreur de syntaxe sera générée.
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La priorité des opérateurs, les uns par rapport aux autres, peut étre définie simplement par 'ordre des définitions
des associativités des opérateurs, du moins prioritaire au plus prioritaire. Enfin, une priorité différente de celle de
I’opérateur en cours de reconnaissance peut étre affectée a une partie droite de régle en ajoutant %;prec JETONVIRTUEL
a la fin de la régle. Ainsi, Popérateur obtiendra, pour cette régle la priorité (précédence) du JETONVIRTUEL qui aura
du étre déclaré.

Exemple 24

Ynonassoc ’<’ ’>’ EGAL DIFFERENT SUPEGAL INFEGAL
hleft 2+ -2

%left Ik ) / )

%right MOINSUNAIRE

%right °~?

expr :
| expr ’-’ expr {/* priorité normale du moins binaire */}
| °-’ expr Yprec MOINSUNAIRE {/* priorité spéciale du moins unaire */3}

Ce type de précédence variable pour le méme jeton lexical est nécessaire lorsqu’un opérateur est utilisé dans des
emplois différents. On peut prendre comme autre exemple 'opérateur * du C++, utilisé pour la multiplication et le
déréférencement d’un pointeur : *ptrInt * 2.

L’automate & pile choisit 'opération Shift ou Reduce en comparant la priorité de la régle courante avec celle du
jeton de prévision. Si le jeton est plus prioritaire alors un Shift est effectué, sinon un Reduce est effectué. La priorité
d’une régle est la priorité de son jeton le plus & droite. Les jetons sans priorité explicite sont considérés comme ayant
une priorité minimale.

Interface avec lex

yyparse () appelle itérativement yylex () jusqu’a ce que celui-ci retourne un jeton inférieur ou égal a 0. Les noms de
jetons nommeés peuvent étre partagés par I'intermédiaire du fichier y.tab.h qui est automatiquement généré lorsqu’on
utilise I'option -d de yacc. La valeur sémantique (attribut) d’un jeton sera passée de lex a yacc par l'intermédiaire
de la variable yylval qui est de type YYSTYPE.

Débogage

Afin de déboguer I'analyseur syntaxique, il suffit de positionner la variable yacc prédéfinie yydebug a 1 avant
I’appel & yyparse() ou pendant son exécution .

Makefile

YACC=bison
YACCFLAGS=-ydtv
#-y a la yacc : y.tab.c; -d genere y.tab.h; -t debogage possible; -v verbose
.y
@echo debut $(YACC)-compil : $<
$(YACC) $(YACCFLAGS) $<
@echo debut compil c avec edition de liens de y.tab.c
$(CC) $(CFLAGS) -o $* y.tab.c
@echo fin $(YACC)-compil de : $<
@echo Vous pouvez executer : $x*

3.3.3 Un exemple complet : une calculette

Les sources lex calc.l et yacc calc.y définissent une calculette interprétant des expressions arithmétiques dé-
cimales. Voici le source lex :

%{ /% calc.1l */

#define YYSTYPE double /* ATTENTION AUX 2 MACROS dans lex et yacc */
#include "y.tab.h" /* JETONS crees par yacc et definition de yylval */
#include <stdlib.h>/* pour double atof (char *) */

#include <stdio.h>/* pour printf */

h}

chiffre ([0-91)

entier ({chiffre}+)
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hoption noyywrap
/* pas de continuation sur un autre fichier */
he
[ \tl+ {/* filtrer les blancs */}
{entier}|{entier}\.{chiffre}*|{chiffre}*\.{entier} {
/* laisser l’accolade & la ligne precedente */
yylval=atof (yytext) ;return (LITFLOT);

}
sin { return(SIN); }
cos { return(C0S); }
exp { return(EXP); }
1n { return(LN); }
pi { return(PI); }
exit|quit { return (QUIT); }
aide|help|\? { return (HELP); }
.\n { return yytext[0]; /* indispensable ! */}
I

Voici le source yacc :

yAl /* calc.y */

#include <math.h>

int errSemantiq=0; /* vrai si erreur sémantique : */
#define DIVPARO 1 /* division par 0 */

#define LOGNEG 2 /* logarithme d’un négatif */

#define YYSTYPE double
int yylex(void) ;void yyerror (char *s);
h}
/* définition des jetons */
%token LITFLOT SIN COS EXP LN PI QUIT HELP
/* traitement des priorités */
%left Y40 I
%left I )/7 7%7
%right MOINSUNAIRE
%right °~?
o

liste : {/* chaine vide sur fin de fichier Ctrl-D */}
| liste ligne {}

ligne : ’\n”’ {/* ligne vide : expression vide */}
| error ’\n’ {yyerrok; /* aprés la fin de ligne */}
| expr ’\n’ {
if (!errSemantiq)
printf ("Résultat : %10.2f\n",$1); /* 10 car dont 2 décimales */
else if (errSemantiq==DIVPARO){
printf ("Erreur sémantique : division par O !\n");
errSemantiq=0; /* RAZ */
}
else {
printf ("Erreur sémantique : logarithme d’un négatif ou nul !\n");
errSemantiq=0; /* RAZ */
}
}
| QUIT ’\n’ {return 0; /* fin de yyparse */}
| HELP ’\n’ {
printf (" Aide de la calculette\n");
printf(" \n");
printf ("Taper une expression constituée de nombres, d’opérations,\n");
printf (" de fonctions, de constantes, de parenthéses puis taper <Entrée> \n");
printf("Ou taper une commande suivie de <Entrée>\n\n");
printf ("Syntaxe des nombres : - optionnel, suivi de chiffres, \n");
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printf (" suivi d’un . optionnel, suivi de chiffres \n");
printf ("Opérations infixes : + - * / ~ %) (modulo) \n");
printf ("Fonctions prédéfinies : sin(x) cos(x) exp(x) 1ln(x)\n");
printf("Constantes prédéfinies : pi\n");
printf ("Commandes : exit ou quit pour quitter la calculette\n");
printf (" aide ou help ou \? pour afficher cette aide\n");
}

> (7 expr )’ {3% = $2;}
| expr ’+’ expr {$$ = $1 + $3;2
| expr ’-’ expr {$$ = $1 - $3;}
| expr ’*’ expr {$$ = $1 * $3;3}
| expr ’/’ expr {

if ($3!=0)
$$ = 31 / $3;
else
errSemantiq=DIVPARO; /* par défaut $$=$1 */

}
| expr ’~? expr {$$ = pow($1,$3);2}
| expr ’%’ expr {

if ($3!'=0) $$ = fmod($1,$3);

else errSemantiq=DIVPARO; /* par défaut $$=%1 */
}
| ’_7 expr %prec MOINSUNAIRE {$% = - $2;3
| SIN *>(’ expr ’)’{$$ = sin ( M_PI/180%$3 );}
| C0S *(’ expr ’)’{$$ = cos ( M_PI/180%$3 );}
I EXP >(° expr ’)’{$$ = exp($3);}
| LN (> expr ’)’ {

if ($3>0) $3% = log($3);

else errSemantiq=LOGNEG; /* $$=$1 ... =*/
}
| PI {$$ = M_PI;}
| LITFLOT {$$ = $1;}

B

void yyerror(char *s) {fprintf(stderr,"’%s\n",s);}
int main(void){yydebug=0; return yyparse();}

3.3.4 Bison (version 2.3) et analyseur C++

On peut utiliser le langage C++ dans bison, dans la partie action. On obtient alors un analyseur écrit en C et

Ctt

: yyparse () est une fonction C, et les actions peuvent utiliser des classes ...

Une autre approche consiste a concevoir un analyseur syntaxique totalement C-++ : il est alors nécessaire d’effectuer
un nombre assez important de modifications!

Il faut utiliser un squelette (“skeleton”) de parseur C++ nommé /usr/share/bison/lalrl.cc :

— soit en utilisant I'option bison -skeleton=lalril.cc;

— soit en utilisant la directive %skeleton "lalril.cc"
Grace a ce squelette, bison va créer différents objets :

1.
2.
3.

4.
d.

un espace de nom yy dans lequel vont apparaitre :

la classe parser qui contient la méthode int parse() ;

dans cette classe, le type semantic_type qui est 'union des types sémantiques possibles. Attention, une union
ne peut contenir de classe (string, map, ...) : il faut donc y mettre un pointeur sur classe et utiliser I’allocation
dynamique (new);

dans cette classe, le type token: :token_type qui est une énumération des jetons nommés (257, 258, ...);
dans cette classe, le type location_type qui permet de localiser les erreurs;

Attention & la déclaration indispensable de la fonction yylex qui doit se situer aprés la définition %union. Aprés
exécution de bison sur le source, on obtient les fichiers suivants :

— location.hh et position.hh définissent des classes de position dans le fichier;

— stack.hh définit la pile de I'automate;

— y.tab.h et y.tab.c définissent I’espace de nom et la classe parser; Il est utile d’observer le fichier y.tab.h!

Voici un exemple minimal d’un analyseur en C++ nommé parserminiC++.y :
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Exemple 25

/3t

#include <iostream>
using namespace std;

h}

%skeleton "lalrl.cc"
%union{
int 1i;

}

%{ /* A DECLARER ABSOLUMENT APRES L’UNION */

yy::parser: :token_type yylex (yy::parser::semantic_type* pyylval);
h}
%token <i> CHAR

hhh
s : CHAR ’\n’ {cout<<endl<<"Vous avez tapé le char : "<<$1<<endl;}

hhh

yy::parser: :token_type yylex (yy::parser::semantic_type* pyylval){
pyylval->i=getchar();
if (pyylval->i==>\n’){ /* \n */
return yy::parser: :token_type(’\n’);

b
if (pyylval->i==-1){ /* EOF == -1 pour getchar()*/
return yy::parser::token_type(0); /* EOF==0 pour flex ! */
}
else return yy::parser::token::CHAR; // un peu long ...
b
void yy::parser::error(yy::location const& loc, std::string const& s){
cout<<endl<<s<<endl;
by

int main(){
yy::parser* pparser=new yy::parser(); /* instance */
int i= pparser->parse(); /* lancer 1’analyse */
if (i==0){
cout<<"Syntaxe correcte"<<endl;
} else {
cout<<"Syntaxe incorrecte'<<endl;
}

return i;
}

Aprés compilation : bison -ydtv parserminiC++.y puis g++ -o mini y.tab.c, on obtient I'exécutable mini dont
I'utilisation suit :

>mini
a

Vous avez tapé le char : 97
Syntaxe correcte

>mini

bb

syntax error
Syntaxe incorrecte

Pour plus de détails, notamment pour 'utilisation de flex, nous allons étudier un second exemple permettant de
maintenir une table de variables entiéres. Ces variables seront affectées grace a un interpréteur et seront mémorisées
dans une map C++. Suit un exemple de fonctionnement de l'interpréte :
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Exemple 26
>affect

b=5

a=8

b=3

set

a-->38

b -->3

a=0

set

a -->0

b -->3
quit
Syntaxe correcte

Voici le source bison affect.y+ :

hi

#include <iostream>

#include <string>

#include <map>

using namespace std;

/* redéfinition du prototype de la fonction yylex qui devra &tre déclarée dans
le source flex et dans le source bison */

#define YY_DECL yy::parser::token_type yylex (yy::parser::semantic_typex* pyylval)

h}

%skeleton "lalril.cc"
%union{

int i;

string *ps;

3

W
/* A DECLARER ABSOLUMENT APRES L’UNION (ne sera pas dans le y.tab.h)x*/
YY_DECL;
/* tableau des affectations */
map <string, int>* tvar=new map<string, int>();
Y
%token END 0 "end of file"
%token SET QUIT
%token <ps> ID
%token <i> VALEUR
YA
liste : { /* epsilon */}
| liste ligne {}
ligne : SET ’\n’ {
map <string, int>::iterator j = tvar->begin(); // attribut de liste !
while (j != tvar->end()){

cout << j->first<<" --> "<<j->second << endl;
++j;
}
}
| ID ’=> VALEUR °’\n’ {(*tvar) [*$1]=$3;}
| >\n> {}
| QUIT ’\n’ {return 0;}
YA

void yy::parser::error(yy::location const& loc, std::string const& s){
cout<<endl<<s<<endl;
X

int main(){
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yy::parserx pparser=new yy::parser(); /* instance */
/* pparser->set_debug_level(l); /* ancien YYDEBUG=1; */
int i= pparser->parse(); /* lancer 1’analyse */
if (i==0){
cout<<"Syntaxe correcte"<<endl;
} else {
cout<<"Syntaxe incorrecte'<<endl;

}

return i;

Et voici le source flex affect.l+ :

W
#include "y.tab.h"
// déclaration de yylex
YY_DECL;
// pour éviter de retourner 0 a la fin (0 n’est pas un token) ! pas de ;
#define yyterminate() return yy::parser::token::END
hY
/* evite la definition de yywrap() */
%koption noyywrap
YA
set {return yy::parser::token::SET;}
quit  {return yy::parser::token::QUIT;}
[ \tl+ {/* filtrer*/}
[a-zA-Z] [a-zA-Z0-9]* {pyylval->ps=new string(yytext);return yy::parser::token::ID;}
[0-9]1+ {pyylval->i=atoi(yytext);return yy::parser::token::VALEUR;}
.I\n {return yy::parser::token_type(yytext[0]);}
YA
Enfin 'entrée de makefile :

affect : affect.l+ affect.y+
bison -ydtv affect.y+
flex affect.l+
g++ -o affect y.tab.c lex.yy.c

Il resterait beaucoup a dire sur I'utilisation de C++ (localisation, renommages, ...). Pour aller plus loin, voir le
manuel bison.

3.4 Analyse ascendante par automate a pile

Nous allons étudier 'analyse ascendante et plus particuliérement I'analyse LALR utilisée dans yacc. Rappelons
que, partant d’'un mot (flot de jetons), on essaie de construire ’arbre de dérivation associé. Cette construction va se
faire depuis les feuilles (jetons) en remontant jusqu’a la racine (Paxiome). De plus, on va construire une dérivation
droite (Rightmost) et a Penvers! Les grammaires pouvant étre analysées par un analyseur LR doivent, bien entendu,
avoir certaines propriétés comme la non ambiguité.

Prenons un exemple simple pour illustrer le fonctionnement de I’automate a pile.

Exemple 27
Soit la grammaire G = ({1,2,3,+},{E}, R, E) avec les régles de R suivantes :

E—1]2B3E+E

Considérons le mot d’entrée 1+2+3%. L’analyse du mot commence sur le 1 (Left to right scanning). Aprés avoir empilé
(Shift) ce symbole, la régle E — 1 est appliquée et on empile E. Arrivé sur le 4+, 'analyseur empile ce symbole car il ne
peut pas appliquer de régle. Le 2 est ensuite reconnu comme partie droite de E' — 2. On empile donc E et on s’apercoit
qu’on peut alors réduire (Reduce) le mot sur la pile (E+E) en appliquant la régle E — FE + E. La pile ne contient
donc plus que E. En continuant le méme procédé, on reconnait les productions E — 3 puis E — E + F. On a donc la
dérivation droite, obtenue a 'envers : E :1>E_,E+E F+F :1>E_)3 EF+3 :1>E_>E+E E+FE+3 :1>E_>2 E+2+3 :1>E_,1.

Remarquons que cette grammaire est ambigué et qu’on a décrit un analyseur déterministe qui choisit d’évaluer
142 en premier et non pas 2+3. Cet analyseur choisit I’action Reduce sur un conflit Shift/Reduce. Yacc, au contraire,
privilégie toujours le Shift sur le Reduce, ce qui Iui permet d’associer naturellement le else au if le plus proche!
Mais ceci entraine I'évaluation des opérateurs de droite a gauche si aucune priorité n’est définie!
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3.4.1 Fonctionnement de 'automate & pile en analyse ascendante LR

Définition 4 Un manche d’un mot (pas forcément terminal) m = af~y est un couple constitué :
— d’une production X — 3,
— d’une position p dans m telle que m[p,p+ |B|[= 5 ;

ayant la propriété suivante : S =4 a X~y :1>d m = afy.

Dans ’exemple précédent, le mot 14243 ne posséde qu'un manche (F — 1,1). En effet, ni (E — 3,5), ni
(E — 2,3) est un manche car ni 1+2+E, ni 1+E+3 ne dérive de E par une dérivation droite. Par contre, E+E+3
posséde deux manches : (E — E + E,1) et (E — 3,5). On peut donc choisir entre les deux réductions possibles. Dans
I'exemple [27] nous avions choisi de réduire sur la position la plus a gauche de fagon a réduire dés qu'un manche est
situé sur la pile. On aurait pu empiler + puis E au dessus de E+E puis réduire par deux fois E+E en E. Nous avions
choisi de privilégier la réduction (Reduce) sur le décalage (Shift) dans ce conflit Shift/Reduce.

Malheureusement, I'identification du manche n’est pas toujours aussi simple que dans exemple 27] Il peut exister
d’autres types de conflits Reduce/Reduce lorsque deux manches sont réductibles. Pour limiter ces conflits d’action, la
table d’analyse ainsi que la pile vont utiliser des états entiers correspondant & la configuration courante, c’est-a-dire &
ce qui a été reconnu jusqu’alors.

Définition 5 La pile d’un analyseur LR est une structure Dernier Entré Premier Sorti (LIFO) de couples (s,e) ou
s € VU{S} est un symbole et e € N est un état entier. L’état courant de Uanalyseur est I’état situé au sommet de la
pile.

Définition 6 La table d’analyse d’un analyseur LR est constitué d’une partie Action et d’une partie Successeur.
— La table d’action est un tableau & deux entrées : les différents états sur les lignes, les terminauz et § sur les
colonnes. On note une case de cette table par Actionle,x]. Une action d’un analyseur LR peut étre :

— Décaler (Shift) le symbole courant du flot d’entrée sur la pile (empiler) avec un état e. Cette action est
notée : Se.

— Réduire (Reduce) par une production X — «. Cela consiste a dépiler o (a l’envers) de la pile et a le remplacer
par X et [’état correspondant dans la table Successeur, c’est & dire Successeur[sommet(Pile)[2], X]. Cette
action est notée : R(X — a).

— Accepter le mot d’entrée et terminer ’analyse. Cette action est notée : Accepter.

— Générer un message d’erreur de syntaze et terminer l'analyse. Cette action n’est pas notée explicitement :
toutes les cases vides de la table Action représentent des actions Erreur.

— La table des successeurs est un tableau & deux entrées : les différents états sur les lignes, les non terminaux sur
les colonnes. On note une case de cette table par Successeur|e, X|. Cette table ne sert qu’a indiquer le nouvel
état courant apres une réduction. La aussi, toutes les cases vides de la table Successeur représentent des erreurs.

Avant de voir les algorithmes de construction de ces tables, regardons le fonctionnement de I'analyseur. L’analyse
d’un mot du flot d’entrée est décrit dans ’algorithme

Algorithme 16 : Fonctionnement de 'automate

Données : Une table d’analyse Action[Etat, Vp U {$}], Successeur|Etat, V], un flot de jetons terminé par $
Reésultat : Erreur ou Succeés

Pile=construirePileVide() // contenu : (symbole, état)

empiler(Pile,($,0)) // initialisation
jeton=lireFlot() // jeton courant du flot
tant que vra: faire

etatCourant=sommet(Pile)[2] // projection sur l’état
L exécuter Action[etatCourant, jeton] // Shift, Reduce, Erreur ou Accepter

Pour illustrer le fonctionnement de ’algorithme prenons un exemple simple d’une grammaire de Dyck & un
couple de parenthéses.

Exemple 28
Soit la grammaire G4 = ({a,b},{S}, R, S) avec les régles de R suivantes :

S — SaSb|e

Le calcul des tables de cette grammaire fournit le résultat suivant :
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Action Successeur
a b $ S

0 R(S —¢€) R(S —¢) R(S —¢) 1

1 S2 Accepter

2 R(S —¢) R(S —¢) R(S —¢) 3

3 S2 S4

4| R(S — SaSb) | R(S — SaSh) | R(S — SaSb)

Examinons ’analyse du mot abaababb$ :

Pile Flot d’entrée Action
$0 abaababb$ | R(S —¢)
$0S1 abaababb$ S2
$0S1a2 baababb$ | R(S —¢)
$0S1a2S3 baababb$ S4
$0S1a253b4 aababb$ | R(S — SaSb)
$0S1 aababb$ 52
$0S1a2 ababb$ | R(S —¢)
$0S1a253 ababb$ S2
$0S1a253a2 babb$ R(S —¢€)
$0S1a253a2S3 babb$ S4
$0S1a253a253b4 abb$ | R(S — SaSbh)
$0S1a253 abb$ S2
$0S1a253a2 bb$ R(S —¢€)
$0S1a253a2S3 bb$ S4
$0S1a253a253b4 b$ | R(S — SaSbh)
$0S1a253 b$ S4
$0S1a253b4 $ | R(S — SaSh)
$0S1 $ Accepter

Ce qui donne la dérivation droite suivante : S 2 SaSbh = SaSaShh = SaSabb = SaSaSbabb = SaSababb =
Saababb = SaSbaababb = Sabaababb = abaababb

3.4.2 Algorithmique

Nous allons décrire comment calculer les tables d’analyses pour des grammaires LR(1), c’est-a-dire avec un sym-
bole de prévision. Il existe plusieurs méthodes de construction dépendant de la complexité de la grammaire et de
Pefficacité de 'analyseur, notamment en ce qui concerne la taille des tables. La méthode SLR, “Simple LR”, permet de
construire trés efficacement des tables d’analyse assez petites. Malheureusement, certaines constructions syntaxiques,
peu nombreuses dans les langages de programmation, ne peuvent étre gérées par cette méthode. D’autres méthodes
existent, dont la méthode LALR de yacc, résolvant certains problémes de SLR au prix d’une taille plus importante
des tables. Enfin, il existe une méthode dite canonique qui assure la reconnaissance de toute grammaire LR(1) mais a
un cout prohibitif.

Nous nous contenterons ici de décrire la méthode SLR en conseillant le livre [I] pour ceux qui souhaiteraient en
savoir plus.

Construction de la collection canonique SLR

Définition 7 Un item LR(0), ou SLR, ou plus simplement item, d’une grammaire G = (Vp,Vy, R, S) est un couple
constitué d’une production de R et d’une position dans la partie droite de celle-ci. La position est représentée par un
point .’ dans la parte droite.

Soit la grammaire Gq = ({a,b},{S}, R = {S — SaSb|e}, S). L’ensemble des items de G est Items(G) = {S —
.SaSh, S — S.aSh,S — Sa.Sbh,S — SaS.b,S — SaSbh.,S — e.}. Un item représente ce qui a déja été reconnu (a
gauche du point) lors de I’analyse, et ce qu’il reste a reconnaitre (& droite du point) avant de pouvoir réduire. Avant
de construire les tables Action et Successeur, il faut calculer un automate fini déterministe (ou collection canonique),
c’est a dire un ensemble d’états reliés par des transitions. Chaque état représente un ensemble d’items correspondant
a une situation d’analyse. Ces états sont les états de 'analyseur LR.

Définition 8 Une grammaire augmentée G’ d’une grammaire G = (Vp,Vn, R, S) est obtenue par ajout d’un nouvel
aziome S’ et d’une production 8" — S : G' = (Vr,Vy U{S’'}, RU{S" — S},5")
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L’ajout de ce “super-axiome” est motivé par ’'obtention d’un état initial de ’AFD qui soit une source : on ne peut
revenir sur cet état initial. La construction de 'AFD utilise une fonction Fermeture() qui regroupe tous les items
auxquels on peut s’attendre dans un état donné. La fonction Fermeture() est décrite dans l’algorithme

Algorithme 17 : Fermeture d’un ensemble d’items

Données : Un ensemble I d’items d’une grammaire augmentée G = (Vp, Vy, R, S)
Résultat : Un ensemble d’items
Fermeture(I)=1 // initialisation
pour chaque item non marqué j = a.X 8 € Fermeture(I) tel que X € Vi faire
marquer j // on ne traite un item qu’une seule fois
pour chaque production X — v € R faire
| Fermeture(I) = Fermeture(I) U{X — v}

retourner Fermeture(I)

Le principe de ’algorithme [17] tient en ce que lorsqu’on s’attend & reconnaitre un non terminal X, il faut également
s’attendre & reconnaitre toute partie droite de production dont X est la partie gauche.

Exemple 29

Soit la grammaire de Dyck augmentée : G' = ({a,b},{S,5'},{S — SaSble, S’ — S},5"). Calculons les fermetures
des ensembles d’items {S’ — .S} et {S — Sa.Sb}. Fermeture({S’ — .S}) = {S" — .5,5 — .5aSb,S — €.} et
Fermeture({S — Sa.Sb}) = {S — Sa.5b,S — .5a5bh, S — ¢.}.

Pour construire PAFD des états de l'analyseur, également appelée collection canonique des ensembles d’items
LR(0), il faut examiner toutes les transitions possibles d’un état (ensemble d’items) vers un autre par le déplacement
du “.” d’une position vers la droite. L’algorithme [18| décrit cette construction.

Algorithme 18 : Construction de I’AFD

Données : Une grammaire augmentée G = (Vp, Vy, R, S")
Résultat : Un AFD B = (V,E,D, A, T) ou collection canonique
V=VrUVy — {5} // les symboles de transition sont les symboles de la grammaire non augmentée
E = {Fermeture({S’ — .S})} // initialisation de l’ensemble des états
D = E // unique état initial
répéter
choisir un état non marqué I € E // un état est un ensemble d’items
marquer I // on ne traite un état I qu’une seule fois
pour chaque x € V tel qu’il existe au moins un' Y — a.xf € I faire
transition(I,z) = Fermeture({Y — ax.8}) // calcul de Uétat suivant aprés reconnaissance de x
E = E Utransition(I,x) // ajout possible d’un nouvel état
T =T U{(I,z, transition(I,z))} // ajout d’une nouvelle transition

jusqu’a ce que tous les états de E soient marqués;

Remarquons que ’algorithme [18| ne calcule pas d’états d’arrivée de I'automate. En effet, cet automate ne permet
pas de reconnaitre un mot du langage analysé mais sert uniquement & décrire les transitions entre états. Chaque chemin
dans ’AFD correspond a un préfixe d’'un mot dérivant de 'axiome. Ces préfixes, aussi appelé préfixes viables, sont
constitués de terminaux et de non terminaux. Ils représentent le contenu possible de la pile de 'automate & un
instant donné.

Exemple 30

Soit la grammaire de Dyck augmentée : G' = ({a,b},{S,S5'},{S — SaSble, S’ — S},S"). Calculons 'automate corres-
pondant : Iy = Fermeture({S’ — .S}) = {5 — .5,5 = .5a5b,S — ¢.}
I, = Fermeture({S’ — .5,S — .SaSb}) = {8’ — 5., 5 — S.aSb}

T ={(lo, S, 1)}

I, = Fermeture({S — Sa.Sb}) = {S — Sa.5b,S — .5aSb,S — .}
T+ = {(IO7 S7 Il)? (Il7 a, -[2)}

I3 = Fermeture({S — SaS.h,S — S.aSb}) = {S — SaS.b,S — S.aSb}
T+ = {(IOa Sa Il)7 (Il7 a, [2)7 (IQa Sa 13)}

I, = Fermeture({S — SaSb.}) = {S — SaSbh.}

I, = Fermeture({S — Sa.Sb}) = {S — Sa.5b,S — .SaSb,S — .}
T+ = {(I()7 S7 Il)v (Ily a, I2)7 (121 Sa -[3)7 (137 ba I4)v (133 a, 12)7 }
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Dans cet exemple, les préfixes viables sont : €,5, Sa, SaS, SaSb, SaSaSh,...,SaS(aS)"b. La question que 'on se
pose est de savoir quand un préfixe situé en pile doit étre réduit. Définissons la notion d’item valide pour un préfixe
viable.

Définition 9 Un item X — [1.P2 est valide pour un préfive afSy d’un mot dérivant de l'axiome si et seulement s’il
existe une dérivation droite : S' =4 aXm :1>d afBifam avec m € V', X € V,aB12 € V*.

Remarquons que dans le cas ou l'item X — ;. est valide pour le préfixe a1, alors on a un manche qu’il faut
réduire. Dans le cas ou l'item X — [31.32 est valide et que S n’est pas vide, il faut décaler. La question est maintenant
de savoir quand un item est valide pour un préfixe donné.

Théoréme 13 L’ensemble des items valides pour le préfize viable a8y est I’ensemble des items atteint par un parcours
de AFD depuis ’état initial, le long du chemin étiqueté par af.

Ainsi, Pautomate construit permet de répondre facilement a la question précédente.

Exemple 31
Soit le préfixe viable SaS, les deux items valides sont S — SaS.b et S — S.aSb. On a donc les deux types de dérivations

droites possibles : S = SaSh ou bien S = SaSh = SaSaSh = SaSa... Remarquons que le symbole d’entrée suivant
(a ou b) permettra de choisir I’état suivant qui correspondra soit a une réduction par S — SaSb ou bien par S — ¢.

Construction des tables d’analyse SLR

On peut maintenant écrire 'algorithme [19] de construction de la table Action d’analyse SLR.

Algorithme 19 : Construction de la table Action en analyse SLR
Données : Une grammaire augmentée G = (Vp, Vy, R, S"), un AFD B = (V,E, D, A, T) ou collection
canonique
Résultat : La table d’analyse Action[E,Vy U {$}]
pour chaque état I; € E faire
pour chaque item i € I; faire
suivant [’item i faire
cas ou i =S — S. faire
| ajouter “Accepter” a Action|I;, $]

cas ou i = X — a.af avec a € Vp et (I;,a,I;) € T faire
| ajouter Shift I} a Action[l}, a]
casouni=X - a. eti#S5 — S. faire
pour chaque z € TabSuivants[X] faire
| ajouter Reduce(X — ) a Action|[I;, x]

cas ou autres faire
L ne rien faire

pour chaque case vide Action[l;, z] faire
| écrire “Erreur” dans Action[l}, x]

Remarquons qu’une seule action Accepter existe qui correspond a la réduction S’ — S de la grammaire aug-
mentée. Une case de la table Action peut contenir plusieurs actions! On peut obtenir des conflits Shift/Reduce ou
Reduce/Reduce. Dans ce cas, la grammaire n’est pas SLR et il sera nécessaire d’utiliser un algorithme de construction
de table plus complexe.

Exemple 32
Pour appliquer I'algorithme |19 sur la grammaire de Dyck augmentée G’ = ({a,b},{S, 5"}, {S — SaSble, S’ — S}, 5),
il nous faut calculer les suivants de S : TabSuivants[S] = {a,b,$}. On obtient alors la table suivante :

Action
a b $
0 R(S —¢) R(S —¢) R(S —¢)
1 S2 Erreur Accepter
2 R(S —¢) R(S —¢) R(S —¢)
3 S2 S4 Erreur
4| R(S — SaSb) | R(S — SaSbh) | R(S — SaSb)
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Algorithme 20 : Construction de la table Successeur en analyse SLR
Données : Une grammaire augmentée G = (Vr, Vi, R, S’), un AFD B = (V,E,D, A, T) ou collection
canonique
Résultat : La table d’analyse Successeur[E, Vy]
pour chaque transition (I;, X, I;) € T tel que X € Vy faire
| Successeur([l;, X] = Ij
pour chaque case vide Successeur|I;, X] faire
| écrire “Erreur” dans Successeur(l;, X]

On peut maintenant écrire 'algorithme [20| de construction de la table Successeur SLR.
Remarquons qu’il ne peut y avoir de conflit car 'automate est déterministe. La table Successeur permet de déter-
miner I’état courant aprés une réduction en fonction de I’état sous-jacent dans la pile.

Exemple 33
L’algorithme|20| sur la grammaire de Dyck augmentée G’ = ({a,b},{S, 5}, {S — SaSb|e, S’ — S}, 5’) fournit la table

suivante :

Successeur
S
1
Erreur
3
Erreur
Erreur

QN =D

Efficacité

Théoréme 14 Une grammaire est LR(0) ou SLR si et seulement si sa table Action ne contient aucun conflit.

Théoréme 15 Un langage est LR(0) ou SLR si et seulement s’il existe une grammaire SLR le générant.

Différentes grammaires SLR existant pour un méme langage, on peut se préoccuper de la “meilleure” en terme d’effi-
cacité. Par exemple, nous avons souvent considérée la grammaire augmentée de Dyck suivante : G4 = ({a, b}, {5, 5}, {S —
SaSble, 8" — S},5"). 1l existe une autre grammaire SLR engendrant le méme langage : G4 = ({a,b},{S,5'},{S —
aSbhS|e, 8" — S},9).

Exercice 5 Construire les tables d’analyse SLR de G4. Examiner le fonctionnement de l’analyseur sur le mot
abaababb$.

Aprés construction des tables SLR de cette seconde grammaire, on s’apercoit qu’elles possédent un état de plus, mais
surtout que la reconnaissance d’un mot nécessite une pile beaucoup plus importante. En effet, la premiére réduction
par S — aSbS ne peut avoir lieu que trés tard par rapport a '’analyseur de la grammaire G,. La raison principale de
cette inefficacité tient en ce que G4 est récursive a droite. Par conséquent, on préférera toujours, quand on a le choix,
utiliser des grammaires récursives a gauche en analyse ascendante.

3.5 Les conflits et leur résolution par yacc

Des grammaires extrémement simples et non ambigués peuvent étre non SLR. Par exemple, la grammaire aug-
mentée G = ({a,b,c}, {5, S, A, B}, {S" = S,S — Aaa|Bablaac, A — a,B — a},S) est non SLR. Pour le montrer,
commengons & construire 'AFD :

Iy = Fermeture({S’ — .S}) ={5" — .5,5 — .Aaa,S — .Bab, S — .aac, A — .a,B — .a}
I, = Fermeture({S — a.ac,A — a.,B — a.}) ={S = a.ac,A = a.,B = a.}

I, = Fermeture({S — aa.c}) = {S — aa.c}

T = {(Io7a, Il), .. }

TabSuivants[A] = TabSuivants[B] = {a}

Nous pouvons maintenant construire un morceau de la table Action :

Action
a
0 S1
R(A = a),R(B — a),S2

—_
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Quel que soit le mot d’entrée, il commence par aa. La lecture du premier a produit un décalage, puis il existe trois
actions possibles : deux réductions différentes et un décalage! En fait, dans ce cas il faudrait examiner la troisiéme
lettre pour choisir la bonne réduction ou le décalage. Cette grammaire n’est pas LR(1) mais LR(2), par conséquent la
méthode SLR ne peut rien (pas plus qu’aucune autre méthode LR(1)).

D’autres méthodes existent pour les grammaires LR(1). En particulier, la méthode LALR de yacc, ou bison,
qui construit automatiquement les tables d’analyse. L’option -v de bison permet notamment de visualiser les tables
d’analyse utilisées. Voici, par exemple, le fichier .output obtenu avec la grammaire G, = ({a,b},{S,5},{S —
SaSble, 8" — S},.9).

state 0O
$default reduce using rule 2 (S)
S go to state 1
state 1
S -> S . ’a’ s ’v’ (rule 1)
$ go to state 5
’a’ shift, and go to state 2
state 2

S -> 8 ’a’> . S ’b’ (rule 1)
$default reduce using rule 2 (S)
S go to state 3

state 3
S -> 8. %’ S ’b’ (rule 1)
S -> 8 ’a’>s . b’ (rule 1)

’a’ shift, and go to state 2
’b? shift, and go to state 4
state 4
S -> 8 ’a’ s ’b’ . (rule 1)
$default reduce using rule 1 (S)
state 5
$ go to state 6
state 6

$default accept

On retrouve, a quelques détails prés, les tables Action et Successeur obtenus dans les exemples [32] et

Conflit Shift/Reduce

Que fait yacc lorsqu’il rencontre des conflits ? Sur conflit Shift/Reduce, yacc avantage toujours ’action Shift.
L’une des raisons historiques de ce choix concerne les “si alors sinon” imbriqués. Soit la grammaire suivante :

GF = ({7’7 ta €, a, b}a {S7 E}a Rv S)
avec les régles de R suivantes :

S — iEtS|iEtSeS|a
E — b

La compilation yacc fournit un analyseur privilégiant le décalage du “else” plutdt que la réduction du iEtS empilé.
Voici la partie descriptive fournie par yacc -v :

state 6
S -> i’ E ’t> S . (rule 1)
S -> i’ E’t’> S . ’e’> S (rule 2)

’e? shift, and go to state 7
’e? [reduce using rule 1 (S)]
$default reduce using rule 1 (S)

Les crochets encadrant “reduce using rule 1”7 indique que cette action n’est pas prise en compte par I’analyseur.

Conflit Reduce/Reduce

Dans un conflit Reduce/Reduce yacc choisit d’utiliser la premiére régle dans 'ordre de description de la grammaire
du source yacc. Il est extrémement périlleux d’utiliser cette caractéristique dans un analyseur car ’ordre des régles de
production dans le source yacc peut souvent varier dans la phase de conception du langage.
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Conflits multiples

Un autre exemple de gestion des conflits dans yacc consiste a voir les tables obtenues pour la grammaire non LR(1)
G = ({a,b,c}, {5, S, A, B}{S — S,S — Aaa|Bablaac, A — a, B — a}, S).

state 1
S -> a’ . ’a’> ’¢’ (rule 3)
A > a’ ., (rule 4)
B -> ’a’ . (rule 5)
’a’ shift, and go to state 4
’a’ [reduce using rule 4 (A)]
’a’ [reduce using rule 5 (B)]
state 4
S -> a’ ’a’ . ’¢’ (rule 3)
’c? shift, and go to state 7

L’action Shift a bien été privilégiée par rapport aux deux reduce possibles. Yacc parvient donc a fournir un analyseur
pour nombre de grammaires mais attention, cet analyseur ne reconnait que le mot aac, ce qui n’est pas correct vis
a vis de la grammaire (ni aab, ni aaa ne sont reconnus). Pour finir, remarquons que toutes les grammaires LR(1),
c’est-a-dire nécessitant un seul jeton de prévision, ne sont pas analysable avec la méthode LALR.

Exercice 6 Soit la grammaire d’expression G = ({a,—,/,(,)},{E}, {E — a|(E)|E—E|E/E}, F) dans laquelle a peut
étre considéré comme un littéral entier.

Dessiner la collection canonique de G;
Indiquer les suivants de E.
Construire la table d’analyse SLR de G

Indiquer les conflits obtenus et la maniére dont bison les résoud;

A

Donner les régles de priorité et d’associativité afin d’obtenir un automate a pile correct (division prioritaire par
rapport a la soustraction et toutes deux associatives a gauche).

6. Indiquer les modifications de la table.

3.6 Algorithmes de fermeture transitive

L’algorithme [14] & la page [28] utilise le principe de fermeture transitive qui consiste & accumuler des symboles dans
un tableau T'abSuivants. 11 nécessite I'utilisation de 'algorithme [13| premiers a la page Or ce dernier est récursif,
ce qui ne posait pas probléme en analyse descendante mais qui est rédhibitoire en analyse ascendante qui supporte les
grammaires récursives a gauche (et méme qui les encourage).

I1 est donc nécessaire de fournir un nouvel algorithme non récursif afin de calculer premiers(«). Ce dernier utilisera
le principe de fermeture transitive en accumulant des symboles dans un tableau TabPremiers.

On commence par définir deux fonctions utilitaires, algorithmes [21] et permettant d’ajouter des symboles dans
un ensemble et qui retournent vrai si ’ensemble a été modifié par cet ajout (au moins un des éléments ajoutés est
nouveau).

Algorithme 21 : ajouter(E : ensemble, e : symbole)

Données : E un ensemble de symboles

Données : e un symbole

Résultat : E 'ensemble éventuellement modifié
Résultat : un booléen a vrai si I’ensemble a été modifié

si e € I alors
| retourner faux
sinon
E=FEU{e} // ajout

retourner vrai

Le nouvel algorithme [23] calcule I’ensemble des symboles premiers pour chaque symbole de la grammaire dans un
tableau T'abPremiers[V].

Le nouvel algorithme [24] calcule ’ensemble des symboles premiers pour tout mot o de V* en utilisant le tableau
fourni précédemment.
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Algorithme 22 : ajouter(E : ensemble, A : ensemble)

Données : E un ensemble de symboles
Données : A un ensemble de symboles
Résultat : E 'ensemble éventuellement modifié
Résultat : un booléen & vrai si I’ensemble a été modifié
si A C F alors

| retourner faux
sinon

E=FUA // ajout

retourner vrai

Algorithme 23 : nPremiers(G)

Données : G = (Vp, Vy = {X1, Xs, ..., X, }, R, X1), une grammaire éventuellement récursive a gauche
Résultat : un tableau TabPremiers[V = Vp U Vy] d’ensembles de terminaux ou &
Va € Vp, TabPremiers[a] = {a}
VX, € Vi, TabPremiers[X;] = {}
répéter
changement=faux // booléen testant la stabilité des ensembles
pour chaque production de R, X — dids . ..dy telle que d; € V faire
sik=0 (X — ¢) alors
| changement—=changement ou ajouter(TabPremiers|X|,e) // ajouter e

sinon
changement—changement ou ajouter(TabPremiers|X],TabPremiers|d;]-{e})

i=1
tant que i < k et d; est effacable faire

1=1+1
L changement=changement ou ajouter(TabPremiers|X],TabPremiers|d;]-{¢})

sii =k et d; est effacable alors
| changement=changement ou ajouter(TabPremiers[X],e) // tous les d; effagables

jusqu’a non changement;

Algorithme 24 : npremiers(G, «)

Données : « =Y 1Ys5... Y, avec Y; € V
Données : une grammaire éventuellement récursive a gauche G = (Vp, Vi, R, S)
Résultat : Resultat C Vp U{e} un ensemble de symboles
si a = ¢ alors
| retourner {¢}

sinon
Resultat = TabPremiers|[Yi] — {e}
i=1
tant que i < k et € € TabPremiers[Y;] faire
1=1+1

Resultat = Resultat U (TabPremiers[Y;] — {e}) // non réc. gauche

sii =k et e € TabPremiers[Y;] alors
| Resultat = Resultat U{e} // tous les Y; s’effacent

retourner Resultat
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Chapitre 4

Analyse sémantique

Dans ce chapitre, nous allons étudier une certain nombre de techniques concernant la gestion des tables des
symboles, la traduction dirigée par la syntaxe, le controle de type, .... Nous supposerons & chaque fois que nous
utilisons yacc pour l'analyse syntaxique. Il existe d’autres techniques, notamment liées & ’analyse descendante, mais

nous ne les aborderons pas ici et nous conseillons 'ouvrage [I] pour leur étude.

4.1 Table des symboles

4.1.1 Généralités

L’analyseur lexical est le premier & introduire des informations dans la table des symboles. Chaque identificateur,
de variable, de paramétre, de constante, de fonction, de procédure, de méthode, d’étiquette de branchement, de
classe, doit étre enregistré puis, lors de ’analyse syntaxique et sémantique, des informations lui seront attachées. Ces
informations concernent généralement le type, la portée, la valeur, .... De plus, dans les langages structurés en blocs
ou en fonctions, un méme identificateur peut étre utilisé dans différentes portées ou dans la méme portée pour désigner
des objets différents.

Par exemple, en C++, on peut avoir :

{int i; // i dans le bloc englobant est un int
{char i=’a’; // i dans le bloc imbriqué est un char
i(i); // i est également une fonction
}

}

Dans les langages structurés en blocs, le plus simple est d’associer une table des symboles & chaque bloc. Lorsque
le méme identificateur désigne différents objets, il sera nécessaire de construire une entrée différente pour chacun de
ces objets afin de pouvoir les renseigner. L’identifiant d’une entrée de la table des symboles deviendra donc 'agrégat
du nom de l'objet et de sa catégorie. Un exemple classique en C++ ou en Java concerne les méthodes surchargées.
L’identifiant d’une méthode est composé du nom de la méthode et de la liste ordonnée des types des paramétres de
cette méthode. Bien entendu, ces actions seront le plus souvent effectuées durant I’analyse syntaxique, car I’analyseur
lexical n’a pas les moyens de reconnaitre les blocs ou les différentes catégories d’objets.

4.1.2 Implémentation d’une table des symboles

Nous donnons ici, un exemple de table des symboles assez couramment utilisé. Elle est constituée d’un tableau
de hachage contenant des listes : Liste tablehash[MAXHASH] ;. Cette technique est souvent appelée “hachage par
baquet”. Un identificateur, ou nom, permet de calculer un entier qui sera l'indice dans le tableau de hachage. Nous
donnons, ci-aprés, un exemple de fonction calculant cet indice & partir de la chaine de caractéres de I’identifiant.

int hash(char *nom){ /* retourne une valeur comprise entre 0 et MAXHASH-1 */
register int hval; /* valeur courante de hachage */
register int pos; /* position dans le nom */
hval=pos=0;
while (nom[pos]) /* tq different de \O */

hval=((hval<<1l)+nom[pos++]) I MAXHASH; /* calcul de la valeur de hash */
return hval;
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Il est souhaitable que MAXHASH soit un entier premier. Chaque entrée de la table des symboles est alors un
élément, une cellule, de la liste. L’analyse lexicale retournera donc un jeton IDENTIFICATEUR ainsi qu’une valeur
sémantique (yylval de lex/yacc) sous forme de chaine de caractéres. Ensuite, ’analyseur syntaxique ajoutera une entrée
dans la table des symboles. Cette entrée contiendra au moins :

— une chaine de caractéres représentant le symbole,

— la catégorie syntaxique du symbole (variable, attribut, méthode, . ..),

— des propriétés spécifiques a chaque catégorie de symbole.

4.2 Gestion des erreurs

Il peut exister des stratégies de récupérations sur erreurs, notamment & l’aide de yacc. La fagon la plus simple de
gérer les erreurs a la compilation (compile-time) consiste & générer un message d’erreur puis a quitter le processus de
compilation. Par exemple, dans le source yacc, on peut écrire en C++ la fonction yyerror suivante :

int yyerror(char *s) {
cerr<<"Erreur de syntaxe a la ligne : "<<numerolLigne<<endl;

}

La variable numeroLigne est une variable globale définie par le source yacc et mise a jour par le source lex.
De méme, lors de l'exécution (run-time), ’appel a une procédure du langage cible ayant la méme sémantique est
la plus simple facon de gérer les erreurs d’exécution. Voici un exemple en C :

void erreurExec(char *msg){
fprintf (stderr,"ERREUR FATALE : %s\n",msg);
exit(1);

}

4.3 Arbre abstrait

L’arbre syntaxique ou arbre de dérivation d’un mot du langage généré par une grammaire est souvent inutilement
complexe. Lorsqu’on génére un arbre lors de I'analyse syntaxique, on préfére une représentation condensée appelée
arbre abstrait. Dans celui-ci, les mots-clés sont souvent supprimés et les opérateurs remontés sur le noeud pére. De
plus, on supprime parfois des symboles de priorité tels que les parenthéses. Par exemple, dans une grammaire Ggrp,
le mot 2+ (2+1)*3 donnera 'arbre abstrait suivant :

La construction de I’arbre abstrait associé au remplissage de la table des symboles est généralement effectuée au cours
de l’analyse syntaxique. Chaque noeud de I'arbre abstrait doit contenir :

— la catégorie syntaxique du noeud,

— un lien vers chacun de ses fils,

— un lien vers son pére,

— éventuellement des informations complémentaires : entrée de la table des symboles, ...

Une fois ’arbre abstrait construit, le compilateur pourra le parcourir a des fins d’analyse sémantique, d’optimisation,
de génération de code.

4.4 Traduction dirigée par la syntaxe

4.4.1 Grammaires attribuées
Théorie

Dans une grammaire attribuée, on associe & chaque symbole, terminal et non terminal, de la grammaire,
un ensemble d’attributs. Un attribut stocke une information typée. On peut avoir des attributs entiers, chaine de
caractéres, ... La notation d’un attribut val associé & un symbole X est X.val. La notation de I’ensemble des attributs
associé a un symbole est X{valy,vals, ... ,val;}. Un symbole sans attribut sera noté simplement X.
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A chaque régle de production, correspond une ou plusieurs régles sémantiques indiquant le mode de calcul de
certains des attributs. Bien entendu, le calcul de certains attributs dépend d’autres. Lorsque la régle est récursive,
méme symbole en partie gauche et droite de production, on indice les occurrences de droite pour les distinguer de
I’occurrence de gauche.

Définition 10 Dans une grammaire attribuée, une régle sémantique associé€ a une régle de production indique le mode
de calcul d’un attribut d’une occurence de symbole présent dans la production. Soit la production xog — x1Z2 ... Ty,
une régle sémantique s’écrit toujours : x;val = f(x;1.a:1, Tio-Qiny - . ., Tig-Qik;) -

Par exemple, le tableau suivant indique le calcul des attributs de la grammaire Ggrp. Soit la grammaire attri-
buée Grrr = ({0,1,...,9,+,%,(,)}, {E{val}, T{val}, F{val}}, R, E) avec les régles de production R, et les régles
sémantiques suivantes calculant des valeurs entiéres (val) :

Production Regles sémantiques

E—-T E.val=T.val

E — E1+T | E.val=FE;.val+T.val
T—F T.val=F.val

T =T, F | T.val=T].val*F.val

F — (E) F.val=E.val

F—0 F.val=0

F—1 F.val=1

F—9 F.val=9

Grammaires attribuées avec Yacc

Avec yacc, chaque symbole est associé & une unique valeur sémantique. Cette valeur est du type YYSTYPE qui peut
étre une union de différents types. Ainsi, 'unique attribut de chaque symbole peut étre un pointeur sur une structure
C ou une instance de classe C++, donc contenir plusieurs informations typées.

La notation de I'attribut associé¢ & un symbole X dans une production X — « est $$. La notation de I'attribut
associé a une occurrence du symbole X dans une production Y — dydodsXdsdg est $4, c’est & dire son indice dans
la partie droite. Dans une application de ’exemple précédent, I’analyseur lexical fournit une valeur entiére associée
a chaque jeton CHIFFRE. On peut également associer des régles d’action aux productions. Par exemple, on pourra
afficher la valeur de I'attribut calculé. Pour cela, on augmente la grammaire d’un super axiome S avec les régles :

[ S— E \n | Afficher(E.val) |

Voici le source yacc implémentant cet exemple :

%{ /* etf.y *x/

#include <stdio.h> /* printf x/

#include <ctype.h> /* isdigit */

#define YYSTYPE int /* définition explicite de YYSTYPE comme int */
int yylex(void);void yyerror(char *s);

Y

%token CHIFFRE

W

liste : {/* chaine vide sur fin de fichier Ctrl-D */}
| liste ligne

ligne : ’\n’ {/* ligne vide : expression vide */}
| error ’\n’ {yyerrok; /* aprés la fin de ligne */}
| expr ’\n’ {printf("Résultat : %d\n",$1);}
expr : terme {$$ = $1; /* par défaut */}
| expr ’+’ terme {$$ = $1 + $3;}
terme fact {3% = $1;}
I terme ’*’ fact {$$ = $1 * $3;}
fact : CHIFFRE {$$ = $1;}

> (7 expr )’ {$$ = $2;1}

he
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int yylex(void){
int c=getchar();while(c==’ ’||c==’\t’)c=getchar(); /* filtrage */
if (isdigit(c)){
yylval=c-’0’;return CHIFFRE;
}
else return c;
}
void yyerror(char *s) {fprintf(stderr,"¥%s\n",s);}
int main(void){yydebug=0; return yyparse();}

Remarquons que dans yacc, le type par défaut des attributs est entier mais qu’on peut redéfinir YYSTYPE, soit par
un #define, soit par un %union{}. Si le type d’attribut est unique, alors il n’est pas nécessaire d’indiquer le type des
attributs des terminaux et des non terminaux. Sinon, il faut utiliser les définitions yacc %token<typeDeLUnion> JETON
et Jitype<typeDeLUnion> nonterminal.

Attributs hérités et synthétisés

Définition 11 Un arbre syntaxique ou abstrait pour lequel on indique sur chaque noeud les valeurs des attributs du
symbole, est appelé arbre décoré.

Lors de 'analyse syntaxique, on construit trés fréquemment un arbre abstrait décoré représentant la structure
syntaxique et certains éléments sémantiques du programme.

Définition 12 Dans une régle sémantique associé a une production, un attribut est synthétisé lorsque il est défini par
une fonction des valeurs de ses propres attributs et/ou de ceux de ses fils. Pour une production o — T1Za...Tn, ON
a donc : xo.val = f(xi1.a41, Tin-Qi2,y -« - Tik-Qik) -

C’est le cas de tous les attributs de ’exemple précédent. En particulier, les attributs des chiffres sont des fonctions
constantes. L’analyse ascendante, par exemple avec yacc, permet facilement de calculer les attributs synthétisés. En
particulier, si ’on considére un noeud de ’arbre abstrait comme attribut, la construction de cet arbre abstrait peut
étre réalisée des feuilles vers la racine. En analyse descendante, le calcul des attributs synthétisés doit se faire lors de
la remontée postfixe dans le parcours en profondeur.

Définition 13 Une grammaire est S-attribuée ssi toutes les regles sémantiques calculent des attributs synthétisés.

Les grammaires S-attribuées peuvent facilement étre implémenthées avec Yacc.

Définition 14 Dans une régle sémantique associ€é a une production, un attribut est hérité lorsque il est défini par une
fonction des attributs de son pére et/ou de ses fréres dans l’arbre syntazique.

L’évaluation de certains attributs hérités (dépendant du pére et des fréres de gauche (resp. de droite)) est facile
en analyse descendante. Il suffit de les calculer lors du parcours en profondeur. Cela devient plus complexe en analyse
ascendante.

Définition 15 Une grammaire est L-attribuée ssi toutes les régles sémantiques calculent des attributs synthétisés et
des attributs hérités ne dépendant que d’attributs de leur pére et/ou de leurs fréres de gauche (Left).

En analyse ascendante LR, rappelons que parallélement a la pile des symboles, une pile des attributs (valeurs
sémantiques) existe. De plus, rappelons que le symbole non terminal de gauche n’est réduit qu’aprés que tous ses fils
aient été reconnus. Par conséquent, il n’est pas possible d’hériter directement de son pére. Par contre, tous les fréres
gauches du symbole dont I'attribut doit étre calculé sont sur la pile au moment de la réduction. On peut donc calculer
facilement les attributs ne dépendant que des attributs de fréres gauches. Par exemple, une déclaration simple d’un
identificateur entier donne lieu aux régles suivantes.

Production Regles sémantiques Commentaire
D—INT ID; | INT.s="entier", ID.h=INT.s | h est hérité, s synth

Pour un attribut hérité du pére, I'astuce consiste & aller chercher dans la pile 'attribut d’un “oncle” de gauche.
Un exemple classique concerne l'attribution d’un type a une liste d’identificateurs dans une déclaration, comme par
exemple en C : int 1i,j,k;.

Soit Giype = {INT,CHAR,ID{h}, ) },{D,L{h},T{s}}, R, D). Chaque attribut est une chaine de caractéres
indiquant un type de données entier ou caractére. Cet attribut est nommé s et est synthétisé pour T, tandis qu’il
est nommeé h et est hérité pour L et ID. On a les régles de production R, et les régles sémantiques suivantes :
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Production | Régles sémantiques Commentaire
D—-TL L.h=T.s h est hérité, s synth
T—INT T.s="entier" s est une chaine
T—CHAR | T.s="caractére" s est une chaine
L—ID ID.h=L.h hérite du pére
L—L; ,ID | ID.h=L.h, L;.h=L.H | héritent du pére

Le premier héritage (L.h=T.s) concerne un frére gauche et peut donc étre réalisé en yacc. Par contre, les trois
derniéres régles sémantiques d’héritage du pére (ID.h=L.h, ID.h=L.h, L;.h=L.H) ne peuvent étre mises en oeuvre
avec yacc. Aussi, il convient d’imaginer le contenu de la pile au moment ol une production de L est en cours de
reconnaissance. On a forcément le symbole T avec son attribut T.s, dans ’élément de pile situé sous le premier ID
a étre réduit (L—ID). Par conséquent, lattribut d’ID peut étre affecté de pile Attribut[sommet — 1], c’est-a-dire de
Pattribut de son oncle T. Par la suite, les réductions par L — Ly, 1D pourront de la méme fagon affecter a 'attribut
d’'ID, la valeur de pileAttribut[sommet — 3]. Nous avons donc remplacé les régles sémantiques x=L.h par x=T.s. On
n’hérite donc plus de son pére mais du frére gauche de son pére. Cette transformation est possible, avec yacc, en
accédant a 1’élément de pile correspondant a T et qui est symbolisé par $0. Attention, cette méthode ne peut toutefois
pas étre généralisé a tous les héritages de peére. Il faut étudier soigneusement les différents états que peut prendre la
pile au moment de I’exécution de la régle.

Une implémentation yacc de la grammaire précédente de déclarations est donnée ci-aprés.

L’analyseur lexical

/3t /* declar.l */

#define YYSTYPE char * /* définition de YYSTYPE car pas dans y.tab.h ! */
#include "y.tab.h" /* JETONS crees par yacc et definition de yylval */
hY

lettre ([a-zA-Z])

chiffre ([0-91)

ot

[ \t]l+ {/* filtrer les blancs */}

int {return INT;}

char {return CHAR;}

{lettre}({lettre}|{chiffrel})* {yylval=yytext;return ID;}

.\n {return yytext[0]; /* indispensable ! */}

Toth

int yywrap(){return 1;} /* pas de continuation sur un autre fichier */

L’analyseur syntaxique

W /* declar.y */

#include <stdio.h>

#include <string.h>

#define YYSTYPE char * /* définition de YYSTYPE comme chaine */
int yylex(void);void yyerror(char *s);

int nb; char affich[1024];

hY
%token INT CHAR ID /* definition des jetons (tous chaines) */
hte
inter : {/* chaine vide sur fin de fichier Ctrl-D */}
| inter {affich[0]="\0’;} ligne
ligne : ’\n’ {/* ligne vide : expression vide */}
| error ’\n’ {yyerrok; /* aprés la fin de ligne */}
| declar ’\n’ {printf ("%i déclaration(s) : %s\n",nb,affich);
affich[0]="\0";
}
declar : type liste
type : INT {$$="entier";}
| CHAR {$$="caractére";}
liste : ID {

nb=1;char couple[128];
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sprintf (couple," (%s,%s) ",$1,$30); /* héritage */
strcat(affich,couple);

| liste ?,? ID {
nb++;char couple[128];
sprintf (couple," (%s,%s) ",$3,$80); /* héritage */
strcat (affich,couple);
}
W
void yyerror(char *s) {fprintf(stderr,"%s\n",s);}
int main(){yydebug=0;return yyparse();}

L’exécution de ’exécutable obtenu donne :

int i, j2, k,1

4 déclaration(s) : (i,entier) (j2,entier) (k,entier) (1,entier)
char c

1 déclaration(s) : (c,caractére)

4.4.2 Méthode de transformation des grammaires L-attribuées

La méthode précédente, simple et pratique, ne fonctionne pas toujours. Par exemple, soit les productions suivantes :

Production | Régles sémantiques | Commentaire

S — aAC C.h=As h est hérité, s synth
S = bABC | C.h=As h est hérité, s synth
C—c C.s=f(C.h) calcul sur h

Au moment de réduire par C' — ¢, le calcul de C.s nécessite I'accés a C.h c’est-a-dire A.s. Malheureusement, il est
impossible de savoir si cet attribut A.s se situe en pile Attribut[sommet — 1] ou en pile Attribut[sommet — 2] !

Par conséquent, une méthode générique de traitement des attributs hérités consiste a faire précéder chaque symbole
ayant un attribut hérité par un non terminal “marqueur” dans chaque production. Ces marqueurs ont une seule e-
production et ne sont présents que pour servir d’emplacement dans la pile d’attributs pour contenir les attributs
hérités. Cette méthode appliquée aux productions précédentes donne :

Production Regles sémantiques Commentaire

S — aAM,C C.h = My.s, Mi.h = A.s | h est hérité, s synth
M, — ¢ My.s = Mi.h recopie

S = bABM>C | C.h = Msy.s, Ms.h = A.s | h est hérité, s synth
My — ¢ Msy.s = Ms.h recopie

C—ec C.s = f(C.h) calcul sur h

Ainsi, lorsque la réduction par C — ¢ a lieu, il suffit de regarder en pile Attribut[sommet — 1] pour atteindre
C.h, c’est-a-dire Mi.s ou bien Ms.s. Attention, le calcul des M;.h est bien entendu adapté : M;.h = A.s devient
M;.h = pile Attribut[sommet — 1] tandis que Ms.h = A.s devient Ms.h = pile Attribut[sommet — 2.

Sur le plan théorique, la méthode échoue parfois lorsque ’adjonction des non terminaux marqueurs et de leurs
production génére une grammaire non LR. Cela n’arrive que trés rarement dans la pratique.

Enfin, dans deux cas, il n’est pas nécessaire d’introduire des marqueurs :

— dans une régle G — D1 ... avec D1.h = G.h, introduire un marqueur devant D; ne sert a rien sauf quand G

est 'axiome ;

— dans une régle G — D1 D5 ... D,, avec D;.h = D;_1.h, introduire un marqueur devant D; ne sert a rien.

Exemple 34

Soit une grammaire d’expressions booléennes a évaluation partielle (ou court-circuit). Dans un interpréteur de ces
expressions, il n’est pas nécessaire d’évaluer la suite de I'expression lorsque le résultat est déja connu. Pour réaliser
cette évaluation partielle :

— Dattribut synthétisé val remontera la valeur calculée (0 pour faux, 1 pour vrai),

— tandis que l'attribut hérité cal sert uniquement & indiquer s’il faut continuer a calculer le résultat de I'ex-
pression courante (dans ce cas sa valeur est 1), ou bien s’il est déja connu (court-circuit et sa valeur est 0).
Remarquons qu’en cas de court-circuit, I’analyse syntaxique sera quand méme effectuée mais pas I'évaluation.

Dans un interpréteur, I'unique intérét de I’évaluation partielle consiste en la possibilité de mettre dans la méme
expression des conditions causales, par exemple, if (!feof (f) && fgetchar(f)!=’x’)
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Production | Régles sémantiques Commentaire

S—F S.val=E.val, E.cal=1 au début, il faut calculer

E—1 E.val=1 calcul de base

E—0 E.val=0 calcul de base

E — Ey||E> | Ey.cal = E.cal, Ey.cal = (E.cal?\Fy.wal : 0) | transmission du court-circuit
E.val = (E.cal?(Ey.val?l : Exval) : 99) calcul de I’expression

E —Ey Ey.cal = E.cal, E.wwal = (E.cal? Ey.val : 98) | calcul de I'expression

E — (Ey) Ey.cal = E.cal, Ewval = (E.cal?Ey.val : 97) | transmission et calcul

Les valeurs 99, 98 et 97 signalent des valeurs farfelues qui n’ont aucune chance d’étre remontées jusqu’a I’axiome :
en effet, lorsque E. cal est faux E.val n’a aucun intérét car le résultat final est déja connu !

La transformation de cette grammaire L-attribuée par I'introduction de marqueurs donne les régles sémantiques
suivantes. Remarquons qu’un marqueur M; précéde toujours une expression E dans la pile, ce qui permet d’obtenir
facilement Iattribut hérité cal.

Production Régles sémantiques Commentaire

S — M FE S.wal = E.wal, My.cal = 1; E.cal = M;y.val au début, il faut calculer

M, — ¢ M .val = M .cal transmission

E—1 E.val=1 calcul de base

E—=0 E.val=0 calcul de base

E — Eq||MsEs | Ej.cal = E.cal, My.cal = (E.cal?'Ey.val : 0), Ey.cal = Ms.val | transmission du court-circuit
E.val = (E.cal?(E1.val?l : Ex.val) : 99) calcul de I’expression

My — ¢ Ms.val = Ms.cal transmission du court-circuit

E —=IM3E, Ms.cal = E.cal, E;.cal = Ms.wal, E.wal = (E.cal?'Ey.val : 98) | calcul de 'expression

M3 — ¢ Ms.val = M;.cal transmission du court-circuit

E — (MyEy) My.cal = E.cal, Ey.cal = Mywal, E.wal = (E.cal?FEy.val : 97) | transmission

My — ¢ My.val = My.cal transmission du court-circuit

Remarquons que nous avons introduit les marqueurs M; afin que I’héritage provienne toujours d’un frére gauche ou
d’un oncle gauche. Chacun des marqueurs n’utilise en fait qu’un seul attribut puisqu’il recopie toujours M;.cal dans
M;.wal. De plus, lattribut E.cal provient toujours d’'un M;.cal. Aussi, plutot que d’utiliser les notations théoriques
un peu lourdes, on utilise une syntaxe a la yacc avec des $i pour représenter les attributs sur la pile.

Production Régles sémantiques Commentaire

S — MFE $3—=92 résultat final

M, — ¢ $$=1 initialisation

E—1 $$=1 calcul

E—0 $$=0 calcul

E — E1||M3Ey | $8 = ($07($171 : $4) : 99) | calcul de I'expression

My — ¢ $$=($—271$—-1:0) transmission du court-circuit

E —M3F; $$ = (507183 : 98) calcul de Dexpression

Mz — ¢ $$=9%-1 on recopie le marqueur précédent
E — (MyFEy) $$ = ($27$3:97) transmission

My — ¢ $$=9%-1 on recopie le marqueur précédent

Ce qui donne en yacc :

/* evalcc.y */
13t
int yylex(void);
void yyerror(char *s);
Y3,
/* définition de YYSTYPE comme int par défaut */
/* définition des précédences */
hleft |
Yright 71’
hte

liste /* chaine vide sur fin de fichier Ctrl-D */
| liste ligne
ligne : ’\n’ /* ligne vide : expression vide */

| error ’\n’
| ml exp ’\n’

{yyerrok; /* aprés la fin de ligne */}
{printf ("Résultat : %d\n",$2);2}
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mt : ($8=1; /% $$=vrai */}

exp : exp ’1’ m2 exp {$$=($07($172:$4):99); /* un peu condensé ! */}
| ’1° m3 exp {$$=($071$3:98); /* $0 est 1l’attribut de mi */}
I ’(> md exp ’)’ {$$=($27$3:97);}
| 710 {$3%=1; /* $$=vrai */}
| ’°0? {$3%=0; /* $$=faux */}

m2 : {$$=($-271%$-1:0) ;%

m3 : {$$=8%-1;2

mé : {$$=8%-1;2

hth

int yylex(void) {int c; while(((c=getchar())==> ) || (c==’\t’)); return (c);}

void yyerror(char *s) {fprintf(stderr,"¥%s\n",s);}
int main(void){/*yydebug=1%/; return yyparse();}

Dans cet évalaluateur a court-circuit, nous avons donné la valeur 2 lorsqu’un court-circuit était réalisé grace au ou
logique. Voici quelques exécutions :

ololt1lo

Résultat :
olololol1

Résultat
(1)

Résultat :

(11010

Résultat :

2

1

0

Exercice 7 Compléter I'évaluateur booléen en ajoutant la régle du et logique a court circuit. Compléter le source

yacc.



Chapitre 5

(Génération de code

5.1 Introduction

On utilise généralement un langage intermédiaire entre le langage évolué et le langage de la machine hote.

— Deux frontaux (“front-end”) de gce et g++, qui traduisent le fichier source en une représentation interne ar-
borescente commune : Register Transfer Language (RTL). Inspiré de Lisp ce langage a une représentation
interne, structures chainées par pointeurs, et textuelle aux fins de débogage. Pour lire cette apparence tex-
tuelle : gcc -dr exrtl.c; cat exrtl.c.rtl. Cette représentation dépend tout de méme de la machine cible
et n’est donc pas totalement portable. La seconde partie finale (“back-end”, bulk compiler), est commune & gec
et g+-+ pour une machine donnée.

— Le byte-code de Java est un langage universel qu’interpréte une machine virtuelle. La portabilité des .class
est donc totale a condition d’avoir un interpréteur (java, machine virtuelle) sur la machine cible. Le langage
byte-code est assez proche d’un langage machine, a ceci prés qu'’il utilise beaucoup la pile et des variables locales
plutot que des registres. Il contient environ 200 instructions, ce qui permet de stocker le code opération sur un
octet.

— Le P-code du Pascal est I'un des premiers langages intermédiaires a avoir été utilisé par un compilateur. C’est
un langage pour machine abstraite a pile (on voit la filiation avec Java).

Le langage intermédiaire est souvent soit un langage de machine virtuelle & pile, soit un langage d’arbre représenté

par une notation postfixée. Sans en étudier tous les détails, la section suivante illustre le fonctionnement d’une machine
a pile.

5.2 Machine virtuelle a pile

Une machine, virtuelle ou abstraite, a pile est constituée :

— d’une mémoire d’instructions et d’'un compteur ordinal CO,

— d’une mémoire de données,

— d’une pile.
Les instructions de la mémoire d’instructions sont exécutées en séquence. Les différentes instructions sont rangées en
catégories :

— manipulation de la pile : empiler, dépiler des constantes ou des données de la mémoire, opérer sur le ou les 2

sommets de pile et le ou les remplacer par le résultat.

— controle du flux d’instructions : branchements conditionnels, appels et retours de procédure.

L’utilisation de la pile est continuelle puisque les opérandes sont stockés dessus pour les opérations arithmétiques,
logiques, de branchements ou d’appels. Pour plus d’informations sur ce type de langage, voir par exemple 'ouvrage

).

5.3 Développement d’un compilateur

Dans le cadre d’un projet de développement d’un compilateur, I’étude du langage source est fondamentale mais
n’est pas suffisante. En effet, le choix d’un “bon” langage intermédiaire et du langage de développement du compilateur
est important. Tout d’abord, de nos jours, il est impensable d’écrire un compilateur en langage d’assemblage. Dans
Penvironnement Unix, I'écriture en C permet d’obtenir une excellente efficacité (le systéme est lui-méme majoritai-
rement écrit en C). L’utilisation d’un langage intermédiaire facilite 'écriture de la partie finale du compilateur pour
différentes machines. Dans la famille de compilateurs gnu (gec, . . .), on peut spécifier la correspondance des instructions
RTL et de la machine cible dans un fichier, ce qui permettra de générer du code machine sans réécrire cette partie
finale!
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Un compilateur peut étre représenté par une forme géométrique en T, notée S;0, ou S est le langage source,
O le langage objet, et I le langage d’implémentation du compilateur. Par exemple, un compilateur écrit en C++
traduisant du Pascal en C est noté : Pascalc + jLC. Ces formes en T peuvent étre imbriquées, représentant en ceci la
composition de compilateurs. Ainsi, si nous disposons d’un second compilateur C++ en langage machine, la compilation
de Pascalc + jLC par C++MM fournit un compilateur de Pascal en C écrit en langage machine.

Cette technique de compilation de compilateur a souvent été utilisée dans la technique d’auto-amorcage. Pour un
langage L dont on souhaite écrire un compilateur pour la machine M, cette technique consiste & écrire un premier
compilateur grossier en L L’LM, puis & traduire & la main ce compilateur dans le langage M, on obtient donc L’MM.
Ensuite, on utilise ce premier compilateur grossier pour recompiler le compilateur écrit en L : ce compilateur s’est
compilé lui-méme! De la méme fagon, le premier interpréteur Lisp a été écrit en Lisp puis traduit & la main. De
nouvelles modifications du compilateur sont ensuite utilisées pour ’affiner.

Les techniques de compilation de compilateur sont également utilisées pour les compilateurs croisés. Supposons que
l'on a écrit un compilateur L en L générant du code pour la machine N : Ly N. Si l'on a & sa disposition un compilateur
de L sur une autre machine M, LM, alors on peut trés bien obtenir une version du compilateur fonctionnant sur la
machine N de la fagon suivante :

1. compiler Li N gace a LM : on obtient LN qui est un compilateur.
2. compiler encore une fois LLN gace & ce nouveau compilateur LMN : on obtient donc LNN.

Remarquons que l'on a congu un compilateur tournant sur la machine N, sans jamais utiliser la machine N. Il suffit
de connaitre les spécifications de cette machine avant méme qu’elle ne soit construite.

Pour ces deux raisons, auto-amorgage et compilation croisée, mais aussi afin de tester la puissance du langage en
cours de développement, il est souvent intéressant d’écrire un compilateur dans son propre langage source.



Chapitre 6

Sémantique opérationnelle des langages de
programmation

6.1 Introduction

Ce chapitre étudie différents modéles de programmation et leur implantation sur les machines informatiques clas-
siques (modéle de Von Neumann). Les langages utilisés pour illustrer nos propos seront le C, le C++, Java. Le C est
un langage évolué qui est en méme temps trés proche de la machine; il est donc couramment utilisé pour écrire des
compilateurs, des systémes d’exploitation, ... Les langages a objets C++ et Java introduisent un niveau conceptuel
supplémentaire dans la programmation. Il est cependant utile de connaitre leur implantation afin de programmer
presque aussi efficacement avec ces langages qu’avec le C.

6.2 Organisation de I’espace mémoire

6.2.1 Image mémoire

Apres compilation et édition de liens d’un ensemble de sources, le fichier exécutable est chargé en mémoire centrale
pour exécution. Le chargeur, partie indispensable du systéme d’exploitation, va donc installer les différentes parties
de 'exécutable dans des blocs de mémoire que nous appellerons segments. Ces segments auront été réservés par le
chargeur auprés du systéme de gestion de mémoire. Il y a au moins quatre segments pour des langages tels que C,
C-++, Pascal, ... :

— le segment de code contient les instructions machines a exécuter;

— le segment de données statiques contient les variables globales et/ou statiques. Ces variables sont créées a la

compilation (“compile time”) d’ou leur qualificatif de statique;

— le segment de pile est vide au début et contiendra les adresses de retour, les paramétres, les variables locales de
chaque procédure ;

— le segment de tas ou de données dynamiques est vide au début et contiendra les objets créés dynamique-
ment (malloc, new, ...). Ces variables ou objets sont créées a I’exécution (“run time”) d’oir leur qualificatif de
dynamique. Remarquons que les objets de la pile devraient également étre qualifiés de dynamique !

L’ensemble de ces segments est appelée image mémoire du processus. Une fois I'image mémoire installée par le chargeur,
le processeur peut commencer & exécuter le segment de code de ce nouveau processus. A la mort de ce dernier, il ne
restera qu’a désallouer les segments mémoires maintenant inutiles.

6.2.2 Appel procédural

La notion de fonction n’existe pas au niveau machine, seule les procédures, sans paramétre résultat, permettent
d’implanter les fonctions. Le ou les paramétres résultats (out) sont installés sur la pile par Pappelant juste avant les
paramétres de données (in), puis 'appel a lieu (CALL). L’appelé, sauve le registre de base de pile de appelant sur
la pile, positionne son registre de base au sommet de pile courant, puis installe ses propres variables locales. La pile
est également utilisée pour stocker les objets temporaires, résultats d’expressions en cours d’évaluation. L’ensemble
de ces informations résidant sur la pile et constituant le contexte d’une instance de procédure est souvent appelé
enregistrement d’activation, ou bloc d’activation, ou bloc de pile. En anglais, le terme consacré est “stack frame”, et il
est trés utile en débogage (up/down).

L’ordre sur la pile des paramétres de données varie selon les langages de programmation. Il faut noter qu’en C et
C++, lexistence de fonctions & nombre d’arguments variables (tel printf) impose d’empiler les arguments a l’envers
par rapport & leur énumération dans la signature de la fonction.
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6.2.3 Passage des parameétres

Les différents types de passages de parameétres sont une caractéristique des langages de programmation :

— en C, seul le passage par valeur existe : le paramétre effectif est recopié sur la pile. L’appelé utilise ensuite
cette copie en lecture/écriture sans risque pour le paramétre effectif. Le passage de pointeur permet & appelé
de modifier 'objet pointé, mais constitue tout de méme un passage par valeur (recopie du pointeur) ;

— en C++, on peut également utiliser le passage par référence. C’est 'adresse de 'objet qui est mis sur la pile
et non sa valeur. L’appelé utilise ensuite cet objet en lecture/écriture en accédant directement & lui. De plus, la
possibilité de qualifier la référence de constante (const) permet d’interdire a Pappelé de modifier Pobjet. Ceci
est utile pour les gros objets.

— en Java, les deux types précédents existent mais sont implicites en fonction du type du paramétre : si le
parameétre est de type primitif (int, char, ...), le passage a lieu par valeur, sinon, le paramétre est une référence
a un objet (String, Vector, ...), le passage a lieu par référence. A noter que la qualification constante n’existe
pas.

Il existe d’autre fagon de passer les paramétres sur la pile, notamment par copie et recopie a 'appel et au retour.
En Ada, chaque paramétre appartient a une catégorie “in”, “out” ou “inout”. Cette spécification de haut niveau cache la
maniére de passer les paramétres, ce qui est excellent pour le programmeur qui n’a plus a se soucier de ces problémes
techniques. En Java, les objets sont tous dynamiques, c’est-a-dire créés a l'exécution, et sont toujours passés par
référence, donc modifiables.

6.2.4 Accés aux noms (liaison)

Dans cette section, le terme “nom” désigne aussi bien une donnée, ¢’est-a-dire une portion de mémoire (variable,
tableau, objet, ...), quune procédure.

Accés aux données locales

Les objets locaux, paramétres ou variables locales, sont accédés via le registre pointeur de base de pile indexé par
un déplacement. Le calcul de ce déplacement est effectué a la compilation.

Accés aux données dynamiques

Les objets dynamiques sont accédés via un pointeur (C, C++) ou une référence (C++, Java). Ce pointeur est lui
méme un objet local ou dynamique ou ... La valeur de ce pointeur est calculée & I’exécution.

Accés aux noms statiques

Les noms statiques, variables globales ou de classe ou statiques fichier ou statiques fonction pour les données,
fonctions globales ou statiques ou méthodes de classes ou méthodes d’instance non virtuelles (C++), sont accédés
via une adresse calculée a la compilation. Cette adresse est le plus souvent un déplacement par rapport au début du
segment de données ou du segment de code.

Accés aux noms non locaux

La notion de bloc {} permet de préciser la portée des noms définis a I'intérieur d’un bloc. En cas de blocs imbiqués,
I’accés & un nom est réalisé par recherche de ’objet depuis le bloc courant puis en remontant dans les blocs englobants.
Cette régle peut étre implantée en associant & chaque bloc un bloc de pile associé (frame). Un bloc peut alors étre vu
comme une procédure sans paramétres. Une autre facon de faire consiste a ne constituer qu'un seul bloc de pile pour
tous les blocs imbriqués. Dans ce dernier cas, la résolution est forcément statique. Dans le premier cas, la recherche
de l'objet nommé peut étre effectuée dynamiquement en parcourant les blocs de piles. Remarquons, qu’en Pascal, les
procédures comme les données peuvent étre imbriquées.

6.3 Langages a objets
Nous étudierons quelques caractéristiques des langages C++ et Java. Ces deux langages a objets sont des langages

a classe. Les objets sont donc des instances d’une classe qui a été définie & la compilation : les classes donc la taille et
la structure des instances sont connues a la compilation.

6.3.1 C++

En C++, les objets peuvent étre globaux, locaux (automatiques), dynamiques (new).
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Données membres

Les données membres statiques (attributs de classe) sont stockées en une seule occurrence dans le segment de
données statique. La liaison est donc effectuée a la compilation. On peut les assimiler a des variables globales, sauf en
ce qui concerne le controle d’accés (public, private) et la portée. L’initialisation de toutes les données du segment de
données statique les concerne.

Les données membres non statiques (attributs d’instance) sont stockées dans chaque instance. La liaison est effectuée
a la compilation pour la partie déplacement & l'intérieur de la “struct”. Des contraintes d’alignement nécessitent
souvent une taille d’instance supérieure a la somme des tailles des attributs d’instance. Les classes vides d’attribut ont
une taille par défaut de 1.

Fonctions membres

Les fonctions membres non virtuelles sont stockées dans le segment de code. La liaison est effectuée a la compilation.
Le cotit a I'exécution est donc identique a celui de fonctions externes (a la C).

Les données membres virtuelles sont stockées dans un tableau de fonctions virtuelles propre a la classe. Chaque
instance contient un pointeur (vptr) sur cette table de pointeurs de fonctions. La liaison est effectuée a I'exécution
au prix d’une indirection. Remarquons que la programmation par objets préconise la “virtualisation” des fonctions en
raison justement de cette liaison tardive.

Exemple 35

class Vide{};

class UnIntUnChar{public:int i; private:char c;};
class UneFonction{int f(){return 0;}};

class UneVirtuelle{virtual int f(){return 0;3}};

main(){
cout<<"Taille de Vide : "<<sizeof(Vide)<<endl;
cout<<"Taille de UnIntUnChar : "<<sizeof (UnIntUnChar)<<endl;
cout<<"Taille de UneFonction : "<<sizeof (UneFonction)<<endl;
cout<<"Taille de UneVirtuelle : "<<sizeof (UneVirtuelle)<<endl;
}

Une exécution donne le résultat suivant :

Taille de Vide : 1

Taille de UnIntUnChar : 8
Taille de UneFonction : 1
Taille de UneVirtuelle : 4

Héritage simple

Le C+-+ permet 'héritage multiple. Dans I’héritage simple, une classe dérive d’une classe de base. Pour I'implan-
tation d’une instance dérivée, la régle fondamentale est le respect de 'intégrité du sous-objet. Les attributs de base et
dérivés ne sont pas “compactés”.

Exemple 36

class UnInt2Char:UnIntUnChar{public:char c2;};
cout<<"Taille de UnInt2Char : "<<sizeof (UnInt2Char)<<endl;
Une exécution donne le résultat suivant :

Taille de UnInt2Char : 12

Héritage multiple

La régle d’intégrité du sous-objet est appliquée pour chaque sous-objet hérité. La taille de 'instance dérivée est
égale & la somme des tailles des classes de base.

Exemple 37

class Multiple:UnIntUnChar, Vide{};

cout<<"Taille de Multiple : "<<sizeof (Multiple)<<endl;
Une exécution donne le résultat suivant :

Taille de Multiple : 12

Ici la taille de (8+1) a été augmentée a 12 pour des raisons d’alignement.
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Héritage de classes polymorphes

Les classes polymorphes sont celles qui contiennent au moins une fonction virtuelle. Dans ce cas, un pointeur
de table de fonctions virtuelles (vptr) est placé dans chaque instance (au début ou a la fin selon les compilateurs).
Une classe héritant de plusieurs classes polymorphes contiendra donc chaque sous-objet, y compris un “vptr’ pour
chacun. Chaque fonction virtuelle est affectée & un indice fixe dans la table des fonctions virtuelles. Ainsi, dans le
cas d’une redéfinition d’'une méthode de base, la nouvelle fonction est installée & la place de celle de base. Ceci permet
de déterminer & la compilation la fonction & exécuter.

Exemple 38

class UneVirtuelleBis{virtual int g(){return 0;3}};

class DeuxVirtuelleBis:UneVirtuelle, UneVirtuelleBis{};

cout<<"Taille de DeuxVirtuelleBis : "<<sizeof (DeuxVirtuelleBis)<<endl;

Une exécution donne le résultat suivant :
Taille de DeuxVirtuelleBis : 8

Ici la taille de (4+4) est celle des deux “vptr”.

6.3.2 Java

En Java, les objets sont exclusivement dynamiques (new). Toutes les méthodes sont virtuelles, ce qui permet une
programmation fortement polymorphe. Une classe de base “Object” est la racine de la hiérarchie d’héritage. L’héritage
multiple n’est pas permis. Par contre, une classe peut implémenter plusieurs interfaces, signature publique d’une
classe. La compilation d’un fichier source .java génére un fichier de “byte-code” .class. Un interpréteur, ou machine
virtuelle java (“Java Virtual Machine”), exécute ensuite le fichier .class. L’intérét de cette architecture réside dans
la portabilité totale des .class sous différents environnements (Unix, Windows, MacOS,; ...). De plus, I’ensemble des
navigateurs internet (netscape, explorer, ...) possédent une JVM intégrée, ce qui garantit ’exécutabilité sur la majorité
des machines.
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Solutions des exercices

Solution 2 — Grammaire non ambigué et non récursive a gauche : S — aSbS|e
— Programme C :

/**Q@file dyck.c
*Q@author Michel Meynard
*@brief Analyse descendante récursive de mots de Dyck
*/

#include <stdio.h>

#include <stdlib.h>

#define AVANCER {jeton=getchar () ;numcar++;}

#define TEST_AVANCE(prevu) {if (jeton==(prevu)) AVANCER else ERREUR_SYNTAXE}
#define ERREUR_SYNTAXE {printf ("\nMot non reconnu : erreur de syntaxe \

au caractére numéro %d \n",numcar); exit(1);}

int jeton; /* caractére courant du flot d’entrée */
int numcar=0; /* numero du caractére courant (jeton) */

void S(void){ /* AXIOME */

if (jeton==’a’) { /* regle : S->aSbS */
AVANCER
SO
TEST_AVANCE(’b?)
SO;
}
else ; /* regle : S->epsilon */
}
int main(void){ /* Fonction principale */
AVANCER /* initialiser jeton sur le premier car */
SO ; /* axiome */
if (jeton==EQF) /* expression reconnue et rien aprés */
printf ("\nMot reconnu\n");
else ERREUR_SYNTAXE /* expression reconnue mais il reste des car */
return O;

}

Solution 4 %{#include <stdio.h>
int yylex(void); void yyerror(char *s);
h}
he
S: 8%’ S8’ {}
| {3
hhh
void yyerror(char *s) {fprintf(stderr,"%s\n",s);}
int yylex(){return getchar();}
int main(void){
yydebug=0;
if (!yyparse()) /* appel & 1l’analyseur généré par yacc */
printf ("\nMot de Dyck reconnu\n");
else
printf ("\nMot non reconnu\n");
return O;
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SOLUTIONS DES EXERCICES

Solution 5 AFD : Iy = Fermeture({S’ — .S}) = {5’ — .5,5 — .aSbS,S — €.}
T= {(IOvav Il)}

I, = Fermeture({S — a.SbS}) = {S — a.5bS, S — .aSbhS, S — .}
T+ = {(11, a, Il)}

T+ ={(I1,5,1I2)}

I, = Fermeture({S — aS.bS}) = {S — aS.bS}

T+ ={(I2,b,13)}

Is = Fermeture({S — aSb.5}) = {S — aSb.5,5 — .aSbS,S — €.}
T+ = {(Ig, a, Il)}

T+ ={(Is,5,14)}

I, = Fermeture({S — aSbS.}) = {S — aSbS.}

T+ = {(107 Sa 15)}

Is = Fermeture({S’ — S.}) ={S — S.}

Table d’analyse :

Action Successeur
a b $ S
0 S1 R(S —¢) R(S —¢) 5
1 S1 R(S —¢) R(S —¢) 2
2 S3
3 S1 R(S —¢) R(S —¢) 4
4 R(S — aSbS) | R(S — aSbhSs)
5 Accepter

Avec le mot abaababb$, empilement de :

aSbaaSbaSbS avant la premiére réduction intéressante (R(S — aSbS))

Solution 6

1. collection canonique : en ajoutant le super axiome S et la régle S — FE.

Iy = Fermeture({S — .E})={S — .E,E — .a,E — .(E),E - .E—E,E— .E/E}

T = {(IOaEvll)a (107a'a12)7 (IOv (,13)a}

I, = Fermeture({S - EL.F - E.— E,E —- E./E}) ={S - E,E - E.— E,E - E./JE} T+ =
{(11777]4)7(]'17/7]5)}

I, = Fermeture({F — a.}) = {E — a.} Iy = Fermeture({F — (.\E)})={E — (.E),F — .a,E — .(E),E —
.E—-FE,E— E/E} T+ ={(15,E,Is),(I5,a,15), (I5,(,I3)}

I, = Fermeture{EF — E— .E}) ={E - E—- .E,E - .o,E - .(E),E - . E—E,E - .E/E} T+ =
{(147E,I?),(I4,Cl712),([4,(,]3)}

Is = Fermeture({E — E/.E}) = {F - E/.E,E — .a,E —
{(Iana I8)7(I53a7]2)7(j57(aj3)}

Is = Fermeture({E — (E.),E — E.— E,E — E./JE}) = {E — (E.),E — E. — E,E — E.JE} T+ =
{(167)719)7(Iﬁa_al4)7<lﬁa/7[5)}

I; = Fermeture{E - E—-E.,E - E.—EE - E./E})={FE - E—-E,E - E.— E,E - E./E}
T+ =A{(7,—,11),(I7, /. I5)}

Is = Fermeture({E — E/E.E — E.— E,E — E.JEY) = {E — E/E.E — E.— E,E — E./E}
T+ = {(-[87 _7-[4)7 (-[87 /7-[5)}

Is = Fermeture({E — (E).}) ={E — (E).}

(E),E - E—-EE — .E/E} T+ =

2. Suivants(E) ={-,/,),$}

3. table
a_ |- / () $
0] S2 S3 1
1 S4 S5 ACCEPTER
2 R(E — a) R(E — a) R(E — a) R(E — a)
3| S2 S3 6
41 S2 S3 7
5| 52 S3 8
6 S4 S5 S9
7 SIR(E S E—E) | S5.R(E 5 E—E) R(ESE-E) | R(E S E-_B)
8 SIR(E —» E/E) | S5,R(E — B/E) R(E - E/E) | R(E — E/E)
9 R(E — (E)) R(E — (E)) R(E — (E)) R(E — (E))
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4. Il y a donc 4 conflits décalage/réduction. Bison résoud les conflits en privilégiant le décalage. Donc, sémanti-
quement les opérations seront exécutées de droite & gauche. Par exemple, 1/2 -6/2=1/(2 — (6/2)) = —1!

5. priorités et associativités

%left ’-°
%left 2/
6. table
a | - / (1) $ E
7 R(F—~FE—FE) | S5 R(E—-FE-F)| R(E—-E-E)
8 R(E — E/FE) R(E — E/E) R(E — E/FE) R(E — E/E)

Solution 7

E — E1&&MsFy | $$ = ($07(31784 : 0) : 96) | calcul de Iexpression
Ms — ¢ $$=($—-27$-1:0) transmission du court-circuit

Ce qui donne en yacc :

/* evalccet.y */
W
int yylex(void);
void yyerror(char *s);
Y
/* définition de YYSTYPE comme int par défaut */
/* définition des précédences */
hleft ’|?
hleft &’
hright *1!?
YA
liste : /* chaine vide sur fin de fichier Ctrl-D */
| liste ligne

ligne : ’\n’ /* ligne vide : expression vide */
| error ’\n’ {yyerrok; /* aprés la fin de ligne */}
| ml exp ’\n’ {printf ("Résultat : %d\n",$2);}
m (33=1; /% $$=vrai */}
exp : exp |’ m2 exp {$$=($07($172:$4):99); /* un peu condensé ! */}
| ’17 m3 exp {$$=($071$3:98); /* $0 est 1l’attribut de mi */}
| (> m4 exp ’)’ {$$=($27$3:97);}
| 1 {$3%=1; /* $$=vrai */}
| 0’ {$%=0; /* $$=faux */}
I exp ’&’ mb exp {$$=($07($17$4:0):96); /* un peu condensé ! */}
m5 : {$$=($-271$-1:0) ;2
m2 : {$$=($-271$-1:0) ;2
m3 : {$8=8%-1;1
m4 : {$$=8%-1;2
hte
int yylex(void) {int c; while(((c=getchar())==> ) || (c==’\t’)); return (c);}

void yyerror(char *s) {fprintf(stderr,"%s\n",s);}
int main(void){/*yydebug=1%/; return yyparse();}

Voici quelques exécutions :

011&01[1
Résultat : 1
0&1&11&0
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Résultat : O
1&01&110]1
Résultat : 2
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