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TUTORIAL: INTEGRATION OF PARTIAL DIFFERENTIAL
EQUATIONS

I. Cooling of a ball

We consider a ball of radius R. At t = 0, we take it out of a oven where it was at uniform temperature Ti and
we suspend it in the air at temperature Ta. We assume that the temperature field T in the ball is isotropic (i.e.,
it only depends on r in spherical coordinates and on t). Under this assumption, the temperature profile verifies
the following IVP and BVP 
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T (r, 0) = Ti,
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(R, t) = α [T (R, t)− Ta] ,

(1)

whereD is the diffusion coefficient in the ball, λ its thermal conductivity, and α the Newton convection coefficient.

Question 1: We define θ = T − Ta, x = r/R, τ = Dt/R2 and c = αR/λ. Show analytically that Eq. (1)
becomes 
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θ(x, 0) = Ti − Ta,

∂θ

∂x
(1, τ) = −c θ(1, τ).

(2)

Question 2: We want to solve the above IVP and BVP using a FTCS scheme. We discretize space and time as
follows: xj = jδ (j ∈ J0, MK with Mδ = 1) and τn = nh (n ∈ J0, NK).

a. Derive analytically the recurrence relation between θn+1
j and the θnj ’s for j ≥ 1. Do not forget to enforce

the boundary condition.

b. For j = 0, the recurrence relation reads (the derivation of this formula is not required):

θn+1
0 = θn0 +

6h

δ2
(θn1 − θn0 ) . (3)

Implement the FTCS scheme.

Question 3: We perform an experiment with a ball made of granite, for which λ = 3W/m/K, D =
1.6.10−6m2/s and R = 10 cm. Initially, the ball is at temperature Ti = 800◦C, while the air is at temper-
ature Ta = 20◦C. We take the Newton convection coefficient α = 20W/m2/K. Integrate the PDE numerically
and plot the temperature profile T (r, t) [not θ(x, τ)!] at 15 different times between 0 and 2 hours on the same
graph. Comment.

Question 4: We reproduce the experiment with a ball made of gold, for which λ = 315W/m/K, D =
1.3.10−4m2/s and R = 10 cm. Integrate the PDE numerically, plot the temperature profile T (r, t) at 15 differ-
ent times between 0 and 2 hours on the same graph, and confront with the previous experiment.
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Question 5 (bonus): The exact analytic solution to Eq. (1) can be derived:

T (r, t) = Ta +
2αR2(Ti − Ta)
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+∞∑
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where βn is the solution to the equation (
αR

λ
− 1

)
tanβ + β = 0 (5)

in the range [(n − 1)π, (n − 1/2)π] if αR/λ < 1, and in the range [(n − 1/2)π, nπ] if αR/λ > 1. Compare
the results of the two previous questions with this exact solution by plotting on the same graph the numerical
solution and the exact solution at 15 different times between 0 and 2 hours.

II. Electrostatic potential between conductors

We want to determine the electrostatic potential in a square of 1 meter long delimited by 4 conductors at fixed
electrostatic potential, see Fig. 1. We assume that the space between the conductors is empty.

ϕ = 1V

ϕ = 0V

Figure 1: Electrostatic problem in vacuum to solve. An empty space is delimited by 4 conductors. Three of
them (in black) are at zero potential, the last one (in pink) is at a potential of 1 volt.

The BVP to solve is thus (with distances expressed in meters, and the potential expressed in volt):

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0, ϕ(0, y) = 0, ϕ(1, y) = 0, ϕ(x, 0) = 0, ϕ(x, 1) = 1. (6)

We want to compare the speed of resolution and the accuracy of different methods. For all methods, we describe
space as follows: xj = jδ, yk = kδ, with δ the discretization step size, j, k ∈ J1, M − 1K, and Mδ = 1.

Question 1: Solve Eq. (6) using the Jacobi method, and plot a heat map of the solution. How long does it take
for the method to converge?

Question 2: Solve Eq. (6) using the Gauss-Seidel method, and plot a heat map of the solution. How long does
it take for the method to converge?

Question 3: Solve Eq. (6) using the overrelaxation method, and plot a heat map of the solution. How long
does it take for the method to converge?

Question 4: The exact solution to Eq. (6) is known and reads:

ϕ(x, y) =
4

π

+∞∑
m=0

sin[(2m+ 1)πx] sinh[(2m+ 1)πy]

(2m+ 1) sinh[(2m+ 1)π]
. (7)
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We define the relative error between the numerical solution and the exact solution as

e =

∑
j,k |ϕjk − ϕ(xj , yk)|∑

j,k |ϕ(xj , yk)|
, (8)

with .

a. For the three methods implemented above, compute e.

b. Which solution is a good compromise between computation time and accuracy?

III. Free quantum particle

We want to describe the evolution of a free quantum particle of mass m in 1D initially described by a Gaussian
wave packet

ψ(x, 0) =
1

π1/4
√
σ
e−x2/(2σ2)eikx, (9)

with k = 2π/λ, λ = 5.10−11m, and σ = 10−10m. The evolution of the wavefunction ψ(x, t) is given by the
time-dependent Schrödinger equation

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
, (10)

where the mass of the particle is m = 9.109.10−31 kg. To avoid finite-size effects and to mimic the propagation
of the particle in infinite space, we adopt periodic boundary conditions for the wavefunction and we integrate
on a space domain [−L/2, L/2] with L chosen such that L≫ σ and such that the initial condition verifies the
periodic boundary conditions. We thus choose L = 10−8m. We recall that ℏ = 1.05457182.10−34 kg.m2/s.

Question 1: We want to solve the above IVP and BVP using a Crank-Nicolson scheme. We discretize space
and time as follows: xj = −L/2 + jδ (j ∈ J0, MK with Mδ = L) and tn = nh (n ∈ J0, NK).

a. Derive analytically the recurrence relations between the ϕn+1
j ’s and the ϕnj ’s. Do not forget to enforce the

boundary condition.

b. Show analytically that the recurrence relations can be recast into the linear system

AΦ = B, with Φ =

ϕn+1
0
...

ϕn+1
M−1

 , (11)

with A a M ×M matrix and B a vector column of size M to be determined.

Question 2: Use the above scheme to solve the Schrödinger equation up to tf = 8.10−16 s. You can take
h = 2.10−18 s and δ = 5.10−12m. Plot the real part of the wavefunction for t = 2.10−16 s, t = 4.10−16 s,
t = 6.10−16 s and t = 8.10−16 s on the same graph. Comment.

Question 3 (bonus): Solve Schrödinger equation for L = 5.10−9m up to tf = 1.10−16 s and plot the probability
density |ψ(x, tf)|2 at the end of the simulation. Confront with the exact solution

|ψ(x, t)|2 = 1√
πς(t)

e−x2/ς(t)2 , ς(t) = σ

√
1 +

(
ℏt
mσ2

)2

, (12)

and comment. You can do this for the following values of parameters:

▶ h = 2.10−20 s and δ = 2.10−12m;

▶ h = 2.10−19 s and δ = 2.10−12m;

▶ h = 2.10−19 s and δ = 5.10−12m;

▶ h = 2.10−18 s and δ = 5.10−12m.
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Figure 2: Electrostatic problem in a salty solution to solve. A solution with ions is delimited by 4 conductors.
Three of them (in black) are at zero potential, the last one (in pink) is charged with a uniform charge density σ.

IV. Electrostatic potential in a salty solution

We want to determine the electrostatic potential in a solution in the vicinity of a charged wall of uniform charge
density σ, see Fig. 2. We assume that the problem is translationally invariant in the z-direction and that the
system is closed by three conducting walls of length 1 meter maintained at zero electrostatic potential. The
solution is a salty water solution containing positive ions of charge +q and negative ions of charge −q, with
q = 1.602176634.10−19C the elementary charge. The electrostatic potential now verifies a Poisson equation

∆ϕ = − ρ

ϵ0ϵr
, (13)

with ϵ0 = 8.85418782.10−12 F/m the vacuum permittivity and ϵr = 80.10 the relative permittivity of water. The
charge density ρ depends on the potential itself via the Boltzmann distribution at temperature T :

ρ = ρ+ + ρ−, ρ± = ±n0q e∓eϕ/(kBT ), (14)

with kB = 1.380649.10−23 J/s the Boltzmann constant and n0 the number of ions per unit volume. We are thus
left with the following BVP to solve:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
=

2qn0
ϵ0ϵr

sinh

(
qϕ

kBT

)
,

∂ϕ

∂x
(0, y) = − σ

ϵ0ϵr
, ϕ(1, y) = 0, ϕ(x, 0) = 0, ϕ(x, 1) = 0. (15)

The above BVP is non-linear and we thus go step by step to find its solution numerically.

Question 1: We proceed similarly as in the lecture notes and we assume that the solution to the IVP and BVP

∂ϕ

∂t
=
∂2ϕ

∂x2
+
∂2ϕ

∂y2
− 2qn0

ϵ0ϵr
sinh

(
qϕ

kBT

)
(16)

converges to the solution to Eq. (15) when t → +∞. Derive analytically the recurrence relation for the FTCS
scheme to solve Eq. (16) by discretizing space with a step size δ in the x-direction and in the y-direction, and
by discretizing time with a step size h. Do not forget to enforce the boundary conditions.

Question 2: Implement the above FTCS scheme for n0 = 1010m−3, σ = 10−9C/m2, and T = 350K (you
are generalizing the Jacobi method to a non-linear PDE!). You can take δ = 5.10−3m and you must choose a
small-enough time step h for the scheme to be stable. Integrate for N time steps until the solution converges to
the stationary solution to Eq. (15) (you should give yourself a quantitative criterion to stop the iteration).

Question 3: Plot the heat map of the potential ϕ, and of the absolute value of the charge densities |ρ±|.
Comment.

Question 4: Repeat the resolution for n0 = 108m−3 and plot the heat maps of ϕ and |ρ±|. Confront with the
result of the previous question and comment.
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