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The Data Science process
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Statistical learning

Definition

Learn pattern or models parameters from a set of examples.

Type of learning

» Supervised learning : data are labelled and the objective is to train a model able
to predict labels from attributes, classification refers to categorical labels
whereas regression involves numerical labels.

» Unsupervised learning or clustering : data are unlabelled, the objective is to find
relevant clusters that fit to the examples latent structure. This allows the
profiling of examples in several clusters that reflects the population main profiles.

v

Hypothesis

» Supervised case : the labels distribution depends on the attributes one.

» Unsupervised case : examples are structured according to an unknown pattern
or distribution.
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Statistical learning

Algorithms

» clustering : K-means, gaussian mixtures, hierarchical
clustering, spectral clustering, etc.

> classification : K-nearest neighbours, logistic regression,
Support Vector Machines (SVM), neural networks, decision
trees, naive Bayes, random forest, boosting, etc.

> regression : K-nearest neighbors, linear regression, lasso,
ridge, elasticnet, Support Vector Machines (SVM), neural
networks, decision trees, random forest, boosting

10/116



Statistical learning
LMain concepts
L Definitions

Formalism

Training data
X1, X1
(x,y) = : =

XNs YN Xp

J
X{ N
examples (x;,y;) are
S assumed to be /.i.d.
Xn  Yn

> Attributes X = (X!,... X)) € X = X1 x .- x X/

» Spaces X7 can be categorical or numerical.

» Class label Y € Q = {wy, ..

.,wk } (C R for regression)

» A supervised model fp : X — Q aims at mapping attributes
(Xi)izl,...,n to labels (y:')i:l,.“,n such thatVi=1,...,n: fg(X,') = Y.
The model's parameter 6 € © is estimated by fitting it to training

data (x, y).
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Training set

ML Algorithm
height,
weight,
gender, number of steps
—_—
age, Model (f) diabet (yes/no)
glycemia
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LEvaIuation and overfitting

Training and Testing

Training set

y

ML Algorithm
height,
weight,
gender, number of steps
age, Model (f) diabet (yes/no)
glycemia

Question : How can we be confident about f?
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Clustering

How to evaluate your model ?
» Not trivial (as compared to counting the number of errors in
classification).

> Internal evaluation : using same data. high intra-cluster
similarity and low inter-cluster similarity.

»> External evaluation : use of ground truth of external data.
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Training and Testing

TEST

P Training set is a set of examples used for learning a model
(e.g., a classification model).

P> Test set is used to assess the performance of the final model
and provide an estimation of the test error.

Note : Never use the test set in any way to further tune the
parameters or revise the model.
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K-fold Cross Validation

A method for estimating test error using training data.

Data: learning algorithm A and a dataset D

Result: test performance estimator E

Step 1 : Randomly partition D into K equal-size subsets Dy, ..., Dk

Step 2 :

for k =1to K do
Train Aon all Dy, I € {1,...,K} and | # k, and get f;
Apply fi to Dy and compute Perf (fi, Dy);

end

Step 3 : Average error over all folds :

~ 1
E= ?Perf(fk, Dk)
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Stratified K-fold Cross Validation

A method for estimating test error using training data.
Data: learning algorithm A and a dataset D
Result: test performance estimator E

Step 1 : Randomly partition D into K equal-size subsets Dy, ..., Dk
with similar labels distribution
Step 2 :
for k =1to K do
Train Aon all Dy, I € {1,...,K} and | # k, and get f;
Apply fi to Dy and compute Perf (fi, Dy);
end
Step 3 : Average error over all folds :

~ 1
E= ?Perf(fk, Dk)
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LEvaIuation and overfitting

Confusion matrix

Positive

Actual label

Negative

Predicted label

Positive
Negative

True Positive (TP)

False Positive (FP)

False Negative (FN)

True Negative (TN)
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Evaluation metrics

Actual label
Positive Negative
. Positi True Positi TP False Positi FP
Predicted label | (S - Fllce Negative (FI) | True Negative (TH)
Accuracy % The proportion of correct predictions
.. The proportion of positive predictions
P s o
recision TP+FP that were actually positive
Recall TP The proportion. of positi_v_e cases
TP+EN that were predicted positive
e s The proportion of negative cases
f e . .
Specificity TN+FP that were predicted negative
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Evaluation metrics

Once a supervised model f is learnt — prediction y; = f(x;) of y;

EVALUATION : comparison between the y; and y; terms.

Regression

> Root Mean Square Error : RMSE = 1 3™ (i — y;)?

n
> Mean Absolute Error : MAE = 1 3™ | — yj|

Classification

n
: =1
> accuracy : acc = Z Lig—yy

> binary case : precision, recall, F-measure, AUC, etc.

v
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LEvaIuation and overfitting

Structural Risk Minimization

Prediction Error

High Bias
Low Variance
\ .

N

Good models

Underfitting

Low Bias
High Variance

Test error

Training error

Overfitting

Low

Complexity of the model

High
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Training and Testing

Income
Income

Age

Income

Age
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Training and Testing

x xX
X X X

Income
Income

Age Age

High bias (underfitting)

Income

Age
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Training and Testing

Income
X
X
X
Income

X X X

Age Age

High bias (underfitting)

Income

Age
High variance (overfitting)
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Training and Testing

£ X xX% §
E X X X 2 X
X
X
I Age I A;
High bias (underfitting) Just right!
g
5
Age

High variance (overfitting)
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Avoid overfitting

In general, use simple models!

» Reduce the number of features manually or do feature
selection.

» Do a model selection.

» Do a cross-validation to estimate the test error.
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L Dimensionality reduction

Descriptive analysis

» descriptiv statistics
- variables

* types
* spaces

- distribution
* values (min, max, quantiles, etc)
* plots (boxplots, pie, histograms, etc)
» correlations

- matrix, heatmap
- tests
- — features selection ?

» information projection — PCA (or SVD)
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L Dimensionality reduction

Principal Component Analysis (PCA)

Formalism
1
X1 xl,...,xi/
X = =
1 J
XN XN" ..,XN

P data are usually centered and reduced

Objectives
1. the "optimal” graphical representation of the observations

minimizing the deformation of the point cloud in a sub-space

of dimension 2 (or 3).

2. dimension reduction : J — g (g < J), or the approximation of

observations from J variables with g new variables.

4
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L Dimensionality reduction

Principal Component Analysis (PCA)

Principal Component 2
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L Dimensionality reduction

Principal Component Analysis (PCA)

20
group

° BLCA
© BRCA
* COAD
HNSC
KICH
KIRC
KIRP
LIHC
LUAD
Lusc

STAD
THCA
UCEC

https ://www.researchgate.net/publication/340459143_Network-
based_metabolic_characterization_of_renal_cell_carcinoma /figures ?lo=1
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[ Dimensionality reduction

Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

2-Dimensional PCA Scatter Plot Scree Plot
50 Ca =
A
|
£
= Loading Plot
=
25 n
I = le
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- s
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Correlation Heatmap
e
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L Dimensionality reduction
:

Principal Component Analysis (PCA)

Contribution of variables to Dim-1

Varlables - PCA

Dim2 (17%)

Dim1 (27.2%)

https ://rforhealthcare.org/principal-component-analyses/
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L Dimensionality reduction

Principal Component Analysis (PCA)

A
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https ://andrewirwin.github.io/data-visualization/pca.html
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Dynamical data
Time series (xf);:l,,,,,/v, t=1,...,T
P unsupervised problems : time series clustering
» supervised problems : time series classification or forecasting
» — what features to consider?

Features extraction
> raw data? — J = T — deep approaches (CNN)

> framing/windowing — descritpors computation :
- statistical descriptors (u, o, quantiles, kurtosis/skewness, etc.)
- time and frequencies (Fourier) domains

Evaluation pipeline
» time series classification : features extraction — standard k-fold CV

» time series forecasting : chronological pipeline — predict iteratively the future
from the past (no data mixing!)

A For some application a segmentation step is required before features extraction

— determenist or ML (deep) approaches .
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leages

Images

1,1 1,L

Images (x;)i=1,....n With x; =

K1 K,L
Xi - Xi

» supervised problems : image classification

> raw data? — deep approaches (state of the art)

» — what features to consider?

Features extraction

» bag of features — descritpors computation :

statistical descriptors (mean, standard deviation, etc.)
texture descriptors
corners, edges : Histogram of oriented gradients (HOG)

color/shape-based

AFor many application a segmentation step is required before features extraction —

determinist or ML (deep) approaches
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LLearning models

Main algorithms

Unsupervised learning
> K-means

» hierarchical clustering

Supervised learning

» distance based : KNN

> tree based : decision tree, random forest, boosting
» Kernel based : SVM
>

generalised linear model : linear regression, logistic regression,
lasso, ridge, elasticnet

v

neural networks : perceptron, MLP, deep networks
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L Unsupervised learning

Clustering

Training data : "examples” x.
N 1 d
X1, .., Xp With x; € Q* X -+ X Q
» Clustering :
frQlx- x Q9 — {C, ..., Gk} set of clusters

Example : Find clusters of patients/players, of
therapies/exercises, ...
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3.1 Unsupervised learning
K-means

47 /116



Statistical learning
|—Learning models

[ Unsupervised learning

K-means
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K-means
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[ Unsupervised learning

K-means
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[ Unsupervised learning

K-means
° . e o
o o o o
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K-means
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K-means

53/116



Statistical learning
|—Learning models

[ Unsupervised learning

K-means

» Goal : Assign each example (xq,
clusters {Cy, ..., Ck }.

...y Xp) to one of the K
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L Unsupervised learning

K-means

» Goal : Assign each example (xi, ..., x,) to one of the K
clusters {Cq, ..., Ck }.

» Centroid y; is the mean of all examples in the jt cluster.

55/116



Statistical learning
LLearning models

L Unsupervised learning

K-means
» Goal : Assign each example (xi, ..., x,) to one of the K
clusters {Cy, ..., Ck }.
» Centroid ; is the mean of all examples in the jt cluster.

» Minimize :

K
J=33 = w )

Jj=1 x;eC;
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L Unsupervised learning

Data: without labels
Result: set of clusters {Ci, ..., Cx} and data assignement to them
Initialize randomly centers p1, ..., pk;
while convergence™ not reached do
Assign each point x; to the cluster with the closest 1;
Calculate the new centers of each cluster as follows :

x;i€C,
end
convergence® = no change in the clusters OR maximum number of iterations
reached;

Algorithm 1: K-means
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L Unsupervised learning

K-Means : pros and cons

» Easy to implement

BUT...

»> Need to know K
» Suffer from the curse of dimensionality

» Lack of theoretical foundation
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Hierarchical clustering
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L Unsupervised learning

Hierarchical clustering

» Hierarchical clustering is a widely used data analysis tool.

» The idea is to build a binary tree of the data that successively
merges similar groups of points

» Visualizing this tree provides a useful summary of the data
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L Unsupervised learning

Hierarchical clusering vs K-means

» Recall that k-means requires

> A number of clusters K
» An initial assignment of data to clusters

> A distance measure between data d(xn, xm)

» Hierarchical clustering only requires a measure of similarity
between groups of data points.
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L Unsupervised learning

Hierarchical clustering

Data: without labels
Result: data tree (taxonomy)

Place each data point into its own singleton group;

while all the data are not merged into a single cluster do

merge the two closest groups;

end
Algorithm 2: Agglomerative clustering
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[ Unsupervised learning

Hierarchical clustering

Each point starts as its own cluster.
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L Unsupervised learning

Hierarchical clustering

We merge the two clusters (points) that are closet to each other.
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[ Unsupervised learning

Hierarchical clustering

Then we merge the next two closest clusters.
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[ Unsupervised learning

Hierarchical clustering

Then the next two closest clusters. . .
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L Unsupervised learning

Hierarchical clustering

Until at last all of the points are all in a single cluster.
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Hierarchical clustering

To visualise the results, we can look

y-axis on dendrogram is (proportional to) the distance between the

at the resulting dendrogram.

Dendrogram

A W m << O

clusters that got merged at that step.
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Supervised learning

Given : Training data :
(X1, ¥1)s s (Xmy ¥n), With x; € X =X x ---x X7 and y; € Qis
discrete (categorical /qualitative).

Example Q = {-1,+1}, Q ={0,1}, Q =[0,1].

Task : Learn a classification/regression function fy, i.e. estimate 6,
such that :

fp: X — Q
xi = f(xi) =y
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LSupervised learning

Supervised learning examples

> Classification :
Flue from average daily number of steps! Who will have the flue this
winter ?

» Regression :
Summer weight from average daily number of steps! Who will be thin
this summer?
7 steps | weight

12000 65
8000 70
5000 85
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LSupervised learning

Linear regression

We want to estimate 6 = (a, b) such that weight = a.steps + b.

85{\e®
80 least squares estimation — here
= a=—2.8and b=098.6
275 . ,
2 cov(X,Y)
R2 = Var(X)Var(Y) € [0’ 1]
70 represents the regression quality
(1 for perfection).
65

6000 8000 10000 1200¢
steps

Prediction : what will be the weight of someone doing 10000 daily
steps ?
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Logistic regression
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L Supervised learning

Logistic regression = a classification model

» We can't predict flue with any certainty. Suppose we want to
predict how likely is someone to have the flue. We must
compute a probability between 0 and 1 that he will have the
flue.

P It makes sense and would be suitable and practical.

» In this case, the output is numerical (regression) but is
bounded (classification).

P(y|x) = P(flue = yes | #steps)
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Classification

» Can we use linear regression ?

> Yes. However...

» Works only for Binary classification (2 classes). Won't work for
Multiclass classification e.g.
Q = {green, blue, brown}
Q = {stroke, heart attack, drug overdose}

» |If we use linear regression, some of the predictions will be
outside of [0,1].

» Model can be poor. Example.
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Logistic regression

1.00
0.75 A
7 steps > 10813 — P(flue) < 0!
T
0.25 and
0.00{ ‘ R ® steps < 3348 — P(flue) > 1!
2500 5000 7500 10000 12501

steps
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Logistic regression

y = f(x) = Bo + B1x
flue = 5y + 31 x steps
We want 0 < f(x) <1; f(x) = P(y = 1|x)

We use the sigmoid function :
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LSupervised learning

Logistic Regression

eﬂO‘i‘BlX
1 + ebotBix

New f(x) = g(5o + P1x)

g(Bo + Bix) =

In general :

d
F) =g DB
=1

In other words, cast the output to bring the linear function
quantity between 0 and 1.
Note : One can use other S-shaped functions.
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3.2 Supervised learning

K-nearest neighbours (KNN)
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L Supervised learning

K-nearest neighbours

>

>

Not every ML method builds a model!

Main idea of KNN : Uses the similarity between examples.
Assumption : Two similar examples should have same labels.
Numerical features : X x --- x X4 c R”.

Assumes all examples (instances) are points in the J
dimensional space X1 x --- x X7,

KNN uses the standard Euclidian distance (usually) to define
nearest neighbours.

Given two examples x;, and x;,, d(xi,x;,) = Z( 3 ,2)
Jj=1
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LSupervised learning

K-nearest neighbours

Training algorithm :
Given an example xq4 to be predicted : suppose Nk(xq) is the set of
the K-nearest neighbours of xg :

» Classification : y, = sign ooy
x;i €Nk (xq)

» Regression : y; = m el\;( )J/i
Xi€NK(Xq
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K-nearest neighbours
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K-nearest neighbours

Question : Draw an approximate decision boundary for K =37
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K-nearest neighbours
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K-nearest neighbours

Question : What are the pros and cons of KNN 7

Pros :
+ Simple to implement.
+ Works well in practice.

+ Does not require to build a model, make assumptions, tune
parameters.

+ Can be extended easily with news examples.

Cons :
- Requires large space to store the entire training dataset.

- Slow! Given n examples and J features. The method takes
O(n x J) to run.

- Suffers from the curse of dimensionality.
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3.2 Supervised learning

Neural networks
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L Supervised learning

Perceptron

>

Belongs to Neural Networks class of algorithms (algorithms
that try to mimic how the brain functions).

The first algorithm used was the Perceptron (Rosenblatt
1959).

Worked extremely well to recognize :
- handwritten characters (LeCun et al. 1989)
- spoken words (Lang et al. 1990)
- faces (Cottrel 1990)

NN were popular in the 90's but then lost some of its
popularity.

Now NN back with deep learning.
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Perceptron

S

Feature 2

Fe‘ature 1’
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Perceptron

S

Feature 2

Feature 1

» Linear classification method.
» Simplest classification method.
» Simplest neural network.

» For perfectly separated data.
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Perceptron

)= 1if Z wjT>0
't
-1 otherw1se

Given n examples and d features, f(x;) = sign | >_ w;x;
= 91/116
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Perceptron

» Works perfectly if data is linearly separable. If not, it will not
converge.

» |dea : Start with a random hyperplane and adjust it using your
training data.

» |terative method.
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Perceptron
Data: A set of examples, (x1,¥1), ..., (Xn, ¥n)
Result: A perceptron defined by (wp, wy, ..., wy)
Initialize the weights w; to 0 Vj € {1,...,d} ;

while convergence not reached do
update all w; :
for j€{1,...,d} do
for i€ {1,...,n} do
if yif(x;) <0 #i.e. error then
| W= Wit yix
end
end
end

end
Algorithm 3: Perceptron
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Perceptron

Some observations :

» The weights wy, ..., wy determine the slope of the decision boundary.

» wy determines the offset of the decision boundary (can be noted b).

» weights adjustment corresponds to :

- Mistake on positive : add x to weight vector.
- Mistake on negative : substract x from weight vector.
- Some other variants of the algorithm add or subtract 1.

» Convergence happens when the weights do not change anymore
(difference between the last two weight vectors is < ¢).
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Perceptron
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Perceptron
Finally converged !
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Perceptron
With some test data :
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Perceptron expressiveness

» Consider the perceptron with the activation function.

P Idea : Iterative method that starts with a random hyperplane
and adjust it using your training data.

» It can represent Boolean functions such as AND, OR, NOT
but not the XOR function.

» It produces a linear separator in the input space.
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From perceptron to MLP

» The perceptron works perfectly if data are linearly separable.
If not, it will not converge.

» Neural networks use the ability of the perceptrons to represent
elementary functions and combine them in a network of layers
of elementary questions.

» However, a cascade of linear functions is still linear,

» and we want networks that represent highly non-linear
functions.
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From perceptron to MLP

» Also, perceptron used an activation function, which is
undifferentiable and not suitable for gradient descent
(non-derivable) in case data is not linearly separable.

» We want a function whose input is a linear function of the
data and whhose output is differentiable according to the data.

» One possibility is to use the sigmoid function :
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From perceptron to MLP

Tio=/

d
f(zi) - g( Jg—_:o wjzij)

Given n examples and d features, for an example x; (the i?" line in
the matrix of examples) :

1

d
1+exp (— > wa,J>
J=0

f(x) =
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Feedforward-Backpropagation
Backpropagation

Y

Input layer Hidden layer Output layer

Feedforward

—
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Multi class case etc.

> Nowadays, networks with more than two layers, a.k.a. deep
networks, have proven to be very effective in many domains.

» Examples of deep networks : restricted Boltzman machines,
convolutional NN, auto encoders, etc.
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Course syllabus
1. Main concepts

2. Data dimensions and formats

3. Learning models

3.3 Implementation in R

113/116



Statistical learning
|—Learning models
leplementation inR

Supervised learning with R

» model fitting :

obj <- function_name(label ~ attributel + ... + attributel,
learning_data, hyperparameters)

or
obj <- function_name(label ~ ., learning_data, hyperparameters)
> prediction :

preds <- predict(obj, new_data)

» model evaluation :

acc <- mean(preds == new_data$label)
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Models content

> lin_mod <- 1lm(Sepal.Length ~ Sepal.Width + Petal.Width, iris)

» simple call : > lin_mod
Call:
Im(formula = Sepal.Length ~ Sepal.Width + Petal.Width, data = iris)

Coefficients:
(Intercept) Sepal.Width Petal.Width
3.4573 0.3991 0.9721

» ‘summary’ R function : > summary(lin_mod)
Im(formula = Sepal.Length ~ Sepal.Width + Petal.Width, data = iris)

Residuals:
Min 1Q Median 3Q Max
-1.2076 -0.2288 -0.0450 0.2266 1.1810

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 3.45733 0.30919  11.18 < 2e-16 ***
Sepal.Width 0.39907 0.09111 4.38 2.24e-05 *x**
Petal.Width 0.97213 0.05210 18.66 < 2e-16 **x

Signif. codes: 0 ‘%’ 0.001 ‘#*’ 0.01 ‘x> 0.05 ¢.” 0.1 ¢ * 1

Residual standard error: 0.4511 on 147 degrees of freedom
Multiple R-squared: 0.7072,Adjusted R-squared: 0.7033

F-statistic: 177.6 on 2 and 147 DF, -value: < 2.2e-16
st o prvatu 115/116
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Interpretation through plots

> lin_mod <- 1lm(Sepal.Length ~ Sepal.Width + Petal.Width, iris)

> simple plots : » interpretable plots :
gegplot (iris, aes(x = Petal.Width, tree <- rpart(Species - ., iris)
= Sepal.Length)) + rpart.plot(tree)

geom_point() +

geom_smooth(method = 1m)
= setosa

= versicolor
= virginica

EPD&I .Width < 1. 51

116 /116

SepalLength

0 Vs
Petal. Width



	Introduction
	Main concepts
	Definitions
	Evaluation and overfitting

	Data dimensions and formats
	Dimensionality reduction
	Dynamical data
	Images

	Learning models
	Unsupervised learning
	Supervised learning
	Implementation in R


