ÉPREUVE

Exercice 1 : Équation de Dirac avec un champ électromagnétique

On considère un fermion de Dirac ψ de masse m et de charge e couplé à un champ électromagnétique que l'on va regarder comme un champ de fond classique, non quantifié. Le quadri-potentiel est A_{μ} .

- 1. Donnez l'équation de mouvement pour ψ .
- 2. Calculez les moments conjugués π_ψ et $\pi_{\overline{\psi}}$ de ψ et de $\overline{\psi}$, ainsi que la densité hamiltonienne

$$\mathcal{H} = \pi_{\psi}\dot{\psi} + \pi_{\overline{\psi}}\dot{\overline{\psi}} - \mathcal{L}.$$

et le hamiltonien H. Votre résultat pour H devrait prendre la forme

$$H(t) = \int \mathrm{d}^3 x \, \psi^{\dagger}(\vec{x}, t) \, \mathrm{H_S} \, \psi(\vec{x}, t)$$

où H_S est un opérateur différentiel qui ne dépend pas de ψ et de $\overline{\psi}$.

3. Montrez que l'équation de Heisenberg $\dot{\psi}(\vec{x},t) = -i[\psi(\vec{x},t),H(t)]$ et les anticommutateurs canoniques impliquent l'équation de Schrödinger

$$i\dot{\psi} = \mathrm{H}_\mathrm{S}\psi$$
 .

Puis, réécrivez celle-ci pour retrouver l'équation de mouvement de 1.

- 4. Montrez que la transformation $\psi \to \psi' = U\psi$, avec $U = \cos\theta + \sin\theta\,\gamma^j\hat{p}_j$ (j=1,2,3), est unitaire. Ici $\hat{p} = \vec{p}/|\vec{p}|$ est un 3-vecteur unitaire et θ est un paramètre réel.
- 5. On choisit

$$\sin \theta = \sqrt{\frac{\omega_{\vec{p}} - m}{2\omega_{\vec{p}}}}, \quad \cos \theta = \sqrt{\frac{\omega_{\vec{p}} + m}{2\omega_{\vec{p}}}} \quad \text{avec } \omega_{\vec{p}} = \sqrt{\vec{p}^2 + m^2}.$$

Écrivez H_S en fonction de $\vec{p} = -i\vec{\nabla}$, puis calculez $H_S' = UH_SU^{\dagger}$ pour le cas d'un champ de fond électrostatique, $A_j = 0$ (j = 1, 2, 3) et $A_0(\vec{x}, t) = \Phi(\vec{x})$.

Indication: Vous devriez trouver

$$H_{S}' = \gamma^{0} \omega_{\vec{p}} + e\Phi. \qquad (\star)$$

6. Dans la représentation de Dirac-Pauli des matrices γ , on rappelle que $\gamma^0 = \begin{pmatrix} \mathbbm{1} & 0 \\ 0 & -\mathbbm{1} \end{pmatrix}$. Posons $\psi' = (\psi_1, \psi_2, \chi_1, \chi_2)^{\mathrm{T}}$. Donnez l'action de H'_S sur ψ_1 dans la limite non-relativiste au premier ordre en \vec{p}^2 .

(Les questions 4. et 6. sont indépendantes des autres, si pour 6. on utilise le résultat (\star) .)

Exercice 2: Diffusion photon-photon

Pour rappel, l'électrodynamique spinorielle est définie par le lagrangien

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \overline{\psi}(i\not\!\!\!D - m)\psi$$

où $F_{\mu\nu}$ est le champ électromagnétique avec quadri-potentiel A_{μ} , $D_{\mu} = \partial_{\mu} + ieA_{\mu}$, et l'électron ψ est un champ de Dirac de masse m et de charge e. On s'intéresse au processus de diffusion $\gamma\gamma \to \gamma\gamma$.

- 1. Quel est l'élément de matrice $\mathcal{M}_{\mathrm{fi}}$ pour ce processus au niveau d'arbre?
- 2. Tracez tous les diagrammes de Feynman qui contribuent à l'élément de matrice $\mathcal{M}_{\mathrm{fi}}$ à l'ordre $\leq e^4$ en théorie des perturbations. Indication : Il y a plusieurs diagrammes inéquivalents. Faire attention à l'orientation des propagateurs de Dirac.
- 3. Choisissez un de ces diagrammes (amputés) et indiquez s'il est irréductible à une particule. Donnez l'expression algébrique dans l'espace d'impulsions correspondant et déterminez le degré superficiel de divergence. Il n'est pas demandé d'évaluer les intégrales de boucle.
- 4. L'élément de matrice sera-t-il divergent ou convergent? Pourquoi?

 Indication: Pour répondre à cette question, il n'est pas nécessaire d'évaluer les diagrammes explicitement.

Exercice 3: Potentiel effectif

On considère une théorie d'un champ scalaire réel ϕ dont l'action classique est

$$S[\phi] = \int d^4x \, \left(\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \mathcal{V}(\phi) \right) \, .$$

Pour rappel, la première correction quantique à l'action classique peut s'écrire, avec la méthode du point col (voir exercice 8.2; ici en signature minkowskienne), comme

$$\Delta S[\phi] = \frac{i}{2} \operatorname{Tr} \log \left(\Box + \mathcal{V}''(\phi)\right) = \frac{i}{2} (VT) \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \log(-k^2 + \mathcal{V}''(\phi)).$$

La dernière expression est valide si le champ ϕ est constant (on admettra que cela soit le cas pour la suite); (VT) est une constante formellement divergente que l'on peut laisser telle quelle.

1. Démontrez l'identité

$$\log X = -\frac{\partial}{\partial \alpha} \frac{1}{X^{\alpha}} \bigg|_{\alpha=0} .$$

Puis, utilisez-la pour transformer l'intégrale dans l'expression de ΔS en intégrale de boucle.

2. Calculez ΔS en régularisation dimensionnelle dans $d=4-2\epsilon$ dimensions. Quelle est la forme asymptotique de ΔS lorsque $\epsilon \to 0$?

Indications: Rappelez-vous du comportement de la fonction Γ près des pôles. Notamment, qu'est-ce que $\lim_{\alpha \to 0} \frac{\partial}{\partial \alpha} \frac{1}{\Gamma(\alpha)}$? Votre résultat final devrait être

$$\Delta S[\phi] = -\frac{(VT)}{64\pi^2} (\mathcal{V}''(\phi))^2 \left(-\frac{1}{\bar{\epsilon}} + \log \mathcal{V}''(\phi) - \frac{3}{2} \right) + \mathcal{O}(\epsilon), \quad \text{où } \frac{1}{\bar{\epsilon}} = \frac{1}{\epsilon} + \log 4\pi - \gamma_E.$$