HAI709I - Fondements cryptographiques pour la sécurité

Cours 1 - Cryptographie classique et sécurité inconditionnelle

Rocco Mora - rocco.mora@umontpellier.fr

8 September, 2025

Université de Montpellier – Faculté des Sciences M1 informatique, parcours Algo, IASD, Imagine

Cryptographie [Cryptography]

Étymologie (grec ancien) :

- kruptos (κρυπτός) "caché"
- graphein (γράφειν) "écrire"

« L'art de l'écriture et le déchiffrement de codes »

Cryptographie [Cryptography]

Étymologie (grec ancien) :

- kruptos (κρυπτός) "caché"
- graphein (γράφειν) "écrire"

« L'art de l'écriture et le déchiffrement de codes »

Bonne définition pour la cryptographie classique mais pas pour la cryptographie moderne

Étymologie (grec ancien) :

- kruptos (κρυπτός) "caché"
- graphein (γράφειν) "écrire"

« L'art de l'écriture et le déchiffrement de codes »

Bonne définition pour la cryptographie classique mais pas pour la cryptographie moderne

Cryptographie classique

- très créative
- presque aucune théorie derrière

Cryptographie moderne (années 1970 - aujourd'hui)

- rigoureuse
- science avec de solides bases mathématiques

Cryptographie [Cryptography]

Étymologie (grec ancien) :

- kruptos (κρυπτός) "caché"
- graphein (γράφειν) "écrire"

« L'art de l'écriture et le déchiffrement de codes »

Bonne définition pour la cryptographie classique mais pas pour la cryptographie moderne

Cryptographie classique

- permettre des communications sûrs (confidentialité)
- ⇒ Applications militaires/gouvernementales

Cryptographie moderne

- intégrité
- échange de clés
- authentification
- vote électronique
- cryptomonnaie, ...
- ⇒ Vie quotidienne

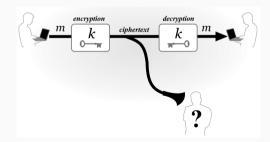
Scénarios classiques en cryptographie

Cryptographie : consiste à concevoir et à utiliser des *codes* (ou chiffres) permettant à deux parties de

- 1. d'envoyer des messages,
- 2. de garder ces messages cachés à un espion/intercepteur [eavesdropper] qui peut surveiller la communication.

Scénario 1 : deux parties communicantes séparées dans l'espace

⚠ Hypothèse : les deux parties ont partagé une clé à l'avance (par exemple, elles se sont rencontrées physiquement dans un lieu sécurisé)

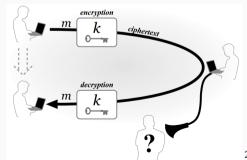


Scénarios classiques en cryptographie

Cryptographie : consiste à concevoir et à utiliser des *codes* (ou chiffres) permettant à deux parties de

- 1. d'envoyer des messages,
- 2. de garder ces messages cachés à un espion/intercepteur [eavesdropper] qui peut surveiller la communication.

Scénario 2 : même partie communiquant avec elle-même au fil du temps (par exemple, chiffrement de disque)



Scénarios classiques en cryptographie

Cryptographie : consiste à concevoir et à utiliser des *codes* (ou chiffres) permettant à deux parties de

- 1. d'envoyer des messages,
- 2. de garder ces messages cachés à un espion/intercepteur [eavesdropper] qui peut surveiller la communication.

Cryptanalyse [Cryptanalysis]: a pour objectif de trouver des faiblesses ou des vulnérabilités dans un système cryptographique.

 ${\color{blue} {\sf Cryptologie}} = {\color{blue} {\sf Cryptographie}} + {\color{blue} {\sf Cryptanalyse}}$

Syntaxe du chiffrement

Schéma de chiffrement (terme moderne pour codes) [\blacksquare Encryption scheme] : Espaces des messages/textes en clair [\blacksquare messages/plaintexts] \mathcal{M} , des textes chiffrés ciphertexts] \mathcal{C} , des clés [\blacksquare keys] \mathcal{K} . Il y a 3 algorithmes :

- Algorithme de génération de clé Gen
 [Key generation algorithm] (probabiliste)
 - sortie : $k \in \mathcal{K}$ selon une certaine distribution (généralement uniforme dans \mathcal{K})
- Algorithme de chiffrement Enc_k(m)
 Encryption algorithm
 - ullet entrée : clé $k\in\mathcal{K}$ et texte en clair $m\in\mathcal{M}$
 - sortie : texte chiffré c
- Algorithme de déchiffrement $Dec_k(c)$
 - $[\begin{tabular}{ll} \blacksquare \begin{tabular}{ll$
 - entrée : clé $k \in \mathcal{K}$ et texte chiffré c
 - sortie : texte en clair $m \in \mathcal{M}$

Propriété de correction

[Section Content in C

pour tout $k \in \mathcal{K}$,

 $\operatorname{Dec}_k(\operatorname{Enc}_k(m))=m.$

Principe de Kerchoff

La sortie k de Gen est secrète, mais Dec ne l'est pas. Pourquoi?

Sécurité par l'obscurité : garder les algorithmes secrets améliore la sécurité

Principe de Kerchoff

La sortie k de Gen est secrète, mais Dec ne l'est pas. Pourquoi?

Sécurité par obscurité : garder les algorithmes secrets améliore la sécurité

Principe de Kerchoff ["La cryptographie militaire", 1883]

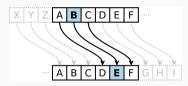
Le système de chiffrement ne doit pas nécessairement être secret et doit pouvoir tomber entre les mains de l'ennemi sans inconvénient.

Raisons:

- 1. Il est plus facile de garder secrète une clé courte qu'un algorithme
 - dans une organisation, tous les employés connaissent le système utilisé par les autres
 - risque de fuite
 - ingénierie inverse
- 2. plus facile de remplacer une clé en cas d'exposition
- 3. encourager l'examen public et standardizer/normalizer les systèmes

Le chiffrement de César ["De Vita Caesarum, Divus Iulius", 121 apr. J.-C.]

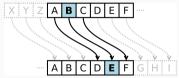
Chiffrement : Décaler les lettres de l'alphabet de 3 places vers l'avant (de manière cyclique)



Quel est le problème avec ce système?

Le chiffrement de César ["De Vita Caesarum, Divus Iulius", 121 apr. J.-C.]

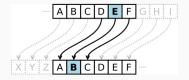
Chiffrement : Décaler les lettres de l'alphabet de 3 places vers l'avant (de manière cyclique)



Quel est le problème avec ce système?

Réponse : Il n'y a pas de clé

Déchiffrement : Décaler les lettres de l'alphabet de 3 places vers l'arrière



Ajoutons donc une clé! $k \in \mathcal{K} = \{0, 1, \dots, 25\} = \mathcal{M} = \mathcal{C}$.

Nous devons associer les lettres à des chiffres : $a \to 0$, $b \to 1$, ..., $z \to 25$.

Alors

$$\operatorname{Enc}_k(m_1,\ldots,m_\ell)=c_1,\ldots,c_\ell, \text{ où } c_i=m_i+k \mod 26$$

et

$$\operatorname{Dec}_k(c_1,\ldots,c_\ell)=m_1,\ldots,m_\ell, \text{ où } m_i=c_i-k \mod 26.$$

Prouvons la propriété de correction :

$$\begin{aligned} \operatorname{Dec}_k(\operatorname{Enc}_k(m_1, \dots, m_\ell)) = & \operatorname{Dec}_k(m_1 + k \mod 26, \dots, m_\ell + k \mod 26) \\ = & (m_1 + k \mod 26) - k \mod 26, \dots, (m_\ell + k \mod 26) - k \mod 26 \\ = & m_1 + k - k \mod 26, \dots, m_\ell + k - k \mod 26 \\ = & m_1 \mod 26, \dots, m_\ell \mod 26 \\ = & m_1, \dots, m_\ell \end{aligned}$$

Ajoutons donc une clé! $k \in \mathcal{K} = \{0, 1, \dots, 25\} = \mathcal{M} = \mathcal{C}$.

Nous devons associer les lettres à des chiffres : $a \to 0$, $b \to 1$, ..., $z \to 25$.

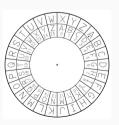
Alors

$$\operatorname{Enc}_k(m_1,\ldots,m_\ell)=c_1,\ldots,c_\ell, \ \operatorname{où}\ c_i=m_i+k \ \operatorname{mod}\ 26$$

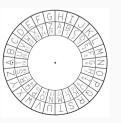
et

$$\operatorname{Dec}_k(c_1,\ldots,c_\ell)=m_1,\ldots,m_\ell, \text{ où } m_i=c_i-k \mod 26.$$

Le chiffrement par décalage est une généralisation du chiffrement de César où k=3 :



$$k = 19$$



Réponse : L'espace des clés est petit, ce qui permet d'effectuer une recherche exhaustive

Soit c = BQSHOFJEWHQFXYUUIJSEEB

Réponse : L'espace des clés est petit, ce qui permet d'effectuer une recherche exhaustive

Soit c = BQSHOFJEWHQFXYUUIJSEEB

Supposons que k=1 : $\mathtt{Dec}_1(c)=\mathtt{APRGNEIDVGPEWXTTHIRDDA}$ $\pmb{\mathsf{X}}$

Réponse : L'espace des clés est petit, ce qui permet d'effectuer une recherche exhaustive

Soit c = BQSHOFJEWHQFXYUUIJSEEB

Supposons que k = 1: $Dec_1(c) = APRGNEIDVGPEWXTTHIRDDA X$

Supposons que k=2 : $\mathrm{Dec}_2(c)=\mathrm{ZOQFMDHCUFODVWSSGHQCCZ}$ $\color{red}{\mathsf{X}}$

Réponse : L'espace des clés est petit, ce qui permet d'effectuer une recherche exhaustive

Soit c = BQSHOFJEWHQFXYUUIJSEEB

Supposons que k=1 : $\mathtt{Dec}_1(c)=\mathtt{APRGNEIDVGPEWXTTHIRDDA}$ $\pmb{\mathsf{X}}$

Supposons que k=2: $\mathrm{Dec}_2(c)=\mathrm{ZOQFMDHCUFODVWSSGHQCCZ}$ $\color{red}{\mathsf{X}}$

Supposons que k = 3: Dec₃(c) = YNPELCGBTENCUVRRFGPBBY X

Réponse : L'espace des clés est petit, ce qui permet d'effectuer une recherche exhaustive

```
Soit c = \operatorname{BQSHOFJEWHQFXYUUIJSEEB}
Supposons que k = 1 : \operatorname{Dec}_1(c) = \operatorname{APRGNEIDVGPEWXTTHIRDDA} X
Supposons que k = 2 : \operatorname{Dec}_2(c) = \operatorname{ZOQFMDHCUFODVWSSGHQCCZ} X
Supposons que k = 3 : \operatorname{Dec}_3(c) = \operatorname{YNPELCGBTENCUVRRFGPBBY} X
:
Supposons que k = 16 : \operatorname{Dec}_{16}(c) = \operatorname{LACRYPTOGRAPHIEESTCOOL} \checkmark
```

- l'espace de clés doit être suffisamment grand pour rendre la force brute impossible
- dépend des ressources disponibles (supercalculateurs, serveurs cloud, GPU, ...)
- ullet de nos jours, $|\mathcal{K}| \geq 2^{80}$ au minimum, de préférence $|\mathcal{K}| \geq 2^{128}$

Chiffrement par substitution mono-alphabétique

Augmentons $|\mathcal{K}|$. Comment? **Idée**: au lieu d'utiliser des décalages, permutons les lettres.

Exemple

En termes mathématiques, k est une permutation de $\{0, 1, \dots, 25\}$.

Combien y a-t-il de clés possibles? $26 \cdot 25 \cdot \dots \cdot 1 = 26! \approx 2^{88}$

 \rightarrow une attaque par force brute est irréalisable!

"26 factorielle"

Mais quelle est la faiblesse de ce chiffrement?

Réponse : dans les langues réelles, les lettres apparaissent avec des probabilités différentes

Par exemple, en français

Lettre																										
Fréq. (%)	7.6	0.9	3.3	3.7	14.7	1.1	1.0	0.7	7.5	0.6	0.05	5.5	2.7	7.1	5.2	3.0	1.3	6.5	7.9	7.0	6.4	1.8	0.04	0.4	0.3	0.1

Analyse de fréquence : comparer les fréquences théoriques avec celles du texte chiffré.

- Le texte doit être suffisamment long.
- Certaines suppositions peuvent être erronées, mais les informations sont tout de même suffisantes pour récupérer le message.
- On peut exploiter les propriétés spécifiques d'une langue.

Le chiffrement de Vigenère (ou chiffrement polyalphabétique)

Le chiffrement lettre par lettre n'est pas sécurisé! Appliquez la clé à un bloc de caractères. [Giovan Battista Bellaso, 1553]

En termes mathématiques, $k=(k_1,\ldots,k_t)$ est un vecteur dans $\mathcal{K}=\{0,1,\ldots,25\}^t$.

L'entier t est la période de la clé.

$$\operatorname{Enc}_k(m_1, \dots, m_\ell) = m_1 + k_1 \mod 26, \qquad m_2 + k_2 \mod 26, \dots, \qquad m_t + k_t \mod 26, \\ m_{t+1} + k_1 \mod 26, \qquad m_{t+2} + k_2 \mod 26, \dots, \qquad m_{2t} + k_t \mod 26, \\ \vdots$$

$$\operatorname{Dec}_k(c_1,\ldots,c_\ell) = c_1 - k_1 \mod 26, \qquad c_2 - k_2 \mod 26,\ldots, \quad c_t - k_t \mod 26,$$
 $c_{t+1} - k_1 \mod 26, \quad c_{t+2} - k_2 \mod 26,\ldots, \quad c_{2t} - k_t \mod 26,$:

Le chiffrement de Vigenère (ou chiffrement polyalphabétique)

Le chiffrement lettre par lettre n'est pas sécurisé! Appliquez la clé à un bloc de caractères. [Giovan Battista Bellaso, 1553]

Exemple : $k = INFO$																						
Texte en clair	L	Α	С	R	Y	Р	Т	О	G	R	Α	Р	Н	1	Ε	Е	S	Т	С	О	0	L
Clé	Ι	Ν	F	0	I	Ν	F	0	Ι	Ν	F	0	1	Ν	F	0	1	Ν	F	0	Ι	N
Texte chiffré	Т	N	Н	F	G	С	Υ	С	0	Е	F	D	Р	٧	J	S	Α	G	Н	С	W	Υ

Maintenant, certains caractères du texte chiffré sont identiques, mais les caractères correspondants dans le texte en clair ne le sont pas.

→ l'attaque statistique/l'analyse de fréquence ne s'applique pas directement

Mais alors, quel est le problème avec ce chiffrement?

Pour tous les j, le j-ième flux

$$c_j, c_{j+t}, c_{j+2t}, \ldots$$

a été chiffré avec la même valeur k_j .

Devinez t et effectuez une analyse de fréquence sur chaque flux séparé

 \Rightarrow la complexité devient 26t au lieu de 26t

- toujours plus difficile que le chiffrement par décalage, car il est impossible de vérifier si le flux "a du sens" dans la même langue
- améliorations possibles de l'attaque :
 - La méthode de Kasiski examine les apparences et les motifs pour déterminer la période
 - La méthode de l'indice de coïncidence peut aider à automatiser l'attaque
- Le chiffrement de Vigenère n'a été cassé qu'après plusieurs siècles

Qu'avons-nous appris de la cryptographie classique?

De quoi avons-nous besoin:

- Des définitions formelles des garanties de sécurité à atteindre, par exemple qu'un attaquant ne soit pas en mesure de récupérer
 - la clé
 - le texte en clair à partir du texte chiffré
 - n'importe quel caractère du texte en clair à partir du texte chiffré
 - n'importe quelle information sur le texte en clair à partir du texte chiffré
- Définitions formelles des attaquants (modèle de menace), par exemple l'attaquant peut
 - observer les textes chiffrés
 - apprendre certaines paires texte clair/texte chiffré, sans choisir
 - obtenir certaines paires texte clair/texte chiffré, en choisissant les textes clairs
 - obtenir certaines paires texte clair/texte chiffré, en choisissant les textes chiffrés
- Preuves de sécurité basées sur des hypothèses mathématiques

Rappels sur la théorie des probabilités

Nous avons vu des chiffrements historiques faibles. Nous allons maintenant nous intéresser à l'autre extrême.

Sécurité inconditionnelle (définition informelle)

L'adversaire dispose d'une puissance de calcul illimitée. L'observation du texte chiffré n'a aucun effet sur les connaissances de l'adversaire.

Afin de formaliser cette notion, on a besoin de la théorie des probabilités.

- Univers : ensemble Ω de tous les résultats d'une expérience aléatoire.
- Espace d'événements : ensemble \mathcal{F} d'éléments $A \subseteq \Omega$ (appelés événements).
- Mesure de probabilité : fonction $Pr: \mathcal{F} \to \mathbb{R}$ telle que
 - $\forall A \in \mathcal{F}, \Pr(A) \geq 0$;
 - $Pr(\Omega) = 1$;
 - si A_1,A_2,\ldots sont disjoints (c. -à-d $A_i\cap A_j=\emptyset$ pour $i\neq j$), alors probabilité

$$\Pr(\bigcup_i A_i) = \sum_i \Pr(A_i).$$

Axiomes de

- Quelques propriétés :
 - $\Pr(A) \in [0,1]$;
 - $A \subseteq B \Rightarrow \Pr(A) \leq \Pr(B)$;
 - $\Pr(A \cap B) \leq \min(\Pr(A), \Pr(B))$;
 - $Pr(A \cup B) \leq Pr(A) + Pr(B)$;
 - $Pr(\Omega \setminus A) = 1 Pr(A)$
 - if A_1, \ldots, A_k sont disjoints et $\bigcup_{i=1}^k A_i = \Omega$, alors $\sum_{i=1}^k \Pr(A_i) = 1$.
- La probabilité conditionnelle d'un événement A étant donné un événement B avec une probabilité non nulle est

$$\Pr(A \mid B) \stackrel{\text{def}}{=} \frac{\Pr(A \cap B)}{\Pr(B)}.$$

- Deux événements sont indépendants si et seulement si $\Pr(A \cap B) = \Pr(A)\Pr(B)$, ou, de manière équivalente, $\Pr(A \mid B) = \Pr(A)$.
- Théorème de Bayes

$$\Pr(A \mid B) \stackrel{\mathsf{def}}{=} \frac{\Pr(B \mid A)\Pr(A)}{\Pr(B)}.$$

Variable aléatoire : est une fonction $X : \Omega \to E$, avec E mesurable.

La probabilité que X prenne la valeur $k \in E$ est

$$\Pr(X = k) = \Pr(\{\omega \in \Omega \mid X(\omega) = k\}).$$

De manière plus générale, étant donné un ensemble mesurable $S\subseteq E$,

$$\Pr(X \in S) = \Pr(\{\omega \in \Omega \mid X(\omega) \in S\}).$$

- Nos univers sont les espaces des clés, des messages et des textes chiffrés $\mathcal{K}, \mathcal{M}, \mathcal{C}$.
- La distribution sur \mathcal{K} est donnée par Gen, et nous supposons qu'elle est uniforme, c'est-à-dire que toutes les clés ont la même probabilité d'être choisies.
- K, M, C sont les variables aléatoires désignant respectivement la valeur de la clé générée par Gen, le message, et le texte chiffré résultant.

Chiffrement inconditionnellement sûr

Sécurité inconditionnelle [Perfect secrecy] [Shannon, 1949]

Un schéma de chiffrement (Gen, Enc, Dec) avec un espace de messages \mathcal{M} est inconditionnellement sûr si, pour chaque distribution de probabilité pour M, chaque message $m \in \mathcal{M}$ et chaque texte chiffré $c \in \mathcal{C}$ avec $\Pr(\mathcal{C} = c) > 0$, nous avons

$$\Pr(M = m \mid C = c) = \Pr(M = m).$$

Proposition

Un schéma de chiffrement (Gen, Enc, Dec) avec un espace de messages \mathcal{M} est inconditionnellement sûr si et seulement si, pour chaque $m, m' \in \mathcal{M}$ et chaque $c \in \mathcal{C}$,

$$\Pr(\operatorname{Enc}_K(m)=c)=\Pr(\operatorname{Enc}_K(m')=c).$$

Preuve : à faire dans le TD.

One-Time pad (OTP)/Chiffre de Vernam/Masque jetable [Vernam, 1917]

(Utilisé pendant la guerre froide pour les communications entre les gouvernements américain et soviétique.)

Fixons $\ell > 0$ et posons $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^{\ell}$.

- Gen choisit $k \in \mathcal{K}$ de manière uniforme;
- $c = \operatorname{Enc}_k(m) = m \oplus k$ (XOR des chaînes);

One-Time pad (OTP)/Chiffre de Vernam/Masque jetable [Vernam, 1917]

(Utilisé pendant la guerre froide pour les communications entre les gouvernements américain et soviétique.)

Fixons $\ell > 0$ et posons $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0, 1\}^{\ell}$.

- Gen choisit $k \in \mathcal{K}$ de manière uniforme;
- $c = \operatorname{Enc}_k(m) = m \oplus k$ (XOR des chaînes);
- $\operatorname{Dec}_k(c) = c \oplus k$.

Théorème

Le chiffre de Vernam est inconditionnellement sûr.

→ le chiffrement de Vernam a été proposé avant que la notion de sécurité inconditionnelle ne soit définie!

Preuve de la sécurité inconditionnelle du OTP (1/2)

Pour tout $c \in \mathcal{C}$, et $m \in \mathcal{M}$, avec $\Pr(M = m) > 0$,

$$Pr(C = c \mid M = m) = Pr(K \oplus M = c \mid M = m)$$
$$= Pr(K \oplus m = c \mid M = m)$$
$$= Pr(K = m \oplus c \mid M = m)$$
$$= 2^{-\ell}.$$

Fixons une distribution sur \mathcal{M} . Pour tout $c \in \mathcal{C}$,

$$\Pr(C = c) = \sum_{m \in \mathcal{M}} \Pr(C = c \mid M = m) \cdot \Pr(M = m)$$
$$= 2^{-\ell} \cdot \sum_{m \in \mathcal{M}} \Pr(M = m)$$
$$= 2^{-\ell}.$$

Preuve de la sécurité inconditionnelle du OTP (2/2)

Alors, d'après le théorème de Bayes,

$$\Pr(M = m \mid C = c) = \frac{\Pr(C = c \mid M - m) \cdot \Pr(M = m)}{\Pr(C = c)}$$
$$= \frac{2^{-\ell} \cdot \Pr(M = m)}{2^{-\ell}}$$
$$= \Pr(M = m).$$

Par définition, le OTP est inconditionnellement sûr.

Il ne s'agit certainement pas d'une propriété insignifiante. Par exemple

Proposition

Un chiffrement de Vigenère dont la clé est plus courte que le texte en clair n'est pas inconditionnellement sûr.

Limites de la sécurité inconditionnelle

Le OTP est essentiellement un cas particulier du chiffrement de Vigenère où la clé est aussi longue que le texte en clair.

Théorème

Si (Gen, Enc, Dec) est un schéma de chiffrement inconditionnellement sûr, alors $|\mathcal{K}| \geq |\mathcal{M}|$.

Preuve: Prouvons-le par contradiction, c'est-à-dire supposons que $|\mathcal{K}| < |\mathcal{M}|$. Fixons $c \in \mathcal{C}$. Définissons

$$\mathcal{M}(c) \stackrel{\mathsf{def}}{=} \{ m \in \mathcal{M} \mid \exists k \in \mathcal{K} \; \mathsf{tel} \; \mathsf{que} \; m = \mathsf{Dec}_k(c) \}.$$

Nous avons $|\mathcal{M}(c)| \leq |\mathcal{K}| < |\mathcal{M}|$. Soit $m' \in \mathcal{M} \setminus \mathcal{M}(c)$. Alors

$$\Pr(M = m' \mid C = c) = 0 \neq \Pr(M = m').$$

Par conséquent, le schéma ne serait pas inconditionnellement sûr.

On veut des clés plus courtes ightarrow on a besoin de notions de sécurité plus faibles

