
Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

MONTE CARLO METHODS

I Reminders about probabilities 1

II Sampling 7

III Integration 14

IV Optimization 16

V Mathematics of Monte Carlo algorithms 19

In this chapter, we discuss Monte Carlo methods.

Color code for the chapter:

▶ Definitions and important results are given in pink boxes.

▶ Skeletons of algorithms are in purple boxes.

▶ Examples are given in green boxes.

▶ Remarks and notions that can be skipped for the first read are in black boxes.

▶ Links are emphasized in blue.

Definition
Monte Carlo methods are non-deterministic methods which use random numbers for numerical computa-
tions.

In this chapter, we discuss three applications of Monte Carlo methods.

1. Sampling of complicated probability distributions.

2. Integration of functions in high-dimensional spaces.

3. Optimization of rugged functions (finding an approximation of the global minimum of a function with
several local minima).

The mathematical concepts at the root of the algorithms presented in this chapter are discussed at the end of the
chapter. They can be skipped for the first read, but the interested reader can come back to them for a second read.

Before discussing the Monte Carlo methods, we recall basic notions on probabilities.

I. Reminders about probabilities

The objective of this section is to give some basic reminders about probability theory useful for Physicists. The
presentation is not rigorous mathematically. For a more rigorous and throrough presentation, see W. Appel,
Mathematics for Physics and Physicists.

1. Random variable

1

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

Definition
A random variable X is a quantity/observable (scalar, vector, matrix, tensor, etc.) whose value is not
deterministic (certain).

In Physics, there are at least two reasons which explain why some quantities are random.

▶ In quantum mechanics, there is an intrinsic uncertainty about observables (e.g., position of a quantum
particle in a box).

▶ In statistical physics, quantities are not intrinsically random but fluctuate because of external factors (e.g.,
temperature of a room).

We distinguish between discrete random variables and continuous random variables.

Definition
A discrete random variable is a random variable that can take a discrete/countable number of values.

A continuous random variable is a random variable that can take a continuous/uncountable number of
values.

For both discrete and continuous random variables, we can define their support as the set I of all possible
values they can take.

Consider X the result of the rolling of a die: X is a discrete random variable and I = {1, 2, 3, 4, 5, 6}.

Consider X the number of photons counted by a photodetector: X is a discrete random variable and I = N =
{0, 1, . . . }.

Consider X the temperature of a room in kelvins: X is a continuous random variable and I = [0, +∞[.

Consider X the velocity of a particle in one dimension: X is a continuous random variable and I =]− c, c[according
to special relativity (with c the speed of light in vacuum).

2. Probability distribution

a. Discrete random variable

We consider a discrete random variable X of support I. We denote xn the values X can take. In other words
I = {xi}.

Consider X the result of the rolling of a die, then x1 = 1, x2 = 2, . . . , x6 = 6.

We imagine that we measure N times the value of X. Each possible xi then appears Ni times.

Definition
We define the probability P(X = xi) that the random variable X equals xi as

P(X = xi) = lim
N→+∞

Ni

N
. (1)

By construction, the probability distribution is positive P(X = xi) ≥ 0 and normalized, namely,∑
i

P(X = xi) = 1. (2)

2

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

Consider X the result of the rolling of a die. The probability distribution is uniform, namely, P(X = xi) = 1/6 for
all xi’s.

Consider X the number of photons measured by a photodetector during an experiment. Classically, the distribution
is a Poisson distribution, namely, P(X = n) = λne−λ/n!, with λ > 0 a parameter.

b. Continuous random variable

We now consider a continuous random variable X which can take a continuous number of values x ∈ I (with I
a subset of R).
We again imagine that we measure N times the value of X. Unlike discrete random variables, we cannot count
how many times each value of x ∈ I appears, because the random variable is continuous. Instead, we can
say that among the N measurements dN(x) are in the range [x, x + dx[: we have binned the support into
infinitesimal intervals.

Definition
We define the elementary (or infinitesimal) probability dP(X = x) that the random variable X is in
the range [x, x+ dx[as

dP(X = x) = lim
N→+∞

dN(x)

N
. (3)

We also define the probability density p(x) such that

dP(X = x) = p(x)dx. (4)

In other words, p(x)dx is the probability that X lies in the range [x, x+ dx[.

By construction, the probability density is positive p(x) ≥ 0 and normalized, namely,
ˆ
x∈I

p(x)dx = 1. (5)

Consider X one cartesian component of the velocity of a gas molecule in the atmosphere at thermal equilibrium.
Statistical Physics tells us that the distribution is a Gaussian distribution, namely p(x) = e−x2/(2ς2)/

√
2πς2, with

ς > 0 a parameter (proportional to temperature).

3. Averages

From the probability distribution of a random variable X, you can compute the statistical properties of X.

Mean
For a discrete random variable X, its mean µ reads

µ = ⟨X⟩ =
∑
i

xiP(X = xi). (6)

For a continuous random variable X, its mean µ reads

µ = ⟨X⟩ =
ˆ
x∈I

xp(x)dx. (7)

Consider X the result of the rolling of a die, then:

µ =
1

6
× 1 +

1

6
× 2 +

1

6
× 3 +

1

6
× 4 +

1

6
× 5 +

1

6
× 6 =

7

2
.

3

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

Consider X the number of photons measured by a photodetector during an experiment, then:

µ =

+∞∑
n=0

n
λn

n!
e−λ = λ.

Consider X one cartesian component of the velocity of a gas molecule in the atmosphere at thermal equilibrium,
then:

µ =

ˆ +∞

−∞
x
e−x2/(2ς)2

√
2πς2

dx = 0.

You can also access the statistical properties of any observable g(X) related to X (i.e., of any function g of the
random variable).

Average of observables
For a discrete random variable X, the average of the observable g(X) reads

⟨X⟩ =
∑
i

g(xi)P(X = xi). (8)

For a continuous random variable X, the average of the observable g(X) reads

⟨X⟩ =
ˆ
x∈I

g(x)p(x)dx. (9)

This definition generalizes the definition of the mean given above [with g(x) = x]. Averages are denoted with
brackets ⟨·⟩. In particular, one can define the variance.

Variance
The variance σ2 of a random variable X is defined as

σ2 = ⟨X2⟩ − ⟨X⟩2. (10)

The square root of the variance is called the standard deviation σ.

Consider X the result of the rolling of a die, then:

< X2 >=
1

6
× 12 +

1

6
× 22 +

1

6
× 32 +

1

6
× 42 +

1

6
× 52 +

1

6
× 62 =

91

6
,

so that

σ2 = ⟨X2⟩ − ⟨X⟩2 =
91

6
−
(
7

2

)2

=
35

12
.

Consider X one cartesian component of the velocity of a gas molecule in the atmosphere at thermal equilibrium,
then:

σ2 = ⟨X2⟩ − ⟨X⟩2 = ⟨X2⟩ =
ˆ +∞

−∞
x2
e−x2/(2ς)2

√
2πς2

dx = ς2.

4. Correlation between random variables

We now consider two random variables X and Y . The two random variables X and Y may be correlated or
uncorrelated.

Correlation between random variables.
Two random variables X and Y are correlated if they both deviate from their mean not independently.
Mathematically, X and Y are correlated if

⟨XY ⟩ ≠ ⟨X⟩ × ⟨Y ⟩. (11)

4

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

Otherwise, the two random variables are said to be uncorrelated. Mathematically, X and Y are uncorrelated
if

⟨XY ⟩ = ⟨X⟩ × ⟨Y ⟩. (12)

We now explain the above statement, and we provide an illustration Fig. 1. It is first important to note that

⟨XY ⟩ − ⟨X⟩⟨Y ⟩ = ⟨(X − ⟨X⟩)(Y − ⟨Y ⟩)⟩.

For one random variable X fluctuates around ⟨X⟩ and can take positive or negative values. For two random vari-
ables X and Y , if they are uncorrelated, it means that X fluctuates around ⟨X⟩ and Y around ⟨Y ⟩ independently.
As a result (X−⟨X⟩)(Y −⟨Y ⟩) takes positive or negative values and its average vanishes: ⟨XY ⟩−⟨X⟩×⟨Y ⟩ = 0.
Instead, if the two random variables X and Y are correlated, it means that the fluctuations of X around ⟨X⟩
and of Y around ⟨Y ⟩ are correlated. In other words, when X is slightly higher than ⟨X⟩, it is more likely that
Y is also higher than ⟨Y ⟩ (when X and Y are positively correlated) or smaller than ⟨Y ⟩ (when X and Y are
negatively correlated). As a result, (X − ⟨X⟩)(Y − ⟨Y ⟩) takes more values which are positive (when X and Y
are positively correlated) or negative (when X and Y are positively correlated) and its average does not vanish:
⟨XY ⟩ − ⟨X⟩ × ⟨Y ⟩ ≠ 0.

−2 0 2

−2

0

2

X

Y

Correlated X and Y
[C(X,Y) = 0.39]

−2 0 2

−2

0

2

X

Y

Uncorrelated X and Y
[C(X,Y) = 0.04]

−2 0 2

−2

0

2

X

Y

Correlated X and Y
[C(X,Y) = −0.39]

Figure 1: Illustration of the correlation between two random variables. We represent points corresponding
to different values of two random variables X and Y both of zero mean. Points in the top-right and bottom-left
corners of each plot (in green) correspond to similar deviations of X and Y from their mean. Points in the
bottom-right and top-left corners of each plot (in pink) correspond to opposite deviations of X and Y from
their mean. In the left panel, there are more data points in the top-right and bottom-left corners than in the
bottom-right and top-left corners, so that X and Y are positively correlated. In the right panel, there is the same
number of data points in the top-right and bottom-left corners and in the bottom-right and top-left corners, so
that X and Y are uncorrelated. In the bottom panel, there are more data points in the bottom-right and top-left
corners than in the top-right and bottom-left corners, so that X and Y are negatively correlated.

Consider X and Y the results of the rolling of two different dice: X and Y are uncorrelated, and you can check it
mathematically. Each pair (x, y) of values of (X, Y) has the same probability 1/36 to be obtained. Therefore,

⟨XY ⟩ = 1

36
× 1× 1 +

1

36
× 1× 2 + · · ·+ 1

36
× 1× 6 +

1

36
× 2× 1 + · · ·+ 1

36
× 6× 6 =

49

4
= ⟨X⟩ × ⟨Y ⟩,

as ⟨X⟩ = ⟨Y ⟩ = 7/2.

Consider again the rolling of two different dice. You take X as the result of the first die, and Y the maximum value
of the two dice: X and Y are correlated, and you can again check that mathematically. The different values of (x, y)
are

{(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),
(3, 3), (3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 5), (5, 6), (6, 6)}

5

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

of respective probabilities (make a tree)

{1/36, 1/36, 1/36, 1/36, 1/36, 1/36, 1/18, 1/36, 1/36, 1/36, 1/36,
1/12, 1/36, 1/36, 1/36, 2/18, 1/36, 1/36, 5/36, 1/36, 1/6}.

From the above probabilities, the average of XY reads ⟨XY ⟩ = 154/9. Besides, we still have ⟨X⟩ = 7/2 while
⟨Y ⟩ = 161/36, such that ⟨X⟩ × ⟨Y ⟩ = 1127/72 ̸= ⟨XY ⟩.

Pearson correlation coefficient
The degree of correlation of two random variablesX and Y is quantified by the Pearson correlation coefficient

C(X,Y) =
⟨XY ⟩ − ⟨X⟩⟨Y ⟩

σXσY
, (13)

where σX =
√
⟨X2⟩ − ⟨X⟩2 and σY =

√
⟨Y 2⟩ − ⟨Y ⟩2 are the standard deviations of X and Y respectively.

The Pearson correlation coefficient verifies −1 ≤ C(X,Y) ≤ 1, and vanishes when X and Y are uncorre-
lated.

Consider X and Y the results of the rolling of two different dice: X and Y are uncorrelated, and C(X,Y) = 0.

Consider again the rolling of two different dice. You take X as the result of the first die, and Y the maximum
value of the two dice (see the previous example). To compute the correlation coefficient, we need to estimate the
variances of X and Y . We have σX =

√
35/12 while the above probabilities lead to σY =

√
2555/36, such that

C(X,Y) = 3
√
3/
√
73 ≃ 0.61.

5. Central Limit Theorem (CLT)

The Central Limit Theorem is an important theorem of probability theory and justifies the overwhelming impor-
tance of the Gaussian distribution in Physics.

Central Limit Theorem
Let X1, X2, . . . , Xn be independent and identically distributed (i.i.d.) random variables of mean µ and
standard deviation σ. In the limit n→ +∞, the empirical mean

X =
1

n

n∑
i=1

Xi (14)

is a random variable which follows a Gaussian distribution of mean µ and of variance σ2/n. The theorem is
illustrated in Fig. 2

Two important comments are in order:

▶ The random variables must be independent: knowing the value of one random variable does not give any
information on the values of the other random variables. It implies that they are uncorrelated from each
other.

▶ The random variables must be identically distributed: they all follow the same probability distribution.
In particular, they all have the same mean µ and variance σ2.

We can provide an intuitive interpretation of the CLT. In the limit n→ +∞, the probability distribution of X is
a very narrow peak centered around µ, and its typical width is the standard deviation σ/

√
n (the square root of

the variance).

6

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

µ

∼ σ√
n

x

p(x)

n = 22
n = 5
n = 1

As sample size increases
the distribution of the empirical mean

becomes Gaussian

Figure 2: Illustration of the Central Limit Theorem. Probability density p(x) of the empirical mean X =
n−1

∑n
i=1Xi of i.i.d random variables Xi for several values of n.

Physical interpretation of the Central Limit Theorem
When n≫ 1, we have 

µ ≃ 1

n

n∑
i=1

Xi (law of large numbers),∣∣∣∣∣µ− 1

n

n∑
i=1

Xi

∣∣∣∣∣ ∼ σ√
n
.

(15)

Said differently, the measure of the empirical mean X approaches the mean µ and the typical difference
between a measure of X and µ is of the order of σ/

√
n (and goes to zero when n→ +∞).

II. Sampling

We now come back to the first objective of Monte Carlo methods: sampling probability distributions.

Objective
Introduce different methods to generate N samples x1, . . . , xN of a random variable X with a target
probability density p(x).

In this section, we mostly deal with continuous random variables but everything we will discuss also applies to
discrete random variables.

1. Motivations

The sampling of probability distributions is of paramount interest for two main reasons.

In the realm of quantum mechanics, observables have an intrinsic uncertainty (Heisenberg’s indeterminacy
principle). For instance, the position of a quantum particle in 1D is no longer deterministic but is a random
variable of probability density |ψ(x)|2, with ψ(x) the wavefunction of the particle.

In the realm of statistical physics, thermodynamic systems comprise a very large number N of particles (of the
order of 1023). It is impossible to compute the position #»rk and the momentum #»pk of all particles k = 1, . . . ,N
(this is what is called a micro-state). Instead, statistical physics uses ensembles, i.e., copies of the same system
and computes statistical properties. For instance, in the canonical ensemble, the probability distribution of a

7

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

micro-state is given by the Boltzmann weight ρ(#»r1, . . . ,
»rN ,

#»p1, . . . ,
»pN) ∝ exp[−βH(#»r1, . . . ,

»rN ,
#»p1, . . . ,

»pN)]/Z,
with H the Hamiltonian of the system, Z its partition function, and β = 1/(kBT).

2. Reflex: use Python librairies

When you have to generate N samples of a probability distribution p(x), the first reflex is to use Python. There
is a full library of different pseudo-random number generators with different probability distributions, look at
the documentation page of numpy.random.

Pseudo-random number generators
The random number generators implemented in Python are not true random number generators. They instead gen-
erate deterministic sequences of numbers whose statistical properties are close to the target distribution.

Be careful that the sequence repeats itself when reaching the end, which may lead to spurious correlations in your
sequence of random numbers due to this periodic behavior.

The sequence of pseudo-random numbers can be controlled or changed via the seed, i.e., the initiator of the algorithm
which generates pseudo-random numbers.

The most used distribution, when doing Monte Carlo calculations, is the uniform distribution in the range
[0, 1[of probability density p(x) = 1. It generates random numbers uniformly distributed between 0 (in-
cluded) and 1 (excluded). In the following, we denote it rand. In Python, you can use the command
numpy.random.random_sample().

How to sample a distribution which is not already implemented in Python?

3. The inverse transform sampling

In simple cases, you can relate the random variable X of target probability density p(x) and of support I = [a, b[
to another random variable Y whose probability density is the uniform distribution on [0, 1[. It is easy to prove
(see below) that this new random variable is Y = F (X) with

F (x) =

ˆ x

a
p(x′)dx′.

The function F (x) is called the cumulative probability distribution. You finally just have to invert the relation
to get X from Y : X = F−1(Y).

The inverse transform sampling algorithm
If X is a random variable of probability distribution density p(x) and of support I = [a, b[, then Y = F (X)
is a random variable of uniform probability distribution density on [0, 1[, with

F (x) =

ˆ x

a
p(x′)dx′ (16)

the cumulative probability distribution.

Let X be a random variable of probability distribution density p(x) = αe−αx in the range [0,+∞[. Then, we have:

F (x) =

ˆ x

0

αe−αx′
dx′ = 1− e−αx,

which can be inverted:
Y = F (X)⇐⇒ Y = 1− e−αX ⇐⇒ X = − ln(1− Y)

α
.

As a consequence, if you draw N values of the random variable Y uniformly in the range [0, 1[, then the corresponding

8

https://numpy.org/doc/stable/reference/random/legacy.html

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

values of X will follow the exponential distribution p(x).

This algorithm can be easily implemented on a computer.

The inverse transform sampling algorithm
for i = 1 . . . N do

y ← rand(0, 1) ▷ Draw a random number y between 0 and 1 with a uniform probability density.
x← F−1(y) ▷ Apply the inverse transformation.
store(x) ▷ Store the current value of x.

This algorithm works well, but only for random variables for which you can compute analytically the function
F−1. In the following sections, we discuss how to proceed when F−1 cannot be computed by hand.

4. The acceptance-rejection method

The simplest method which can be used for any probability distribution a priori is called the acceptance-rejection
method (see below for limitations).

The acceptance-rejection method
To generate N samples of a random variable X of target probability distribution p(x) of support I = [a, b[,
first draw values of X uniformly in the support I and then accept or reject these values with probability
∝ p(x).

To implement such a procedure, we propose the following algorithm which is illustrated Fig. 3.

The acceptance-rejection method algorithm
n = 0 ▷ n: number of samples of x
while n < N do

x← rand(a, b) ▷ Draw a random number x uniformly in the support I = [a, b[of the target proba-
bility distribution density p(x).
y ← rand(0, pmax) ▷ Draw a random number y uniformly in the range I = [0, pmax[with pmax the
maximum value of the target probability distribution density p(x).
if y < p(x) then

store(x) ▷ Accept the current value of x.
n← n+ 1 ▷ Increase by one the number of sampled values of x.

We can give another intuitive interpretation of the acceptance-rejection method when the random variable x is
a scalar. At each step of the loop, you draw a point (x, y) in the rectangle [a, b[×[0, pmax[, and you store x if
the point is below the curve p(x).

We illustrate the above statement and the algorithm with the example of the beta distribution p(x) = 30x(1 − x)4
in the range [0, 1[. The different steps of the algorithm are:

1. draw a random number x in [0, 1[, for instance x = 0.4;

2. draw a random number y in [0, 2.4576[(with 2.4576 = pmax, do the calculation!), for instance y = 1.2;

3. compare p(x) = 1.5552 with 1.2: here y < p(x) so the value of x is accepted.

You should also note that the above algorithm requires to sample numbers uniformly in the range [a, b[.

How to generate random numbers in an arbitrary range?
To generate random numbers in an arbitrary range [a, b[, there are two different strategies.

1. You can use the command numpy.random.uniform(a,b).

2. You can also use the fact that if X is uniformly distributed in the range [0, 1[, then (b−a)X+a
is uniformly distributed in the range [a, b[.

9

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

pmax

x

y
p(x) (Target)
Trial x
Trial y pmax

x

y
p(x) (Target)
Trial x
Trial y

1. Sample x from a uniform distribution on the support of p(x).
2. Generate y from a uniform distribution in [0, pmax[.

3. Accept x if y ≤ p(x).

Figure 3: Illustration of the acceptance-rejection method. In the first case (top figure), the trial value of x
is accepted since y ≤ p(x). In the second case (bottom figure), the trial value of x is rejected since y > p(x).

Two importants remarks to end this section.

▶ When the support of p(x) has infinite bounds (a, b = ±∞), one needs to truncate the support. This can
alter the accuracy of the sampling process if p(x) decays slowly.

▶ This method is inefficient when p(x) has a narrow peak, because most trial values of x will be rejected.

5. Markov Chain Monte Carlo (MCMC)

a. The method

The idea of the MCMC method is to explore the support of the probability density p(x) of the random variable
X by random walks. Doing this, you then construct a sequence (Markov Chain) of samples of X. There are
several implementations of the method, we here only present the most famous one, the Metropolis algorithm.
For other MCMC algorithms, see M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids.

The Metropolis algorithm
The Metropolis algorithm can be summarized as follows.

1. Start from x1 drawn randomly in the support of p(x).

2. Given x1, choose a random y close by.

3. Take x2 = y with probability min(p(y)/p(x1), 1) (accept). Otherwise, set x2 = x1 (reject).

4. Eventually repeat the entire procedure starting from x2.

We note that only ratios of p(x) appear in the Metropolis algorithm. It means that the algorithm can be applied
even when the normalization constant of the distribution cannot be computed analytically (this is often the case
in statistical mechanics). We illustrate the Metropolis algorithm with an example below.

Imagine that you want to sample the beta distribution p(x) = 30x(1− x)4 in the range [0, 1[. The Markov chain is
initially at x1 = 0.3. The different steps are:

1. draw a random number y close to x1, for instance y = 0.4;

10

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

2. compute the probability min(p(y)/p(x1), 1) ≃ 0.7197 for the trial move to be accepted;

3. take x2 = y with probability 0.7197 and x2 = x1 with probability 0.2803.

We can do another example with the same probability distribution and the same value of x1 = 0.3:

1. draw a random number y close to x1, for instance y = 0.25;

2. compute the probability min(p(y)/p(x1), 1) = 1 for the trial move to be accepted;

3. take x2 = y.

We propose a code implementation of the Metropolis algorithm below, which clarifies some parts of the definition,
in particular, how to generate y randomly close by and how to accept or reject the move with the computed
probability.

The Metropolis algorithm
x← rand(a, b)▷ Draw a random number x uniformly in the support I = [a, b[of the target probability
distribution density p(x).
for i = 1 . . . N do

δ ← rand(−ϵ, ϵ) ▷ Draw a random number δ uniformly in the range I = [−ϵ, ϵ[with ϵ a parameter
which quantifies how far x is randomly kicked.
y ← x+ δ ▷ Kick x of δ to generate y close to x.
if p(y) > p(x) then ▷ y is more probable than x and is therefore automatically accepted.

x← y
else

r ← rand(0, 1) ▷ Draw a random number r uniformly in the range I = [0, 1[.
if p(y)/p(x) > r then ▷ Accept y with probability p(y)/p(x).

x← y
store(x) ▷ Store the current value of x.

It is important to note that you must always store the value of x, whether it has changed or not! A
schematic representation of the Markov chain is shown Fig. 4.

We can give an intuitive interpretation of the algorithm. Starting from a value x, we perturb it to get another value
y. If this value is more probable, i.e., if p(y) ≥ p(x), then this new value is automatically accepted. Otherwise,
the new value y is accepted with probability p(y)/p(x) (which is indeed between 0 and 1). In practice, this is
done by drawing a random number r uniformly between 0 and 1 and accepting y when p(y)/p(x) > r. Indeed,
by definition, the probability that r is smaller than p(y)/p(x) is

P(r ≤ p(y)/p(x)) =
ˆ p(y)/p(x)

0
1× dr′ =

p(y)

p(x)
.

b. Practical implementation of the Metropolis algorithm

We now discuss practical aspects regarding the Metropolis algorithm. The latter has parameters (e.g., ϵ, N)
that you need to choose wisely. Besides, we usually distinguish two phases in a MCMC run, the burn-in phase
and the equilibrium phase.

Burn-in phase. In many applications, the random variable is not a scalar but a vector living in a high-dimensional
space

#»

X (phase space), and you do not know a priori the most probable values of
#»

X. As a consequence, you
may start in a low-probability region of phase space and the MCMC will first converge to more probable regions
of phase space (see Fig. 4). This first phase of the algorithm gives too much weight to regions of phase space
of small probability and must not be considered in the statistical analysis of the data. In other words, they must
be thrown away.

Length of the burn-in phase. The number of steps Nb−i of the burn-in phase depends on the initial condition
and can be estimated by looking at the time series of the random variable itself or an associated quantity, for

11

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

0 20 40 60 80 100
−2

0

2

4

6

8

Burn-in phase
(Nb−i samples)

Equilibrium phase
(Neq samples)

Number of steps

St
at

e
V
al

ue
x

Figure 4: Schematic representation of a Markov chain from the Metropolis algorithm. Pink crosses mark
the steps where the trial moves have been rejected, and where the Markov chain keeps the same value at the step
after. For all other steps, the trial moves have been accepted. The first Nb−i samples of the random variable X
are thrown away (burn-in phase) because they may be sampled in a region of low probability of X and are not
representative of p(x). Only the remaining Neq samples (equilibrium phase) are kept for statistical analysis.

instance the instantaneous energy of the system in statistical mechanics if the random variable is a vector. You
have to choose Nb−i large enough so that the time series of X (or the associated quantity) reaches a stationary
state where it fluctuates around a fixed value.

Equilibrium phase. Once you have reached regions of high probability, you start the equilibrium phase where
you gather samples of X to compute its statistical properties afterwards (see Fig. 4).

Length of the equilibrium phase. The number of steps Neq (N = Nb−i+Neq) of the equilibrium phase must
be large enough. How large? Of course, the larger, the better... But the longer the equilibrium phase, the slower
the algorithm. Therefore, when to stop the chain? In the following, we present two tests to decide whether the
equilibrium phase is long enough.

First test: running averages. To check that Neq is large enough, you can first plot the running empirical
average of the random variable X as a function of the step n in the equilibrium phase (see Fig. 5).

Definition of the running empirical average
The running empirical average of a Markov chain is defined as

1

n−Nb−i

n∑
i=Nb−i+1

xi. (17)

If the equilibrium phase of the Markov chain is long enough then this quantity converges to a constant value
(which is the estimated mean according to the central limit theorem). In the case where the random variable
is a vector (for instance in statistical mechanics), you can consider the running empirical average of the energy.
However, this is not a strict-enough test. Below, we present a second and more strict test.

Second test: correlation functions. To check that Neq is large enough, and that your sampling of the
probability distribution p(x) is sufficient, you need to verify that you have enough uncorrelated samples. For
that, you can compute the correlation function C(n) of the Markov chain in the equilibrium phase.

12

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

0 20 40 60 80 100
1

2

3

4

5

6

7

Equilibrium PhaseBurn-in Phase
(No Measurement)

Number of steps

R
un

ni
ng

A
ve

ra
ge

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

Ncorr

Lag

A
ut

oc
or

re
la

tio
n

Figure 5: Choosing the length of the equilibrium phase during a Markov Chain Monte Carlo algorithm.
You can monitor the running average of the sampled random variable (or related quantities) and check its
convergence (left panel). You can also compute the correlation function of the sampled random variable (right
panel), estimate the typical number of steps Ncorr over which samples are correlated (below which the correlation
function remains under a defined threshold, e.g., 0.1), and check a posteriori that the length of the equilibrium
phase Neq verifies Neq ≫ Ncorr. On this example, the running average seems to plateau. However, Ncorr ≃ Neq,
therefore the sampling is not sufficient.

Definition of the correlation function
The correlation function is defined as the Pearson correlation coefficient of the Markov chain X and of the
same Markov chain but shifted by a number of steps n called the “lag”. Mathematically,

C(n) =
⟨xixi+n⟩ − µ2

σ2
, (18)

where the averages and variances are computed empirically from the Markov chain:

⟨xixi+n⟩ =
1

Neq − n

N−n∑
i=Nb−i+1

xixi+n, µ =
1

Neq

N∑
i=Nb−i+1

xi, σ2 =
1

Neq

N∑
i=Nb−i+1

x2i − µ2. (19)

In the case where the random variable is a vector (for instance in statistical mechanics), you just replace the
products in the above definition by scalar products.

A typical shape of C(n) is shown Fig. 5. It decays from 1 (by definition) to 0 as a function of the lag n, meaning
that samples become uncorrelated after many kicks. The typical number of steps Ncorr to perform between two
uncorrelated samples can be estimated from the shape of C(n). This is typically done by choosing a cutoff value
(for instance 0.1, its precise value is not important). Then, Ncorr is defined as the smallest value of the lag n
such that C(n) remains smaller than the cutoff for n ≥ Ncorr. The sampling is correct when Neq ≫ Ncorr (at
least a hundred times). This is usually more strict than the first test based on running averages.

A last parameter: the amplitude of the random kicks. The parameter ϵ represents the typical amplitude of
kicks in the Markov chain to go from one sample to the consecutive one. Of course, if you take ϵ is very small,
you almost keep x unchanged so trial moves are often accepted. However, you do not explore the support of
p(x) efficiently and you increase the number of steps Ncorr to perform before generating an uncorrelated sample.
This forces you to increase Neq and therefore the total duration of your simulation. Instead, if you take ϵ too
large, you change x a lot and trial moves are more likely to be rejected. But when they are accepted, it is more

13

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

likely that you generate an uncorrelated sample. As a result, you do not explore the support of p(x) efficiently
again. Therefore, there is a compromise to make. Typically, ϵ is set such that the acceptance rate of the trial
moves, i.e., the percentage of moves which are accepted, lies between 20 % and 50 %.

We can summarize the content of this paragraph in the advice given below.

Criteria for an accurate Monte Carlo sampling
Choose the amplitude of random kicks to have an acceptance rate between 20% and 50%.

Throw away the burn-in phase when the Markov chain converges to a stationary state.

Make the equilibrium phase long enough to accumulate uncorrelated samples (compute the correlation
function).

III. Integration

In this section, we discuss an application of Monte Carlo methods, namely, the integration of functions.

1. The method

Imagine that you want to compute the integral of a function f on a domain Ω embedded in a D-dimensional
space. Then you can rewrite the integral I as

I =

ˆ
#»x∈Ω

f(#»x)dD #»x =

ˆ
#»x∈Ω

f(#»x)

p(#»x)
p(#»x)dD #»x =

ˆ
#»x∈RD

f(#»x)

p(#»x)
w(#»x)p(#»x)dD #»x ,

with w(#»x) the function which equals 1 on Ω and 0 otherwise. You then recognize the average of fw/p for a
random variable

#»

X of probability distribution density p(#»x).

Monte Carlo integration
The integration of a function f(#»x) for #»x ∈ Ω ⊂ RD can be done thanks to the sampling of a random
variable X of probability distribution density p(#»x) such that

I =

ˆ
#»x∈Ω

f(#»x)dD #»x =

〈
f(#»x)

p(#»x)
w(#»x)

〉
. (20)

We can easily implement this method thanks to an algorithm.

Monte Carlo integration algorithm
The algorithm to perform a Monte Carlo integration works as follows.

1. Generate N samples { # »x1, . . . ,
»xN} of the random variable X of probability distribution density p(#»x)

(see the section about sampling).

2. Compute the integral I as

I =
1

N

N∑
i=1

f(#»xi)

p(#»xi)
w(#»xi). (21)

Consider a one-dimensional integral on Ω = [a, b]. Then, the simplest choice is to take p(x) uniform on that support,
namely p(x) = 1/(b−a). In this case, the data points sampled always lie in the integration domain, and the numerical
estimate of I reads

I =
b− a
N

N∑
i=1

f(xi).

14

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

2. Choice of the probability distribution

We now need to discuss the choice of p(#»x) for the Monte Carlo integration. We give several general rules below.

Choice of the probability distribution density for importance sampling
▶ The probability distribution density p for the Monte Carlo integration of a function f in a domain Ω must
be a proper probability distribution density with a support which includes the integration domain. In other
words p(#»x) ≥ 0, the support I of p(#»x) is such that Ω ⊂ I and

ˆ
#»x∈I

p(#»x)dD #»x = 1.

▶ The probability distribution density should be taken so that the probability is higher in regions of Ω which
contribute the most to the integral of f (regions where f is higher). In other words, regions which contribute
the most to the integral are visited more often to increase the accuracy. Said differently, f and p should
have similar shapes.

▶ The probability distribution density should be taken so that one never has f(#»x)≫ p(#»x). Otherwise the
ratio f(#»x)/p(#»x) becomes very large, leading to a poor accuracy.

Therefore, you need to adapt p(#»x) depending on the function f(#»x) you want to integrate, but also on the
integration domain. This is called importance sampling. In particular, the uniform distribution discussed in the
example above is not always the distribution which yields the most accurate estimates of integrals.

3. Comparison with other methods

We end this section by comparing the efficiency of the Monte Carlo integration with other deterministic methods
to compute integrals (trapezoidal rule, Simpson’s rule, etc.).

Numerical accuracy of the Monte Carlo integration
If the integral to compute is

I =

ˆ
#»x∈Ω

f(#»x)dD #»x ,

we approximate it thanks via

I =

〈
f(#»x)

p(#»x)
w(#»x)

〉
≃ 1

N

N∑
i=1

f(#»xi)

p(#»xi)
w(#»xi). (22)

via the sampling of N points.
According to the Central Limit Theorem, when N ≫ 1, the numerical error is of the order

√
N :∣∣∣∣∣I − 1

N

N∑
i=1

f(#»xi)

p(#»xi)
w(#»xi)

∣∣∣∣∣ ∼ 1√
N
. (23)

As a conclusion, the Monte Carlo integration performs badly for one-dimensional integrals, as compared
to the trapezoidal method (error ∼ 1/N2) or the Simpson’s method (error ∼ 1/N3). However, it is important to
remember that the error in deterministic methods comes from the step size δ to discretize space. For instance,
the error for the trapezoidal method is ∼ δ2. In one dimension, as δ ∼ 1/N , we get the above estimate. What
about larger dimensions?

In D dimensions, if you keep the number N of points fixed, the step size now behaves as δ ∼ 1/N1/D [N1/D

points per dimension such that you have (N1/D)D = N points in total]. This is because you discretize space
in N small volumes of size δD. As a consequence, the error for the trapezoidal method scales as ∼ 1/N2/D

in D dimensions and increases with the dimension D (“curse of dimensionality”). On the opposite, the Monte

15

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

Figure 6: Illustration of the physical origin of the simulated annealing algorithm. Crystal with de-
fects (left) and perfect crystal (right). Illustrations from https://www.tec-science.com/material-science/
structure-of-metals/crystallographic-defects/ (last checked: 17/09/2024).

Carlo integration has a precision of order 1/
√
N independently of the dimension. Therefore, for D ≥ 4, the

Monte Carlo integration becomes more efficient than the trapezoidal method, at fixed number of samples (and
roughly computation time). In other words, the Monte Carlo integration performs better than any com-
mon deterministic method for high-dimensional integrals. This is typically the case in statistical mechanics.

We finally note that in relatively small dimensions (2 ≤ D ≤ 4), the deterministic methods have a better accuracy
than the Monte Carlo integration. However, a Monte Carlo integration may be more suitable, especially
when the integration domain is complicated (e.g., when integrating on the surface of a sphere or a torus).

We summarize below the conditions to implement a Monte Carlo integration.

When to use a Monte Carlo integration?
Monte Carlo integration is preferred for high-dimensional integrals or for integrals with complicated
domains of integration.

IV. Optimization

In this section, we discuss a second application of Monte Carlo methods, namely, the research of the global
minimum of functions. The name of this method is simulated annealing. Of course, you can also find the
global maximum of functions with the simulated annealing method, you just have to apply the procedure to the
opposite of the function you want to maximize.

1. Motivation

Before describing the algorithm, we discuss its origin. Interestingly, as to now, we discussed algorithms made
by computer scientists to solve Physics problems. The simulated annealing algorithm is instead an algorithm
rooted in Physics principles mainly used to solve optimization problems.

Consider a liquid above its melting temperature Tm and cool it. If you cool it fastly, most liquids eventually
cristallize but the crystalline structure obtained has a lot of defects, e.g., dislocations, vacancies or interstitials
(see Fig. 6 left). Instead, if you cool the liquid very slowly, it cristallizes with almost no defects: the system has
found its ground state, the perfect crystal (see Fig. 6 right). Said differently, when you cool the liquid fastly, it
converges to a local free energy minimum. Instead, when you cool the liquid slowly, it is able to find its global
free energy minimum.

To understand more deeply this phenomenon, consider a simpler problem: one particle in a one-dimensional
double-well potential (see Fig. 7). Thermal fluctuations give kinetic energy to the particle which allows it to

16

https://www.tec-science.com/material-science/structure-of-metals/crystallographic-defects/
https://www.tec-science.com/material-science/structure-of-metals/crystallographic-defects/

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

explore its potential energy landscape V (x). Said differently, the Boltzmann distribution gives that the probability
distribution density of the random variable x (the position of the particle) is p(x) ∝ e−V (x)/(kBT), with kB the
Boltzmann constant. As a consequence, kBT corresponds to the typical excursion of energy such that events
remain highly probable.
At high-enough temperature (left panel), the particle can jump from one well to another. In terms of probability
distribution, this is because the height of the energy barrier is smaller than kBT . However, at lower temperature
(right panel), i.e., when the height of the energy barrier becomes larger than kBT , the particle does not have
enough kinetic energy (or thermal fluctuations) to jump. It is therefore more likely to remain in the closest
minimum, even though it is not the global minimum. As a consequence, if the temperature is decreased fastly,
then the system may converge to a sub-optimal situation, corresponding to a local minimum. Instead, if the
temperature is decreased slowly, the particle can equilibrate and find the global minimum when its kinetic energy
is high enough and remain in it when its kinetic energy is too small to overcome the energy barrier. As a result,
it is more likely to find the global minimum.

x

V (x)

Particle
kBT

x

V (x)

Particle
kBT

Figure 7: An intuitive explanation of the behavior of the simulated annealing algorithm. Particle evolving
in a one-dimensional asymmetric double-well potential. The shaded area corresponds to the typical excursion of
the particle at temperature T thanks to thermal fluctuations. The high-temperature scenario is represented on
the left, the low-temperature scenario on the right.

2. Description of the simulated annealing algorithm

We now describe the simulated annealing algorithm, which combines an “equilibrium-like” dynamics at tempera-
ture T with a cooling protocol.

Simulated annealing protocol
To minimize a function f(X) for a given random variable X, we proceed as follows.

1. Simulate the “equilibrium dynamics” of an effective system at “temperature” T of “potential energy”
f(x), such that its probability distribution density is p(x) ∝ e−f(x)/T (we set kB = 1). For that,
proceed using the Metropolis algorithm (see the section about sampling).

2. Slowly decrease the “temperature”.

3. Start from a “very high temperature” and end the algorithm at “very low temperature”.

3. Practical implementation of the simulated annealing algorithm

We now discuss practical aspects regarding the implementation of the simulated annealing protocol.

Cooling protocol. The choice of a cooling protocol depends on the optimization problem to solve. Simplest
cooling protocols imply an arithmetic or a geometric progression of the temperature, but more advanced schemes
exist.

17

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

Linear cooling for a simulated annealing algorithm
The linear cooling corresponds to an arithmetic progression of the temperature, namely, to a linear decrease
in the temperature from Ti to Tf in N steps. Said differently, the temperature is given by

Tn+1 = Tn −
Ti − Tf
N

⇐⇒ Tn = Ti −
Ti − Tf
N

n (linear cooling), (24)

at step n < N .

Exponential cooling for a simulated annealing algorithm
The exponential cooling corresponds to a geometric progression of the temperature, i.e., to an exponential
decay of the temperature from Ti to Tf at a constant relative rate ∆. Said differently, the temperature is
given by

Tn+1 = Tn(1−∆)⇐⇒ Tn = Ti(1−∆)n (exponential cooling), (25)

at step n. The number of steps N is set such that TN = Tf .

Before discussing the different parameters of the simulating annealing technique, we propose a schematic imple-
mentation of the exponential cooling to minimize a function f(x).

The simulated annealing algorithm with exponential cooling
T ← Ti ▷ The temperature starts from its initial value.
while T > Tf do

δ ← rand(−ϵ, ϵ) ▷ Draw a random number δ uniformly in the range I = [−ϵ, ϵ[with ϵ a parameter
which quantifies how far x is randomly kicked.
y ← x+ δ ▷ Kick x of δ to generate y close to x.
if f(y) < f(x) then ▷ f(y) is smaller than f(x) so y is therefore automatically accepted.

x← y
else

r ← rand(0, 1) ▷ Draw a random number r uniformly in the range I = [0, 1[.

if exp

(
−f(y)− f(x)

T

)
> r then ▷ Accept y with probability exp

(
−f(y)− f(x)

T

)
.

x← y
T ← T (1−∆) ▷ Cool the system.

Initial temperature. The choice of the initial temperature is dictated by the fact that initially, the system
must be able to overcome all energy barriers. In other words, the initial temperature should ideally be much
larger than the difference between the global maximum and the global minimum of the function to minimize. Of
course, these maximum and minimum values are usually not known beforehand, so you should take the initial
temperature high enough by trying different values.

Final temperature. Similarly, the choice of the final temperature is dictated by the fact that eventually, the
system must remain in the global minimum if it finds it. In other words, the final temperature should ideally be
much smaller than the energy barriers connected the global minimum to adjacent local minima. Again, these
energy barriers are not known beforehand, so you should take the final temperature small enough by trying
different values.

Cooling rate. The quality of the optimization is mostly controlled by the value of the cooling rate [which is
(Ti − Tf)/N for the linear cooling, and ∆ for the exponential cooling]. The smaller the cooling rate, the better
the optimization. In other words, if you take a smaller cooling rate, you will be able to reach smaller and smaller
values of the function to optimize.

Efficiency of the simulated annealing protocol
The simulated annealing algorithm is able to find smaller and smaller minima of f(x) as the cooling rate
decreases. The optimized value of f(x) found at the end of the simulated annealing protocol slowly con-
verges to the value of the global minimum as the cooling rate goes to 0.

18

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

However, the simulated annealing protocol hardly finds the global minimum itself. Said differently,
the simulated annealing algorithm helps in finding good approximations of the value of the minimum of a
function, but not necessarily its actual minimum location.

V. Mathematics of Monte Carlo algorithms

1. The inverse transform sampling

We proove the mathematical result at the origin of the inverse transform sampling. The probability distribution
density q(y) of Y is derived as follows. The probability of a given value y of Y is obtained as the sum over all
values x of X such that y = F (x), meaning that

q(y) =

ˆ
x∈I

p(x)δ(y − F (x))dx,

when δ is the Dirac distribution which enforces the constraint y = F (x). We now do the change of variable
y′ = F (x) in the integral [dy′ = F ′(x)dx = F ′(F−1(y′))dx], and we get

q(y) =

ˆ
y′∈F (I)

p(F−1(y′))δ(y − y′) dy′

F ′(F−1(y′))
.

By definition, F ′(x) = p(x) and we eventually obtain that

q(y) =

ˆ
y′∈F (I)

p(F−1(y′))δ(y − y′) dy′

p(F−1(y′))
=

ˆ
y′∈F (I)

δ(y − y′)dy′ = 1,

where we have used the integral property of the δ-distribution. The probability distribution density of Y is
constant, hence Y is a uniform random variable. We finally note that because p(x) ≥ 0, F (x) is an increasing
function. Its bounds are F (a) = 0 (by definition) and F (b) = 1 [because p(x) is normalized]. This proves that
Y is a uniform random variable in [0, 1[.

2. Markov Chain Monte Carlo

a. Detailed balance

The mathematics behind the Markov Chain Monte Carlo (MCMC) method rely on the concept of detailed
balance that we will present briefly. The presentation here follows the book from D. Frenkel and B. Smit,
Understanding Molecular Simulation.

Imagine that you have an algorithm which is able to sample a probability distribution density p(x) of a random
variable X. We recall that, by definition, p(x) ≃ N(x)/N for N ≫ 1, with N(x) the number of times x is
visited, and N the total number of steps.
Let’s focus on a possible value x of X. If the algorithm is indeed able to sample p(x), it means that the average
number of accepted trial moves leaving x should be equal to the average number of accepted trial moves reaching
x. Otherwise, the relative number of times N(x)/N that x is visited will change, and the estimated probability
p(x) too. The number of accepted trial moves leaving x is∑

x′ ̸=x

p(x)W (x→ x′),

where we sum, over all possible values x′ the random variable X can take (except x), the probability that X
ends up in x′ starting from x. The quantity W (x → x′) is the transition probability to go from x to x′, or
equivalently, the conditional probability that the Markov chain ends in x′ knowing that it was at x at the step
before. Similarly, the number of accepted trial moves reaching x is∑

x′ ̸=x

p(x′)W (x′ → x),

19

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

where we sum, over all possible values x′ the random variable X can take (except x), the probability that X ends
up in x starting from x′. As a consequence, the MCMC algorithm samples the probability distribution density
p(x) if the equality ∑

x′ ̸=x

p(x)W (x→ x′) =
∑
x′ ̸=x

p(x′)W (x′ → x). (26)

is verified for all values of x. This condition is called global balance and can be satisfied by a proper choice of
the transition probabilities W (x→ x′).

A particular situation where this condition is satisfied is when we impose that the terms in the two sums equal
each other separately. This is a more restrictive condition called detailed balance.

Detailed balance
If a Markov Chain Monte Carlo algorithm verifies the detailed balance property, namely,

p(x)W (x→ x′) = p(x′)W (x′ → x)⇐⇒ W (x′ → x)

W (x→ x′)
=
p(x)

p(x′)
, (27)

by a proper choice of transition rates W (x→ x′), then the algorithm will sample the probability distribution
density p(x).

b. Application to the Metropolis algorithm

We now show that the Metropolis algorithm verifies the detailed balance condition. For that, we need to derive
the expression of the transition rate W (x→ x′). We can decompose it into two factors:

W (x→ x′) = α(x→ x′)×Acc(x→ x′), (28)

where α(x→ x′) stands for the probability to propose a trial move from x to x′, while Acc(x→ x′) corresponds
to the probability that this trial move is accepted. In the Metropolis algorithm, we do random kicks uniformly
distributed around the current position of the Markov chain, and as a consequence α(x → x′) = α(x′ → x)
(symmetric). Indeed, α(x → x′) = α(x′ → x) = 0 if |x′ − x| > ϵ while α(x → x′) = α(x′ → x) = 1/(2ϵ)
otherwise. As a consequence, we just have to check that

W (x′ → x)

W (x→ x′)
=

Acc(x′ → x)

Acc(x→ x′)
=
p(x)

p(x′)
.

Consider first the case where p(x) ≥ p(x′), then Acc(x′ → x) = 1 (the move is automatically accepted), while
Acc(x→ x′) = p(x′)/p(x), and the above equality is satisfied. Consider then the case where p(x) < p(x′), then
Acc(x′ → x) = p(x)/p(x′), while Acc(x→ x′) = 1, and the above equality is again satisfied.

3. The acceptance-rejection method

The mathematical justification of the acceptance-rejection method can also be done using the concept of detailed
balance. For that, we note that we can still define a transition rate W (x→ x′) in the form:

W (x→ x′) = α(x→ x′)×Acc(x→ x′). (29)

Again α(x → x′) = α(x′ → x) since α(x → x′) = 1/(b − a) (uniform probability to pick a value x). As a
consequence, we just have to check that

W (x′ → x)

W (x→ x′)
=

Acc(x′ → x)

Acc(x→ x′)
=
p(x)

p(x′)
.

The acceptance rate Acc(x→ x′) depends on the value of the random variable y. The move x→ x′ is accepted
if y drawn uniformly in [0, pmax[is smaller than p(x′) (it does not depend on the initial state point). The
probability that y is indeed smaller than p(x′) equals

P(y ≤ p(x′)) =
ˆ p(x′)

0

1

pmax
dy′ =

p(x′)

pmax
,

20

Benjamin GUISELIN Modélisation et Simulation en Physique (HAP708P)

where 1/pmax is the probability distribution density of the uniform probability distribution on the support [0, pmax[.
As a conclusion Acc(x → x′) = p(x′)/pmax. The same reasoning leads to Acc(x′ → x) = p(x)/pmax, and the
detailed balance condition is satisfied.

21

	Reminders about probabilities
	Sampling
	Integration
	Optimization
	Mathematics of Monte Carlo algorithms

