On Paths in Planar Graphs

Daniel P. Sanders*
DEPARTMENT OF MATHEMATICS
THE OHIO STATE UNIVERSITY
COLUMBUS, OHIO 43210-1174
e-mail: dsanders@math.ohio-state.edu

ABSTRACT

This paper generalizes a theorem of Thomassen on paths in planar graphs. As a corollary, it is shown that every 4-connected planar graph has a Hamilton path between any two specified vertices x, y and containing any specified edge other than xy. © 1997 John Wiley & Sons, Inc.

1. INTRODUCTION

In 1956, Tutte [5] showed that every 4-connected planar graph has a Hamilton circuit. He proved this by showing that every plane graph has a special kind of path. In this paper, it will be called a Tutte path, and is a generalization of a Hamilton path. It is convenient to consider only 2-connected graphs.

In a 2-connected plane graph G, the exterior circuit is the circuit bounding the infinite face and will be denoted X_G. For a subgraph H of G, the bridges of H in G are defined as follows. A trivial bridge of H in G is an edge in $E(G) \setminus E(H)$ with both ends in $V(H)$. A non-trivial bridge of H in G is a component K of $G \setminus H$ with all vertices of H adjacent to vertices of K added and all edges with one end in H and the other in K added. The vertices of attachment of a bridge B of H in G are $V(B) \cap V(H)$. A bridge is attached to its vertices of attachment. A path (circuit) P, subgraph of a plane graph G, is a Tutte path (circuit) if and only if each bridge of P has at most three vertices of attachment and each bridge containing an edge of X_G has at most two vertices of attachment.

Lemma 1 (Tutte). Let G be a 2-connected plane graph. Let x, y, and α be two vertices and an edge, respectively, of X_G. Then G has a Tutte path from x to y containing α.

* The majority of this work was completed while the author was at the Georgia Institute of Technology.

© 1997 John Wiley & Sons, Inc. CCC 0364-9024/97/040341-05
A Tutte path in a 4-connected graph is also a Hamilton path. Tutte's Theorem follows by choosing x and y to be adjacent. In 1983, Thomassen [4] improved this result by removing the restriction on the location of y.

Lemma 2 (Thomassen). Let G be a 2-connected plane graph. Let x and α be a vertex and edge, respectively, of X_G, and let y be any vertex of G distinct from x. Then G has a Tutte path from x to y containing α.

Thomassen’s Theorem that every 4-connected plane graph is Hamilton-connected easily follows from this lemma. Freeing the vertex y from being in X_G allows the ends of the path to become arbitrary, giving the necessary Hamilton paths. For a proof of Lemma 2, see [4] and [1].

The main result of this paper generalizes Lemma 2, by removing the restriction on the location of x.

Theorem. Let G be a 2-connected plane graph. Let α be an edge of X_G, and let x and y be arbitrary distinct vertices of G. Then G has a Tutte path P from x to y containing α.

Since x and α no longer have to share a face, this allows for more powerful results. For example, consider a 4-connected plane graph G. While Tutte’s theorem shows that G contains a Hamilton circuit through any edge of G, the theorem presented here shows that G has a Hamilton circuit through any two edges of G. Further, let x and y be distinct vertices of G. Thomassen’s theorem gives a Hamilton path in G from x to y. The theorem above guarantees a Hamilton path in G from x to y through any edge of G (except xy). These two results are stated below as Corollaries 1 and 2.

Corollary 1. Let G be a 4-connected plane graph, x, y be vertices of G, and $\alpha \neq xy$ be an edge of G. Then G has a Hamilton path from x to y through α.

Corollary 2. Every 4-connected plane graph has a Hamilton circuit through any two of its edges.

The theorem above is as strong as possible in several ways.

The edge α cannot be removed from X_G, even if the vertices x and y are required to be on X_G. In the graph of Figure 1, there is no Tutte path between the marked vertices containing the marked edge.

Keeping α on X_G, the direction that α is traversed cannot be specified, even if the vertices x and y are again both on X_G. This is easily seen from planarity.

In general, there is no theorem to find a path through two edges of X_G, even if the vertices x and y are both required to be on the exterior circuit. Consider the circuit C_4 with vertices a, b, c, d.

![Figure 1. The edge cannot be removed from the exterior circuit.](image-url)
and edges ab, ad, bc, cd, embedded in the plane. There is no Tutte path in C_4 from a to c through both ab and either ad or cd. Let $D := C_4 + bd$, with bd embedded in the interior face of C_4. Then D has no Tutte path from a to c through both ab and bc. On the other hand, given a subset S of $E(X_G)$, it may be possible to classify the structure of 2-connected plane graphs that do not have a Tutte path from x to y containing S. As a corollary, this would give necessary and sufficient conditions for a 2-connected plane graph without interior component 3-cuts (see [2]) to have a Hamilton circuit.

2. A PROOF OF THE THEOREM

One more lemma is required. It is a useful tool for many planar problems, and will be referred to as the Three Edge Lemma. For a proof, see [2] or [3].

The Three Edge Lemma. Every 2-connected plane graph G has a Tutte circuit through any three edges of X_G.

If P is a path, and x and y are two vertices of P, then xPy will represent the subpath of P from x to y. If H and J are subgraphs of a graph G, then an H, J-connector in G is a bridge of $H \cup J$ in G with vertices of attachment in both H and J.

Proof of the Theorem. The proof is by induction on the number of vertices of G. Clearly, the theorem is true for $|V(G)| \leq 4$. Let 2-connected plane graph G be given. Let e be an arbitrary edge of X_G, and let x and y be arbitrary vertices of G. From Lemma 2, the theorem follows trivially if x or y is a vertex of X_G, so assume not. Also, if there is an edge $e \in E(G)$ such that x or y is a vertex of X_G, then the theorem follows trivially if Lemma 2 is applied correctly to $G - e$, so assume not. A Tutte path in a graph H with $|V(H)| < |V(G)|$ from u through ω to v found by induction will be called a $u\omega v$-path in H.

Assume first that there are subgraphs L and R of G such that $L \cup R = G$, $V(L) \cap V(R) = \{a, b\} \subset V(X_G)$, $x \in V(L)$, $y \in V(R)$, and R is 2-connected (or a similar structure with x and y swapped). Let $c \notin V(G)$ be given. Let $\beta := ab$, $L' := L + c + ac + bc$, with c embedded where R used to be, and $R' := R + \beta$, with β embedded where L used to be. Since R is 2-connected, and $y \notin V(X_{R'})$, $|V(R')| \geq 4$, and thus $|V(L')| < |V(G)|$. Find an $x\alpha e$-path P_L in L' by induction. Without loss of generality, assume $b \in V(P_L)$.

Case 1. $a \notin V(P_L)$.

Let γ be an edge of X_R containing a and P_R be a $b\gamma y$-path in R by induction. Then set $P := xP_Lb \cup bP_Ry$.

Case 2. $a \in V(P_L)$.

Let P_L be an $a\beta y$-path in R' by induction. Then set $P := xP_Lb \cup bP_Ry$.

The path P is as desired in each case.

If there are no such L and R as above, then x and y are in the same component of $G \setminus X_G$. From elementary graph theory, there is a “path” of blocks of $G \setminus X_G$, the first having x as a vertex and the last having y as a vertex. Let B_1, B_2, \ldots, B_k be the unique such “path” of blocks of $G \setminus X_G$ with $x \in V(B_1), y \in V(B_k)$, and k minimal. Let $b_0 := x, b_i := B_i \cap B_{i+1}$ for $i := 1, \ldots, k - 1, b_k := y$, and $H := \bigcup_{i=1}^k B_i$.

The $(X_G \cup H)$-bridges will now be grouped. Let s be a vertex of X_G which shares a face with a vertex of H. For each $(X_G \cup H)$-bridge X, let Q_X be the minimal path in X_G including all the vertices of attachment of X in X_G such that s is not an interior vertex of Q_X. Further, let $p_X(q_X)$ be the most counterclockwise (clockwise) vertex of Q_X. Note that for two $(X_G \cup H)$-bridges
X, Y, either $Q_X \subset Q_Y, Q_Y \subset Q_X, \text{ or } E(Q_X) \cap E(Q_Y) = \emptyset$. Let an $(X_G \cup H)$-bridge X be \textit{maximal} if there is no $(X_G \cup H)$-bridge Y distinct from X such that $Q_X \subset Q_Y$, and $Q_X \neq Q_Y$.

Let the \textit{group} of a maximal $(X_G \cup H)$-bridge X be the union of X and all $(X_G \cup H)$-bridges Y such that $Q_Y \subset Q_X$, and $Q_Y \neq Q_X$. Let the $(X_G \cup H)$-\textit{bridge groups} be the groups of its maximal bridges.

For each X_G, H-connector group K, let v_K be the unique vertex of attachment of K in H and $i(K)$ be the least (greatest) integer such that $v_K \in V(B_{i(K)}) \in V(B_{j(K)})$. Let K_α be the X_G, H-connector group such that $\alpha \in E(Q_{K_\alpha})$, or if there is none, an X_G, H-connector group with p_{K_α} nearest to α counterclockwise from it.

Since G is 2-connected, exchanging clockwise and counterclockwise in the definitions above if necessary, there is an X_G, H-connector group K with $p_K \neq p_{K_\alpha}$. Let L_α be an X_G, H-connector group with q_{L_α} nearest counterclockwise to Q_{K_α} such that $p_{L_\alpha} \neq p_{K_\alpha}$. Let K_1, \ldots, K_m be all the X_G, H-connector groups with $p_{K_i} = p_{K_\alpha}$. Notice $K_\alpha = K_i$ for some i, and thus $m \geq 1$. Let L_1, \ldots, L_n be all the X_G, H-connector groups with $p_{L_j} \neq p_{K_\alpha}, q_{L_j} = q_{L_m}$. Notice $p_{L_m} \neq p_{K_\alpha}$, and thus $L_\alpha = L_j$ for some j, and $n \geq 1$.

Let a_1 and a_2 be vertices not in G, and let $\gamma := a_1 a_2$, $\delta_i := a_1 v_{K_i}$, and $\epsilon_j := a_2 v_{L_j}$. Let $f := \min\{\min\{j_K|1 \leq i \leq m\}, \min\{j_{L_j}|1 \leq j \leq n\}\}$. Let $l := \max\{\max\{i_K|1 \leq i \leq m\}, \max\{i_{L_j}|1 \leq j \leq n\}\}$. If $q_{L_m} \neq p_{K_\alpha}$, let $\beta := \gamma$ and $J := (\bigcup_{i=l}^{f} B_i) + a_1 + a_2 + a_1 + \delta_i + \cdots + \delta_m + \epsilon_1 + \cdots + \epsilon_n$, with the extra vertices and edges embedded in a planar way in the infinite face. If $q_{L_m} = p_{K_\alpha}$, note $n = 1$ and let $a_1 = a_2$, $\beta := \epsilon_1$, and $J := (\bigcup_{i=l}^{f} B_i) + a_1 + \delta_i + \cdots + \delta_m + \epsilon_1$, with the extra vertex and edges embedded in a planar way in the infinite face.

Notice J is 2-connected, and since only at most two vertices were added while $V(X_G)$, containing at least three vertices, was deleted, $|V(J)| < |V(G)|$. Thus induction gives P_j, a $b_{f-1} \beta \eta$-path in J. For $i < f$ or $i > l$, let ξ_i be an edge of X_B, and P_i be a $b_{i-1} \beta \xi_i$-path in B_i.

There is exactly one integer i such that $\delta_i \in E(P_j)$; let $K_\delta := K_i$. There are two cases on how to define P_{K_δ}.

\textbf{Case 1.} K_δ is a trivial X_G, H-connector.

Let $P_{K_\delta} := K_\delta$.

\textbf{Case 2.} K_δ is a non-trivial X_G, H-connector group.

Let $\eta := v_{K_\delta} q_{K_\delta}$ and $M := K_\delta \cup Q_{K_\delta} + \eta$, with η embedded in the infinite face such that $V(Q_{K_\delta}) \subset V(X_M)$. Let θ be an edge of X_M containing p_{K_δ}. There are two cases on how to define a circuit C.

\textbf{Case 2a.} $\alpha \notin E(Q_{K_\delta})$.

Let C be a Tutte path in M from v_{K_δ} to q_{K_δ} through θ by Lemma 1.

\textbf{Case 2b.} $\alpha \in E(Q_{K_\delta})$.

Let C be a Tutte circuit through α, η, θ in M by the Three Edge Lemma.

For each of Cases 2a and 2b, let $P_{K_\delta} := C - \eta$.

There is exactly one integer j such that $\epsilon_j \in E(P_j)$; let $L_\epsilon := L_j$. There are two cases on how to define P_{L_ϵ}.

\textbf{Case 1.} L_ϵ is a trivial X_G, H-connector.

Let $P_{L_\epsilon} := L_\epsilon$.

\textbf{Case 2.} L_ϵ is a non-trivial X_G, H-connector group.

\textbf{Case 2a.} $q_{L_\epsilon} \neq p_{K_\alpha}$.

Let $\iota := v_{L_\epsilon} p_{L_\epsilon}$, and $N_\iota := L_\epsilon \cup Q_{L_\epsilon} + \iota$, with ι embedded in the infinite face such that $V(Q_{L_\epsilon}) \subset V(X_{N_\iota})$. Let λ be an edge of X_{N_ι} containing q_{L_ϵ}. Let D be the Tutte path in N_ι from v_{L_ϵ} to p_{L_ϵ} through λ by Lemma 1. Let $P_{L_\epsilon} := D - \iota$.

Case 2b. \(q_{L_k} = p_{K_n} \).

Let \(\kappa := \epsilon_{L_k} q_{L_k} \) and \(N_b := L_k \cup Q_{L_k} + \kappa \), with \(\kappa \) embedded in the infinite face such that \(V(Q_{L_k}) \subset V(X_{N_b}) \). Let \(P_b \) be a \(\epsilon_{L_k} q_{L_k} \)-path in \(N_b \) by induction. Let \(P_{L_k} := v_{L_k} P_b q_{L_k} \).

Let \(P_X \) be the path in \(X_G \) from \(P_{L_k} \) counterclockwise to \(q_{K_n} \). Finally, let \(T := P_j \cup (\bigcup_{i=1}^{j-1} P_i) \cup (\bigcup_{i=1}^{j+1} P_i) \cup P_{K_n} \cup P_{L_k} \cup P_X = a_1 - a_2 \).

Now let \(T \) be modified to become a Tutte path \(P \) in \(G \). For a bridge \(A \) of \(T \) with \(V(A) \cap V(X_G) \neq \emptyset \), let \(Q_A, p_A, q_A \) be defined as with \(X_G, H \)-connectors. Also, let the bridges be grouped as before.

If there is a non-trivial bridge group \(A \) of \(T \) with all its vertices of attachment in \(V(X_G) \cap V(T) \), then let \(\mu := p_{A \cup A} \) and \(M := A \cup Q_A + \mu \), with \(\mu \) embedded in the infinite face such that \(V(Q_A) \subset V(X_M) \). If \(\alpha \in E(Q_A) \), then let \(\beta := \alpha \), else let \(\beta \) be any edge of \(X_M \) distinct from \(\mu \). Let \(C \) be a Tutte path in \(M \) from \(p_A \) to \(q_A \) through \(\beta \) by Lemma 1. Modify \(T \) by replacing \(Q_A \) by \(C \) in \(T \).

If there is a bridge group \(A_m \) of \(T \) remaining with \(\alpha \in E(Q_{A_m}) \), then let \(\nu := v_{A_m}, p_{A_m}, \xi := v_{A_m} q_{A_m}, N := A_m \cup Q_{A_m} + \nu + \xi \), with \(\xi \) embedded in the infinite face such that \(V(Q_{A_m}) \subset V(X_N) \). (Notice that \(A_m = K_n \).) Let \(C \) be the Tutte circuit through \(\alpha, \nu, \xi \) in \(N \) from the Three Edge Lemma. Modify \(T \) by replacing \(Q_{A_m} \) by \(C - v_{A_m} \) in \(T \).

Note that every bridge group of \(T \) has at most two vertices of attachment not in \(V(X_G) \). In each case, a portion of \(T \) which is a subgraph of \(X_G \) will be replaced by a path through the corresponding bridge group.

Let \(R_2 \) be a bridge group of \(T \) with two vertices of attachment not in \(V(X_G) \). Let \(u_1 \) (\(u_2 \)) be the most counterclockwise (clockwise) vertices of attachment of \(R_2 \) in \(X_G \). Let \(U \) be the path in \(X_G \) from \(u_1 \) clockwise to \(u_2 \). Notice \(U \) is a subgraph of \(T \). Let \(v_1 \) and \(v_2 \) be the vertices of attachment of \(R_2 \) not in \(X_G \) such that \(u_1 \) and \(v_1 \) are in the boundary of some face \(F \) of \(G \). Let \(\pi_1 := u_1 v_1, \rho := v_1 v_2, \) and \(H_2 := R_2 \cup U + \pi_1 + \pi_2 + \rho \), with \(\pi_1, \pi_2, \rho \) embedded in the infinite face such that \(V(U) \subset V(X_H) \). Note \(H_2 \) is 2-connected and plane; thus there is a Tutte circuit \(C_2 \) through \(\pi_1, \pi_2, \rho \) by the Three Edge Lemma. Let \(P_2 \) be the path from \(u_1 \) to \(u_2 \) in \(C_2 \) not through \(v_1 \). Now \(T \) is modified by replacing \(U \) with \(P_2 \). Repeat this process for all such \(R_2 \).

Let \(R_1 \) be a bridge group of \(T \) with one vertex of attachment not in \(V(X_G) \). Let \(u_1 \) (\(u_2 \)) be the most counterclockwise (clockwise) vertices of attachment of \(R_1 \) in \(X_G \). Let \(U \) be the path in \(X_G \) from \(u_1 \) clockwise to \(u_2 \). Notice \(U \) is a subgraph of \(T \). Let \(t \) be the vertex of attachment of \(R_1 \) not in \(X_G \). Let \(\sigma_1 := u_1 t, \) and \(H_1 := R_1 \cup U + \sigma_1 + \sigma_2 \), with \(\sigma_1, \sigma_2 \) embedded in the infinite face such that \(V(U) \subset V(X_H) \). Note \(H_1 \) is 2-connected and plane; thus there is a Tutte path \(P_1 \) from \(u_1 \) to \(t \) through \(\sigma_2 \) by Lemma 1. Now \(T \) is modified by replacing \(U \) with \(u_1 P_1 u_2 \). Repeat this process for all such \(R_1 \).

References

Received November 9, 1993