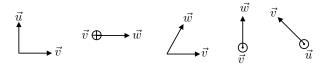
Outils mathématiques 1 — TD 2 : Géométrie dans l'espace

Remarque: certains de ces énoncés pourront faire l'objet d'exercices supplémentaires (non corrigés en TD).

Dans toute cette feuille, l'espace est muni d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$.

1. Produits scalaire, vectoriel et mixte

1.1 Soient trois vecteurs de l'espace tels que $\vec{u} \wedge \vec{v} = \vec{w}$. Dessiner le vecteurs manquant dans les cinq cas représentés ci-dessous.



- 1.2 On considère les vecteurs $\vec{a} = \vec{k}$, $\vec{b} = \vec{i} + \vec{k}$ et $\vec{c} = \vec{i} + \vec{j} + \vec{k}$:
 - (a) donner leurs coordonnées;
 - (b) calculer $(\vec{a} \wedge \vec{b}) \wedge \vec{c}$ puis $\vec{a} \wedge (\vec{b} \wedge \vec{c})$. Le produit vectoriel est-il associatif?
- 1.3 On considère les vecteurs $\vec{u} = (3;1;-2), \vec{v} = (2;0;1)$ et $\vec{w} = (1;1;4)$:
 - (a) calculer leurs normes;
 - (b) calculer les produits scalaires $\vec{u} \cdot \vec{v}$, $\vec{u} \cdot \vec{w}$, $(2\vec{u} 3\vec{v}) \cdot (\vec{v} + \vec{w})$;
 - (c) calculer les produits vectoriels $\vec{u} \wedge \vec{v}$, $\vec{u} \wedge \vec{w}$, $\vec{v} \wedge \vec{w}$, $(\vec{u} \vec{v}) \wedge (2\vec{v} + 3\vec{w})$;
 - (d) calculer le produit mixte $[\vec{u}, \vec{v}, \vec{w}]$ et indiquer si le trièdre $(\vec{u}, \vec{v}, \vec{w})$ est direct ou indirect.
 - (e) Le vecteur \vec{a} a pour direction et sens $\vec{u} + 2\vec{v}$ et est unitaire : calculer les coordonnées de \vec{a} .

2. Objets de l'espace et calculs de grandeurs

- 2.1 À partir des résultats de l'exercice précédent :
 - (a) déterminer les coordonnées d'un vecteur \vec{n} normal au plan contenant \vec{u} et \vec{v} ;
 - (b) donner une mesure au signe près de l'angle $\langle \vec{u}; \vec{v} \rangle$.
- 2.2 Calculer l'aire du parallélogramme construit sur les vecteurs $\overrightarrow{OA} = \vec{i} + 5\vec{j} + 3\vec{k}$ et $\overrightarrow{OB} = -\vec{i} + 4\vec{k}$ et donner une mesure au signe près de l'angle (\widehat{AOB}) .
- 2.3 On considère les points A(1;0;0), B(0;2;0) et C(0;0;3):
 - (a) déterminer les coordonnées d'un vecteur unitaire \vec{n} , perpendiculaire au plan ABC;
 - (b) calculer l'aire du triangle *ABC*;
 - (c) calculer le volume du parallélépipède construit sur \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} .
- 2.4 Déterminer une équation cartésienne :
 - (a) du plan Π_1 passant par A(1;1;1) et de vecteurs directeurs $\vec{u}=(2;0;1)$ et $\vec{v}=(0;1;2)$;
 - (b) du plan Π_2 passant par B(1;0;1) et de vecteur normal $\vec{n} = (2;1;1)$.
- 2.5 Calculer le volume du parallélépipède engendré par les vecteurs \vec{u} , \vec{v} et \vec{n} de l'exercice précédent.
- 2.6 On considère:
 - le point A de coordonnées (2; 0; 5);
 - la droite \mathcal{D} passant par B(0; -2; -4) et dirigée par le vecteur \vec{u} (2; 1; 0);
 - le plan Π d'équation x + y + 2z 5 = 0.
 - (a) Calculer les distances d_1 de A à \mathcal{D} et d_2 de A à Π à l'aide des produits scalaires et vectoriels.
 - (b) La droite \mathcal{D} est-elle parallèle au plan Π ?
 - (c) Déterminer les équations d'une droite parallèle à Π et passant par A. Cette droite est-elle unique?

3. Intersections d'ensembles

3.1 Donner une valeur approchée à trois chiffres significatifs du point d'intersection des trois plans définis par les équations suivantes :

$$\Pi_1: 2x + 3y - z - 5 = 0$$
; $\Pi_2: 4x - 5y + 3z + 3 = 0$; $\Pi_3: 2x - 6y + 7z + 6 = 0$

3.2 Soient les droites \mathcal{D}_1 et \mathcal{D}_2 , telles que

$$\mathcal{D}_1: \left\{ \begin{array}{l} x = 2t + 2 \\ y = -t - 2 \\ z = 3t - 1 \end{array} \right. \text{ et } \mathcal{D}_2: \left\{ \begin{array}{l} x = 3t + 1 \\ y = 2t - 5 \\ z = -t + 3 \end{array} \right.$$

- (a) montrer que ces droites sont dans le même plan en déterminant les coordonnées de leur intersection;
- (b) donner une mesure de l'angle qu'elles forment.
- 3.3 On considère:
 - le plan Π d'équation 3x 2x + 4z + 5 = 0
 - la droite \mathcal{D} d'équations paramétriques $\begin{cases} x = -2t 1 \\ y = 3t + 4 \\ z = 3t 1 \end{cases}$ Déterminer le point d'intersection

Déterminer le point d'intersection ou bien, s'il n'existe pas, la distance entre Π et \mathcal{D} .

3.4 Soit la droite \mathcal{D} décrite par les équations paramétrées :

$$\mathcal{D}: \left\{ \begin{array}{l} x = t+1 \\ y = t \\ z = 2t-1 \end{array} \right. t \in R$$

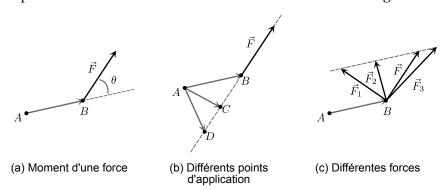
- (a) déterminer une équation cartésienne du plan Π perpendiculaire à \mathcal{D} et passant par l'origine;
- (b) déterminer des équations paramétrées de la droite $\mathcal{D}' \perp \mathcal{D}$ passant par le point A(1;2;3) et coupant la droite $\mathcal D$ en un point dont on déterminera les coordonnées.

Application en physique

4.1 Le moment \overrightarrow{M} de la force \overrightarrow{F} appliquée en B par rapport à un point A donné est une grandeur physique vectorielle qui quantifie l'aptitude de cette force à faire tourner le système mécanique autour de ce point A. Celui-ci se calcule au travers de la relation

$$\overrightarrow{M} = \overrightarrow{AB} \wedge \overrightarrow{F}$$

et le sens de \vec{F} permet de déterminer le sens de rotation à l'aide de la règle du tournevis.



À l'aide de la figure ci-dessus :

- (a) montrer que le moment est le même pour les points d'application B, C et D (volet (b)) et conclure;
- (b) montrer que le moment est le même quelle que soit la force reportée dans le volet (c) et conclure.