Devoir encadré - 14 février 2025

Durée: 2 heures

Exercice 1: Fonctions polynomiales

Soit \mathcal{P}_2 l'ensemble des fonctions polynomiales à coefficients réels de degré au plus 2. Montrer que $F = \{p \in \mathcal{P}_2 | p(1) = 0\}$ est un sous-espace vectoriel de \mathcal{P}_2 et donner sa dimension.

Exercice 2: Somme directe

Soit u = (1, 1, ..., 1) et F = vect(u) puis $G = \{(x_1, ..., x_n) \in \mathbb{R}^n, x_1 + ... + x_n = 0\}.$

- 1. Montrer que G et F sont des sous-espaces vectoriels de \mathbb{R}^n .
- 2. Montrer que $\mathbb{R}^n = F \oplus G$.
- 3. Quelle est la dimension de F?

Exercice 3: Suites

Dans cet exercice on se donne $(a,b) \in \mathbb{R}^2$ et l'ensemble $E_{a,b}$ défini par :

$$E_{a,b} = \left\{ u = (u_n)_{n \in \mathbb{N}} \text{ t.q. } u_{n+2} = a + b \sin(u_{n+1}) + 3u_{n+1} - 2u_n \qquad \forall \, n \in \mathbb{N} \right\}.$$

On note $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites à coefficients réels.

On note $e = (e_n)_{n \in \mathbb{N}}$ telle que $e_n = 0$ pour tout $n \in \mathbb{N}$ et $f = (f_n)_{n \in \mathbb{N}}$ telle que $f_n = \pi$ pour tout $n \in \mathbb{N}$.

Le but de l'exercice est de savoir si $E_{a,b}$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$, et si oui, à en donner une base.

- 1. On suppose $a \neq 0$. Montrer que $e \notin E_{a,b}$
- 2. On suppose a = 0. Montrer que $f \in E_{0,b}$.
- 3. Montrer que si $E_{a,b}$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$ alors a=b=0.
- 4. Montrer que $E_{0,0}$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Dans la suite, on se concentre sur l'espace $E_{0,0}$. On note $e^+ = (e_n^+)_{n \in \mathbb{N}}$ telle que $e_n^+ = 2^n$ pour tout $n \in \mathbb{N}$ et $e^- = (e_n^-)_{n \in \mathbb{N}}$ telle que $e_n^- = 1$ pour tout $n \in \mathbb{N}$.

- 5. Montrer que $e^+ \in E_{0,0}$ et $e^- \in E_{0,0}$.
- 6. On se donne $u \in E_{0,0}$.
 - (a) Montrer qu'il existe une unique paire $(\lambda, \mu) \in \mathbb{R}^2$ telle que :

$$\lambda + \mu = u_0, \qquad 2\lambda + \mu = u_1.$$

- (b) En déduire par récurrence que $u_n = \lambda e_n^+ + \mu e_n^-$ pour tout $n \in \mathbb{N}$ puis que $u = \lambda e^+ + \mu e^-$.
- (c) Que pouvez-vous dire de la famille $\{e^+, e^-\}$ pour l'espace $E_{0,0}$.

- 7. On se donne $(\lambda, \mu) \in \mathbb{R}^2$
 - (a) Montrer l'implication

$$\lambda e^+ + \mu e^- = e \Longrightarrow \lambda = \mu = 0.$$

Indication : On pourra réutiliser le système en λ,μ étudié au paravant pour une valeur bien choisie de u_0 et u_1 .

- (b) Que pouvez-vous dire de la famille $\{e^+, e^-\}$ dans l'espace $\mathbb{R}^{\mathbb{N}}$.
- 8. Que représente la famille $\{e^+,e^-\}$ pour l'espace $E_{0,0}$?