
Fondamentaux de Kubernetes

Benoit Lange
benoit@lange.xyz

Objectifs
pédagogiques

Les distributions

Installation

kubectl

Autre outils

Des distributions plus ou moins avancés

Red Hat OpenShift SUSE Rancher Canonical Kubernetes
Mirantis Kubernetes Engine

(anciennement
Docker Enterprise)

VMware Tanzu (anciennement
Pivotal) Platform9 Managed Kubernetes Giant Swarm Portainer

Trois
exemples

Kubernetes (K8s)

• Orchestrateur de conteneurs open source (CNCF).

• Gère déploiement, scalabilité, auto-réparation, supervision.

• “Vanilla” = version upstream, très personnalisable mais brut.

OpenShift (Red Hat)

• Distribution Kubernetes enrichie.

• Ajoute sécurité (SELinux, SCC), CI/CD (Tekton), registry intégrée,
console web.

• Orientée entreprise + support commercial Red Hat.

Rancher (SUSE)

• Plateforme de gestion multi-clusters Kubernetes.

• S’appuie sur Kubernetes (vanilla ou k3s).

• Apporte : gouvernance, RBAC centralisé, monitoring, marketplace
d’apps.

Comparatif

Critère Kubernetes (Vanilla) OpenShift (Red Hat) Rancher (SUSE)

Nature Orchestrateur CNCF Distribution Kubernetes
enrichie

Plateforme de gestion
K8s

Installation kubeadm, kOps, k3s, etc. Automatisée (installateurs
Red Hat) Déploie et administre K8s

Sécurité Basique (RBAC, PSP/OPA) Renforcée (SELinux, SCC) Centralisation RBAC
multi-clusters

CI/CD Non intégré Tekton, ArgoCD intégrés Marketplace d’outils

Registry Externe (Harbor, Docker
Hub) Intégrée À configurer

Console CLI kubectl / outils
tiers

Console web complète +
CLI oc

UI web Rancher (multi-
clusters)

Cas d’usage Flexible, modulaire Entreprise, sécurité,
support SLA

Multi-cluster, hybride,
edge

Installation
avec
kubeadm

• Installer un runtime de conteneurs (ex : containerd).
• Installer kubeadm, kubelet, kubectl :
sudo apt-get update && sudo apt-get install -y kubelet
kubeadm kubectl
• Initialiser le cluster (sur le master) :
sudo kubeadm init --pod-network-cidr=10.244.0.0/16
• Configurer kubectl :
mkdir -p $HOME/.kube
cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
• Déployer un plugin réseau (CNI) :
kubectl apply -f
https://docs.projectcalico.org/manifests/calico.yaml

Des
distribution
légère

Problèmes de Kubernetes“complet”

• Installation complexe (kubeadm, CNI, certificats…)

• Consommation importante en ressources
(CPU/RAM/disque)

• Non adapté pour des environnements contraints (IoT, edge,
petites VM)

• Pas toujours nécessaire d’avoir toute la stack “enterprise”

Objectif des distributions légères

• Fournir un Kubernetes conforme CNCF mais simplifié

• Réduire l’empreinte mémoire et CPU

• Installation rapide (souvent en 1 ligne)

• Parfait pour apprendre, tester, prototyper ou déployer
en environnements limités

Example

k3s (Rancher/SUSE)

• Kubernetes allégé (<100 Mo binaire)

• Intègre etcd simplifié (SQLite par défaut)

• Idéal pour IoT, edge, dev rapide

microk8s (Canonical)

• Installation via snap install microk8s

• Modulaire (activer/désactiver DNS, ingress,
registry, etc.)

• Bon choix pour du dev local ou petites
équipes

minikube / kind

• Pour apprendre Kubernetes en local

• Fonctionne dans une VM ou dans Docker

• Très utile en formation et CI/CD pipelines

Le cas de k3s curl -sfL https://get.k3s.io | sh -

sudo k3s kubectl get node

Qu’est-ce que kubectl

Définition
• kubectl est la CLI officielle pour interagir avec un cluster Kubernetes.
• Communique avec l’API Server du Control Plane.
• Utilise le fichier kubeconfig pour savoir à quel cluster se connecter.

Rôle
• Déploiement et gestion des ressources.
• Consultation de l’état du cluster.
• Exécution de commandes/debug dans les Pods.

Syntaxe et commandes de base

Structure générale
• kubectl <resource> <action> [options]

Exemples
• kubectl get nodes # Liste les nœuds du cluster
• kubectl get pods # Liste les pods
• kubectl describe pod X # Détails d’un pod
• kubectl logs X # Voir les logs
• kubectl exec -it X -- sh # Entrer dans un conteneur

Configuration
et contextes

kubeconfig

• Fichier de config (par défaut : ~/.kube/config).

• Contient : clusters, utilisateurs, contextes.

Contextes

• Permettent de gérer plusieurs clusters/environnements
(dev, prod…).

• kubectl config get-contexts
• kubectl config use-context dev-cluster

Namespaces

• kubectl agit par défaut sur default.

• On peut cibler un namespace :
• kubectl get pods -n kube-system

	Slide 1: Fondamentaux de Kubernetes
	Slide 2: Objectifs pédagogiques
	Slide 3: Des distributions plus ou moins avancés
	Slide 4: Trois exemples
	Slide 5: Comparatif
	Slide 6: Installation avec kubeadm
	Slide 7: Des distribution légère
	Slide 8: Example
	Slide 9: Le cas de k3s
	Slide 10: Qu’est-ce que kubectl
	Slide 11: Syntaxe et commandes de base
	Slide 12: Configuration et contextes

