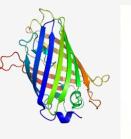


Détermination Structurale

BUT 3 MCPC



OBJECTIFS ET COMPÉTENCES À ACQUÉRIR

Connaitre les possibilités des techniques d'analyse basiques Savoir combiner les informations tirées des techniques spectroscopiques Détermination de la structure de molécules chimiques

PROGRAMME

Rappel des différentes méthodes Chromatographiques et Spectroscopiques

Analyse élémentaire

Spectroscopie par résonance magnétique nucléaire (¹H, ¹³C, 1D, 2D, ...)

Spectrométrie de masse

Détermination Structurale

PLAN GENERAL DU COURS

Chap I:

Rappel des techniques chromatographiques

Chap II:

Rappel des techniques spectroscopiques optiques

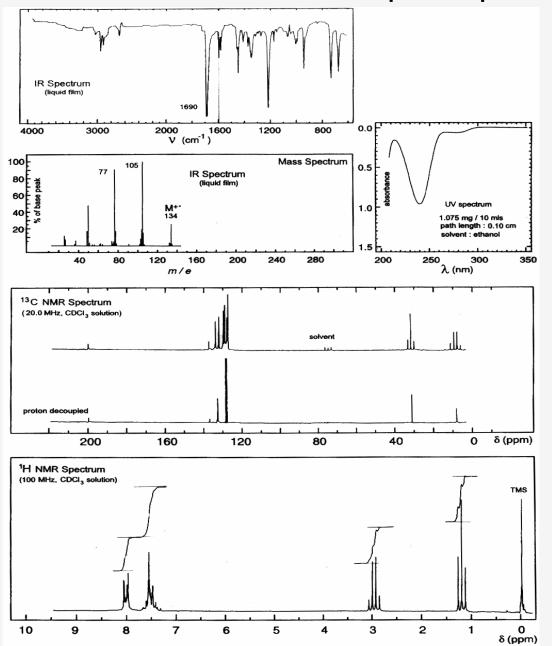
Chap III:

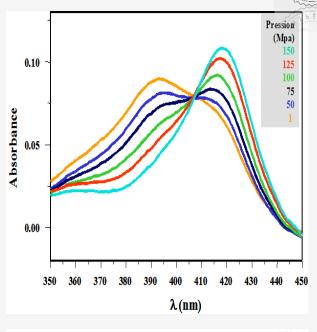
Analyse élémentaire

Chap IV:

Spectroscopie par résonance magnétique nucléaire -Rappel RMN ¹H -RMN ¹³C

Chap V:

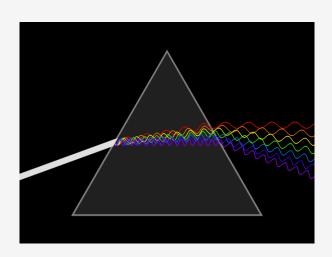

Spectrométrie de masse

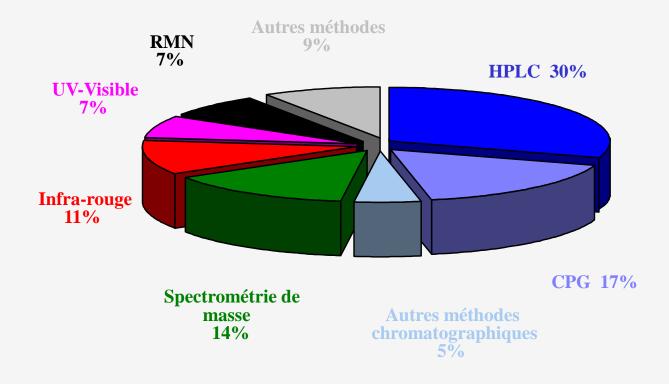



Détermination Structurale

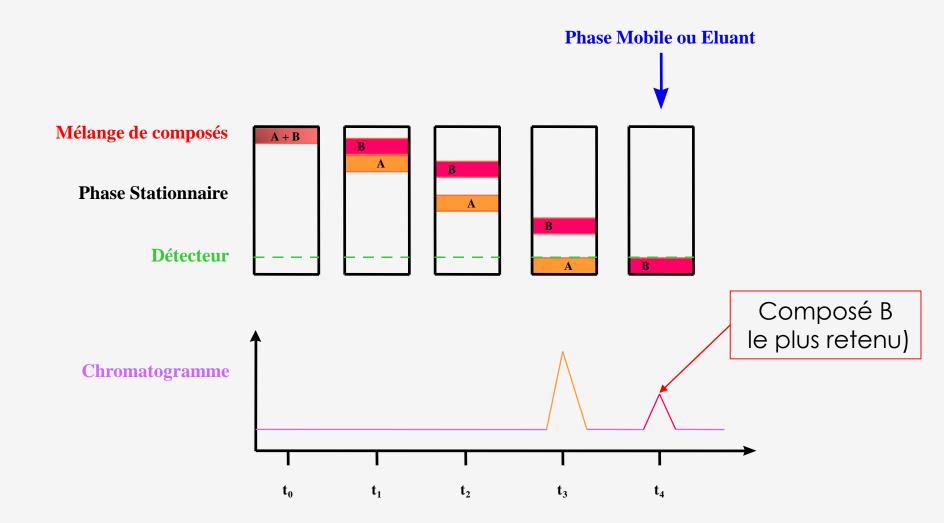
E B S

exemples de spectres




Chapitre I: Rappel des techniques Chromatographique

Séparation des constituants chimiques d'un mélange complexe


Identification et dosage

Procédé non destructif.

Principe

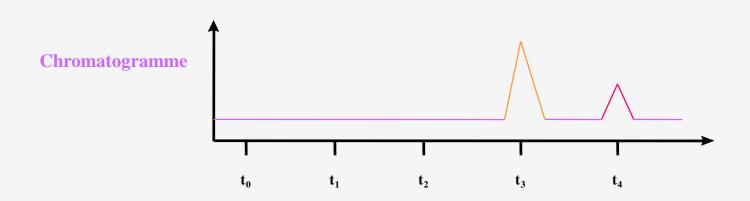
Principe

Un chromatogramme est caractérisé par

La position des pics (temps)

caractéristique d'un constituant

Facteurs de Rétention

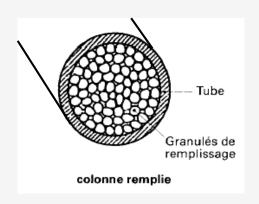

Aire des pics

Proportionnelle à la quantité de constituants

La largeur des pics

Efficacité de la séparation

Facteurs de Résolution



Principe

Facteurs de Rétention

Colonne recouverte de phase stationnaire

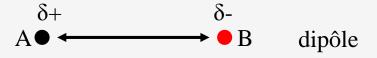
Circulation de la phase mobile en continu

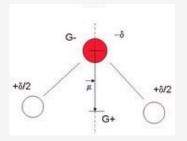
Un soluté S se partage alors entre les deux phases suivant l'équilibre

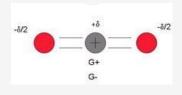
$$S_{phase mobile} \rightleftharpoons S_{phase stationnaire}$$

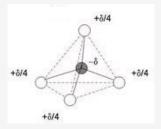
Cet équilibre est plus ou moins déplacé suivant l'affinité chimique (polarité ou apolarité) de S avec l'une ou l'autre des phases

« qui se ressemble s'assemble »


Principe


Facteurs de Rétention


Polarité


Une molécule est *polaire* si elle présente un *moment dipolaire* (charges de signes opposés éloignées les unes des autres)

Conséquence de la différence d'électronégativité entre les atomes.

H₂O: polaire

CO₂: apolaire

CH₄: apolaire

Principe

Facteurs de Rétention

Classement de la polarité de groupements chimiques usuels

Polaires

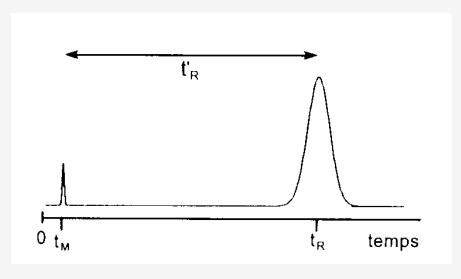
 $(-OH, -COOH, -NH_2, -(C=O)NH_2)$

Moyennement polaires

(-O- , -C=O, -COH, -COOR)

Non polaires (ou apolaires)

Chaînes alkyles, cycles aromatiques



Principe

Facteurs de Rétention

Suivant l'affinité avec la phase stationnaire, le soluté sera plus ou moins

Ceci aura un impact sur le temps de rétention (t_R)

t_M = temps mort temps nécessaire pour qu'un soluté non retenu traverse la colonne

 $\mathbf{t_R}$ = temps de rétention

$$\mathbf{t'}_{\mathbf{R}} = \mathbf{temps} \ \mathbf{de} \ \mathbf{r\acute{e}tention} \ \mathbf{r\acute{e}el} = \mathbf{t}_{\mathbf{R}} - \mathbf{t}_{\mathbf{M}}$$

Principe

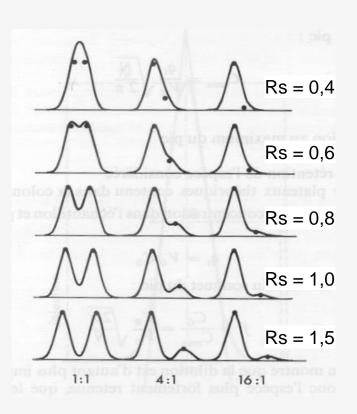
Facteurs de Résolution (R ou R_s)

Correspond à l'aptitude de séparation d'un système de chromatographie

Multifactorielles

finesse des pics, temps d'analyse, chevauchement des pics

Due à de nombreux paramètres


Eluant(s), colonne, débit, température, polarité...

Principe

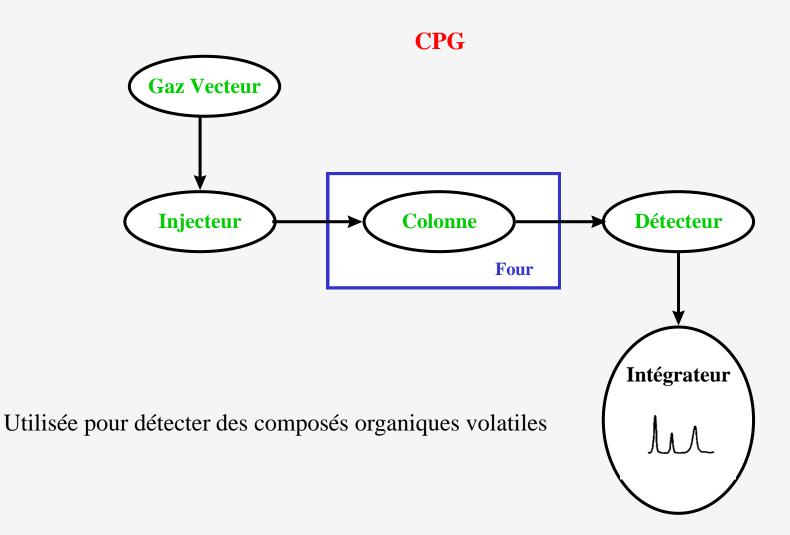
Facteurs de Résolution (R ou R_s)

- si *Rs* < 1: séparation *insuffisante*
- si $1 \le Rs \le 1,4$: séparation *acceptable*
- si $1,4 < Rs \le 1,6$: séparation optimale
- si Rs > 1,6: séparation excessive (au détriment du temps d'analyse).

Principe

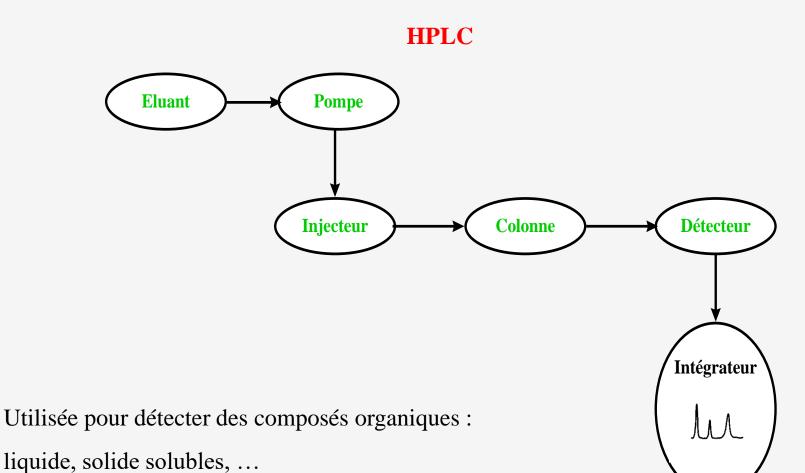
Optimisation d'une chromatographie

Analyse **qualitative**Identification des espèces grâce à leur temps de rétention


Analyse **quantitative**Dosage possible grâce au calcul de la surface des pics

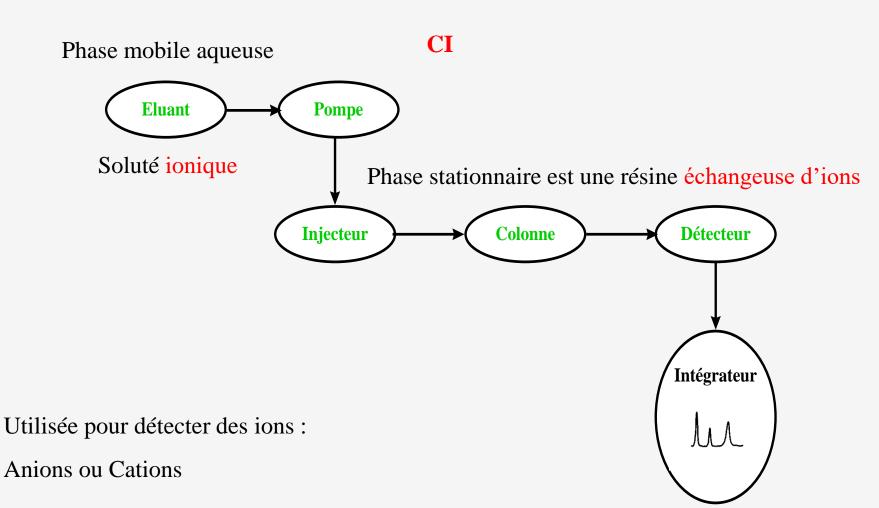
Principe

Type de chromatographie



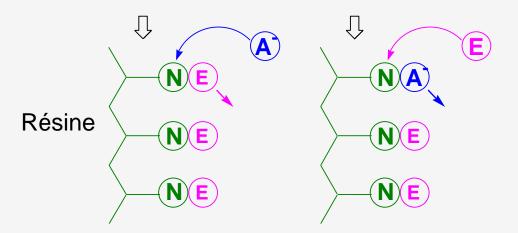
Principe

Type de chromatographie



Principe

Type de chromatographie



Principe

Type de chromatographie

CI

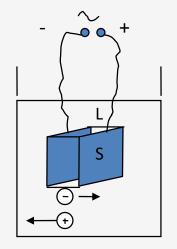
Ex: séparation des anions, la phase stationnaire est chargé positivement

N = groupement ammonium

E = contre-anion

A = anion à analyser

∏= sens de l'élution



Principe

Type de chromatographie

CI

Dosage conductimétrique

Pendant une alternance

Sous l'influence d'un champ électrique, le passage du courant dans la solution d'électrolyte est du à la double **migration** des ions de charges opposées.

C'est la conductivité

On utilise un conductimètre (ohmmètre alimenté en alternatif)

pour mesurer la résistance de la solution piégée dans la cellule de mesure

Principe

Type de chromatographie

CI

Dosage conductimétrique

De quoi dépend la conductivité de la solution à une température donnée ?

De la nature des espèces ioniques en solution

De leur concentration

Annexe

Type de chromatographie

CI

Dosage conductimétrique

Température

Les mesures de conductance sont très sensibles à la température. Il faut donc veiller à l'équilibre thermique

Agitation

Il est conseillé d'arrêter l'agitation lors de la lecture.

Bulles d'air

Prendre soin de ne pas piéger de bulle d'air lorsque l'on plonge la cellule dans la solution.

Principe

Type de chromatographie

CI

Dosage conductimétrique De R à σ

$$R = \rho \frac{L}{S}$$

$$\frac{L}{S} = K \quad \text{CONSTANTE DE LA CELLULE en m-1}$$

$$\rho \quad \text{RÉSISTIVITÉ du conducteur électrolytique en } \Omega.\text{m}$$

$$\sigma = \frac{1}{\rho} \quad \text{CONDUCTIVITÉ de I 'électrolyte en } \Omega^{-1}.\text{m-1} \text{ ou S.m-1}$$

$$G = \frac{1}{R} \quad \text{CONDUCTANCE de l'électrolytique en } \Omega^{-1} \text{ ou S}$$

$$\sigma = G \frac{L}{S} \quad \text{S.m-1}$$

Principe

Type de chromatographie

CI

Dosage conductimétrique

Comment déterminer la constante de cellule K?

K est évaluée en mesurant la conductance G de solution d'électrolyte dont la conductivité σ est parfaitement connue:

$$K = \sigma / G$$

Principe

Type de chromatographie

CI

Dosage conductimétrique

Comment déterminer la constante de cellule K?

K est évaluée en mesurant la conductance G de solution d'électrolyte dont la conductivité σ est parfaitement connue:

$$K = \sigma / G$$

Par exemple: $\sigma_{(KCl\ 0,1mol/L)} = 1,289\ S.m^{-1}$

Si avec la cellule utilisée, la conductance de la solution de KCl 0,1mol/L est G=0,01289 S alors la constante de la cellule

$$K = 1,289/0,01289 = 100 \text{ m}^{-1}$$

Principe

Type de chromatographie

CI

Dosage conductimétrique

Pour caractériser un électrolyte donné on se ramène à une concentration en électrolyte de 1 mol/L, en définissant la CONDUCTIVITÉ MOLAIRE A

$$\Lambda = \frac{\sigma}{1000.c}$$

S.m².mol⁻¹

Principe

Type de chromatographie

CI

Dosage conductimétrique

Comme tous les ions contribuent au passage du courant, quel que soit leur signe, on peut écrire:

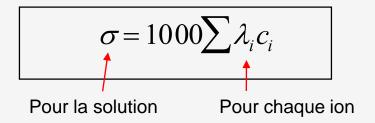
$$\sigma = \sum \sigma_i$$
 $\sigma_i = \text{conductivit\'e due à l'ion i}$

Par suite, on définit une conductivité molaire ionique λ_i

$$\lambda_{i} = \frac{\sigma_{i}}{1000.c_{i}}$$
 S.m².mol⁻¹

Par exemple, la conductivité molaire de l'électrolyte NaCl :

$$\Lambda_{\text{NaCl}} = \lambda_{\text{Na+}} + \lambda_{\text{Cl-}}$$


Principe

Type de chromatographie

CI

Dosage conductimétrique

La conductivité molaire est une propriété additive

Chaque ion apporte selon sa nature et sa concentration sa propre contribution à la conductivité de la solution

Une réaction de dosage (acide/base, précipitation, redox), dans laquelle la quantité et/ou la qualité des ions en solution varient, peut être suivie en CONDUCTIMÉTRIE