HAI709I - Fondements cryptographiques pour la sécurité

Cours 3 - Chiffrements par flot

Rocco Mora

29 Septembre, 2025

Université de Montpellier – Faculté des Sciences M1 informatique, parcours Algo, IASD, Imagine

Vers des schémas de chiffrement pratiques

La dernière fois, on a vu quelques constructions de schémas de chiffrement à clé privée :

- un schéma EAV-sûr à partir d'un PRG
- un schéma CPA-sûr à partir d'une PRF

PRGs et PRFs sont les "briques" des schémas de chiffrement

Cependant, il y avait quelques inconvénients :

- L'EAV-sécurité est une notion de sécurité faible.
- Dans les deux cas, seuls les messages de longueur fixe pouvaient être chiffrés.
- Le schéma CPA-sûr pourrait être adapté à des messages de longueur arbitraire, mais devenait alors très inefficace (texte chiffré long).

Étudions comment les PRG et les PRF sont instanciés dans le monde réel

Chiffrement de flux

Le chiffrement de flux/par flot est utilisé dans la pratique pour instancier des PRGs.

Chiffrement par flot [Stream cipher]

Un chiffrement par flux est une paire d'algorithmes déterministes (Init, Next) t.q.

- Init prend en entrée une graine s et un vecteur d'initialisation [initialization vector] IV facultatif et produit un état initial [initial state] st.
- Next prend en entrée un état st et produit un bit y et un état mis à jour st'.

GetBits

```
Entrée : longueur de sortie 1^\ell, état initial \mathtt{st_0} for i=1,\ldots \ell do GetBits_1 identique, mais ne Calculer (y_i,\mathtt{st}_i):=\mathtt{Next}(\mathtt{st}_{i-1}) renvoie que y end for return la chaîne de \ell bits y=y_1,\ldots,y_\ell et \mathtt{st}_\ell
```

Les générateurs pseudo-aléatoires ont une longueur de sortie fixe.

• Un chiffrement de flux sûr (Init, Next) sans IV n'est qu'un générateur pseudo-aléatoire plus flexible : soit $\ell = \ell(n) > n$ et définissons

$$G^{\ell}(s) \stackrel{\mathsf{def}}{=} \mathtt{GetBits}_1(\mathtt{Init}(s), 1^{\ell}).$$

Alors le chiffrement de flux est sûr si G^{ℓ} est un générateur pseudo-aléatoire pour tout polynôme ℓ .

• Un chiffrement de flux sûr (Init, Next) avec un IV : soit $\ell = \ell(n) > n$ et définissons

$$F_s^\ell(IV) \stackrel{\mathsf{def}}{=} \mathsf{GetBits}_1(\mathsf{Init}(s,IV),1^\ell).$$

Alors le chiffrement de flux est sûr si F^{ℓ} est une fonction pseudo-aléatoire pour tout polynôme ℓ .

Chiffrement de flux à partir de fonctions pseudo-aléatoires

Construction

Soit F une fonction pseudo-aléatoire. Définissons un chiffrement de flux (Init, Next) comme suit, où Init accepte un IV de 3n/4 bits et Next produit n bits à chaque appel :

- Init : en entrée $s \in \{0,1\}^n$ et $IV \in \{0,1\}^{3n/4}$, sortie st = (s,IV,0).
- Next : en entrée st = (s, IV, i), sortie $y = F_s(IV||\langle i \rangle)$ et état mis à jour st' = (s, IV, i + 1), où $\langle i \rangle$ est encodé comme un entier de (n/4) bits.

La sortie du chiffrement par flux est alors

$$F_s(IV||\langle 0\rangle), F_s(IV||\langle 1\rangle), \ldots$$

- + Construction très générale et flexible
- Il existe des solutions plus pratiques

Chiffrement de flux (récap)

PRG avec facteur d'expansion $\ell(n)$:

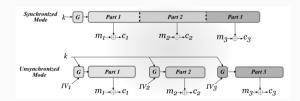
- pas facile de chiffrer des messages de longueur $\ell' > \ell$ avec une seule clé de n bits
- on peut tronquer la sortie pour les messages de longueur $\ell' < \ell$, mais cela représente un gaspillage

Chiffrement par flot : les bits de sortie sont produits progressivement et à la demande.

- + pas de limite supérieure sur les bits pouvant être générés
- + aucun bit inutile n'est généré

Comment chiffrer des messages de longueur arbitraire avec un chiffrement de flux?

Différentes générations de flux de clés



Il suppose que tous les messages arrivent dans l'ordre et qu'aucun message n'est perdu (pour les sessions de communication en ligne, p. ex. TCP) :

- 1. Les deux parties (l'expéditeur A et le destinataire B) appellent Init(k) pour obtenir le même état initial st_0 .
- 2. Soit st_A l'état actuel de A. Si A souhaite chiffrer m, il calcule $(y,\operatorname{st}_A':=\operatorname{GetBits}(\operatorname{st}_A,1^{|m|})$, envoie $c:=m\oplus y$ au destinataire et met à jour son état local à st_A' .
- 3. Soit st_B l'état actuel de B. Lorsque B reçoit un texte chiffré c de A, il calcule $(y,\operatorname{st}_B':=\operatorname{GetBits}(\operatorname{st}_B,1^{|c|})$, produit le message $m:=c\oplus y$ et met à jour son état local à st_B' .
- similaire au générateur pseudo-aléatoire, mais ℓ n'a pas besoin d'être fixé à l'avance et le message n'a pas besoin d'être chiffré en une seule fois.
- Avec une deuxième clé, B peut également envoyer des messages à A.
- Pas besoin d'utiliser un IV et pas d'expansion du texte chiffré.

Construction

Soit (Init, Next) un chiffrement de flux qui prend un IV de n bits. Définissons un schéma de chiffrement à clé privée pour des messages de longueur arbitraire :

- ullet Gen : pour une entrée 1^n , produit une sortie uniforme $k\in\{0,1\}^n$.
- Enc : en entrée $k \in \{0,1\}^n$ et un message $m \in \{0,1\}^*$, choisit un $N \in \{0,1\}^n$ uniforme et produit le texte chiffré

$$(IV, \mathtt{GetBits}_1(\mathtt{Init}(k, IV), 1^{|m|}) \oplus m).$$

• Dec : en entrée $k \in \{0,1\}^n$ et un texte chiffré (IV,c), affiche le message

$$m := \mathtt{GetBits}_1(\mathtt{Init}(k, IV), 1^{|c|}) \oplus c.$$

Registres à décalage à rétroaction linéaire

Comment instancier un chiffrement de flux dans la pratique?

Une première solution consiste à utiliser :

Un registre à décalage à rétroaction linéaire [ES Linear-Feedback Shift Register] (LFSR) se compose de

- un tableau de *n* registres s_{n-1}, \ldots, s_0 et
- une boucle de rétroaction [\bowtie feedback loop] spécifiée par n coefficients de rétroaction [\bowtie feedback coefficients] booléens c_{n-1}, \ldots, c_0 .
- La taille du tableau est appelée degré du LFSR.
- Chaque registre stocke un seul bit
- L'état st d'un LFRS est constitué des bits contenus dans ses registres.
- À chaque cycle, le LFSR produit la valeur du registre le plus à droite s_0 .

Mise à jour d'un LFSR

- st est mis à jour par les cycles en décalant les valeurs de tous les registres vers la droite
- et le registre le plus à gauche est égal au XOR d'un sous-ensemble du registre actuel, déterminé par les coefficients de rétroaction. Si, à l'instant t, l'état est $s_{n-1}^{(t)},\ldots,s_0^{(t)}$, alors après le cycle, il est $s_{n-1}^{(t+1)},\ldots,s_0^{(t+1)}$, avec

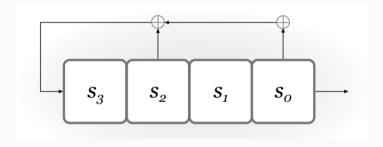
$$s_i^{(t+1)} := s_{i+1}^{(t)}, \quad i = 0, \dots, n-2, \qquad s_{n-1}^{(t+1)} := \bigoplus_{i=0}^{n-1} c_i s_i^{(t)}.$$

• Par conséquent, si y_0, y_1, \ldots sont les bits de sortie, alors

$$y_i = s_i^{(0)}, \quad i = 0, \dots, n-1$$

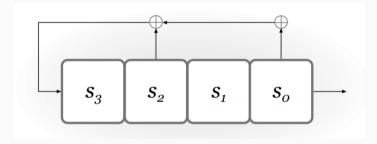
 $y_i = \bigoplus_{j=0}^{n-1} c_j y_{i-n+j}, \quad i > n-1.$

Exemple de LFSR



Le LFSR dans l'image a degré 4 avec $c_0=c_2=1$ et $c_1=c_3=0$.

Exemple de LFSR

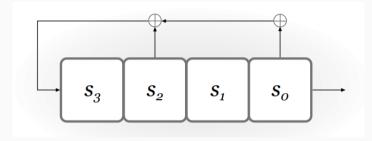


Le LFSR dans l'image a degré 4 avec $c_0 = c_2 = 1$ et $c_1 = c_3 = 0$.

Supposons que l'état initial soit $(s_3, s_2, s_1, s_0) = (0, 0, 1, 1)$. Alors les premiers états sont :

$$(0,0,1,1) o (1,0,0,1) o (1,1,0,0) o (1,1,1,0) o (1,1,1,1) o \dots$$

Exemple de LFSR



Le LFSR dans l'image a degré 4 avec $c_0 = c_2 = 1$ et $c_1 = c_3 = 0$.

Supposons que l'état initial soit $(s_3, s_2, s_1, s_0) = (0, 0, 1, 1)$. Alors les premiers états sont :

$$(0,0,1,\textcolor{red}{1}) \rightarrow (1,0,0,\textcolor{red}{1}) \rightarrow (1,1,0,\textcolor{red}{0}) \rightarrow (1,1,1,\textcolor{red}{0}) \rightarrow (1,1,1,\textcolor{red}{1}) \rightarrow \dots$$

et la sortie est le flux de bits 1, 1, 0, 0, 1, ...

Les LFSR en tant que chiffrements de flux

Étant donné un LFSR, définissons

- Init : prend en entrée une clé k de n bits et définit l'état initial du LFSR à k;
- Next : correspond à un cycle, produisant un seul bit et mettant à jour l'état du LFSR.

Un LFSR de degré n a 2^n états possibles \Rightarrow un état finira par se répéter :

- l'état tout à 0 a une boucle sur lui-même,
- un LFSR est de longueur maximale s'il passe par tous les $2^n 1$ états non nuls avant de se répéter (cela dépend des coefficients).
- + approximativement le même nombre de 1 et de 0 dans la sortie
- pas sûr en tant que chiffrement de flux

Attaque par récupération de clé

- Selon le principe de Kerchoffs, les coefficients de rétroaction doivent être publics.
 Les premiers n bits de sortie révèlent l'état initial
 - ightarrow tous les bits de sortie suivants peuvent être calculés
- Que se passe-t-il si c_i font également partie de la clé? L'attaquant observe 2n bits y_0, \ldots, y_{2n-1} . Alors

$$\begin{cases} y_n &= c_{n-1}y_{n-1} \oplus \cdots \oplus c_0y_0 \\ y_{n+1} &= c_{n-1}y_n \oplus \cdots \oplus c_0y_1 \\ &\vdots \\ y_{2n-1} &= c_{n-1}y_{2n-2} \oplus \cdots \oplus c_0y_{n-1} \end{cases}$$

est un système de n équations linéaires à n coefficients de rétroaction inconnus

→ déterminé

Les systèmes linéaires peuvent être résolus en temps polynomial!

Ajout de non-linéarité

Plusieurs approches possibles :

- 1. Introduire des opérateurs non linéaires,
 - XOR est un opérateur linéaire
 - AND/OR sont des opérateurs non linéaires
 - \rightarrow obtenir un FSR : étant donné une fonction non linéaire g,

$$s_i^{(t+1)} := s_{i+1}^{(t)}, \quad i = 0, \dots, n-2$$

$$s_{n-1}^{(t+1)} := g(s_{n-1}^{(t)}, \dots, s_0^{(t)}).$$

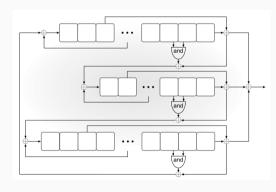
g doit être équilibré : $\Pr(g(s_{n-1},\ldots,s_0)=1)\approx 1/2$.

- 2. **Sortie non linéaire**, la sortie à chaque cycle est une fonction non linéaire *g* (appelée filtre) de l'état actuel.
- 3. **Générateur à combinaison non linéaire**, on utilise plusieurs LFSR et on combine leur sortie de manière non linéaire (plusieurs éléments à prendre en compte pour garantir la sécurité).

Trivium [De Cannière, Preneel, 2005]

Trivium : partie du projet européen eSTREAM

- Trois FSR non linéaires (AND) de degrés 93, 84, 111
 - \rightarrow l'état st est donné par
 - 93 + 84 + 111 = 288 bits
- la sortie est le XOR des trois sorties
- Les 3 FSR sont couplés : à chaque cycle, les registres les plus à gauche sont calculés comme des fonctions non linéaires de deux FSR.
- Init prend une clé et un IV de 80 bits.



On ne connaît pas de meilleure attaque que la recherche exhaustive!

RC4 [Rivest, 1987]

Init algorithm for RC4

```
Input: 16-byte key k
Output: Initial state (S, i, j)
(Note: All addition is done modulo 256)
for i = 0 to 255:
   S[i] := i
   k[i] := k[i \mod 16]
i := 0
for i = 0 to 255:
   i := i + S[i] + k[i]
   Swap S[i] and S[j]
i := 0, j := 0
return (S, i, j)
```

GetBits algorithm for RC4

```
Input: Current state (S, i, j)

Output: Output byte y; updated state (S, i, j)

(Note: All addition is done modulo 256)

i := i + 1

j := j + S[i]

Swap S[i] and S[j]

t := S[i] + S[j]

y := S[t]

return (S, i, j), y
```

- Beaucoup plus rapide que les LFSR pour les implémentations logicielles
- Utilisé dans le passé dans la norme de chiffrement Wired Equivalent Privacy (WEP)
- Diverses attaques ont été découvertes → RC4 ne doit pas être utilisé

ChaCha20 [Bernstein, 2008]

- Introduit en 2008, il remplace RC4
- Basé sur une permutation fixe P sur des chaînes de 512 bits qui utilise uniquement des instructions au niveau assembleur sur des mots de 32 bits : addition ⊞ (mod 2³²), rotation bit à bit (cyclique), XOR → conception très efficace basée sur ARX
- P utilisé pour construire une fonction pseudo-aléatoire F prenant une clé de 256 bits, une constante de 128 bits et mappant des entrées de 128 bits vers des sorties de 512 bits :

$$F_k(x) = P(\text{const}||k||x) \boxplus \text{const}||k||x.$$

• Ainsi, la sortie du chiffrement par flux est

$$F_k(IV||\langle 0\rangle), F_k(IV||\langle 1\rangle), \ldots$$

- où $\langle i \rangle$ est encodé sous forme d'entier 64 bits.
- En combinaison avec Poly1305 MAC (nous verrons cela plus tard) pour construire un schéma de chiffrement authentifié utilisé dans le protocole TLS