

Labwork on *Statistical learning*

Probabilities and statistics - SNS Master - University of Montpellier

Nicolas Sutton-Charani – Euromov DHM – IMT Mines Alès

Solutions will be given in [this online notebook](#).

green = bonus questions

blue = package names

purple = function names

1. Data import

- a. Import the *framingham* dataset from [here](#).
- b. Compute the dimensions of the *framingham* dataset and the type of each variables.

2. Missing data imputation

- a. Compute the number of missing data per variable.
- b. Impute the missing data by mean for numerical variables.
- c. Impute the missing data by the most frequent values for binary variables.

3. Normalisation : normalise each numerical variables so that it lies in [0, 1].

For the following, the \mathbf{x} matrix will refer to the normalised completed numerical variables of the *framingham* dataset.

4. Correlations

- a. Compute the Spearman correlation matrix on \mathbf{x} .
- b. Plot the corresponding heatmap correlation
- c. Redo the previous question including binary variables of the *framingham* dataset with the following customisation : plot only the a triangular correlation heatmap with 45° rotated x-axis variable names, set negative correlations to blue and positive ones to red.

5. PCA

- a. With the `PCA` function of the `FactoMineR` package compute a PCA on normalised numerical variables.
- b. With the `fviz_functions`, plot the the percentage of explained variance per dimension and the 2 PCA main plots (1 for examples and 1 for variables) and comment.
- c. Plot the contributions of each variable to the 5 first dimensions with the `get_pca_var` and `corrplot` functions of the `corrplot` package.
- d. Recompute the individual PCA plot and successively color points according to the binary variables " TenYearCHD" and " prevalentHyp ".

6. Clustering

- a. With the `fviz_nbclust` function find the optimal number of clusters according to the *silhouette* criteria considering normalised numerical variables.
- b. Compute a 3-means clustering on the `framingham` dataset restricted to normalised numerical variables with 25 initialisations and plot the resulting clustering with the `fviz_cluster` function.
- c. In a single plot-window, plot 2,3,4 and 5-means clustering of the same data (use the `grid.arrange` function of the `gridExtra` package).
- d. Compute the distance matrix between all examples considering the normalised numerical variables with the `dist` function.
- e. Plot the corresponding dendrogram.
- f. Add colored bloc arround clusters. And plot the resulting clusters with the `fviz_cluster` function.

7. Classification

- a. Define `y` and `x_binary` as respectively the 'TenYearCHD' binary labels and the matrix containing all the binary variables of the `framingham` dataset and create a `preprocessed_dataset` as the concatenation of `x`, `x_binary`, and `y`.
- b. Convert all binary variables to factors.
- c. Create `train` and `test` datasets from the `preprocessed_dataset` considering a 80-20% split after examples shuffling.
- d. Considering the predictive task of predicting `TenYearCHD`' from all other variable, compute `knn` predictions with the `knn` function of `class` package and the corresponding accuracy. Comment.

- e. Train a naive Bayes model on ***train*** that can predict the 'TenYearCHD' variable from all other variables, compute its associated predictions on ***test*** and the corresponding accuracy (package ***e1071***, function ***naiveBayes***).
- f. Same thing for a **SVM** model (function ***svm***).
- g. Compute the recall and precision of KNN, naive Bayes and SVM predictions.
- h. What is the predictive power of the following task : predict *currentSmoker* from *male*, *diabetes*, *age*, *education*, *totChol*, *BMI*, *glucose* with a SVM model ?

8. Regression

- a. Train a SVM model on ***train*** that can predict the *glucose* variable from all other variables, compute its associated predictions on ***test*** and the corresponding RMSE.
- b. Compute **KNN** predictions of the *glucose* variable from all other variables on ***test*** and the corresponding RMSE (package ***FNN***, function ***knn.reg***).
- c. Compute a model comparison pipeline on the ***preprocessed_dataset*** considering a **dummy** regressor predicting the average label value of the train data, a **KNN** regression model, a **SVM**. For the evaluation protocole considered a **10-fold cross validation** (package ***caret***, function ***createFolds***) **repeated 30 times**, compute the average **RMSE** and plot the corresponding boxplots.