
Theoretical Computer Science 271 (2002) 47–58
www.elsevier.com/locate/tcs

Descriptive complexity of computable sequences

Bruno Duranda ; ∗, Alexander Shenb, Nikolai Vereshchaginc ; 1

aCMI-LIM, Technopôle de Château-Gombert, Universite de Provence 39 rue Joliot-Curie,
F-13453 Marseille Cedex 13, France

bInstitute of Problems of Information Transmission, Moscow, Russia
cDepartment of Mathematical Logic and Theory of Algorithms, Moscow State University,

Vorobjevy Gory, Moscow 119899, Russia

Abstract

Our goal is to study the complexity of in/nite binary recursive sequences. We introduce
several measures of the quantity of information they contain. Some measures are based on size
of programs that generate the sequence, the others are based on the Kolmogorov complexity of
its /nite pre/xes. The relations between these complexity measures are established. The most
surprising among them are obtained using a speci/c two-players game 2 . c© 2002 Elsevier
Science B.V. All rights reserved.

1. Introduction

The notion of Kolmogorov entropy (= complexity) for /nite binary strings was intro-
duced in the 1960s independently by Solomono8 [8], Kolmogorov [5] and Chaitin [1].
There are di8erent versions (plain Kolmogorov entropy, pre/x entropy, etc., see [9] for
the details) that di8er from each other not more than by an additive term logarithmic
in the length of the argument. In the sequel we are using plain Kolmogorov entropy
K(x|y) as de/ned in [5], but similar results can be obtained for pre/x complexity.
When an in/nite 0–1-sequence is given, we may study the entropy (= complexity) of

its /nite pre/xes. If pre/xes have high complexity, the sequence is random (see [6] for
details and references); if pre/xes have low complexity, the sequence is computable.
In the sequel, we study the latter type.
Let K(x); K(x|y) denote the plain Kolmogorov entropy (complexity) of a binary

string x and the conditional Kolmogorov entropy (complexity) of x when y (some other

∗ Corresponding author.
E-mail addresses: bruno.durand@gyptis.univ-mrs.fr, bdurand@cmi.univ-mrs.fr (B. Durand),

shen@mccme.ru (A. Shen), ver@mech.math.msu.su (N. Vereshchagin).
1 The work was done while visiting LIP, Ecole Normale Sup@erieure of Lyon.
2 This paper is the extended version of [4].

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00030 -5

48 B. Durand et al. / Theoretical Computer Science 271 (2002) 47–58

binary string) is known. That is, K(x) is the length of the shortest program p that
prints x; K(x|y) is the length of the shortest program that prints x given y as input.
(For details see [6] or [10].)
Let !1:n denote /rst n bits (= n-pre/x) of the sequence !.
Let us recall the following criteria of computability of ! in terms of entropy of its

/nite pre/xes:
(a) ! is computable if and only if K(!1:n|n)=O(1). This result is attributed in [7] to

A.R. Meyer (see also [10, 6]).
(b) ! is computable if and only if K(!1:n)6K(n) + O(1) [2].
(c) ! is computable if and only if K(!1:n)6 log2 n+ O(1) [2].
These results provide criteria of the computability of in/nite sequences. For example,

(a) can be reformulated as follows: sequence ! is computable if and only if M (!) is
/nite, where

M (!) = max
n
K(!1:n|n) = max

n
min
p
{l(p) |p(n) = !1:n}

(l(p) stands for the length of program p; p(n) denotes its output on n).
Therefore, M (!) can be considered as a complexity measure for !: M (!) is /nite

i8 ! is computable.
Another straightforward approach is to de/ne entropy (complexity) of a sequence !

as the length of the shortest program computing !:

K(!) = min{l(p) | ∀n p(n) = !1:n}
(and by de/nition K(!)=∞ if ! is not computable).
The di8erence between K(!) and M (!) can be explained as follows: M (!)6m

means that for every n there is a program pn of size at most m that computes !1:n
given n; this program may depend on n. On the other hand, K(!)6m means that there
is one such program that works for all n. Thus, M (!)6K(!) for all !, and one can
expect that M (!) may be signi/cantly less than K(!). (Note that the known proofs
of (a) give no bounds of K(!) in terms of M (!).)
Indeed, Theorem 3 shows that there is no computable bound for K(!) in terms

of M (!): for any computable function �(m) there exist computable in/nite sequences
!0; !1; !2; : : : such that M (!m)6m+ O(1) and K(!m)¿�(m)− O(1).
The situation changes surprisingly when we compare “almost all” versions of K(!)

and M (!) de/ned in the following way:

K∞(!) = min{l(p) | ∀∞n p(n) = !1:n};

M∞(!) = lim sup
n

K(!1:n|n) = min{m | ∀∞n ∃p (l(p)6m and p(n) = !1:n)}

(∀∞n stands for “for all but /nitely many n”). It is easy to see that M∞(!) is /nite
only for computable sequences. Indeed, if M∞(!) is /nite, then M (!) is also /nite,
and the computability of ! is implied by Meyer’s theorem.
Surprisingly, it turns out that K∞(!)62M∞(!)+O(1) (Theorem 5) so the di8erence

between K∞ and M∞ is not so large as between K and M . We stress that this result is

B. Durand et al. / Theoretical Computer Science 271 (2002) 47–58 49

Fig. 1. Relations between di8erent complexity measures for in/nite sequences.

rather strange because a multiplicative constant 2 appears, and has no intuitive meaning
taking into account that all the six complexity measures (“entropies”) mentioned above
are “well calibrated” in the following sense: there are K(2m) sequences whose entropy
does not exceed m. In the general theory of Kolmogorov complexity, additive constants
often appear, but not multiplicative ones. As Theorem 6 shows, this bound is tight.
It is interesting also to compare K∞ and M∞ with K and M , as well as with

relativized versions of K . For any oracle A one may consider a relativized Kolmogorov
complexity KA allowing programs to access the oracle. Then KA(!) is de/ned in a
natural way. By K ′(!) [or K ′′(!)] we mean KA(!) where A= 0′ [or 0′′]. The results
of this comparison are shown in the diagram of Fig. 1.
Arrows go from the bigger quantity to the smaller one (up to O(1)-term, as usual).

Bold arrows indicate inequalities that are immediate consequences of the de/nitions.
Other arrows are provided by Theorem 1 (K ′(!)6K∞(!) + O(1)) and Theorem 4
(K ′′(!)6M∞(!) + O(1)).
As we have said, K∞(!)62M∞(!)+O(1), so K∞ and M∞ di8er only by a bounded

factor. If we ignore such a di8erence, we get a simpli/ed diagram

K ′′(!)← K ′(!)← K∞(!); M∞(!)← M (!)← K(!);

where X ← Y means that X =O(Y).
In the latter diagram no arrow could be inverted. Indeed, K ′′(!) is /nite while K ′(!)

is in/nite for a sequence ! that is 0′′-computable but not 0′-computable. Therefore
the /rst arrow cannot be inverted. The second one cannot be inverted for similar
reasons: K ′(!) is /nite while K∞(!) and M∞(!) are in/nite for a sequence that is
0′-computable but not computable. Theorem 2 shows that K∞(!) and M∞(!) could
be small while M (!) is large. Finally, Theorem 3 shows that M (!) could be small
while K(!) is large.
These diagrams and the statements we made about them do not tell us whether the

inequalities K∞(!)6M (!)+O(1) and K ′(!)6M∞(!)+O(1) are true. The /rst one
is not true, as Theorem 6 implies. We do not know whether the second one is true.
Other open questions: (1) is it possible to reverse the second arrow (K ′(!)←

K∞(f); M∞(f)) for computable sequences? (2) what can be said about similar notions
for /nite strings? in particular, is lim supn K(x|n) equal to K ′(x) + O(1) or not? 3

3 It was shown recently by the third author that lim supn K(x|n)=K ′(x)+O(1). See the paper “Kolmogorov
Complexity Conditional to Large Integers” in this volume.

50 B. Durand et al. / Theoretical Computer Science 271 (2002) 47–58

2. Theorems and proofs

Theorem 1. K ′(!)6K∞(!) + O(1).

Proof. Let p(n)=!1:n for almost all n. The following program q (with access to 0′)
computes !1:n given n: For k = n; n + 1; : : : /nd out (using 0′) whether (a) p(k) is
de/ned and is a binary string of length k; (b) p(m) is consistent with p(k) for all
m¿k; consistency means that either [p(m) has length m and has pre/x p(k)] or [p(m)
is unde/ned]. As soon as k satisfying both (a) and (b) is found, print the /rst n bits
of p(k).
Obviously, q(n)=!1:n for all n and the bit length of q is O(1) longer than that

of p.

Theorem 2. For any computable function �(m) there exist in;nite sequences !0; !1; : : :
such that M (!m)¿�(m) while K∞(!m)6m+ O(1).

Proof. Let xm be the lexicographically /rst string x of length �(m) such that K(x|�(m))
¿�(m). (Such a string exists since the number of programs of length less than k is
less than 2k .)
Now let !m= xm0000 : : : : By de/nition, M (!m)¿K(xm|�(m))¿�(m). On the other

hand, K∞(!m)6m+O(1). Indeed, the set {x |K(x|l(x))¡l(x)} is enumerable. Consider
the program pm that having input n performs n steps of enumeration of this set. Then
the program pm /nds the /rst string xnm of length m that was not encountered, and
outputs /rst n bits of the sequence xnm0000 : : : : If n is large enough then x

n
m= xm and

p outputs !m1:n. It remains to note that the length of pm is logm+ O(1).

Theorem 3. For any computable function �(m) there exist in;nite sequences !0; !1; : : :
such that K(!m)¿�(m) while M (!m)6m+ O(1).

Proof. Let c be a constant (to be speci/ed later). The set E= {〈x; k〉 |K(x)¡�(k)+c}
is enumerable. Consider the process of its enumeration. Let s(m) be the time (step
number) when all pairs of type 〈x; m〉 with a given m have been appeared in E. Now
let !m=0s(m)1111 : : : :
Let us prove that K(!m)¿�(m)−O(1). Assume that p(n)=!m1:n for all n. Given p

we can /nd the /rst 1 in !m and hence s(m). Thus K(s(m))6K(!m) + O(1). On the
other hand, given s(m) we can /nd the (lexicographically) /rst string xm of entropy
�(m) or more, therefore, �(m)6K(xm)6K(s(m))+O(1). Hence �(m)6K(!m)+O(1).
Let us prove now that M (!m)6m + O(1). Let the program q on input n output n

zeros. Then q(n)=!m1:n for all n6s(m).
Consider the program pm that on input n does n steps of enumeration of the set E,

/nds the number s(m; n) of the last step among them when a new pair of type 〈x; m〉
with a given m has been appeared, and then outputs the /rst n bits of the sequence
0s(m;n)1111111 : : : . If n¿s(m), then pm outputs the correct pre/x of !m.

B. Durand et al. / Theoretical Computer Science 271 (2002) 47–58 51

Thus, for any n, either pm or q (given n) outputs !m1:n. It remains to note that the
length of pm is logm+ O(1).

Theorems 2 and 3 can be reinforced using a technique presented in [3]: they are
true for any computable in/nite family of distinct sequences !0; !1; : : : (the family
itself should be computable). Anyway these pathological cases are rare: the di8erence
between K(x) and K ′′(x) can be huge but this concerns only an exponentially small
portion of strings x of a given size.

Theorem 4.

K ′′(!)6M∞(!) + O(1):

Proof. Let m=M∞(!)+1. Consider the set T = {x |K(x|l(x))¡m}. By de/nition, all
suOciently long pre/xes of ! belong to T . The set T is enumerable. For each n there
are at most 2m strings of length n in T . A string x∈T is called “good” if there is a
sequence � such that x is a pre/x of � and all pre/xes of � longer than x belong to
T (in other words, if x lies on the in/nite path in T). It is easy to see that KPonig’s
lemma allows to express the statement “x is good” as ∀∃-statement. Therefore, the set
QT of all good strings is 0′′-decidable.
Now assign to every string in QT a number as follows. Consider all the strings in QT

in order of increasing length, and the strings of the same length in the lexicographical
order. Assume that all the strings preceeding the current string u have been already
assigned a number. If the father of u is not in QT then assign to u the /rst unused
number. Assume that the father v of u is in QT and hence is already assigned a number.
If both sons of v are in QT then the left son of v is assigned the same number as v and
the right son is assigned the /rst unused number. Otherwise u is assigned the same
number as its father. The number of used numbers does not exceed 2m. Obviously,
all but /nitely nodes in any in/nite path in QT have been assigned the same number.
This number is considered as the number of the path. There is an 0′′-algorithm that
gives k-bit pre/x of path number i for given k and i. Appending i (considered as
m-bit string) to that algorithm, we get a 0′′-program that gives k-bit pre/xes of ith
path for all k (this program needs also m to construct T and QT , but m is given
implicitly as the length of i). Since one of the paths goes along !, we conclude that
K ′′(!)6m+ O(1)=M∞(!) + O(1).

The next two theorems provide the connection between K∞ and M∞.

Theorem 5. K∞(!)62M∞(!) + O(1).

Theorem 6. There is a sequence !m of in;nite strings such that M (!m)6m + O(1)
and K∞(!m)¿2m (hence M∞(!m); M (!m)=m+ O(1); K∞(!m)= 2m+ O(1)).

52 B. Durand et al. / Theoretical Computer Science 271 (2002) 47–58

Proof. (The original proof of Theorem 5 was simpli/ed signi/cantly by An.A. Muchnik.)
First, let us de/ne a game that is relevant to both Theorems 5 and 6 and may be
interesting in its own right.
Let k; l be integer parameters. The (k; l)-game is played by two players called the

Man (M) and the Nature (N). On its moves, N builds a binary rooted tree. More
speci/cally, during its move N adds a binary string to a /nite set T (initally empty).
Without loss of generality, we may assume that N is allowed to add any /nite number
of strings to T at any move. On his moves, M may color certain binary strings using
colors from the set {1; 2; : : : ; l} (several colors may be attached to the same string;
attached colors cannot be removed later).
The game stops after a /nite number of moves if

(1) T is not a tree (that is, there are x∈T and y =∈T such that y is a pre/x of x); in
this case M wins, or

(2) for some n, the number of strings of length n in T (the number of nodes having
height n) exceeds k; in this case M also wins, or

(3) there are two di8erent strings of the same length colored by the same color; in
this case N wins.

Otherwise the game lasts inde/nitely long, and the winner is determined as follows.
Let T be the ultimate tree (formed by all strings included in T at all steps). An in/nite
0–1-sequence is called an in;nite branch of T if !1:n ∈T for all n.
M wins if for any in/nite branch � there exists a color c such that all but /nitely

many nodes of � are colored by c (and, may be, by other colors). Otherwise N wins.
(One may give the following interpretation to this game. The tree built by Nature

is the tree of all breeds of animals, and nodes at height n are breeds existing at
time n. The coloring is giving names to breeds. Thus Man is required to give stable
names to all eternal breeds.)
We will use also a modi/ed version of this game where rule (1) is omitted and the

de/nition of an in/nite branch is changed as follows: sequence ! is an in/nite branch
if all but /nitely many pre/xes of ! are in T . (Obviously, the modi/ed game is more
diOcult for M than the original one.)
The following two lemmas play a key role in the proof of Theorems 5 and 6.

Lemma 1. For any k; there is a computable winning strategy for M in the modi;ed
(k; k2)-game (the winning algorithm has k as an input).

Lemma 2. N has a computable winning strategy in the (k; l)-game if l¡k2=4.

Before proving these lemmas, let us /nish the proof of Theorems 5 and 6 using them.
Theorem 5 requires us to prove that K∞(!)¡2M∞(!) + O(1).
Fix !. Let T = {x |K(x|l(x))6M∞(!)}. Then for any n the set T has no more

than k =2M∞(!)+1 strings of length n. According to our assumption, !1:n ∈T for all
but /nitely many n. Thus, ! is an in/nite branch in T . Consider now the following
strategy for N in modi/ed (k; k2)-game: N just enumerates T (ignoring M’s replies). M
can defeat this strategy using his computable strategy that exists according to Lemma 1.

B. Durand et al. / Theoretical Computer Science 271 (2002) 47–58 53

Since both M and N are using computable strategies, the set C = {〈x; p〉 | node x gets
color p at some stage} is enumerable. As M wins, there is a color p that is attached
to !1:n for all suOciently large n. Each color can be considered as binary string of
length 2(M∞(!) + 1), since there are at most k2 colors.
The following algorithm computes !1:n given n and p. First /nd the value k =

2M∞(!)+1 = 2l(p)=2. Second, enumerate C until a pair 〈x; p〉 appears with l(x)= n, i.e.,
until some node x having depth n gets color p. Then return x. For all suOciently large
n this algorithm will return !1:n (since the in/nite branch ! has color p assigned).
The program q to compute !1:n given n for almost all n consists of the above

algorithm with the string p appended. Thus, the length of q is 2M∞(!) + O(1), and
the Theorem 5 (modulo Lemma 1) is proved.
Now let us derive Theorem 6 from Lemma 2. We need to prove that there exist

in/nite sequences !0; !1; : : : such that M (!m)6m+ O(1) and K∞(!m)¿2m.
For any /xed m consider the following strategy for M. He enumerates all triples
〈p; n; x〉 such that p(n)= x; if it turns out that l(x)= n and l(p)¡2m, he assigns color
p to string x. This strategy may be performed by an algorithm having m as an input.
Let k =2m+1; l=22m − 1. Since l¡k2=4, Lemma 2 guarantees that N could defeat

this strategy using its own computable strategy. Therefore, there exists an algorithm A
that given m generates a tree Tm which has an in/nite branch ! that is not properly
colored, i.e., there is no p of length less than 2m such that p(n)=!1:n for almost
all n. In other words, K∞(!)¿2m.
On the other hand, M (!)6m + O(1). Indeed, let n be a natural number. Let us

describe a program of size m+O(1) that computes !1:n. Consider an algorithm B that
for a given string q of length m + 1 and for any n uses A to generate Tm and waits
until q nodes (here q is identi/ed with its ordinal number among all strings of length
m+1) at height n appear. Then B outputs the node that appeared last. Since !1:n ∈Tm,
for some q the output will be equal to !1:n. The string q appended to B constitutes a
program to compute !1:n given n. This program has size m+ O(1).
Theorem 6 is proved (modulo Lemma 2).

Now we have to prove Lemmas 1 and 2.
Recall that Lemma 1 says that for any k, there is a computable winning strategy for

M in the modi/ed (k; k2)-game (the winning algorithm has k as an input).

Proof (Using An. Muchnik’s argument): Let M use k2 colors indexed by pairs (a; b),
where a and b are natural numbers in range 1: :k. Let us explain how the color (a; b)
is assigned. (Di8erent colors are assigned independently.) Observing the growing set
T , M looks for all pairs of strings u and v such that
(a) u has number a if we count all the (already appeared) strings in T of the same

length as u in the lexicographic order;
(b) v has number b if we count all the (already appeared) strings in T of the same

length as u in the reverse lexicographic order;
(c) u is a pre/x of v.

54 B. Durand et al. / Theoretical Computer Science 271 (2002) 47–58

After such a pair of strings is found, any pre/x of u gets color (a; b) unless some
other string of the same length already has this color (and M is prohibited to use (a; b)
again on that level). Then M looks for another pair of strings u and v with the same
properties, etc.
We need to prove that this strategy guarantees that any in/nite branch will be colored

uniformly starting at some point. Let T be the set of all strings that N gives (at all
steps). Let ! be an in/nite branch, so !1::n ∈T for all suOciently large n. For these
n let an denote the lexicographic number of !1::n in the set Tn of all strings of length
n that are in T , and let bn denote the inverse lexicographic number of !1::n in Tn.
Let a= lim sup an and b= lim sup bn. We claim that for suOciently large n, the string
!1::n will have color (a; b).
Indeed, consider a pair (u; v) that satis/es the conditions listed above. Let us prove

/rst that for suOciently long sequences only pre/xes of ! have chance to get colored
with color (a; b). Indeed, for large enough n we have an6a, so suOciently long strings
u are “on the right of !” or are pre/xes of !. (“On the right of !” means that u
follows the pre/x of ! having the same length, in the lexicographic order.) For the
same reasons all suOciently long strings v are on the left of ! or are pre/xes of !.
Therefore, the only chance for u to be a pre/x of v (if both are long enough) is when
both u and v are pre/xes of !. Therefore, no other long strings (except pre/xes of !)
could get color (a; b).
According to the de/nition of a and b there are in/nitely many n such that an= a

and in/nitely many m such that bm= b. Choose a pair of such n and m; assume that
n6m. The strings u=!1::n and v=!1::m will be discovered after all strings of length
n and m appear in the enumeration of T since they will have correct ordinal numbers.
And all pre/xes of u will get color (a; b) unless some other vertex of the same length
already has this color. (And this is possibly only for short strings, as we have seen).
Since u may be arbitrarily long, all suOciently long pre/xes of ! will get color (a; b).
Lemma 1 is proved.

Lemma 2 says that N has a computable winning strategy in (k; l)-game if l¡k2=4.

Proof. Let m= k=2. First we introduce some terminology. We consider /nite trees T
with m distinguished leaves at the height equal to height of the tree. These distinguished
leaves are called tops of the tree. The m paths from the root to m tops are called trunks
of the tree. All the nodes that belong to the trunks are called trunk nodes; others are
called side nodes.
We call a tree T ′ an extension of a tree T if (a) T ⊂T ′; (b) T ′ does not contain

new vertices on the levels that exist in T (i.e., any string is T ′− T is longer than any
string in T); (c) all trunks of T ′ continue those of T (that is, jth trunk of T ′ continues
jth trunk of T for all j6m).
First N builds any tree T0 of width m that has m trunks. Denote its height by h0. Then

N continues all the m trunks of T0 (for example, by adding, for any top v, nodes v0, v00,
and so on) and waits until M starts to color nodes on the trunks (otherwise he looses).

B. Durand et al. / Theoretical Computer Science 271 (2002) 47–58 55

Fig. 2. Getting side nodes colored (m=4).

More speci/cally, N waits until there exists h1¿h0 such that the nodes at height h1 on
all m trunks are colored. We call these nodes special ones. The colors of special nodes
are be pairwise di8erent, as the special nodes are at the same height (otherwise M
looses). Let h2 be the height of trunks when M colors the last special node (h2¿h1).
N has just forced M to use m di8erent colors and has constructed a /nite tree of

width m. However, we wish (for the next iteration) that the nodes colored in m di8erent
colors do not belong to trunks at the expense of increasing the width of the tree by 1.
This is done as follows. Once N has forced M to color m special nodes at the same
height h1, it chooses one trunk and cuts it (this means that N will not continue that
trunk). Then N takes the father of the special node on that trunk and starts from the
father another trunk instead of the cut trunk. The nodes lying on the cut trunk from
the height h1 to h2 become side nodes. Thus at least one side node is colored. Call this
node a distinguished node (see Fig. 2). After that, N still grows m trunks in parallel
(continuing m− 1 non-cut trunks and the trunk having a branch with the distinguished
node) until M colors m nodes on m trunks at a new height h3¿h2.
Call these nodes as the new special nodes. Now N chooses a trunk whose new

special node is colored in a color di8erent from the color of the distinguished node,
cuts it and starts a new trunk from its node at height h3−1. We thus obtain the second
side node colored in a color di8erent from the color of the distinguished node. Call
this side node also as a distinguished node. Thus we have two distinguished side nodes
having di8erent colors.
This process is repeated m times. Each time N cuts a trunk whose special node is

colored in a color di8erent from the colors of the existing distiguished nodes (such a
special node exists while the number of distinguished nodes is less than m). After m
repetitions we have a tree of width m+ 1 that has m distinguished side nodes colored
in m di8erent colors (Fig. 3).

56 B. Durand et al. / Theoretical Computer Science 271 (2002) 47–58

Fig. 3. A tree constructed by N after the strategy S1 terminates. Here m=4, and the width of the tree is
m + 1=5. The circles represent m side nodes colored in pairwise di8erent colors. Some other nodes may
be colored also.

The described strategy will be denoted by S1. Its starting point may be any tree T
with m trunks. It either terminates and constructs an extension T ′ of T such that T ′−T
is colored in m di8erent colors, or wins. The set T ′ − T has width m+ 1.
Now let us describe the induction step. Assume X is a subset of a tree T . Let

colors(X) [sidecolors(X)] denote the set of colors of all nodes [all side nodes] in X .
Assume we have a strategy Si (i¡m) for N with the following properties. Starting

from any tree T with m trunks it constructs a /nite extension T ′ of T such that the
di8erence T ′ − T has width at most m+ i and |sidecolors(T ′ − T)|¿im.
Our goal is to de/ne a strategy Si+1 satisfying the same conditions (for increased

value of i). We de/ne /rst an auxilliary strategy S̃ i+1 that, starting from any tree T
with m trunks, constructs a /nite extension T ′ of T such that the di8erence T ′ − T
has width at most m+ i, |colors(T ′−T)|¿(i+1)m, and |sidecolors(T ′−T)|¿im (or
S̃ i+1 wins).
The strategy S̃ i+1 given a tree T works as follows. Apply Si starting from T .

Wait until Si terminates. Let T1 be the continuation of T constructed by Si. Then
|sidecolors(T1 − T)|¿im. Apply Si starting from T1. Wait until Si constructs a con-
tinuation T2 of T1 with |sidecolors(T2 − T1)|¿im. Applying Si many times, we get
T1; T2; T3; : : : . Wait until there exist j and s such that j6s and all the nodes along all
the trunks inside Tj − Tj−1 at step s are colored and each trunk has its own color (if
no such j and s exist, the strategy S̃ i+1 never terminates and wins). Let T ′=Ts. The
tree Ts has im di8erent colors on side nodes in Tj − Tj−1 and m new colors on nodes
on m trunks.
Now we are able to de/ne the strategy Si+1. Starting from a tree T it works as

follows. Apply S̃ i+1 starting from T . Wait until it terminates. Let T1 denote the resulting
tree. The set colors(T1 − T) has at least (i + 1)m colors. The problem, however, is

B. Durand et al. / Theoretical Computer Science 271 (2002) 47–58 57

Fig. 4. A possible /nal position when S3 is applied (m=4). The lines with arrows are trunks. Circles
represent nodes that M was forced to color by S̃3; numbers represent their colors.

that some of them may be used for trunk nodes only. In this case choose a trunk of
T1 that has a node colored in a color c∈ colors(T1−T)− sidecolors(T1−T). Let j be
the number of that trunk. We add to T1 a new branch starting from the jth top of T
and declare this branch a new trunk of T1; the old jth trunk is not a trunk anymore.
This operation increases the width of T1 − T to m + i + 1. The gain is that the set
sidecolors(T1 − T) has got a new color c. So |sidecolors(T1 − T)|¿im+ 1 now. If it
happens that the set sidecolors(T1 − T) already has at least (i + 1)m colors, we stop.
Otherwise, we apply once more the strategy S̃ i+1 starting from T1. We get T2 such that
|colors(T2−T1)|¿(i+1)m. As |sidecolors(T1−T)|¡(i+1)m, the set colors(T2−T1)
has at least one color that does not belong to sidecolors(T1 − T). We choose again
a color c from colors(T2 − T1) − sidecolors(T1 − T), choose a trunk node in T2 − T1
colored by c, make a new trunk from the top of T1 lying on that trunk and thus get
sidecolors(T2 − T)¿sidecolors(T1 − T) + 1¿im + 2. Repeating this trick at most m
times, we obtain an extension T ′ such that sidecolors(T ′−T)¿(i+1)m and the width
of T ′ − T is at most m+ i + 1 (Fig. 4).
The induction step is described. Note that the strategy S̃m wins in the 2m; (m2 − 1)-

game.

References

[1] G.J. Chaitin, On the length of programs for computing /nite binary sequences: statistical considerations,
J. ACM 16 (1969) 145–159.

[2] G.J. Chaitin, Information-theoretic characterizations of recursive in/nite strings, Theoret. Comput. Sci.
2 (1976) 45–48.

[3] B. Durand, S. Porrot, Comparison between the complexity of a function and the complexity of its graph,
Theoret. Comput. Sci. 271 (this Vol.) (2002) 37–46.

[4] B. Durand, A. Shen, N. Vereshchagin, in: Descriptive complexity of computable sequences, STACS’99,
Lecture Notes in Computer Sciences, vol. 1563, Springer, Berlin, March 1999.

58 B. Durand et al. / Theoretical Computer Science 271 (2002) 47–58

[5] A.N. Kolmogorov, Three approaches to the quantitative de/nition of information, Problems Inform.
Transmission 1 (1) (1965) 1–7.

[6] M. Li, P. Vit@anyi, An Introduction to Kolmogorov Complexity and its Applications, 2nd ed., Springer,
Berlin, 1997.

[7] D.W. Loveland, A variant of Kolmogorov concept of complexity, Inform. and Control 15 (1969)
510–526.

[8] R.J. Solomono8, A formal theory of inductive inference, part 1 and part 2, Inform. and Control 7
(1964) 1–22, 224–254.

[9] V.A. Uspensky, A.Kh. Shen, Relations between varieties of Kolmogorov complexities, Math. Systems
Theory 29 (1996) 271–292.

[10] A.K. Zvonkin, L.A. Levin, The complexity of /nite objects and the development of the concepts of
information and randomness by means of theory of algorithms, Russian Math. Surveys 25 (6) (1970)
83–124.

