Centre de Biochimie Structurale UMR UM1 / 5048 CNRS / 554 INSERM 29 rue de Navacelles 34090 Montpellier Cedex

www.cbs.univ-montp1.fr

Résonance Magnétique Nucléaire : Rappels sur le Phénomène Physique

Christian ROUMESTAND

<u>Christian.roumestand@cbs.cnrs.fr</u> (04 67 41 77 04)

Découverte du phénomène de R.M.N.

Felix BLOCH

Université de Stanford - USA

Edward M. PURCELL Université de Harvard - USA

Prix NOBEL de Physique 1952

Prix NOBEL de Chimie 1991

Richard Robert ERNST ETH Zürich - SUISSE

« Développement des Techniques pour la Spectroscopie de RMN à Haute Résolution »

Kurt WÜTHRICH ETH Zürich- SUISSE

« Application de la RMN à l'étude des Macromolécules Biologiques en solution »

Prix NOBEL de Chimie 2002

Prix NOBEL de Médecine 2003

Paul C. LAUTERBUR Université de l'Illinois USA

« Utilisation de gradients de champ magnétique pour créer une image bidimensionnelle »

Sir Peter MANSFIELD Université de Nottingham GRANDE-BRETAGNE

« Optimisation de l'utilisation des gradients. Traitement mathématique et analyse du signal »

Prix NOBEL de Chimie 2013

Martin KARPLUS

Harvard University USA Uni. de Strasbourg France

Michael LEVITT Standford University USA

Ariel WARSHEL University of Southern California, L.A., USA

« for the development of multi scale models for complex chemical systems »

Domaines d'applications de la RMN

. RMN à haute résolution dans les solutions homogènes.

. RMN d'objets vivants (cellules, organes).

. RMN des solides, polymères.

. Imagerie 3D par RMN (IRM)

Méthode d'analyse non-destructrice et non invasive

Applications de la RMN en phase liquide

- Détermination de structures moléculaires (Chimie)
 - Chimie des produits naturels
 - Chimie des produits de synthèse

Structure 3D de la protéine oncogénique MTCP1

• Etude de structures tridimensionnelles

- Protéines
- Acides Nucléiques
- Polysaccharides
- Complexes

•Etudes de Processus dynamiques

-Cinétiques de Réactions-Etudes d'équilibres (Chimiques ou de structures)

•Etudes d'interactions / Drug Design

-Relations Structure / Activité

RMN : Phénomène Physique 1/4

LA STRUCURE DE LA MATIERE

A = Nombre de MasseZ = Numéro Atomique

LA STRUCURE DE LA MATIERE

 ${}^{3}H^{*}$ I =1/2

Le phénomène de RMN est lié à l'existence d'un Spin Nucléaire. Le Spin est une propriété fondamentale de la matière, comme la charge électrique ou la masse : l'électron, le neutron, le proton possèdent un spin.

Au niveau du noyau, il peut y avoir annihilation entre spins des neutrons et des protons (nombre de spin I = 0) : on n'observera pas de phénomène de RMN pour ces noyaux. Si $I \neq 0$, le noyau possède un moment de spin nucléaire I.

I Noyaux

- 0 ¹²C, ¹⁶O
- 1/2 ${}^{1}\text{H}, {}^{13}\text{C}, {}^{15}\text{N}, {}^{19}\text{F}, {}^{29}\text{Si}, {}^{31}\text{P}$
- 1 ${}^{2}\text{H}, {}^{14}\text{N}$
- 3/2 ¹¹B, ²³Na, ³⁵Cl, ³⁷Cl
- 5/2 ¹⁷O, ²⁷Al
- 3 ¹⁰B

Il est possible de déterminer d'après le numéro atomique et le nombre de masse si le spin d'un noyau est nul, entier, ou demientier :

MOMENT de SPIN et NOMBRE DE SPIN I

Une des caractéristiques de ce spin c'est qu'il est associé à une grandeur vectorielle que l'on appelle moment de spin. Mais, ce qui est important pour la compréhension du phénomène de résonance magnétique nucléaire est moins la signification profonde du moment de spin I - il résulte du moment cinétique propre J d'une particule, associé à la « rotation » de cette particule sur elle-même - que l'existence simultanée d'un moment magnétique μ colinéaire a I.

$$\vec{j} = \hbar \vec{I}$$
 $\vec{\mu} = \gamma \hbar \vec{I}$

γ est appelé rapport gyromagnétique. Il est caractéristique de la particule.

h est la constante de Planck.

I et μ sont quantifiés et ne peuvent pas prendre n'importe qu'elles valeurs. Les lois de la mécanique quantique permettent de démontrer que μ ne peut adopter que (2I+1) valeurs discontinues égales à :

$$\mu = \gamma \hbar m$$

Avec m variant entre -I et I par pas d'une unité : m = -I, -(I-1), ..., (I-1), I;

Le cas du spin 1/2Loi de Boltzmann avec B_0 Sans B_o $\frac{\Delta E}{?K_{P}T}$ $P_{\alpha} - P_{\beta} \approx \frac{L}{2I}$ $E = + h v_0/2$ E E

Fréquences de LARMOR de quelques noyaux communs (mesurées dans un champ B0 = 2.35 T)

NOYAU	Ι	v(MHz)	Abondance
			naturelle (%)
¹ H	1/2	100	99,98
² H	1	15,351	1,5 10-2
13 C	1/2	25,144	1,108
17 O	5/2	13,557	3,7 10-2
^{14}N	1	7,224	99,63
15 N	1/2	10,133	0,37
31 P	1/2	40,481	100
¹⁹ F	1/2	94,077	100
²³ Na	3/2	26,451	100

Microscopique

Boltzmann law:

 $P_{\alpha} - P_{\beta} \approx \frac{\Delta E}{2K_{B}T}$

Soumises à un champ magnétique B_0 , les particules vont peupler 2 niveau d'énergie : un niveau de basse énergie (α , +1/2) avec le moment magnétique parallèle à l'induction magnétique, et un niveau de haute énergie $(\beta, -1/2)$ avec le moment magnétique antiparallèle à B_0 . Les populations de spins sur les 2 niveaux ne sont pas égales : la distribution suit la loi de Boltzmann, avec un excès de spins paralèles à B_0 sur le niveau de basse énergie à l'équilibre thermodynamique.

Microscopique

Le moment magnétique n'est pas complètement aligné avec B_0 : à cause de la loi de Laplace, le vecteur magnétique va tourner (d'où le nom de "spin"!) à une vitesse qui dépends de sa fréquence de Larmor.

Microscopique

Le moment magnétique n'est pas complètement aligné avec B_0 : à cause de la loi de Laplace, le vecteur magnétique va tourner (d'où le nom de "spin"!) à une vitesse qui dépends de sa fréquence de Larmor.

Larmor law:

 2π $v = \gamma B_{o} /$

Microscopique

Macroscopique

Larmor law:

 $v = \gamma B_0 / 2\pi$

Tous les vecteurs d'aimantation microscopique tournent à la même vitesse mais sans cohérence de phase.

=> l'aimantation Macroscopique n'existe que selon l'axe z.

Perturbation de l'équilibre thermodynamique

Si l'on applique un champ R.F. coherent B_1 à la fréquence de Larmor :

- on induit des transitions entre les niveaux d'énergie α et β , ce qui diminue la différence de population;
- les spins concernés par les transitions "s'alignent" avec B₁: ils gagnent de la cohérence de phase.

Perturbation de l'équilibre thermodynamique

Macroscopique

L'aimantation selon z diminue, et une composante macroscopique apparait dans le plan xy. Par conséquent, l'aimantation macroscopique bascule vers le plan xy, tout en précessant à la fréquence de Larmor.

Impulsion 90° (égalisation des populations de spins)

Impulsion 180° (inversion des populations de spins)

Impulsion 180° (inversion des populations de spins)

PRECESSION DE L'AIMANTATION NUCLEAIRE

On applique pendant une durée déterminée t_p (quelques μ s) selon l'axe x un champ radiofréquence d'amplitude B₁ (quelques dizaines de kHz) oscillant à la fréquence de Larmor du noyau.

EFFET D'UN CHAMP RADIO-FREQUENCE $\uparrow z$ B₁ SUR L'AIMANTATION M₀

EFFET DE B₁ DANS LE REFERENTIEL TOURNANT

Dans le référentiel tournant à la fréquence de Larmor du noyau, l'aimantation ne subit plus que l'effet du champ « statique » B_1 .

 $\omega = \gamma B_1$

Elle va tourner autour de l'axe x' d'un angle égal à :

 $\theta = \gamma B_1 t_p$

Relation entre Largeur Spectrale (SW) et Longueur de l'Impulsion (PW)

100 80 60 40 20 Mxyz -20 -40 -60 -80 -100 -2500 -1250 0 1250 2500 Hz

 $SW \approx 1/PW$

Trajectoire de l'aimantation en fonction de l'offset

Profil en fréquence : distribution de l'aimantation après application de l'impulsion.

Le signal détecté est une sinusoïde amortie :

- Le dipole tourne autour de l'axe du champ avec une fréquence $v = \gamma B_0/2 \pi$
- La relaxation ramène l'aimantation à l'état d'équilibre

Le signal détecté est une sinusoïde amortie :

- Le dipole tourne autour de l'axe du champ avec une fréquence $v = \gamma B_0/2 \pi$
- La relaxation ramène l'aimantation à l'état d'équilibre

Le signal détecté est une sinusoïde amortie :

• Le dipole tourne autour de l'axe du champ avec une fréquence $v = \gamma B_0/2 \pi$

• La relaxation ramène l'aimantation à l'état d'équilibre

rapport gyromagnétique

• Le dipole tourne autour de l'axe du champ avec une fréquence $v = \gamma B_o/2 \pi$

La relaxation ramène l'aimantation à l'état d'équilibre
2 informations :
fréquence & constante de temps d'amortissement (T₂)

rapport gyromagnétique

Signal de Précession Libre et Transformée de Fourier

t (s)

L'information sur la constante de temps d'amortissement (T_2) est contenue dans la largeur de raie... Transformée de Fourier

v (Hz)

Signal de Précession Libre et Transformée de Fourier

t (s)

L'information sur la constante de temps d'amortissement (T_2) est contenue dans la largeur de raie... Transformée de Fourier

v (Hz)

Echantillonnage du signal de précession libre: Le théorème de Nyquist

Le signal doit être échantillonné avec une fréquence d'au moins deux points par période.

Principe de l'analyse en fréquence d'un signal par TF

Transformée de Fourier et Rapport Signal sur Bruit

Le nombre de « scans » NS va déterminer le rapport signal/bruit de l'expérience :

-Le signal RMN est identique d'une expérience sur l'autre. Si on additionne les différentes FID, son intensité va croître proportionnellement à NS.

-Le bruit est par nature aléatoire: il est différent d'une expérience à l'autre. Si l'on additionne les différentes FID, on peut montrer qu'il croit proportionnellement à \sqrt{NS} .

Donc:

$$\frac{S}{B} \propto \sqrt{NS}$$

Ce paramètre est à ajuster en fonction:

- de la sensibilité du spectromètre (champ B_0); $f(B_0^2)$
- de la sensibilité du noyau (rapport gyro-magnétique); $f(\gamma^3)$
- de la concentration de l'échantillon.

Aimant Permanent (60 MHz)

Electro-Aimant (90 MHz)

Aimant Permanent (60 MHz)

Electro-Aimant (90 MHz)

Aimant Supra-Conducteur (600 MHz)

L'aimant Supra-Conducteur

La Course aux MHz : un problème d'alliage... ... et de température!

La sonde (probe)

Sonde ${}^{1}H$

Sonde inverse

La sonde est construit comme un circuit résonnant (capacité en parallèle avec un solénoïde):

Les Origines de la Relaxation RMN

La Relaxation est due aux transitions induites par le « bruit magnétique » de l'échantillon.

Les noyaux ne sont pas isolés dans la molécule : ils sont entourés par d'autres noyaux qui se comportent comme des dipoles magnétiques microscopiques. Le mouvement Brownien de ces dipoles microscopiques va être à l'origine du « bruit magnétique ».

Des contributions au bruit magnétique oscillent à la fréquence de Larmor du spin nucléaire (densité $J(\omega_0)$) : elles vont induire des transitions qui vont restaurer l'équilibre thermodynamique.

Au sein de la même population de spin, des contributions différentes seront responsables pour les différentes transitions (champ aléatoire): lors du retour sur l'état de basse énergie : les spins perdent x^{*} leur cohérence de phase.

Le bruit magnétique contient également des « contributions statiques aléatoires » (densité J(0)) qui peuvent s'ajouter ou se soustraire au champ B₀ et provoquer des variations de C.S..

Ces contributions sont responsables de la défocalisation de l'aimantation et de la perte de l'aimantation transverse, mais pas ^y du retour à l'équilibre thermodynamique.

Relation entre T_1 , T_2 et mouvement

Dépendance en fréquence de T₁

Mesure du temps de relaxation longitudinal (T_1)

La Séquence d'Inversion-Récupération $\pi/2$

π

τ

La Séquence d'Inversion-Récupération

Evolution de la composante longitudinale de l'aimantation (équation de BLOCH) :

Cette équation différentielle a pour solution :

$$M_z(\tau) = M_0 + [M_z(0) - M_0] \exp(-\tau/T_1)$$

Soit:
$$M_z(\tau) = M_0 [1 - 2\exp(-\tau/T_1)]$$

$$\frac{M_0 - M_z(\tau)}{2M_0} = \exp(-\frac{\tau}{T_1})$$

ou, sous forme logarithmique :

$$\ln\left[\frac{M_0 - M_z(\tau)}{2M_0}\right] = -\frac{\tau}{T_1}$$

Remarque : le passage à 0 de l'aimantation $(M_z(t) = 0)$ permet une détermination rapide du T_1 :

$$T_1 = \frac{\tau_{(0)}}{\ln(2)}$$

Evolution de la composante transversale del'aimantation (équation de BLOCH) :

$$\frac{dM_{xy}}{dt} = -\frac{M_{xy}}{T_2}$$

M_×γ

Mor

Après un écho (2τ), cette équation différentielle a pour solution :

$$M_{xy}(2\tau) = M_0 \exp(-2\tau/T_2)$$

Avec :
$$M_{xy}(0) = M_0$$

soit sous forme logarithmique :

$$+ \ln \left[\frac{M_{xy}(2\tau)}{M_0} \right] = -\frac{2\tau}{T_2}$$

Largeur de raie

Déplacement Chimique

3/4

- ¹⁹F: 40.03 MHz
- ¹³C: 10.70 MHz
- ¹⁷O: 5.77 MHz
- ¹⁵N: 4.31 MHz

Fréquences de résonances dans un champ de 1.0 T:

¹H: 42.58 MHz
¹⁹F: 40.03 MHz
¹³C: 10.70 MHz
¹⁷O: 5.77 MHz
¹⁵N: 4.31 MHz

La fréquences de LARMOR ne dépend que du champ statique B₀ et du γ du noyau observé...

Champ local et « Blindage Nucléaire » **B**₀ **B**₀ **B**₀ **B**₀ $B = B_0 - B' = B_0(1 - \sigma)$ B = Champ «Local » B' σ = constante d'écran Noyau dans Noyau nu un atome $\frac{\gamma B_0(1-\sigma)}{2\pi}$ γ ħ Β₀ $\gamma | \hbar B_0(1 - \sigma)$

Le déplacement chimique

C'est une quantification de l'effet de champ local, rendue indépendante du champ B_0 : on ne mesure plus la fréquence absolue du noyau, mais la différence de fréquence avec un noyau référence.

$$\delta_{obs} = \frac{v_{obs} - v_{ref}}{v_{ref}} \times 10^6 \approx \frac{v_{obs} - v_{ref}}{v_0} \times 10^6 \text{ ppm}$$

Contrairement à la fréquence de résonance, le déplacement chimique ne dépend plus du champ B₀!

Ex: un proton qui résonne à 3000 Hz (v_{obs}) de la substance de référence ($v_{ref} = 0$) dans un champ magnétique de 11.75 T ($v_0 = 500$ MHz) aura un déplacement chimique δ_{obs} de:

$$\delta_{obs} = \frac{3000 - 0}{500 \times 10^6} \times 10^6 = 6 \text{ ppm}$$

$$H_3 C - \overset{CH_3}{\underset{H_3}{\text{Si-CH}_3}} H_3 C - \overset{CH_3}{\underset{H_3}{\textnormal{Si-CH}_3}} H_3 C - \overset$$

TMS : tretra methyle silane (insoluble dans l'eau)

TSP: 3-(Trimethylsilyl)- Propionic acid-D4, sodium salt

CONVENTIONS

Les Origines du Déplacement Chimique

- Les Courants Diamagnétiques Locaux:

Ils sont liés à la densité électronique autour du noyau : plus la densité électronique sera importante, plus le blindage sera important, et plus le déplacement chimique δ sera faible.

A l'intérieur d'une molécule, les effets inductif et mésomère sont à l'origine de variations de δ car ils contribuent à modifier la répartition électronique autour des différents noyaux.

Influence de la liaison à un halogène :

	CH ₃ F	CH ₃ Cl	CH ₃ Br	CH ₃ I	CH ₃ H
δ (CH3)	4,13	2,84	2,45	1,98	0,13
E (Pauling)	4,0	3,0	2,8	2,5	2,1

Plus, l'halogène est électronégatif, plus il va dépeupler le groupement méthyle de ses électrons, et plus les protons du méthyle seront déblindés.

Influence de la liaison à un halogène :

Plus, l'halogène est électronégatif, plus il va dépeupler le groupement voisin de ses électrons, et plus les protons de ce groupement seront déblindés.

- Les dérivés Silylés : le tétraméthylsilane (TMS):

Influence de l'effet mésomère:

- Influence des groupements voisins (σ '):

Un noyau peut être blindé ou déblindé par la circulation des électrons dans un groupe d'atomes voisins si ce groupe d'atomes présente une anisotropie de susceptibilité magnétique.

Si cette anisotropie est de symétrie cylindrique ($\chi_{par} \neq \chi_{per}$), le groupement va se comporter comme un petit aimant :

Dépend de r et de thêta
Cas de l'acétylène :

 $\mathbf{H} - \mathbf{C} \stackrel{\perp}{=} \mathbf{C} - \mathbf{H}_{\parallel}$

Effets à « longues-distances »:

phénanthrène

Les courants de cycle :

diméthyl pyrène

[18]-annulène

- Autres causes d'anisotropie de susceptibilité magnétique :

Groupes Carbonyles

Cycles de de type cyclohexane

Groupes nitro-

Table de déplacements chimiques

Figure 2.6 δ-Scale of chemical shifts of proton resonances in organic compounds

au signal. L'intensité en est une mauvaise mesure, car la largeur de la raie peut varier.

!!! ATTENTION !!!

L'intégration ne détermine que le nombre relatif de protons!

HCOOCH₂CH₃

Formate d'éthyle

$$H \ COOCH_2CH_3$$

 $H \ COOCH_2CH_3$

Malonate d'éthyle

Spins multiples : FID & Transformée de Fourier

Le signal résultant est la somme des signaux individuels

Spins multiples : FID & Transformée de Fourier

Le signal résultant est la somme des signaux individuels

Spins multiples : FID & Transformée de Fourier

Le signal résultant est la somme des signaux individuels

Identification des contributions individuelles -> Extraction des fréquences du signal temporel

Transformée de Fourier

Couplage Scalaire et Dipolaire 3/4

Spectre de l'éthanol obtenu en 1945 par Bloch et Purcell sur un spectromètre opérant à une fréquence nominale de 32,4 MHz et dans un champ de 7600 G (0.76 T) variable sur une plage de 75 mG par pas de 0.05 G.

Spectre de l'éthanol obtenu sur un spectre « moderne » opérant avec un champ de 9,4 T (400 MHz).

Le couplage Spin-Spin (ou Scalaire) est indépendant du champ B₀!

LE COUPLAGE SCALAIRE ou Spin-Spin, ou couplage indirect

Valine :

LE COUPLAGE SCALAIRE ou Spin-Spin, ou couplage indirect

LE COUPLAGE SCALAIRE ou Spin-Spin, ou couplage indirect

Valine :

Le couplage J ne passe pas à travers un carbone quaternaire !

Couplage scalaire avec 2 spins 1/2 non-équivalent (système AMX)

Spectre RMN du noyau A dans un système AMX. Les 4 raies de résonance (doublet de doublet) proviennent des 4 combinaisons possibles des orientations des spins M et X.

Couplage scalaire avec des spins 1/2 équivalents

Système AX₂

Intensités relatives dans un multiplet dans le cas d'un couplage entre spins équivalents

L'intensité de la $m^{ième}$ raie dans un multiplet AX_n (m=0,1,2...n) est donnée par le nombre de combinaisons possibles où l'on aura m spin \uparrow alors que les autres (n-m) sont \downarrow , soit :

$$C_n^m = \frac{n!}{\left[m!(n-m)!\right]}$$

De façon équivalente, les intensités relatives des raies sont données par les coefficients du développement du binôme: $(1+x)^n$, soit par la $(n+1)^{\text{ème}}$ ligne du triangle de Pascal:

Equivalence magnétique / Equivalence chimique

Le couplage spin-spin entre spins magnétiquement équivalents n'apparaît pas sur le spectre RMN.

2 noyaux sont magnétiquement équivalents si:

- ils ont la même fréquence de résonance (noyaux isochrones);

- ils ont une seule constante de couplage caractéristique avec
les noyaux portés par un groupement voisin.

Classification des couplages spin-spin homonucléaires :

Type of coupling H > C = H' = H' H > C = C' H' = C'	Classification	n	Symbol
	Geminal	2	² <i>j</i>
	Vicinal	3	3ј
	.Vicinal	3	³ J _{cis}
н, с=с ^{н,}	Vicinal	3	³ J _{trans}
Long-range cou	pling:		
н-с-с=с-н.	Allylic	4	4
н-с-с=с-с-н.	Homoallylic	5	5 ₁

Couplages ¹H-¹H à 3 liaisons (³J, vicinaux):

Quelques cas particuliers...

- cycles de type cyclohexane :

- cycles aromatiques :

 ${}^{3}J_{ee} = 2 \text{ Hz}$ ${}^{3}J_{ae} = 4 \text{ Hz}$ ${}^{3}J_{aa} = 8 \text{ Hz}$

Couplages ¹H-¹H à longue distance (⁴J, ⁵J...) :

Favorisés par :

-la présence de liaisons π ;

ortho: 7 - 10 Hz méta: 2 - 3 Hz para: 0.1 - 1 Hz -Une conformation « W » ou « zig-zag ».;

Découplage homonucléaire

Le doublet centré sur la fréquence de A provient des 2 états distincts du spin X. Le doublet coalesce en un singulet si ces deux états perdent leur identité du fait de l'irradiation permanente des transitions de X (égalisation des populations α_x et β_x .

Systèmes Fortement Couplés : exemple du système AB

COUPLAGE DIPOLAIRE ou Couplage Direct

Energie de l'Interaction Dipolaire entre les spins I et S : l'angle magique.

$$E_D = -\vec{m}_{Sz}.\vec{B}_{I_{Dip}}(r)$$

Energie de l'Interaction Dipolaire entre les spins I et S : l'angle magique.

$$E_D = -\vec{m}_{Sz}.\vec{B}_{I_{Dip}}(r)$$

Energie de l'Interaction Dipolaire entre les spins I et S : l'angle magique.

$$E_D = -\vec{m}_{Sz}.\vec{B}_{I_{Dip}}(r)$$

Ala-Ile-Gly-Met-Wang resin

Effet Nucléaire Overhauser (nOe)

I et S sont proches dans l'espace (couplage dipolaire).

L'irradiation d'un spin 1/2 S va entraîner :

- (b) une augmentation de l'intensité,

- (c) une diminution de l'intensité,

- (d) un changement de signe du pic de résonance d'un spin proche, avec lequel il est en interaction dipolaire.

Cet effet porte le nom d'effet nucléaire Overhauser

(nOe = nuclear Overhauser enhancement)

Effet Nucléaire Overhauser (nOe)

I et S sont proches dans l'espace (couplage dipolaire).

L'irradiation d'un spin 1/2 S va entraîner :

- (b) une augmentation de l'intensité,
- (c) une diminution de l'intensité,

- (d) un changement de signe du pic de résonance d'un spin proche, avec lequel il est en interaction dipolaire.

Cet effet porte le nom d'effet nucléaire Overhauser

(nOe = nuclear Overhauser enhancement)

- Apparait entre 2 dipôles magnétiques (spins) proches dans l'espace (interaction dipolaire)
- La perturbation de l'équilibre thermodynamique par saturation (égalisation) des populations du spin S entraîne une nouvelle distribution des populations de spins hors équilibre.

L'intensité de la résonance du spin I est proportionnelle à la différence de population de spins entre les 2 niveaux d'énergie correspondants (d).

- L'arrêt de la saturation entraîne le retour à l'équilibre du système.
- Puisque les populations du spin S sur les niveaux d'énergie α and β sont égales, ces chemins sont inutilisables.
- L'équilibre thermodynamique sera restauré via les transitions Zeroou Double quantum.

Cela va provoquer une modification de l'intensité de résonance du spin I (nuclear Overhauser effect)

- L'arrêt de la saturation entraîne le retour à l'équilibre du système.
- Puisque les populations du spin S sur les niveaux d'énergie α and β sont égales, ces chemins sont inutilisables.
- L'équilibre thermodynamique sera restauré via les transitions Zeroou Double quantum.

Cela va provoquer une modification de l'intensité de résonance du spin I (nuclear Overhauser effect)

L'effet NOE est donné par l'équation de Solomon:

(en l'absence de toute autre source de relaxation que le mécanisme dipolaire)

$$\eta = \frac{I - I_0}{I_0} = \frac{\gamma_s}{\gamma_I} \frac{W_2^{IS} - W_0^{IS}}{W_0^{IS} + 2W_1^{I} + W_2^{IS}}$$

Le signe de l'effet NOE est donné par le signe de:

 $W_2^{IS} - W_0^{IS}$

Dans les « grosses » molécules, W_0^{IS} est prépondérant:

 $W_2^{IS} - W_0^{IS} < 0$

Dans les « petites » molécules, W_2^{IS} est prépondérant:

 $W_2^{IS} - W_0^{IS} > 0$

L'accroissement théorique maximum est donné par :

$$\eta_{\rm max} = \frac{\gamma_{\rm S}}{2\gamma_{\rm I}}$$

S : Spin saturé I : Spin Observé

Cas homonucléaire : $\eta_{max} = 0,5$, soit I = I₀ x 1,5

 $(\gamma_{1H} = 267,512 \ 10^6 \ rad \ T^{-1} \ s^{-1})$

Cas hétéronucléaire ¹H-¹³C : $\eta_{max} = 2$, soit I = I₀ x 2

 $(\gamma_{13C} = 67,2640 \ 10^6 \ rad \ T^{-1} \ s^{-1})$

Relation Mouvement / Signe du nOe

Effet ROE

(Rotating frame Overhauser Effect)

NOE et attribution spectrale.

Si l'on considère que le mécanisme prépondérant pour la relaxation est le mécanisme dipolaire, l'amplitude de l'effet NOE sera également dépendante de la distance entre les 2 spins.

NOE et étude conformationnelle

Couplages Scalaires

Indépendants de B₀

A travers les liaisons

Amplitude $\leq 200 \text{ Hz}$

Isotrope

dépend des valeurs d'angles dièdres

Entraîne des dédoublements de raies

ne contribue pas à la relaxation

Couplages dipolaires

Indépendants de B₀

A travers l'espace

Amplitude $\leq 100 \text{ kHz}$

Anisotrope($3\cos^2\theta - 1$)

dépend de 1/r³

dédoublements si restriction des mouvements.

source importante de relaxation si mouvements.