
Computable Functions

N. K. Vereshchagin

A. Shen’

Department of Mathematics, Moscow State Lomonosov

University, Moscow, Russia

Moscow Center of Continuous Mathematical Educa-

tion, Bolshoi Vlas’evskii per. 11, Moscow, Russia 121002

Abstract. This book is based on the lectures for undergrad-
uates given by the authors at the Moscow State University
Mathematics Department. It is devoted to the basic notions
of the general theory of computation, such as computability,
decidability, enumerability, universal functions, numberings
and their properties, m-completeness, the fixed point theo-
rem, arithmetical hierarchy, oracle computations, degrees of
unsolvability. We also study specific computational models
(Turing machines, recursive functions).

The indended audience includes undergraduate students
majoring in mathematics or computer science, and all mathe-

maticians and programmers that would like to learn basics of
the general theory of computation.

Contents

Preface vii

Chapter 1. Computable Functions, Decidable and Enumerable
Sets 1

§1. Computable functions 1

§2. Decidable sets 3

§3. Enumerable sets 4

§4. Enumerable and decidable sets 7

§5. Enumerability and computability 8

Chapter 2. Universal Functions and Undecidability 11

§1. Universal functions 11

§2. The diagonal construction 13

§3. Enumerable undecidable set 14

§4. Enumerable inseparable sets 16

§5. Simple sets: the Post construction 17

Chapter 3. Numberings and Operations 19

§1. Gödel universal functions 19

§2. Computable sequences of computable functions 23

§3. Gödel universal sets 24

Chapter 4. Properties of Gödel Numberings 27

iii

iv Contents

§1. Sets of numbers 27

§2. New numbers of old functions 31

§3. Isomorphism of Gödel numberings 34

§4. Enumerable properties of functions 36

Chapter 5. Fixed Point Theorem 41

§1. Fixed point and equivalence relations 41

§2. A program that prints its text 44

§3. System trick: another proof 46

§4. Several remarks 49

Chapter 6. m-Reducibility and Properties of Enumerable Sets 55

§1. m-Reducibility 55

§2. m-Complete sets 57

§3. m-Completeness and effective nonenumerability 58

§4. Isomorphism of m-complete sets 62

§5. Productive sets 64

§6. Pairs of inseparable sets 67

Chapter 7. Oracle Computations 71

§1. Oracle machines 71

§2. Relative computability: equivalent description 74

§3. Relativization 76

§4. 0′-computations 79

§5. Incomparable sets 82

§6. Friedberg–Muchnik Theorem: the general scheme of
construction 86

§7. Friedberg–Muchnik Theorem:
winning conditions 88

§8. Friedberg–Muchnik Theorem: the priority method 90

Chapter 8. Arithmetical Hierarchy 93

§1. Classes Σn and Πn 93

§2. Universal sets in Σn and Πn 96

§3. The jump operation 98

Contents v

§4. Classification of sets in the hierarchy 103

Chapter 9. Turing Machines 107

§1. Simple computational models:
What do we need them for? 107

§2. Turing machines: the definition 108

§3. Turing machines: discussion 110

§4. The word problem 113

§5. Simulation of Turing machines 114

§6. Thue systems 118

§7. Semigroups, generators, and relations 120

Chapter 10. Arithmeticity of Computable Functions 123

§1. Programs with a finite number of variables 123

§2. Turing machines and programs 126

§3. Computable function are arithmetical 128

§4. Tarski and Gödel’s Theorems 132

§5. Direct proof of Tarski and Gödel’s Theorems 134

§6. Arithmetical hierarchy and the number of quantifier
alternations 136

Chapter 11. Recursive Functions 139

§1. Primitive recursive functions 139

§2. Examples of primitive recursive functions 140

§3. Primitive recursive sets 141

§4. Other forms of recursion 143

§5. Turing machines and primitive recursive functions 146

§6. Partial recursive functions 148

§7. Oracle computability 152

§8. Estimates of growth rate. Ackermann’s function 154

Bibliography 159

Index 161

Preface

This book is based on lectures for undergraduate students given by

the authors at the Moscow State University Mathematics Depart-

ment. (Another book in this series, “Basic Set Theory,” was published

recently by the AMS.)

The theory of computable functions appeared in 1930s, when no

computers (in the modern sense of the word) existed. The first com-

puters were designed in 1940s, and one of their designers was the

English mathematician Alan Turing, one of the creators of the theory

of computable functions. In 1936 he described the abstract machines

called later Turing machines ; supposedly, the idea of a program stored

in computer’s memory was inspired by the proof of the existence of a

universal Turing machine.

For this reason alone, the basic notions of computability the-

ory (the general theory of algorithms) deserve attention of mathe-

maticians and programmers. But this theory has also an aspect of

wider cultural significance. In 1944 one of its founders, the Ameri-

can mathematician Emil Post, wrote that for the history of discrete

mathematics, the formulation of the notion of computability can play

a role second in importance only to the formulation of the notion of

the natural number.

Perhaps, nowadays Post’s statement seems to be an exaggeration:

in the last decades it became clear that philosophically, the difference

vii

viii Preface

between feasible and unfeasible problems is no less essential than the

difference between decidable and undecidable problems, and compu-

tational complexity theory took up one of central positions in logic,

mathematics, and computer science.

Computational complexity is beyond the scope of this book. Our

goal is restricted: we attempted to select central notions and facts of

the general theory of algorithms and present them clearly, trying not

to shadow simple general ideas by technical details. We do not assume

any special preliminary knowledge, though we assume a certain level

of mathematical culture (and do not explain, say, what a function or

a real number is).

We hope that the reader will enjoy the first acquaintance with

the theory of algorithms. To learn more about this theory (which is

the central part of mathematical logic), the reader is referred to the

books listed on p. 159.

The authors thank their teacher Vladimir Andreevich Uspensky,

whose lectures, texts, and opinions, perhaps, had even a greater effect

on them (and on the contents of this book) than the authors are aware

of.

We thank the staff and all students of the Division of Mathemat-

ical Logic and the Theory of Algorithms (Moscow State University,

Mathematics Department) as well as all participants of our lectures

and seminars and readers of draft versions of this book.

Finally, we are grateful to American Mathematical Society and

Sergei Gelfand, who organized the English translation of the book,

and to Vladimir Dubrovsky, who translated it with great care.

The authors will be grateful for any reports on errors and typos

(e-mail: ver@mccme.ru, shen@mccme.ru; address: Moscow Center of

Continuous Mathematical Education, Bolshoi Vlasyevskii per. 11,

Moscow, Russia 121002).

N.K.Vereshchagin, A. Shen

Chapter 1

Computable Functions,
Decidable and
Enumerable Sets

1. Computable functions

A function f with natural arguments and values is called computable

if there exists an algorithm that computes f , that is, an algorithm A

such that

• if f(n) is defined for a certain natural n, then the algo-

rithm A halts on the input n and prints f(n);

• if f(n) is undefined, then the algorithm A does not halt on

the input n.

A few remarks concerning this definition.

1. The notion of computability is defined for partial functions

(whose domain is a subset of natural numbers). For instance, the

empty (nowhere defined) function (that is, the function with empty

domain) is computable: consider an algorithm A that never termi-

nates no matter what is the input.

2. We could have modified the definition by saying, “if f(n) is

undefined, then either the algorithm A does not halt or it halts but

1

2 1. Computability, Decidability, and Enumerability

does not print anything.” In fact, this would not really change any-

thing (instead of halting without any output, the algorithm can go

into an infinite loop).

3. To avoid misunderstanding, we should explain that by natural

numbers we mean nonnegative integers (rather than only positive

as is often the case). It is clear that our definition of computable

functions does not depend on the specific representation of natural

numbers (an algorithm that deals, say, with binary representation

can be easily modofied to accept and produce decimal representations,

etc.). Instead of natural numbers, algorithms can have as their inputs

and outputs binary strings (“words” in the alphabet {0, 1}), pairs

of natural numbers, finite sequences of strings, and in general, any

“constructive objects.” Therefore, we can similarly define, say, the

notion of a computable function of two natural variables whose values

are rational numbers.

Note that the case of functions with real arguments and values

is more difficult. The computability of a function f : R → R needs

a special definition; moreover, this definition can be given in several

ways. We are not going to speak about the computability of such

functions. Let us only notice that, for instance, the sine function is

computable (under a reasonable definition of computability), whereas

the sign(x) function, equal to −1, 0, and 1 for x < 0, x = 0, and x > 0,

respectively, is not.

Just as well, a special definition is required for the computability

of functions whose arguments are infinite sequences of zeros and ones,

etc.

4. A few decades ago the notion of algorithm had to be carefully

explained. Nowadays (due to “computer literacy”) nobody will read

such explanations anyway. You can think about algorithms as pro-

grams in your favourite programming language. Imagine only that

the memory is unlimited and the integers in use (array indices, point-

ers, etc.) are unbounded. It is clear that the notion of computablity

does not depend on the language: to port, say, a C++ program to C

could be a tedious task, but is always possible theoretically.

However, you should be careful so as not to mistake for an algo-

rithm something which is not. Here is an example of a false reasoning.

2. Decidable sets 3

Let us “prove” that any computable function f with natural ar-

guments and values can be extended to a total (i.e., defined on the

entire set N of natural numbers) computable function g : N → N.

Indeed, if f is computed by an algorithm A, then the following algo-

rithm B computes a total function g extending f : “if A halts on n,

then B yields the same result as A; if A does not halt on n, then

B returns 0.” (What is wrong with this argument?)

2. Decidable sets

A set X of natural numbers is called decidable if there exists an algo-

rithm that determines whether an arbitrarily given natural n belongs

to the set X . Such an algorithm must terminate for any n and give

one of the two answers “yes” or “no” (or 1/0, TRUE/FALSE etc.)

In other words, X is decidable if its characteristic function

χ(n) = (if n ∈ X then 1 else 0 fi)

is computable.

Obviously, the intersection, union, and set difference of decidable

sets are decidable. Any finite set is decidable.

The decidability of sets of pairs of natural numbers, sets of ratio-

nal numbers, etc. is defined similarly.

Problem 1. Prove that the set of all rational numbers smaller

than the number e (the base of the natural logarithm) is decidable.

Problem 2. Prove that a nonempty set of natural numbers

is decidable if and only if it is the range of a total nondecreasing

computable function with natural arguments and values.

Let us mention one subtle point: the decidability of a set can

be proved nonconstructively, without any explicit description of a de-

ciding algorithm. A traditional example is the set of all n for which

the number π contains at least n nines in a row. This set is decid-

able, because it consists either of all natural numbers (and therefore

is decidable) or of all natural numbers up to a certain one. (and is de-

cidable as any finite set). So we have proved that this set is decidable

in any case. However, we have not provided explicitly an algorithm

4 1. Computability, Decidability, and Enumerability

that could determine, for a given n, whether the number π contains

at least n nines in a row.

Problem 3. Have we used any properties of the number π in

this argument? What will change if we replace the words “at least n

nines” by “exactly n nines (surrounded by non-nines)”?

Do undecidable sets exist? The answer is obviously positive, be-

cause there are countably many algorithms (and therefore, countably

many decidable subsets of N), whereas the set of all subsets of N is

uncountable. Concrete examples will be constructed later.

3. Enumerable sets

A set of natural numbers is called enumerable if it can be enumerated

by a certain algorithm, that is, if there exists an algorithm that prints

(in an arbitrary order and with arbitrary delays) all elements of this

set and only them.

Such an algorithm has no input; having printed several numbers

it can abruptly sink into a lengthy computation and print the next

number only after a lapse of time or never print anything at all (this

means that the set is finite).

There are many other equivalent definitions of an enumerable set.

Some of them follow:

(1) A set is enumerable if it is the domain of a computable

function.

(2) A set is enumerable if it is the range of a computable func-

tion.

(3) A set X is enumerable if its (as they sometimes say)

semicharacteristic function, which is, by definition, equal

to 0 on elements of X and undefined outside X , is com-

putable.

Let us prove the equivalence of all the definitions above; in the

proof, (0) will stand for our initial definition.

(0) ⇒ (1), (3) Suppose thatX is enumerated by an algorithmA.

Then the semicharacteristic function of the set X is computable. In-

deed, it is computed by the following algorithm:

3. Enumerable sets 5

Having received a number n at the input, execute the algorithmA

step by step waiting until the number n is printed. As soon as it

is, send 0 to the output and terminate.

(1) ⇒ (0) Let X be the domain of a (computable) function f

computed by a certain algorithm B. Then X can be enumerated by

the following algorithm A:

Execute algorithm B step by step in parallel on the inputs

0, 1, 2, . . . gradually increasing the number of involved inputs and

the number of steps performed (first, one step of B is performed

on the inputs 0 and 1; then two steps are performed on each of the

inputs 0, 1, 2; then three steps are performed on each of the inputs

0, 1, 2, 3, and so on). All the arguments on which the algorithm B

terminates are printed out as soon as they are detected.

Since definition (3) obviously implies definition (1), the equiva-

lence of these definitions to the original one has been established.

To prove that (2) ⇒ (1), i.e., to obtain an algorithm that enumer-

ates the range of a computable function f , we only have to modify

the algorithm A described above so as to make it print the results

returned by B rather than the arguments on which B terminates.

It remains to prove that (1) ⇒ (2), i.e., to show that any enumer-

able set X is the range of a computable function. We already know

that X is the domain of a computable function. If this function is

computed by an algorithm A, then X is the range of the function b

that takes the value x if A terminates on the input x and is undefined

otherwise. We will write this and similar function definitions as

b(x) =

{

x if A terminates on x,

undefined otherwise.

The algorithm that computes this function operates exactly like A,

but instead of the result produced by the algorithm A it puts out the

copy of the input.

Here is one more equivalent definition of an enumerable set: a

set X of natural numbers is enumerable if X either is empty or is the

range of a total computable function (in other words, its elements can

be arranged into a computable sequence).

6 1. Computability, Decidability, and Enumerability

Indeed, suppose that a nonempty enumerable setX is enumerated

by an algorithm A. Let x0 be an arbitrary element of X . Consider

the following total function a: if A returns a number t at the nth step,

then a(n) = t; if nothing is returned, then a(n) = x0. (We assume

that only one number can appear at any given step; otherwise the

computation must be split into smaller steps.)

It should be mentioned that this reasoning is nonconstructive.

That is, given an algorithm A, we may not necessarily know whether

the set it enumerates is empty or not.

Theorem 1. The intersection and union of enumerable sets are enu-

merable.

Proof. If X and Y are enumerated by algorithms A and B, then

their union is enumerated by the algorithm that performs A and B

in parallel and prints everything printed by A and B. The case of

intersection is a bit more difficult: the results produced by A and B

must be stored and compared; common results are printed. �

Problem 4. Prove Theorem 1 using one of the other equivalent

definitions of enumerability.

As we will see, the complement of an enumerable set may not be

enumerable.

Problem 5. Sometimes “nondeterministic algorithms” are con-

sidered (this oxymoron is used fairly often). Such an algorithm in-

volves instructions like

n := arbitrary natural number

(the instruction “n := 0 or 1” will suffice, though, because any num-

ber can be composed bit by bit). A nondeterministic algorithm can

follow different computation paths for the same input, depending on

the “arbitrary numbers” it chooses. Prove that an enumerable set

can be equivalently defined as the set of numbers that can appear at

the output of a nondeterministic algorithm (with a fixed input).

Problem 6. Prove that if sets A ⊂ N and B ⊂ N are enumerable,

then their Cartesian product A×B ⊂ N × N is also enumerable.

4. Enumerable and decidable sets 7

4. Enumerable and decidable sets

Theorem 2. Any decidable set of natural numbers is enumerable. If

a set A and its complement N\A are enumerable, then A is decidable.

Proof. If there is an algorithm that tests whether a number belongs

to a set A, then A and its complement are enumerable: for each of the

numbers 0, 1, 2, . . . , we check if it belongs to A and print the numbers

that do (or those that do not).

Conversely, assume that we have an algorithm enumerating A and

another algorithm, enumerating the complement of A. Then to find

out whether a given number n belongs to A we run both algorithms

and wait until one of them prints n (we know that exactly one of

them will print n eventually). Then we check which of the algorithms

has printed the number, and thus find out whether n belongs to A or

not. �

This fact is called Post’s Theorem.

It says that decidable sets are the enumerable sets with enumer-

able complements. On the other hand, enumerable sets can be defined

in terms of decidability.

Theorem 3. A set P of natural numbers is enumerable if and only

if P is the projection of a decidable set Q of pairs of natural numbers.

(By the projection of a set of pairs we mean the set of their first

components: x ∈ P ⇔ ∃y(〈x, y〉 ∈ Q).)

Proof. The projection of any enumerable set of pairs is enumerable

(we enumerate the pairs and extract their first elements), so the pro-

jection of a decidable set is all the more enumerable.

Conversely, an enumerable set P enumerated by an algorithm A

is the projection of the decidable set Q consisting of all the pairs 〈x, n〉

whose first element x appears during the first n steps performed by the

algorithm A. (This property of a pair 〈x, n〉 is obviously decidable.)

�

8 1. Computability, Decidability, and Enumerability

5. Enumerability and computability

We have seen that the notion of an enumerable set can be defined

in terms of computable functions (for instance, as the domain of a

computable function). This situation can be inverted.

Theorem 4. A function f with natural arguments and values is com-

putable if and only if its graph

F = {〈x, y〉 | f(x) is defined and equal to y}

is an enumerable set of pairs of natural numbers.

Proof. Suppose that f is computable. Then there exists an algo-

rithm that enumerates its domain, that is, prints all the x at which

the function f is defined. By adding the computation of the value f(x)

for each of these x, we get an algorithm that enumerates the set F .

Conversely, if there is an algorithm A enumerating F , then the

function f is computed by the following algorithm: given a number n

at the input, run the algorithm A and wait until it returns a pair

with the first component n; as soon as this happens, print the second

component of the pair and terminate the computation. �

Let f be a partial function with natural arguments and values,

and let A be a subset of N. The image of the set A under f is defined

as the set of all the numbers f(n) such that n ∈ A and f(n) is defined.

The preimage of the set A under f is defined as the set of all n such

that f(n) is defined and belongs to A.

Theorem 5. The image and preimage of an enumerable set under a

computable function are enumerable.

Proof. Indeed, to obtain the preimage of an enumerable set A under

a computable function f , it suffices to intersect the graph of f with

the enumerable set N×A and take the projection of the intersection on

the first coordinate. A similar argument, with coordinates swapped,

applies to the image. �

Problem 7. Let F be an enumerable set of pairs of natural

numbers. Prove that there exists a computable function f defined on

the set π1(F) = {x | ∃y 〈x, y〉 ∈ F}, such that 〈x, f(x)〉 ∈ F for any

5. Enumerability and computability 9

x ∈ π1(F). (Sometimes this statement is called the Uniformization

Theorem.)

Problem 8. LetX and Y be two enumerable sets with nonempty

intersection. Prove that there exist disjoint enumerable sets X ′ ⊂ X

and Y ′ ⊂ Y such that X ′ ∪ Y ′ = X ∪ Y .

Problem 9. A Diophantine equation is an equation of the form

P (x1, . . . , xn) = 0, where P is a polynomial with integer coefficients.

Prove that the set of Diophantine equations that have integer so-

lutions is enumerable. (This set is undecidable as was shown by

Yu. V. Matiyasevich in his well-known solution of the famous “10th

Hilbert Problem.”)

Problem 10. Without referring to the proof of the Fermat Great

Theorem, show that the set of all natural n such that the equation

xn + yn = zn has positive integer solutions is enumerable. (As we

know now, this set contains only the numbers 1 and 2.)

Problem 11. Show that any infinite enumerable set can be

represented in the form {a(0), a(1), a(2), . . . }, where a is a total com-

putable function with pairwise distinct values. (Hint : delete repeti-

tions in the course of enumeration.)

Problem 12. Show that any infinite enumerable set contains an

infinite decidable subset. (Hint : use the previous problem and choose

an increasing subsequence.)

Problem 13. Show that for any computable function f , there

exists a computable function which is “pseudoinverse” to f in the

following sense: the domain of g coincides with the range of f and

f(g(f(x))) = f(x) for all x such that f(x) is defined.

Problem 14. A real number α is called computable if there

exists a computable function a which for any rational ε > 0, yields a

rational approximation to α accurate to ε, i.e., |α− a(ε)| ≤ ε for any

rational ε > 0. (Rational numbers are constructive objects, so the

notion of computability does not need any special refinement.)

(a) Prove that α is computable if and only if the set {q ∈ Q | q <

α} is decidable.

(b) Prove that α is computable if and only if the digits of the dec-

imal (or binary) fraction representing it form a computable sequence.

10 1. Computability, Decidability, and Enumerability

(c) Prove that the number α is computable if and only if there

exists a computable sequence of rational numbers computably con-

verging to α (computable convergence means that for any ε, the cor-

responding number N in the standard ε-N definition can be found

algorithmically).

(d) Show that the sum, product, difference, and quotient of com-

putable real numbers are computable. Show that roots of a polyno-

mial with computable coefficients are computable.

(e) What is a computable sequence of computable real numbers?

A computably convergent sequence of real numbers? (Give natural

definitions.) Prove that the limit of a computably convergent se-

quence of computable real numbers is a computable real number.

(f) A real number α is called enumerable from below if the set

of all rational numbers smaller than α is enumerable. (Real numbers

enumerable from above are defined similarly.) Prove that a number α

is enumerable from below if and only if it is the limit of a computable

increasing sequence of rational numbers.

(g) Prove that a real number is computable if and only if it is

enumerable both from below and from above.

For further properties of computable real numbers see Prob-

lem 23.

Chapter 2

Universal Functions and
Undecidability

1. Universal functions

Now we are going to construct a set that is enumerable, but not

decidable. To do this, we will use the notion of universal functions.

A function U of two natural variables1 is said to be universal for

the class of all computable functions of one variable if

(1) for any n, the function

Un : x 7→ U(n, x)

(the section of the function U for the chosen n) is com-

putable;

(2) all computable functions of one variable occur among the

sections Un.

(Recall that neither the function U nor the one-variable functions

need be total.)

A similar definition can be given for other classes of unary func-

tions: for instance, a binary function U is called universal for the class

1Shorter terms for functions of one, two, three, and in general, k variables are
unary, binary, ternary, k-ary functions, respectively.

11

12 2. Universal Functions and Undecidability

of total computable unary functions if all its sections Un are total com-

putable unary functions and any such function appears among Un.

Obviously, a universal functions exist for any countable class (and

only for them).

The following fact plays a key role in this chapter.

Theorem 6. There exists a binary computable function universal for

the class of unary computable functions.

Proof. Let us fix some programming language and arrange all the

programs that compute unary functions into a computable sequence

p0, p1, . . . (for instance, in ascending order of their length). Set U(i, x)

equal to the output of the ith program run on the input x. Then the

function U is just the desired computable universal function. The

section Ui is the computable function computed by the program pi.

In essense, the algorithm computing the function U itself is an inter-

preter for the programming language we use. Indeed, an interpreter

for a given programming language takes two arguments: a program p

in this language and an input x, and simulates the behavior of p on x.

It is well known that interpreter of some programming language can

be programmed in the same language (for example, an interpreter for

Pascal programs can be written in Pascal). Identifying program with

its number, we can say that a universal function is an interpreter that

applies its first argument to the second one. �

Problem 15. Assume that all the sections Un of a binary func-

tion U are computable. Does it imply that the function U is com-

putable?

Problem 16. Give a (natural) definition of a ternary computable

function universal for the class of binary computable functions and

prove that such a function exists.

A similar terminology is used for sets: a set W ⊂ N×N is called

universal for a certain class of sets of natural numbers if all the sec-

tions

Wn = {x | 〈n, x〉 ∈W}

of the set W belong to this class and there are no other sets in it.

2. The diagonal construction 13

Theorem 7. There exists an enumerable set of pairs of natural num-

bers universal for the class of all enumerable sets of natural numbers.

Proof. Consider the domain of a universal function U . It is a uni-

versal enumerable set, because any enumerable set is the domain of

some unary computable function, and therefore, of the function Un

for some n. �

Problem 17. How can a universal set be constructed based on

the fact that any enumerable set is the range of a certain function Un?

Problem 18. Does there exist a decidable set of pairs of natural

numbers that is universal for the class of all decidable sets of natural

numbers?

2. The diagonal construction

In the previous section we have constructed a computable universal

function for the class of all computable functions of one variable. Is

it possible to do the same for the class of all total computable unary

functions? It turns out that this is impossible.

Theorem 8. There is no total computable function of two variables

universal for the class of all total computable functions of one variable.

Proof. We will apply the “diagonal construction”; a similar idea is

used to prove that the set of all infinite decimal fractions is uncount-

able. Let U be an arbitrary total computable function of two vari-

ables. Consider the diagonal function u(n) = U(n, n). Obviously, on

the argument n, the function u coincides with the function Un (i.e.,

u(n) = Un(n)), and d(n) = u(n) + 1 differs from from Un(n). Hence

the total computable function d differs from all the sections Un, and

so the function U is not universal. �

Why this argument does not work for the class of all computable

functions (including partial functions)? The point is that in this case

the value d(n) = U(n, n)+1 is not necessarily distinct from the value

Un(n) = U(n, n) since both values can be undefined.

However, a part of our agrument remains valid.

14 2. Universal Functions and Undecidability

Theorem 9. There exists a computable function d such that no com-

putable function f (with natural arguments and values) can differ

from it everywhere: for any computable unary function f there exists

a number n such that f(n) = d(n) (this equation implies that either

both values f(n) and d(n) are undefined or they both are defined and

equal).

Proof. The desired function d is the diagonal function, i.e., d(n) =

U(n, n) (where U is a binary computable function universal for the

class of unary computable functions). Any computable function f

coincides with Un for a certain n; hence f(n) = Un(n) = U(n, n) =

d(n). �

Theorem 10. There exists a computable function that has no total

computable extension.

Proof. The desired function can be defined by the formula d′(n) =

d(n) + 1, where d is the function from the previous theorem. Indeed,

any its total extensions d′ differs from d everywhere (if d(n) is defined,

then d′(n) = d(n) + 1 is defined and d′(n) = d′(n) 6= d(n); if d(n)

is undefined, then d′(n) 6= d(n), since d′ is a total function), and

therefore, d′ is not computable. �

Problem 19. Prove that the function d (Theorem 9) itself has

no total computable extension either.

3. Enumerable undecidable set

Now we can fulfill the promise we gave at the beginning of this chap-

ter.

Theorem 11. There exists an enumerable undecidable set of natural

numbers. (Restatement: there exists an enumerable set with nonenu-

merable complement.)

Proof. Consider a computable function f with natural arguments

and values that has no total computable extension. Its domain F is

the desired set. Indeed, F is enumerable (by one of the definitions of

3. Enumerable undecidable set 15

enumerability). If F were decidable, then the function

g(x) =

{

f(x) if x ∈ F,

0 if x /∈ F

would be a total computable extension of the function f (to com-

pute g(x), we check if x belongs to F (we can do this since F is

decidable), and if x ∈ F , we compute f(x)). �

It is instructive to trace the construction back and look closer at

the set F that eventually turned out to be enumerable and undecid-

able. In our construction F is the set of all n such that U(n, n) is

defined. Recalling the construction of the universal function U , we

see that F is the set of all n such that the nth program halts on n.

One can say that the problem “find out whether a given program

terminates when applied to its own number” is algorithmically un-

solvable.

Therefore, a more general problem, “for a given algorithm A and

input x, find out whether A halts on x”, is undecidable. This is the

famous “Halting Problem”.

In other terms, the domain of the function U is also an enumerable

undecidable set of pairs. (An algorithms that tells whether a program

terminates when applied to any input can also tell whether a program

terminates when applied to its own number.)

Problem 20. Let U be any enumerable set of pairs of natural

numbers that is universal for the class of all enumerable sets of natural

numbers. Prove that its “diagonal section” K = {x | 〈x, x〉 ∈ U} is

an enumerable undecidable set.

Problem 21. A set S of natural numbers is decidable. We

factor all the numbers from S into primes and form the set D of all

the prime numbers that occur in these factorizations. Is the set D

always decidable?

Problem 22. A set U ⊂ N × N is decidable. Is it true that the

set of “lower points” of the set U , that is, the set

V = {〈x, y〉 | (〈x, y〉 ∈ U) and (〈x, z〉 /∈ U for all z < y)}

is decidable? Is it true that V is enumerable if U is enumerable?

16 2. Universal Functions and Undecidability

Problem 23. Show that there exists a real number α that is

enumerable from below, but not computable (see the definitions on

p. 9). (Hint. Consider the sum of the series
∑

2−k over all the k from

an enumerable set P . This sum is always enumerable from below, but

it is computable only if P is decidable.)

We return to computable real numbers in Problems 31 and 60.

4. Enumerable inseparable sets

A minor modification of our reasoning enables us to improve the result

obtained above.

Theorem 12. There exists a computable function that takes only the

values 0 and 1 and has no total computable extension.

Proof. Instead of the function d′(x) = d(x) + 1 we can consider the

function

d′′(x) =

{

1 if d(x) = 0,

0 if d(x) > 0

(this equation implicitly assumes that d′′(x) is undefined if d(x) is

undefined). Then any total extension of the function d′′ differs from d

everywhere, as before, and so is not computable. �

This result can be translated into the language of enumerable

sets. We say that a set C separates two disjoint sets X and Y if C

contains one of them and has no common points with the other.

Theorem 13. There exist two disjoint enumerable sets X and Y that

cannot be separated by any decidable set.

Proof. Indeed, let d be a computable function that takes only

the values 0 and 1 and has no total computable extension. Set

X = {x | d(x) = 1} and Y = {x | d(x) = 0}. It is easy to see

that the sets X and Y are enumerable. Suppose that they can be

separated by a decidable set C; we may assume that C contains X

and is disjoint with Y (otherwise, consider the complement of C).

Then the characteristic function of the set C (equal to 1 on C and

to 0 outside C) extends d. �

5. Simple sets: the Post construction 17

Notice that Theorem 13 implies the existence of an enumerable

undecidable set (if two sets cannot be separated by a decidable set,

then none of them is decidable).

Problem 24. How can the enumerable inseparable sets

constructed above be described in terms of the universal func-

tion U(n, x)?

Problem 25. Show that there exist countably many disjoint

enumerable sets such that any two of them are inseparable (cannot

be separated by a decidable set).

5. Simple sets: the Post construction

There are other constructions of enumerable undecidable sets. One

of them (invented by E. Post) is given below.

A set is said to be immune if it is infinite, but does not contain

infinite enumerable subsets. An enumerable set is said to be sim-

ple if its complement is immune. (Obviously, such a set cannot be

decidable.)

Theorem 14. There exists a simple set.

Proof. We need an enumerable set S with an immune complement.

This means that S must have a common point with any infinite enu-

merable set. To guarantee this, we will add to S an element of each

enumerable set V (at least, for infinite V). In so doing, we have to

ensure that infinitely many elements are left outside S. To this end,

we will add to S only sufficiently large elements (we will add only one

element from the ith set, and choose it to be greater than 2i).

Let us explain the construction in more detail. Suppose that

W is a universal enumerable set of pairs. Its sections Wi are all

enumerable sets of natural numbers. Let the section Wi be called

“the enumerable set number i” (it is possible that different numbers

are assigned to the same set). Consider the set of pairs T = {〈i, x〉 |

(x ∈ Wi) and (x > 2i)}. This set is enumerable (as the intersection

of W and the decidable set {〈i, x〉 | x > 2i}). Let us enumerate T ,

omitting the pairs whose first element has already occurred earlier in

the enumeration. Then a certain enumerable subset T ′ of the set T

18 2. Universal Functions and Undecidability

remains. Now consider the enumerable set S of the second elements

of all pairs contained in T ′.

The set S has a nonempty intersection with any infinite enu-

merable set. Indeed, since any infinite section Wi contains numbers

greater than 2i, the set T contains at least one pair with the first

component i, and the set T ′ contains exactly one pair with first com-

ponent i. The second component of this pair belongs both to S and

to Wi.

On the other hand, the set S has infinite complement, since at

most n+ 1 different numbers from 0 to 2n belong to S (these are the

numbers that get into S from one of the first n vertical sections; all

other numbers in S are greater than 2n). �

Problem 26. Prove that an infinite set that does not contain

infinite decidable subsets is immune.

Problem 27. Prove that there exists an enumerable set A with

the following property: the complement of A is infinite and the in-

creasing sequence α(0) < α(1) < α(2) < . . . of all elements of N \ A

has no computable upper bound (i.e., for any total computable func-

tion b there exists a number n such that α(n) > b(n)). Prove that

any enumerable set A with this property is simple.

Chapter 3

Numberings and
Operations

1. Gödel universal functions

It is obvious that the composition of two computable functions is

computable. Moreover, this statement seems to be “effective” in the

sense that from the programs of two functions we can algorithmically

obtain a program of their composition. In a reasonable program-

ming language, it will consist of two procedures corresponding to

two computable functions and the main program with the single line

“return (f(g(x))).”

However, in order to avoid the details of programming languages,

we prefer to speak about numbers of functions rather then programs.

And we have tools to do so. Namely, any function U universal for the

class of computable functions of one variable specifies a numbering of

this class: a natural number n is a number of the function Un : x 7→

U(n, x).

In general, a numbering (more exactly, natural numbering) of an

arbitrary set F is a total map ν : N → F whose range is the entire

set F . If ν(n) = f , then n is called a number of the object f . Thus

any binary function specifies a numbering of a certain class of unary

functions (and is universal for this class).

19

20 3. Numberings and Operations

Our current goal is to give an accurate formulation and proof for

the following statement: (under certain conditions on a numbering of

computable functions) there exists an algorithm that assigns to num-

bers of any two computable functions a number of their composition.

First of all we require that the universal function that specifies the

numbering is computable. (Such numberings are called computable.)

However, this condition alone is not sufficient: what we need is a

Gödel numbering. Let U be a binary computable universal function

for the class of unary computable functions. It is called a Gödel uni-

versal function if for any computable binary function V there exists

a total computable unary function s such that

V (m,x) = U(s(m), x)

for all m and x (the equality is understood, as usual, in the sense

that either both values are undefined or they are defined and equal

to each other).

In other words, Vm = Us(m), that is, the function s assigns to a

V -number of a function a certain U -number of the same function.

Theorem 15. A Gödel universal function exists.

Proof. We give two proofs of this theorem.

In the first proof we show that the construction of a universal

function described in the proof of Theorem 6 (p. 12) yields a Gödel

universal function. Recall that we have enumerated all the programs

p0, p1, p2, . . . in some natural programming language in ascending or-

der of their lengths and defined U(n, x) to be the result produced by

the program pn applied to the input x. Now suppose that V is some

other computable function of two variables. For any natural m, we

must obtain the program of the function Vm, that is, of the function

obtained by setting the first argument of V equal to m. Clearly, in

any reasonable programming language, such a program can easily be

created: it suffices simply to substitute a constant for the first ar-

gument in the program of V (or transform the program of V into a

procedure that is called, with a fixed first argument, from the main

program).

1. Gödel universal functions 21

However, it is not necessary to go into the details of construction

of the universal function; our second proof uses only the existence of

universal function.

First, we notice that there exists a ternary computable function

universal for the class of binary computable functions, that is, a func-

tion T such that all binary computable functions occur among the

functions Tn(u, v) = T (n, u, v) obtained by fixing the first argument

of T .

Such a function T can be constructed as follows. We fix an arbi-

trary computable numbering of pairs, that is, a computable one-to-

one correspondence 〈u, v〉 ↔ [u, v] between N × N and N; the inte-

ger [u, v] corresponding to the pair 〈u, v〉 will be called the number

of this pair. Let R be a binary computable universal function for the

class of all unary computable functions. Then the computable func-

tion T defined by the formula T (n, u, v) = R(n, [u, v]) will be universal

for binary computable functions. Indeed, let F be an arbitrary binary

computable function. Consider the unary computable function f de-

fined by the relation f([u, v]) = F (u, v). Since R is universal, there

exists a number n such that R(n, x) = f(x) for all x. For this n,

we have the relations T (n, u, v) = R(n, [u, v]) = f([u, v]) = F (u, v);

hence the nth section of the function T coincides with F . This means

that T is the desired ternary universal function.

Now we will use T to define a binary Gödel universal function U .

Informally, we will build into U all other binary computable functions;

thus U will become a Gödel function. To formalize this idea, we set

U([n, u], v) = T (n, u, v). Let us show that the function U thus ob-

tained is Gödel. Any binary computable function V occurs among the

sections of the function T : we can find n such that V (u, v) = T (n, u, v)

for all u and v. Then V (u, v) = U([n, u], v) for all u and v, and hence

the function s defined by s(u) = [n, u] satisfies the requirement men-

tioned in the definition of Gödel universal function. �

The numberings of computable functions that correspond to

Gödel universal functions are called Gödel numberings.

Now we are ready to prove the exact version of the statement

mentioned at the beginning of this chapter.

22 3. Numberings and Operations

Theorem 16. Let U be a binary Gödel universal function for the

class of unary computable functions. Then there exists a total func-

tion c that assigns to numbers p and q of two unary functions a num-

ber c(p, q) of their composition: Uc(p,q) is the composition Up ◦ Uq,

or

U(c(p, q), x) = U(p, U(q, x))

for all p, q, and x.

Proof. Consider a binary computable function V defined by the

equation V ([p, q], x) = U(p, U(q, x)). By the definition of a Gödel

universal function, there exists a unary total computable function s

such that V (m,x) = U(s(m), x) for all m and x. Then V ([p, q], x) =

U(s([p, q]), x). Hence the function c defined by the relation c(p, q) =

s([p, q]) is the desired one. �

Let us repeat this proof informally. (For brevity, we identify a

program and its number and consider a number m as the U -program

of the function Um.) The function V can be considered as in inter-

preter for some programming language. According to the definition

of a Gödel numbering, there exists an algorithm s that converts any

V -program m into a U -program s(m) of the same function.

Now we construct a new programming language declaring that

a pair 〈p, q〉 is a program of the composition of the functions with

U -programs p and q. By assumption, such a program can be algo-

rithmically converted into a U -program. This completes the proof.

It is interesting that the statement converse to Theorem 16 is also

true:

Problem 28. Let U be a binary computable universal func-

tion for the class of unary computable functions. If there exists a

total function that assigns to any p and q some U -number of the

composition of functions that have U -numbers p and q, then U is

a Gödel universal function. (Hint : show that a U -number of the

function x 7→ [k, x] can be algorithmically obtained from k.)

A natural question arises: do there exist computable universal

functions that are not Gödel? Later we will see that they exist.

2. Computable sequences of functions 23

Problem 29. Let us change the definition of a Gödel universal

function and require the converter s to exist only for universal com-

putable functions V (rather than for all functions, as before). Show

that the new definition is equivalent to the old one. (Hint : any func-

tion can be artificially reworked into a universal one by “interleaving”

it with some universal function.)

Problem 30. Let U be a Gödel universal function. Prove that

for any computable function V (m,n, x) there exists a total com-

putable function s(m,n) such that V (m,n, x) = U(s(m,n), x) for

all m, n, and x. (Hint : combine m and n into a pair.)

2. Computable sequences of computable

functions

Let f0, f1, . . . be a sequence of computable functions of one variable.

We want to assign a meaning to the expression “a sequence i 7→ fi is

computable.” There are two natural definitions:

• this sequence is called computable if the binary function F

defined by the formula F (i, n) = fi(n) is computable;

• this sequence is computable if there exists a computable

sequence of natural numbers c0, c1, . . . such that ci is one of

the numbers of the function fi (for each i).

The second definition (unlike the first) depends on the numbering

of computable functions.

Theorem 17. If the numbering is computable (that is, the corre-

sponding universal function U is computable), then the second defi-

nition implies the first. If, in addition, it is a Gödel numbering, then

the first definition implies the second.

(In what follows, speaking about a computable sequence of com-

putable functions, we will always assume that the numbering is Gödel,

so either definition will be good.)

Proof. If U is a computable universal function and the sequence i 7→

ci is computable, then the function F : 〈i, x〉 7→ fi(x) = U(ci, x) is

computable as the composition of computable functions.

24 3. Numberings and Operations

Conversely, if a function F is computable and a universal func-

tion U is Gödel, then the converter that exists by the definition of a

Gödel universal function, is just the function that takes i into one of

the numbers of the function fi. �

Problem 31. Let us fix a Gödel universal function for the class

of unary computable functions. In line with the definition on p. 9, it

specifies a numbering of computable reals: a number of a computable

real α is any number of any function that assigns to each rational

ε > 0 an ε-approximation to α.

(a) Show that there exists an algorithm that computes one of the

numbers of the sum of two computable real numbers from arbitrary

numbers of the summands.

(b) Show that there is no algorithm that determines from any

number of an arbitrary computable real x whether x is equal to zero.

(c) As we have seen in Problem 14, any computable real number

has a computable decimal representation. Show that, nonetheless,

no algorithm can transform any number of any computable real x

into a number of the computable function that specifies the decimal

representation of x.

3. Gödel universal sets

Let us carry over the definitions given above for computable functions

to the case of enumerable sets. An enumerable set W ⊂ N × N is

called a Gödel universal enumerable set (for the class of all enumerable

subsets of N) if for any enumerable set V ⊂ N×N there exists a total

computable function s : N → N such that

〈n, x〉 ∈ V ⇔ 〈s(n), x〉 ∈W

for all n and x. (Obviously, this property implies universality.)

As in the case of functions, we can switch to numberings. Each

set U ⊂ N × N defines a numbering of a certain family of subsets

of N in the following way: n is a number of the nth section Un = {x |

〈n, x〉 ∈ U}. An enumerable subset of N×N specifies a numbering of a

certain family of enumerable subsets of N; such numberings are called

computable. An enumerable set W ⊂ N×N is universal if and only if

3. Gödel universal sets 25

any enumerable subset of the natural numbers has a W -number; W is

a Gödel set if and only if any computable numbering V (of any family

of enumerable sets) is computably reducible to the W -numbering in

the sense that Vn = Ws(n) for some computable function s and for

all n.

Theorem 18. A Gödel universal enumerable set W ⊂ N × N exists.

Proof. This theorem is an obvious corollary to the following state-

ment:

Lemma. The domain of a Gödel universal function for the class

of unary computable functions is a Gödel universal set for the class

of enumerable subsets of N.

Proof of the Lemma. Let U be a Gödel universal function, and let

W be its domain. Consider an arbitrary enumerable set V ⊂ N × N

and a computable function G with domain V . Since the function U is

Gödel, there exists a total computable function s : N → N such that

Gn = Us(n) for all n. Then the domains of the functions Gn and Us(n)

also coincide, that is, Vn = Ws(n). �

Problem 32. Construct a Gödel universal set directly, using a

universal subset of N3 (proceed by analogy with the above construc-

tion of a Gödel universal function).

Now, along the same lines as in the case of functions, we can prove

that various set operations correspond to computable transformations

of their numbers. Here is one example of this kind.

Theorem 19. Let W ⊂ N × N be a Gödel universal enumerable

set. Then a number of the intersection of two enumerable sets can be

algorithmically computed from W -numbers of these sets: there exists

a binary total computable function s such that

Ws(m,n) = Wm ∩Wn

for any m and n.

Proof. Consider the set V ⊂ N × N defined by the relation

〈[m,n], x〉 ∈ V ⇔ x ∈ (Wm ∩Wn)

26 3. Numberings and Operations

(the brackets here denote the pair’s number) and apply the definition

of a Gödel universal set to V . �

As in the case of functions, the notion of computability of a se-

quence of enumerable sets can be defined in two ways: one way is

to call such a sequence computable if it coincides with the sequence

V0, V1, . . . of sections of an enumerable set V ; the other approach is to

require that there is an algorithm that for any given i computes one

of the numbers of the ith set in a Gödel numbering. These definitions

are equivalent (the proof is similar to the one for functions).

Chapter 4

Properties of Gödel
Numberings

1. Sets of numbers

We begin with an example. Consider the set of numbers of the empty

function in a certain Gödel numbering. Is it decidable? In other

words, is it possible to determine whether a function is empty given

its number in a Gödel numbering?

Before we try to answer this question, let us notice that the an-

swer does not depend on the choice of a Gödel numbering. Indeed, any

two different Gödel numberings can be “reduced” to each other: given

a number of a function in one numbering, it is possible to algorithmi-

cally obtain a number of the same function in the other numbering.

If, using one numbering, we could test whether a function is empty,

then, applying the “transition functions,” we could just as well do

this in the other numbering.

The following theorem shows that the answer to our initial ques-

tion is negative.

Theorem 20. Let U be an arbitrary Gödel universal function. Then

the set of all the numbers n such that the function Un is empty is

undecidable.

27

28 4. Properties of Gödel Numberings

Proof. We use the method called “reduction”. The idea is to show

that if the set in question were decidable, then any enumerable set

would be decidable as well. (And this, as we know, is not true.)

Let K be an arbitrary enumerable undecidable set. Consider the

following binary computable function V :

V (n, x) =

{

0 if n ∈ K,

undefined if n /∈ K.

The second argument of this function is not really used, and essen-

tially, V is the semicharacteristic function of the set K. Obviously,

the function V has sections of two kinds: for n ∈ K, the section Vn

is the zero function, and for n /∈ K, it is the empty function.

Since U is a Gödel universal function, there exists a total com-

putable function s such that V (n, x) = U(s(n), x) for all n and x,

that is, Vn = Us(n). So for n ∈ K, the value s(n) is a U -number of

the zero function, and for n /∈ K the value s(n) is a U -number of

the empty function. Therefore, if the set of U -numbers of the empty

function were decidable by a certain algorithm, we could apply this

algorithm to s(n) and find out whether the number n belongs to K

or not. This would mean that K is a decidable set, contrary to our

assumption. �

In particular, we conclude that the empty function has infinitely

many numbers in any Gödel numbering (because any finite set is

decidable).

Furthermore, the set of numbers of the empty function is not only

undecidable; it is not enumerable either. Indeed, its complement, the

set of numbers of all functions with a nonempty domain, is enumer-

able. (This is true for any computable, not only Gödel, numbering:

we can compute U(n, x) in parallel for all n and x and print n when-

ever U(n, x) is defined for at least one x.) But by Post’s Theorem

(p. 7), if the complement of an undecidable set is enumerable, then

the set itself is nonenumerable.

Now let us prove a more general statement, sometimes called

the Rice–Uspensky theorem. Denote by F the class of all unary

computable functions.

1. Sets of numbers 29

Theorem 21. Let A ⊂ F be an arbitrary nontrivial property of com-

putable functions (“nontrivial” means that there are both functions

satisfying the property and functions not satisfying it; that is, the set

A is nonempty and does not coincide with F). Let U be a Gödel

universal function. Then it is impossible to determine algorithmi-

cally whether a computable function with a given U -number has the

property A. In other words, the set {n | Un ∈ A} is undecidable.

Proof. Without loss of generality we may assume that empty func-

tion (we denote it by ζ) belongs to A. Let ξ be an arbitrary function

in F \ A. (If ζ /∈ A, the set A can be replaced by its complement.)

Now we repeat the proof of the previous theorem, but replace

the zero function in this proof by the function ξ: for any enumerable

undecidable K, we set

V (n, x) =

{

ξ(x) if n ∈ K,

undefined if n /∈ K.

Again, the function V is computable (for any given n and x, we enu-

merate the set K waiting for n to appear and then compute ξ(x)).

For n ∈ K, the function Vn coincides with ξ; for n /∈ K, with ζ.

Therefore, Vn ∈ A if and only if n /∈ K. Suppose that the statement

of the theorem is false. Then, by the same argument as in the pre-

vious proof, we conclude that the property Vn ∈ A is algorithmically

decidable (given n). Hence we can find out whether the number n

belongs to the set K or not, which is impossible by the choice of

K. �

A certain shortcoming of this proof is its asymmetry (the func-

tions chosen inside and outside A are of different nature: one of them

is empty, the other one is arbitrary). A more symmetric version fol-

lows.

Let us show that if it were possible to recognize the property A

by U -numbers, then any two disjoint enumerable sets P and Q could

be separated by a decidable set. Choose any two functions ξ and η

30 4. Properties of Gödel Numberings

“on different sides” of A. Consider the function

V (n, x) =











ξ(x) if n ∈ P ,

η(x) if n ∈ Q,

undefined if n /∈ P ∪Q.

This function is computable: for any given n and x we wait until n

appears either in P or in Q; then we compute ξ(x) or η(x), respec-

tively.

If n ∈ P , then Vn coincides with ξ; if n ∈ Q, then Vn coincides

with η. Therefore, by verifying whether Vn belongs to the class A, we

would be able to decidably separate P from Q. But this contradicts

Theorem 13 and thus completes this more symmetric version of the

proof.

The second proof shows that a stronger version of the theorem

holds: for any two distinct computable functions ϕ and ψ and any

Gödel universal function U , the set of all U -numbers of the function ϕ

cannot be separated from the set of U -numbers of ψ by a decidable

set. (Later we will see that these two sets are nonenumerable.)

Now it is easy to construct an example of a computable universal

function that is not Gödel. It will suffice to ensure that the empty

function has only one number. This is not difficult. Let U(n, x) be

an arbitrary computable universal function. Consider the set D of

all U -numbers of all functions with nonempty domain. As we have

already said, this set is enumerable. Consider a total computable

function d that enumerates it: D = {d(0), d(1), . . . }. Now consider

the function V (i, x) such that V (0, x) is undefined for any x and

V (i + 1, x) = U(d(i), x). In other words, the function V0 is empty,

and the function Vi+1 coincides with Ud(i). It is easy to see that the

function V is computable; by construction, it is universal; and the

only V -number of the empty function is 0.

In fact, there exist even more exotic numberings: as Friedberg

showed, one can construct a universal computable function such that

any computable function has exactly one number. Obviously, such

a numbering cannot be Gödel. Here is a curious rewording of Fried-

berg’s theorem: it is possible to invent a programming language such

that each programming problem has a unique solution in it. The proof

2. New numbers of old functions 31

of this theorem is difficult and we omit it; see original Friedberg’s arti-

cle (Journal of Symbolic Logic, 23 (1958), 309–318) or A. I. Mal’tsev’s

book “Algorithms and Recursive Functions” [5].

A similar statement is true for numberings of enumerable sets.

2. New numbers of old functions

The Rice–Uspensky Theorem shows that the set of numbers of any

specific function in a Gödel numbering is undecidable, and hence in-

finite. Now we will prove a stronger fact: given a number of any

function in a Gödel numbering, one can algorithmically obtain arbi-

trary many other numbers of the same function. Formally, this can

be stated as follows:

Theorem 22. Let U be a Gödel universal function. Then there

exists a total binary function g such that for any i the values

g(i, 0), g(i, 1), . . . are different U -numbers of the function Ui.

Proof. To prove this theorem, we construct another programming

language such that any given function Ui has infinitely many pro-

grams. Then, using the fact that U is a Gödel function, we convert

these programs and obtain U -numbers of the function in question. Of

course, we need special precautions to ensure that we get infinitely

many different U -numbers. (For example, if our programming lan-

guage allows comments, then it is easy to construct infinitely many

programs for the same function. However, this does not help us much,

since the converter to U -numbers may start its work by deleting com-

ments. So we need a deeper idea to succeed.)

We proceed as follows. Let h be an arbitrary function. We show

that there exists an algorithm that finds infinitely many different U -

numbers of the function h. (The theorem says that this can be done

not only for a single specific function h, but also for all the functions Ui

“uniformly in i”; for the time being we ignore this problem.)

Let P be an enumerable undecidable set. Consider a computable

function

V (n, x) =

{

h(x) if n ∈ P ,

undefined if n /∈ P .

32 4. Properties of Gödel Numberings

There are only two distinct functions among Vn: if n ∈ P , then Vn =

h; if n /∈ P , then Vn is the empty function ζ. We start with the case

h 6= ζ (the case h = ζ needs a more sophisticated construction and is

considered below).

Since U is a Gödel universal function, there exists a converter s

that transforms V -numbers into U -numbers. In other terms,

• n ∈ P ⇒ Us(n) = Vn = h;

• n /∈ P ⇒ Us(n) = Vn = ζ.

It follows that if p(0), p(1), . . . is a computable enumeration of the

set P , then all the numbers s(p(0)), s(p(1)), . . . are U -numbers of the

function h. Let us show that the set {s(p(0)), s(p(1)), . . . } is infinite

(and therefore, we can compute s(p(0)), s(p(1)), . . . until a new, yet

unused number of the function h appears).

Suppose that this is not the case, and the set X = {s(n) | n ∈ P}

is finite. Then X is decidable. If n ∈ P , then, by construction,

s(n) ∈ X ; if n /∈ P , then s(n) is a number of the function ζ and

does not belong to X (recall that h 6= ζ by our assumption). Hence

n ∈ P if and only if s(n) ∈ X , and so the decidability of X implies

the decidability of P , contrary to our assumption.

However, this reasoning does not work if h = ζ. Although

s(p(0)), s(p(1)), . . . in this case are numbers of h, there is nothing

to guarantee that infinitely many of them are pairwise distinct. So in

this case we will use a more delicate argument and consider any com-

putable function ξ distinct from ζ (for instance, we can set ξ(n) = 0

for all n). Consider two enumerable inseparable sets P and Q and

the computable function

V (n, x) =











h(x) if n ∈ P ,

ξ(x) if n ∈ Q,

undefined if n /∈ P ∪Q.

Let s be a converter mapping V -numbers to U -numbers. Then

• n ∈ P ⇒ Us(n) = h;

• n ∈ Q⇒ Us(n) = ξ;

• n /∈ P ∪Q⇒ Us(n) = ζ.

2. New numbers of old functions 33

As before, s(p(0)), s(p(1)), . . . are numbers of the function h.

Let us show that if h 6= ξ, then the set X of the numbers

s(p(0)), s(p(1)), . . . is undecidable (and hence infinite). Indeed, if

X were decidable, then we could separate P from Q by a decidable

set. Namely, the set {n | s(n) ∈ X} contains P (by construction) and

is disjoint with Q (since for n ∈ Q, s(n) is a number of the function ξ;

therefore, s(n) cannot belong to X).

Thus we have two constructions that allow us to obtain other

numbers of a given function h. The first of them definitely succeeds

(i.e., produces infinitely many new numbers) if h 6= ζ; the second

works if h = ζ. However, we do not know in advance whether h = ζ

or not. What can we do? Let us apply both constructions in parallel

until one of them yields the desired new number; we know that none

of them will ever produce an invalid result (i.e., numbers of another

function) and at least one of them will succeed, though we do not

know which of the two.

This enables us to generate new numbers of the ith function for

any given i uniformly in i. Formally, we should consider the two

computable binary functions V1 and V2 defined by the relations

V1([i, n], x) =

{

U(i, x) if n ∈ P ,

undefined if n /∈ P ,

V2([i, n], x) =











U(i, x) if n ∈ P ,

0 if n ∈ Q,

undefined if n /∈ P ∪Q

(here P and Q are fixed enumerable inseparable sets, [u, v] is the

number of the pair 〈u, v〉 in a fixed computable numbering of pairs).

Since U is a Gödel universal function, we can find computable to-

tal functions s1 and s2 such that V1([i, n], x) = U(s1([i, n]), x) and

V2([i, n], x) = U(s2([i, n]), x). Let p be a total unary function such

that P = {p(0), p(1), . . .}. Then the desired function g can be defined

as follows: g(i, k) is the kth number (not counting repetitions) in the

34 4. Properties of Gödel Numberings

sequence

s1([i, p(0)]), s2([i, p(0)]), s1([i, p(1)]), s2([i, p(1)]),

s1([i, p(2)]), s2([i, p(2)]), . . .

�

3. Isomorphism of Gödel numberings

The statement about the generation of new numbers proved just

above will play a crucial role in the proof of Rogers’ Theorem that

says that any two Gödel numberings are isomorphic. Here is the exact

statement of this theorem.

Theorem 23. Let U1 and U2 be two Gödel universal functions for

the class of unary computable functions. Then there exist two total

mutually inverse computable functions s12 and s21 such that

U1(n, x) = U2(s12(n), x) and U2(n, x) = U1(s21(n), x)

for any n and x.

This theorem shows that we can choose converters reducing one

Gödel numbering to another and vice versa to be mutually inverse,

and so any two Gödel numberings differ from each other only by a

computable permutation of numbers.

Notice that previous Theorem 22 follows from Rogers’ Isomor-

phism Theorem. Indeed, for some Gödel numberings, e.g., for the

numberings derived from typical programming languages, it is easy

to obtain arbitrarily many programs of the same function (by adding

comments, null statements, dummy variables etc.); therefore, by the

isomorphism, this is possible for any other Gödel numbering as well.

Proof. We will proceed along the same lines as in the proof of the

isomorphism of countable dense well-ordered sets without the first

and last elements. The desired bijections are constructed step by

step. At the kth step a certain one-to-one correspondence

a1 ↔ b1, a2 ↔ b2, . . . , ak ↔ bk

between two finite k-element subsets of the set of natural numbers is

constructed. For each i, the numbers ai and bi in this construction

3. Isomorphism of Gödel numberings 35

are the numbers of the same function in different numberings (aith

function in U1-numbering equals bith function in U2-numbering).

At each step of the construction we add a new pair ak ↔ bk pre-

serving the above-mentioned property. In so doing, we will gradually

incorporate all natural numbers on both sides. Thus we will obtain

the desired one-to-one correspondence; it will be computable, because

our construction is computable.

So, how do we add a new pair? We alternate steps of two types.

At even steps we take the smallest natural number u that has not

yet appeared on the left side of the correspondence, among the num-

bers ai. This number u is a U1-number of a certain function. Since U2

is a Gödel numbering, we can find a U2-number of the same function.

Denote it by v. If v does not occur among the numbers bi, we are

done: we add the pair u↔ v to our correspondence. If v has already

appeared in the construction, we use Theorem 22 and obtain other

U2-numbers of the same function until a new number (distinct from

any of the bi) appears.

Odd steps are similar except that we begin with the smallest

number that has not yet appeared among the bi. �

A remark for programmers (not to be taken seriously): since, say,

Pascal and C can be viewed as Gödel numberings, by the theorem

proved above, there exist not just some converters from Pascal to

C and back, but converters that are mutually inverse. (The main

part of the proof, a reference to Theorem 22, is not really used here,

though: both in Pascal and C one can add comments to a program,

thus creating as many equivalent programs as needed.)

A similar theorem is true for Gödel numberings of enumerable

sets: any two such numberings are isomorphic (differ by a computable

permutation of numbers). The proof is also similar; first we must

show that from a number of a set in a Gödel numbering, arbitrarily

many numbers of the same set can be algorithmically obtained. This

is done using two methods: one of them works for any nonempty set;

the other is applicable to the empty set.

Problem 33. Complete this argument.

36 4. Properties of Gödel Numberings

4. Enumerable properties of functions

We have already seen (Theorem 21) that all (nontrivial) properties of

functions are undecidable. But some of them are enumerable (in the

sense that the set of all numbers of all functions with such a property

is enumerable). For instance, such is the property of a function to

have nonempty domain (see above). Another example: the property

“f(200) is defined and equals 2.”

All enumerable properties can be described in a fairly simple way.

This description is based on a number of definitions.

A function with natural arguments and values is called a pattern

if its domain is finite. In other words, a pattern is a finite list of pairs

〈argument, value〉 where all arguments are distinct.

Patterns can be regarded as constructive objects (they can be

encoded by binary strings, natural numbers, etc.). This allows us to

speak about a decidable set of patterns, enumerable set of patterns,

and so on.

For each pattern t, consider the property of a function “to be an

extension of t”, i.e., the set Γ(t) of all (computable) functions that

are extensions of t. [Note that the sets Γ(t) form a base of topology

on the set of all computable functions.] It is easy to see that for

any t and for any computable numbering U , the set of all numbers

of all functions from Γ(t) is enumerable. Indeed, we can compute the

values Un(x) for all n and x in parallel; as soon as the cumulative

data allows us to assert that Un ∈ Γ(t), the number n is printed. (If

Un ∈ Γ(t), then this fact will be discovered after a finite number of

steps, because the domain of the pattern t is finite.)

Let T be an arbitrary set of patterns. Denote by Γ(T) the set

of all computable functions that extend at least one pattern from T ,

i.e., the union of sets Γ(t) over all t ∈ T . Now, as we promised above,

we can give a description of enumerable properties.

Theorem 24. (a) Let T be an arbitrary enumerable set of patterns,

and let U be a computable universal function for the class of all unary

computable functions. Then the set of all U -numbers of all functions

from Γ(T) is enumerable. (b) Let U be a Gödel universal function

(for the class of all unary computable functions). Let G be a subset

4. Enumerable properties of functions 37

of this class. If the set {n | Un ∈ G} of all U -numbers of all functions

from the class G is enumerable, then G = Γ(T) for some enumerable

set T of patterns.

For instance, the class of functions with a nonempty domain

(mentioned above) corresponds to the set of all nonempty patterns (as

well as, e.g., to the set of all patterns with a one-element domain).

And the property “f(200) = 2” correspods to the pattern 〈200, 2〉

that consists of one pair.

Proof. Statement (a) is easy: we compute all values of U(n, x) and

enumerate all patterns from T in parallel; as soon as we find out

that one of the functions Un is an extension of a pattern from T , we

print n.

More substantial is statement (b), in which we use the fact that

the numbering in question is Gödel. We will need two lemmas.

Lemma 1. If a computable function h is an extension of a com-

putable function g of the class G, then the function h also belongs to

the class G.

Lemma 2. If a computable function g belongs to the class G, then

g is an extension of some pattern h in G, i.e., of a function h ∈ G with

a finite domain.

[These two lemmas together mean that any enumerable prop-

erty G is open in the topology described above.]

Let us show how statement (b) of our theorem is derived from

these lemmas. Notice that the set T of all patterns from the class G

is enumerable. Indeed, since U is a Gödel function, from a pattern as

a constructive object (i.e., from the list of pairs 〈argument, value〉),

we can compute its U -number. (Formally: we consider the function

〈t, x〉 7→ (value of the pattern t at point x) and apply the definition

of Gödel universal functions.) Therefore, the set T is the preimage of

the enumerable set of all U -numbers of all functions from the class G;

hence T itself is enumerable.

Lemmas 1 and 2 ensure that G = Γ(T). Indeed, by Lemma 1,

any function from Γ(T) belongs to the class G, since it is an extension

of a pattern from G. On the other hand, Lemma 2 ensures that any

38 4. Properties of Gödel Numberings

function g from G is an extension of a pattern from G (and thus

from T); therefore, g ∈ Γ(T).

It remains to prove Lemmas 1 and 2. Suppose that, contrary to

Lemma 1, there is a function g that belongs to the class G and has an

extension h not in this class. Let us take an enumerable undecidable

set K and consider the following function of two arguments:

V (n, x) =

{

h(x) if n ∈ K,

g(x) if n /∈ K.

This function is computable. Indeed, it can be readily seen that its

graph is enumerable as the union of the graph of g multiplied by N and

the graph of h multiplied by K. In other words, to compute V (n, x),

we start the process of enumeration of K and (in parallel with this

process) the computation of g(x) and h(x). A result is returned if

the computation of g(x) has been completed (in this case it does not

matter whether n lies in K, since h is an extension of g) or if the

computation of h(x) has been completed and, in addition, n has been

detected in K.

Since U is a Gödel function, there exists a total function s with

the following property:

• n ∈ K ⇒ Us(n) = h⇒ Us(n) /∈ G;

• n /∈ K ⇒ Us(n) = g ⇒ Us(n) ∈ G.

Thus the complement of K is the preimage of the enumerable set of

all numbers of all functions from G under the computable mapping s.

Hence, by Theorem 5, this complement is enumerable. This is a

contradiction that completes the proof of Lemma 1.

Lemma 2 is proved similarly. Suppose that (contrary to the state-

ment of the lemma) the function g belongs to the class G, but none

of its finite parts belongs to this class. Consider the function

V (n, x) =











g(x) if after x steps of the enumeration of K

n has not yet appeared,

undefined if n has appeared.

It can be readily seen that for n /∈ K, the function Vn coincides with g

and hence belongs to G, whereas for n ∈ K, the function Vn is a finite

4. Enumerable properties of functions 39

part of the function g and hence does not belong to G. The proof is

completed as in Lemma 1. �

Chapter 5

Fixed Point Theorem

1. Fixed point and equivalence relations

Theorem 25. Let U be a Gödel universal computable function for

the class of unary computable functions, and let h be an arbitrary

unary total computable function. Then there exists a number n such

that Un = Uh(n), that is, n and h(n) are numbers of the same function.

In other words, it is impossible to find an algorithmic trans-

formation of programs that would assign to each program another,

nonequivalent one. This theorem is called Kleene’s Fixed Point The-

orem or the Recursion Theorem.

Proof. We will use the construction of a computable function that

has no total computable extension (Chapter 2).

Consider an arbitrary equivalence relation (which will be denoted

by x ≡ y) on the set of natural numbers. We will show that the

following two properties of this relation cannot hold simultaneously:

• For any computable function f , there exists a total com-

putable function g which is its ≡-extension (this means that

if f(x) is defined for some x, then g(x) ≡ f(x)).

• There exists a total computable function h that has no ≡-

fixed point (i.e., n 6≡h(n) for all n).

41

42 5. Fixed Point Theorem

Both Theorem 10 and the Fixed Point Theorem are corollaries of

this statement. Indeed, if x ≡ y is the equality relation (x = y), then

the second property holds (put, for instance, h(n) = n+1); therefore,

the first one does not hold, and we conclude that there exists a com-

putable function f that has no computable =-extension. To obtain

the Fixed Point Theorem, we interpret x ≡ y as the relation Ux = Uy

(x and y are numbers of the same function). In this case, as we are

going to show, the first property holds; hence the second one does

not.

Why does the first property hold? Let f be an arbitrary (par-

tial) computable function of one argument. Consider the func-

tion V (n, x) = U(f(n), x). Since U is a Gödel universal function,

one can find a total function s such that V (n, x) = U(s(n), x) for

all n and x. This function is just the desired ≡-extension. Indeed, if

f(n) is defined, then s(n) is another U -number of the function with

the U -number f(n). (Notice that if f(n) is not defined, then s(n) is

one of the numbers of the completely undefined function.)

To complete the proof of the Fixed Point Theorem, it remains to

verify that the two properties of equivalence specified above are in-

compatible. This is done by means of Theorem 9 (Section 2.2). Let us

take a computable function f such that no computable function differs

from it everywhere (for instance, the diagonal function x 7→ U(x, x)

for any computable universal function U). Suppose that there exists

a total computable ≡-extension g of the function f and, contrary to

our alternative, a total computable function h without ≡-fixed points.

Consider the function t(x) = h(g(x)). Then t differs from f every-

where. Indeed, if f(x) is defined, then f(x) ≡ g(x)6≡h(g(x)) = t(x),

and therefore, f(x) 6= t(x). And if f(x) is not defined, then it is this

fact by itself that distinguishes f(x) from t(x). This contradicts the

choice of the function f and thus completes the proof. �

The Fixed Point Theorem can be restated as follows:

Theorem 26. Let U(n, x) be a Gödel computable universal function

for the class of unary computable functions. Let V (n, x) be an ar-

bitrary computable function. Then the functions U and V coincide

1. Fixed point and equivalence relations 43

on a certain section: there exists a number p such that Up = Vp, or

U(p, n) = V (p, n) for any n.

Proof. Since U is a Gödel function, we can find a total computable

function h such that V (n, x) = U(h(n), x) for all n and x. It remains

to take as p the fixed point of the function h. �

(Here is an example of a consequence of this theorem: no matter

how inventive programmers are, for any two versions of a compiler

they can ever work out, there will be a program that behaves the

same way in both versions, for instance, in both cases it will get into

a loop. The only chance to create “completely incompatible versions”

(such that no program behaves the same way in both versions) is to

construct a compiler that is not a Gödel universal function. In fact,

our programmers may succeed, but only if the function specified by

their compiler is not Gödel universal. However, one must try really

hard for this to happen!)

It is instructive to trace the construction of the fixed point in

more detail. To make it easier to grasp, let us write [n](x) instead

of U(n, x), and read this notation as “the result of application of the

program n to the input x.”

The argument starts with the consideration of the “diagonal”

function U(x, x), which can now be written as x (the result of

application of the program x to itself). Then we construct its to-

tal ≡-extension, which is done as follows. The expression [x](y)

computably depends on two arguments. We recall that U is a Gödel

universal function and find a program g applicable to any x such that

[[g](x)](y) = [x](y) for all x and y. We are looking for a fixed

point of the program h. We consider the composition [h]([g](x)); it

depends on x computably. Therefore, there exists a program t such

that [t](x) = [h]([g](x)) for all x. This program is applicable to all x,

because so are h and g. Now [g](t) is the fixed point. Indeed, we must

check that [[g](t)](x) = [[h]([g](t))](x) for all x. But by the definition

of g, we have [[g](t)](x) = [t](x), and recalling the definition of t,

we can rewrite the right-hand side of this relation as [[h]([g](t))](x),

which is just what we need.

44 5. Fixed Point Theorem

2. A program that prints its text

The following corollary is a classical application of the Fixed Point

Theorem: there exists a program that prints (on any input) its own

text. Indeed, if such a program did not exist, then the map

p 7→ (the program that prints p on any input)

would have no fixed point.

Formally, this corollary can be expressed as follows:

Theorem 27. Let U(n, x) be a Gödel universal computable function

for the class of all unary computable functions. Then there exists a

number p such that U(p, x) = p for any x.

Let us say this in programmers’ language. Let U(p, x) be the

result of application of a Pascal program p to the standard input x.

(Refinements : (1) we identify numbers and finite sequences of bytes;

(2) if a program never terminates, we assume that its result is unde-

fined, even if there is something sent to the standard output.) Clearly,

the function U is a Gödel universal function. Applying the above the-

orem to this function, we see that there is a program p that returns p

at the output whatever is the input.

The Pascal programming language mentioned above is as good

as any other: the argument will clearly remain true anyway.

Problem 34. Prove that there exists a Pascal program that

prints its text back to front.

Problem 35. Show that there are two different Pascal programs

P and Q such that the program P prints the text of the program Q,

and Q prints the text of P . (If we do not require that P and Q be

different, then we can take as P and Q the same program printing its

text.)

Let us write explicitly a Pascal program that prints its text. (This

is a good exercise for programming fans.) To begin with, let us write

an informal instruction in English:

print twice, the second time in quotes, the following text: “print

twice, the second time in quotes, the following text:”

2. A program that prints its text 45

To write something like that in Pascal, we will need some addi-

tional tricks, but the idea is clear: a string constant is used twice.

Here is a version of such a program:

program selfprint;

var a:array[1..100]of string;i:integer;

begin

a[1]:=’program selfprint;’;

a[2]:=’ var a:array[1..100]of string;i:integer;’;

a[3]:=’begin’;

a[4]:=’for i:=1 to 3 do writeln(a[i]);’;

a[5]:=’for i:=1 to 11 do begin’;

a[6]:=’ write(chr(97),chr(91),i);’;

a[7]:=’ write(chr(93),chr(58),chr(61));’;

a[8]:=’ writeln(chr(39),a[i],chr(39),chr(59));’;

a[9]:=’end;’;

a[10]:=’for i:=4 to 11 do writeln(a[i]);’;

a[11]:=’end.’;

for i:=1 to 3 do writeln(a[i]);

for i:=1 to 11 do begin

write(chr(97),chr(91),i);

write(chr(93),chr(58),chr(61));

writeln(chr(39),a[i],chr(39),chr(59));

end;

for i:=4 to 11 do writeln(a[i]);

end.

Reading this program, it is helpful to keep in mind the following

relationship between symbols and their codes:

a [] : = ’ ;

97 91 93 58 61 39 59

We see that this program can be easily modified to print, say, its text

back to front: to this end, the commands write and writeln that

print the text must be replaced by the commands that write it to file

(or an array of bytes), and then the commands that print this file or

array in reverse order.

46 5. Fixed Point Theorem

By adding another step, we can obtain a proof of the fixed point

theorem. Suppose that h is a transformation of Pascal programs, and

we want to find its fixed point. Then we write a program similar to

the one above that will write its text in a string p, then apply h to p

to obtain another string q, and then launch a Pascal interpreter on

the string q (“redirecting standard input to the input of program q”).

Of course, this program will be rather long, because it will include the

Pascal interpreter written in Pascal (and even twice: the first time

plainly and the second time in quotes).

Clearly, this program is a fixed point of the transformation h:

its execution begins with the computation of the value of h on the

program’s text; after that, this value is understood as a program and

is applied to the input.

As a matter of fact, this proof is a direct translation of the pre-

vious one (the original proof was a “mathematician’s version”, while

the last one is a “programmer’s version” of the same proof).

3. System trick: another proof

If experts in various programming languages were asked to compete in

writing the shortest program that prints its text, then, most probably,

the following tiny program in BASIC would win:

10 LIST

The point is that BASIC has a command, LIST, which prints the

program text and can be launched from inside the program.

First of all, this is a good joke. But one can take this joke seriously

and use this idea in yet another proof of the Fixed Point Theorem

(to be more exact, in another version of the same proof).

To begin with, we notice that it suffices to prove the theorem for

a specific Gödel numbering of our choice. Indeed, suppose that some

other Gödel numbering admits a function without a fixed point, that

is, there is a method of converting each program into a nonequivalent

one. Then, by translating back and forth, a similar method could also

be found for the first numbering (for which the theorem is assumed

to have been proved).

3. System trick: another proof 47

Now consider a programming language which, in addition to stan-

dard constructions, has a built-in procedure

GetProgramText (var s: string)

This procedure places the text of the original program into the

string s. Although this idea is somewhat unusual, it is quite possible

to imagine an interpreter of this language, and the interpretation of

this procedure is not difficult, because the program text is certainly

available to the interpreter. Let us make another step and imagine

that the language also includes the procedure

ExecuteProgram(s: string)

This procedure transfers control to the program whose text is in the

string s assuming that this program gets the input of the original

program. It is also clear what the language interpreter should do in

this case: it must recursively call itself on the content of the string s

and the input data.

Our enhanced programming language certainly admits transla-

tion into customary languages (since it has an interpreter) and back

(since it is not necessary to use the new constructions). Therefore,

the numbering of computable functions it specifies is a Gödel num-

bering. Let h be a total computable function whose fixed point we

want to find. Consider a program in our language that computes the

function h:

function Compute_h (x: string) : string;

begin

...

end;

(Here we do not even need language extensions.) Now let us write

the program FP which is a fixed point of the function h:

program FP;

var s: string;

function Compute_h (x:string) : string;

begin

...

end;

48 5. Fixed Point Theorem

begin

GetProgramText (s);

s := Compute_h (s);

ExecuteProgram (s);

end.

The execution of the program FP immediately boils down to the

execution of the program obtained by the application of the function h

to FP, so it is a fixed point by construction.

Problem 36. Let h be the identity function, that is, h(x) =

x. (Then, of course, any program will be its fixed point.) What

is the program produced by the construction described just above?

(Answer: the program that loops on any input.)

We have explained how to prove the Fixed Point Theorem using a

language with the additional procedure “get the program text.” But

we can also reverse our reasoning and explain why the application of

the Fixed Point Theorem replaces this additional procedure.

Suppose we have a program p that contains a call

GetProgramText(s). Let us replace this line by the assignment op-

erator s := t, where t is a string constant. We get a new program

depending on t. Let us call it p(t). By the Fixed Point Theorem,

there exists a value of t for which the programs t and p(t) are equiv-

alent. For this t, the execution of the program t is equivalent to the

execution of its text with the text of the program t substituted into

the string s when the procedure GetProgramText(s) is called.

Now it becomes clearer why the Fixed Point Theorem is also

called the Recursion Theorem. Indeed, recursion consists in calling a

program from itself. But there is an important difference between our

construction and ordinary recursive calls: we have the right not only

to call the program, but even to get access to its text! An ordinary

call is actually a particular case of access to the text, since we can

call the interpretation procedure on this text. (Of course, in so doing,

we will have to include in the program the text of the interpreter of

our programming language written in this language.)

4. Several remarks 49

4. Several remarks

Infinite set of fixed points. Theorem 25 (the Fixed Point Theo-

rem) establishes the existence of at least one fixed point. In fact, it

is easy to understand that the set of fixed points is infinite: in the

notation of this theorem, there exist infinitely many numbers n such

that Un = Uh(n).

One possible explanation is this: if there were finitely many fixed

points, then we would be able to change the function h at these points

and to clear away all fixed points. This argument, however, does not

allow us to generate fixed points effectively (to specify the infinite

enumerable set of fixed points of a given function h). This can also

be done. Recall the proof of Theorem 25. The fixed points in this

proof turned out to be the values [g](t); but the function g can be

chosen so that all its values are greater than any number specified in

advance (Theorem 22, p. 31).

Problem 37. Complete this argument.

A parametric version of the Fixed Point Theorem. If a pro-

gram converter computably depends on a parameter, then we can

choose a fixed point computably dependent on this parameter as well.

The exact meaning of this statement is clarified by the following the-

orem.

Theorem 28. Let U be a Gödel universal function for the class of

unary computable functions, and let h be a binary total computable

function. Then there exists a unary total computable function n that

assigns to each p a fixed point of the function hp, so that Uh(p,n(p)) =

Un(p), or in other words,

U(h(p, n(p)), x) = U(n(p), x)

for all p and x (as usual, both sides can be simultaneously undefined).

Proof. We have seen that a fixed point is found constructively.

Therefore, if we apply our construction to get a fixed point of the

function hp (that computably depends on the parameter p), the re-

sult of our construction will also computably depend on p.

50 5. Fixed Point Theorem

We omit the formal details; they are rather straightforward and

hardly make the proof clearer. �

In this theorem we assumed that the family of functions hp con-

sists of total functions. As a matter of fact, this is not necessary, be-

cause for an arbitrary computable family of computable functions hp

(in other words, for an arbitrary binary computable function h), there

exists a unary total computable function n with the following prop-

erty: for each p either the function hp is undefined at the point n(p)

or n(p) is a fixed point of the function hp.

Problem 38. Check that the function n(p) constructed in the

proof of Theorem 28 has this property. (One can also use ≡-extension

of h where p ≡ q stands for Up = Uq.)

Problem 39. Combining the remarks we made above, show that

for any computable function h (specified by its number with respect

to a fixed Gödel universal function), one can effectively find infinitely

many natural numbers each of which is either a fixed point of the

function h or a point at which this function is undefined.

Fixed point for enumerable sets. Similar statements are true for

Gödel numberings of enumerable sets. For example, let us prove that

if W is a Gödel universal enumerable set, then any computable total

function h has a fixed point n such that Wn = Wh(n).

Indeed, if W is a Gödel universal enumerable set, then the argu-

ment from the proof of Theorem 25 can be applied to the equivalence

relation

a ≡ b⇔Wa = Wb,

because any computable function f has a total computable ≡-

extension.

Let us verify this. To this end, consider the set

V = {〈p, x〉 | f(p) is defined and 〈f(p), x〉 ∈W}.

It is readily seen that this set is enumerable (e.g., it is the domain of

the computable function 〈p, x〉 7→ w(f(p), x), where w is a computable

function with domain W). We have Vp = Wf(p) if f(p) is defined,

and Vp = ∅ if f(p) is undefined. Recalling thatW is a Gödel universal

4. Several remarks 51

set, we find a total function s such that Vp = Ws(p). Thus Ws(p) =

Wf(p) whenever f(p) is defined, completing the proof.

Problem 40. Let W be a Gödel universal set (for the class of all

enumerable subsets of natural numbers). (a) Show that there exists

a number x for which Wx = {x}. (b) Show that there exist distinct

numbers x and y for which Wx = {y} and Wy = {x}.

Application. The simplest (though not very typical) application of

the Fixed Point Theorem is another proof of Theorem 21 about the

undecidability of properties of computable functions. Indeed, let A be

a nontrivial property of computable functions that can be recognized

by numbers of functions in a Gödel numbering U . Suppose that the

function Up satisfies this property and Uq does not satisfy it. Then

the function

h(x) =

{

q if the function Ux has the property A,

p if the function Ux does not have the property A

is computable and has no fixed points.

Isomorphism of universal sets. Let U1 and U2 be two sets of

pairs of natural numbers. They are called computably isomorphic if

one can find a computable permutation (bijection) i : N → N with the

following property:

〈x, y〉 ∈ U1 ⇔ 〈i(x), i(y)〉 ∈ U2.

Theorem 29. Any two Gödel universal sets for the class of enumer-

able subsets of natural numbers are computably isomorphic.

Proof. To begin with, let us explain the difference between this the-

orem and the theorem about the isomorphism of Gödel numberings

of enumerable sets (see the remark at the end of Section 4.3, p. 35) In

that theorem, we applied an enumerable permutation only to num-

bers of sets, not to elements of sets. In our current notation the

theorem about the isomorphism of Gödel numberings can be written

as follows:

〈x, y〉 ∈ U1 ⇔ 〈i(x), y〉 ∈ U2.

Notice that a computable permutation with respect to the second ar-

gument preserves universality: if U ⊂ N2 is a Gödel universal set and

52 5. Fixed Point Theorem

i : N → N is a computable permutation, then the set of pairs 〈x, y〉

for which 〈x, i(y)〉 ∈ U is a Gödel universal set as well. Therefore,

the theorem about isomorphism of Gödel numberings of enumerable

sets (p. 35) implies the following corollary: for any computable

permutation i, there exists a computable permutation i′ such that

〈x, y〉 ∈ U1 ⇔ 〈i′(x), i(y)〉 ∈ U2.

If i′ luckily coincides with i, then i is the desired permutation.

But we want to replace the luck by a reference to the Fixed Point

Theorem. There are a number of obstacles on this path, but all of

them can be overcome and now we are going to briefly explain how.

First of all, we must recall the proof of the theorem about the iso-

morphism of Gödel numberings to see that the function i′ (or rather,

its number) is algorithmically constructible from the function i.

Then, we want to refer to the Fixed Point Theorem, but the problem

is that the corresponding construction assumes that i is a bijection.

Therefore, we must modify the construction in the isomorphism the-

orem so as to make it applicable to any computable function i. Not

only that, it must always yield some bijection i′ for any computable

function i; then a fixed point will automatically be a bijection.

Let us formulate the corresponding generalization of the theorem

about the isomorphism of Gödel numberings. It will be preceded by

an auxiliary definition. Let I : N → N be an arbitrary function. We

say that a set A I-corresponds to a set B if either B = I(A) (B is the

image of A under the mapping I) or A = I−1(B) (A is the preimage

of B under this mapping). (If I is a bijection, the two properties are

equivalent.)

Let U1 and U2 be two arbitrary Gödel numberings of enumerable

sets, and let I : N → N be a computable function. Then there

exists a computable bijection i′ : N → N such that for any k, the set

with number k in the numbering U1 I-corresponds to the set with

number i′(k) in the numbering U2.

This generalization of the isomorphism theorem is proved in ex-

actly the same way as the theorem itself, and the number of the func-

tion i′ can be obtained from the number of the function I effectively.

4. Several remarks 53

This enables us to apply the plan described above and find the func-

tion I such that i′ = I (so I is a bijection), which was our goal. �

Problem 41. Complete this argument.

A similar theorem holds for Gödel universal functions.

Theorem 30. Let F1, F2 : N → N be two Gödel universal functions

for the class of all unary computable functions. Then there exists a

computable permutation i such that

F1(x, y) = z ⇔ F2(i(x), i(y)) = i(z)

for any natural x, y, and z.

Problem 42. Conduct the proof of this theorem similarly to the

previous one, using Rogers’ Theorem about the isomorphism of Gödel

numberings (p. 34, Theorem 23).

Chapter 6

m-Reducibility and
Properties of
Enumerable Sets

1. m-Reducibility

We have already encountered the following technique: to prove the

undecidability of a certain set X (for instance, the set of all numbers

of all functions with nonempty domain), we showed that if X were

decidable, then any enumerable set K would be decidable as well.

This was done by the “reduction” argument: we constructed a to-

tal computable function f such that the membership of an arbitrary

number n in the set K was determined by the membership of the

number f(n) in the set X .

Now we will study these situations in more detail.

We say that a set A of natural numbers is m-reducible to an-

other set B of natural numbers if there exists a total computable

function f : N → N such that

x ∈ A⇔ f(x) ∈ B

for all x ∈ N. We say that the function f m-reduces A to B. Nota-

tion: A ≤m B.

55

56 6. m-Reducibility and Properties of Enumerable Sets

Theorem 31. (a) If A ≤m B and B is decidable, then A is de-

cidable. (b) If A ≤m B and B is enumerable, then A is enumerable.

(c) A ≤m A; if A ≤m B and B ≤m C, then A ≤m C. (d) If A ≤m B,

then N \A ≤m N \B.

Proof. All these properties are almost obvious. Suppose that A ≤m

B and we have a deciding algorithm for B. To find out whether a

given x belongs to the set A, we compute f(x) and check if f(x)

belongs to B. In other words, we can write a(x) = b(f(x)), where a

is the characteristic function of the set A and b is the characteristic

function of B; therefore, if b is computable, then a is also computable

as the composition of computable functions.

A similar equation can be written for semicharacteristic functions;

therefore, the enumerability of B implies the enumerability of A. An-

other way to say this: the set A is the preimage of the enumerable

set B under the computable mapping f , hence A is enumerable.

Obviously, the identity function m-reduces A to A. If a function f

reduces A to B and g reduces B to C, then

x ∈ A⇔ f(x) ∈ B ⇔ g(f(x)) ∈ C,

so the composition of the functions g and f reduces A to C.

FInally, any function reducing A to B will also reduce N \A

to N \B. �

Historically, the letter “m” comes from the expression “many-

one-reducibility”; however, as Michael Sipser suggests in his “Intro-

duction to the Theory of Computation” [12], we can say “mapping

reducibility” retaining the letter m in the notation.

It should be mentioned that this definition is not symmetric with

respect to taking the complement of only one of the sets in the rela-

tion: it is not at all necessary that A ≤m N \ A, although we always

have A ≤m A.

Problem 43. Show that A6≤mN \A for an enumerable undecid-

able set A.

Notice that the sets ∅ and N are special cases with respect to

m-reducibility. For example, any decidable set A is reducible to any

2. m-Complete sets 57

set B unless B is empty or coincides with N. Indeed, if p ∈ B, q /∈ B,

and A is decidable, then the reducing function can be constructed as

follows:

f(x) = if x ∈ A then p else q fi.

But if B is empty or coincides with N, then only the empty set (or

N, respectively) is m-reducible to B.

Problem 44. Does there exist a set of natural numbers such

that any set of natural numbers is m-reducible to it?

2. m-Complete sets

Theorem 32. In the class of enumerable sets, there are sets maximal

with respect to m-reducibility, that is, sets to which any enumerable

set can be m-reduced.

Proof. It suffices to consider any universal set (formally, we must re-

place pairs by their numbers). Indeed, let U ⊂ N×N be an enumerable

set of pairs of natural numbers which is universal for the class of enu-

merable sets of natural numbers. Consider the set V of numbers of all

pairs from U (under any computable numbering 〈x, y〉 ↔ [x, y] ∈ N

of the pairs):

V = {[x, y] | 〈x, y〉 ∈ U}.

Let T be an arbitrary enumerable set. Then T = Un for a certain n,

and hence

x ∈ T ⇔ x ∈ Un ⇔ 〈n, x〉 ∈ U ⇔ [n, x] ∈ V.

Thus the function x 7→ [n, x] reduces T to V . �

Enumerable sets maximal with respect to m-reducibility are

called m-complete (more exactly, m-complete in the class of enumer-

able sets).

Notice that if K ≤m A, where K and A are enumerable sets, and

K is m-complete, then A is also m-complete (by transitivity).

The diagonal of a Gödel universal set is m-complete:

Theorem 33. Let U ⊂ N × N be a Gödel universal set for the class

of enumerable sets. Then its “diagonal section” D = {x | 〈x, x〉 ∈ U}

is m-complete.

58 6. m-Reducibility and Properties of Enumerable Sets

(In particular, the set of all self-applicable programs is m-complete.)

Proof. Obviously, D is enumerable. Let K be an arbitrary enu-

merable set. Consider the enumerable set of pairs V = K × N. Its

sections Vn are either empty (for n /∈ K) or coincide with the entire

set N (for n ∈ K).

Since U is a Gödel set, there exists a total computable function s

such that Vn = Us(n). In other words, Us(n) coincides with N for n ∈

K and is empty for n /∈ K. Consequently, s(n) ∈ Us(n) (and so s(n) ∈

D) for n ∈ K and s(n) /∈ Us(n) (and so s(n) /∈ D) for n /∈ K. It follows

that s reduces K to D. �

Problem 45. Prove that the set of all programs that halt on the

input 0 is m-complete. Prove that the set of all programs that halt

on at least one input is m-complete.

Problem 46. Let M be an m-complete enumerable set. Show

that there exists an algorithm that transforms any number of any

total function h into an integer n such that (n ∈M) ⇔ (h(n) ∈ M).

(Hint : in essence, this statement is the Fixed Point Theorem for some

equivalence relation.)

3. m-Completeness and effective

nonenumerability

The theory of algorithms makes it possible, so to speak, to “construc-

tivize” various definitions. For example, consider the definition of an

infinite set. What is an infinite set? It is a set that contains at least n

elements for any natural n. Now we can say that a set is called “ef-

fectively infinite” if there exists an algorithm that returns n distinct

elements of this set for any given n.

Problem 47. Show that an arbitrary set A is effectively infinite

if and only if it contains an infinite enumerable set (i.e., it is not

immune, see p. 17).

Now let us consider the effective version of the notion of nonenu-

merability. What does it mean to say that a set A is not enumerable?

This simply means that A differs from any enumerable set. So it is

natural to call a set A effectively nonenumerable if for any enumerable

3. m-Completeness and effective nonenumerability 59

set we can show a “place” where it differs from A, that is, a natural

number that belongs exactly to one of the two sets.

More formally, let us fix a Gödel universal enumerable set W

(and thus a numbering of enumerable sets: any natural n is con-

sidered to be a number of the set Wn). We will say that a set A

is effectively nonenumerable if there exists a total computable func-

tion d such that d(z) ∈ A△Wz for all z. (Here △ denotes symmetric

difference; in other words, d(z) is a point where A differs from Wz.)

Notice that this property does not depend on the choice of the

Gödel universal set, because we can effectively pass from the numbers

with respect to one of these sets to the numbers with respect to any

other.

The property of effective nonenumerability can be characterized

in terms of m-reducibility. We start with the following simple obser-

vation.

Theorem 34. If A ≤m B and A is effectively nonenumerable, then

B is also effectively nonenumerable.

Proof. This theorem is the “effective version” of Theorem 31,

part (b). The same is true for its proof. Suppose that we want to find

a point at which B differs from a given enumerable set X . Consider

the function f that m-reduces A to B. The preimage f−1(X) of the

enumerable set X under a computable map f is enumerable; there-

fore, we can find a point m at which it differs from A. Then B differs

from X at the point f(m).

To complete this argument, we must prove that one can effectively

obtain a number of the enumerable set f−1(X) from a number of the

enumerable set X . This proof must involve the fact that we use a

Gödel numbering: we will follow the same lines as in our computation

of a number of the composition of two computable functions specified

by their numbers (Theorem 16). Here are the details.

Consider the enumerable set

V = {〈x, y〉 | 〈x, f(y)〉 ∈W}

60 6. m-Reducibility and Properties of Enumerable Sets

where W is a Gödel universal set that defines our numbering. The

set V is enumerable as the preimage of the enumerable set W un-

der the computable map 〈x, y〉 7→ 〈x, f(y)〉. It is easy to see that

Vn = f−1(Wn). Since W is a Gödel universal set, there exists a total

computable function s such that Ws(n) = Vn = f−1(Wn) for all n.

In other words, the function s maps a W -number of any enumerable

set into a W -number of its preimage under the map f . The proof is

complete. �

Theorem 35. There exist enumerable sets with effectively nonenu-

merable complements.

Proof. Consider the diagonal set D = {n | 〈n, n〉 ∈ W} again. Its

complement is effectively nonenumerable. Indeed, the sets Wn and D

do not differ at the point n (they both contain or do not contain n

simultaneously), so Wn differs from the complement of D at n. It

follows that the complement of D is effectively nonenumerable: we

can set the function d in the definition of effective nonenumerability

to be simply the identity function. �

The two previous theorems obviously imply the following state-

ment.

Theorem 36. The complement of any m-complete enumerable set is

effectively nonenumerable.

In fact, the converse statement is also true, as the following the-

orem shows:

Theorem 37. Let K be an enumerable set, and let A be effectively

nonenumerable. Then N \K ≤m A (or, equivalently, K ≤m N \A).

Proof. What really counts here is only the ability to effectively dis-

tinguish A from two enumerable sets: the empty set and the entire

set N. To distinguish A from the empty set means to specify an

element in A; to distinguish A from the entire set of natural num-

bers means to specify an element outside A. It is these two observa-

tions on which the reduction is based. More formally, consider the

set V = K × N. Its sections Vn are either empty (for n /∈ K) or co-

incide with N (for n ∈ K). Using the fact that W is a Gödel set, we

3. m-Completeness and effective nonenumerability 61

find a total function s such that Ws(n) = ∅ for n /∈ K and Ws(n) = N

for n ∈ K. Let d be the function that ensures the effective nonenu-

merability of the set A. Then d(s(n)) ∈ A for n /∈ K and d(s(n)) /∈ A

for n ∈ K. In other words, the composition of the functions d and s

reduces N \K to the set A, completing the proof. �

Hence we have the following obvious corollaries.

Theorem 38. An enumerable set is m-complete if and only if its

complement is effectively nonenumerable.

Theorem 39. A set is effectively nonenumerable if and only if the

complement of some (another version: any) m-complete set is m-

reducible to it.

Notice that not all nonenumerable sets are effectively nonenumer-

able. This can be deduced, e.g., from the following fact.

Theorem 40. Any effectively nonenumerable set contains an infinite

enumerable subset (i.e., is not immune).

Proof. Indeed, suppose that A is an effectively nonenumerable set.

We can find a point where A differs from the empty set, that is, an

element in A. Then we spot its distinction from the one-element set

consisting of this element; thus we get another element of A. Pro-

ceeding the same way, we can algorithmically find arbitrarily many

pairwise distinct elements.

This reasoning implicitly uses the following fact: given a finite set

specified by the list of its elements, we can obtain (some) number of

this set in a Gödel numbering of enumerable sets. Why is this true?

Let us fix a certain computable numbering of finite sets. Denote byDn

the nth finite set in this numbering. Then Dn is the nth section of

the enumerable (and even decidable) set

D = {〈n, x〉 | x ∈ Dn}.

It remains to apply the definition of a Gödel numbering of enumerable

sets. �

This theorems shows that simple sets (which exist according to

Theorem 14) are enumerable sets that are not m-complete. In fact,

62 6. m-Reducibility and Properties of Enumerable Sets

the notion of simple sets was introduced exactly for this reason: Post

was looking for an example of an enumerable and undecidable, but

not m-complete set.

4. Isomorphism of m-complete sets

In this section we will prove that all m-complete sets “have the same

structure” and differ from one another only by a computable permu-

tation.

Theorem 41. Let A and B be m-complete enumerable sets. Then

there exists a computable permutation (a computable one-to-one corre-

spondence) f : N → N that maps A onto B, that is, x ∈ A⇔ f(x) ∈ B

for all x.

Proof. We will use the same technique as in the proof of Rogers’

theorem about isomorphism of Gödel numberings (see p. 34). To

begin with, we will prove the following lemma.

Lemma. Let A be an m-complete enumerable set. Then it is pos-

sible to algorithmically obtain from any natural number n arbitrarily

many other natural numbers that are A-equivalent to n (we say that

k and l are A-equivalent if either k ∈ A and l ∈ A or k /∈ A and

l /∈ A).

Proof of the Lemma. As we did before, we will use two methods

to obtain new numbers that are A-equivalent to a given number n.

One method will succeed (give a new number) if n ∈ A, the other

if n /∈ A. We will apply both methods unaware of which of the two

possibilities is actually the case (moreover, we may never find out

which).

The first method: Let P be an enumerable undecidable set. Con-

sider an enumerable set of pairs A× P . It is m-reducible to A, since

A is m-complete. (The definition of reducibility deals with sets of

natural numbers rather than sets of pairs, but as usual this does not

matter, because we can replace pairs by their numbers.) In other

words, there exists a total computable function f of two natural ar-

guments with the following property:

f(n,m) ∈ A⇔ (n ∈ A) and (m ∈ P).

4. Isomorphism of m-complete sets 63

In particular, for m ∈ P , numbers n and f(n,m) are

A-equivalent. Therefore, having arranged P into a com-

putable sequence p(0), p(1), . . . , we can compute the num-

bers f(n, p(0)), f(n, p(1)), . . . and obtain new numbers that are A-

equivalent to n.

Suppose that n ∈ A. Let us show that the set X of the numbers

obtained by this method is infinite (in this case all these numbers

belong to A as well). If m ∈ P , then f(n,m) ∈ X (by the construction

ofX), and ifm /∈ P , then f(n,m) /∈ X (since in this case f(n,m) /∈ A,

andX ⊂ A). Thus the functionm 7→ f(n,m) reduces the undecidable

set P to the set X ; therefore, X is undecidable, and hence infinite.

Now let us describe the second method, which works in the

case n /∈ A. Let us take two enumerable inseparable sets P and Q.

Consider the enumerable set of pairs (A×P)∪ (N×Q). Denote by f

the function reducing it to A. This means that f(n,m) ∈ A if and

only if (n ∈ A and m ∈ P) or m ∈ Q. As before, for m ∈ P , the

numbers n and f(n,m) are A-equivalent, so we can consider the se-

quence f(n, p(0)), f(n, p(1)), . . . again; it only remains to show that

(for n /∈ A) this sequence contains infinitely many distinct terms.

Suppose that this is not true and the set X of all terms of this

sequence is finite. By our assumption, X is disjoint with A. Notice

that f(n,m) ∈ X if m ∈ P (by construction) and f(n,m) /∈ X

if m ∈ Q (since in this case 〈n,m〉 belongs to our enumerable set of

pairs and f(n,m) belongs to A). Thus the preimage of the set X

under the mapping m 7→ f(n,m) separates P from Q. But this

preimage is decidable (X is decidable as a finite set, and the mapping

in question is defined everywhere and computable), whereas by our

assumption the sets P and Q cannot be separated by a decidable set.

So we have described two methods of generating new numbers

that are A-equivalent to the given one. Their parallel application will

inevitably give the desired result. This completes the proof of the

Lemma.

Now suppose that A and B are two m-complete enumerable sets.

Let us prove that they differ only by a computable permutation of

natural numbers. We will construct this permutation step by step.

64 6. m-Reducibility and Properties of Enumerable Sets

At the kth step we have a one-to-one correspondence

a1 ↔ b1, a2 ↔ b2, . . . , ak ↔ bk

such that ai ∈ A⇔ bi ∈ B for all i. At even steps, we take the small-

est number not included in the left-hand side of this correspondence.

Using the m-reducibility of A to B we find a counterpart to this num-

ber. In so doing, the Lemma allows us to choose the counterpart that

has not yet appeared among the elements on the right-hand side. At

odd steps, we do the same, but from right to left.

In the limit, this process yields the desired computable permuta-

tion that links A and B. �

From the standpoint of the theory of algorithms, two sets that

differ only by a computable permutation have the same properties.

Therefore, the theorem proved above shows that in essence, there

is only one m-complete enumerable set (or, equivalently, only one

enumerable set with effectively nonenumerable complement).

5. Productive sets

In this section we use the Fixed Point Theorem to obtain the following

unexpected, at first sight, result: the definition of effective nonenu-

merability of a set A will not change if we confine ourselves only to

(enumerable) subsets of the set A.

Let us fix some Gödel numbering of enumerable sets (the set with

number n is denoted by Wn). A set A is called productive if there

exists a computable (but not necessarily total) function f with the

following property: for any n such that Wn ⊂ A the value f(n) is

defined and f(n) ∈ A \Wn.

Problem 48. Prove that a productive set cannot be immune.

Clearly, the requirements in the definition of productivity consti-

tute only a part of those in the definition of an effectively nonenumer-

able set, so any effectively nonenumerable set is productive. However

surprising it may seem, the converse statement turns out to be true

as well.

Theorem 42. Let A be a productive set, and let K be an arbitrary

enumerable set. Then the complement of K is m-reducible to A.

5. Productive sets 65

(As we have seen above, in this case A is effectively nonenumer-

able.)

Proof. Let f be the function from the definition of productivity (the

one that yields an element outside the subset with a given number).

We will construct a total computable function s with the following

properties:

• x /∈ K ⇒Ws(x) = ∅;

• x ∈ K ⇒Ws(x) = {f(s(x))}.

(The second property implies that f(s(x)) is defined for x ∈ K.)

Before we proceed to the construction, which uses the Fixed Point

Theorem, let us notice that in the first case f(s(x)) is defined and

belongs to A: since the set with the number s(x) is empty, and the

empty set is a subset of A, the number f(s(x)) must be an element

of A. On the contrary, in the second case f(s(x)) does not belong

to A. Indeed, suppose that f(s(x)) ∈ A. Then the set Ws(x) is a

subset of A; hence the number f(s(x)) is an element of A that does

not belong to this subset, whereas it does.

Therefore, if we manage to construct such a function s, then the

function x 7→ f(s(x)) will be a total computable function that m-

reduces the complement of the set K to the set A, as stated in the

theorem. So how do we construct s?

If in the second property (for the case x ∈ K) we had, say, f(x)

instead of f(s(x)), then we would have no problem. As usual, in this

case we can consider the enumerable set of pairs

V = {〈x, y〉 | x ∈ K and y = f(x)};

sections of this set are of the desired form, and we only have to use

the fact that the numbering is Gödel. Coming back to our actual

goal, with f(s(x)) in the right-hand side of the second property, we

see that, as in the classical question about the hen and the egg, s(x)

is needed to construct V , and V is needed to construct s(x).

But this is exactly the sort of difficulty that the Fixed Point The-

orem helps to overcome. Let us construct a binary total computable

function h with the following properties:

66 6. m-Reducibility and Properties of Enumerable Sets

• x /∈ K ⇒Wh(x,t) = ∅;

• x ∈ K ⇒Wh(x,t) = {f(t)}.

(We have done similar things many times, the last time in the previous

paragraph. Notice that f(t) can be undefined; then by {f(t)} we

mean the empty set.) By the Fixed Point Theorem (for enumerable

sets), for each x the function t 7→ h(x, t) has a fixed point, and as we

have mentioned in the section about the fixed point with parameter,

this fixed point can be chosen computably depending on x. Thus

there exists a total computable function s such that

Ws(x) = Wh(x,s(x))

for all x. This equation can be extended:

Ws(x) = Wh(x,s(x)) =

{

∅ if x /∈ K,

{f(s(x))} if x ∈ K;

and this is exactly what we wanted. Notice that the value f(s(x)) is

defined for all x (if it were undefined, then Ws(x) = ∅, but in this

case f(s(x)) must be defined by the definition of productivity). Thus

the Fixed Point Theorem yields a concordant “egg-hen” couple, com-

pleting the proof. �

Enumerable sets whose complements are productive are called

creative. The name derives from the fact that such a set (to be

more exact, its complement) is more “inventive” than any algorith-

mic process: whatever is a method for generating elements in the

complement, one can find an element in the complement that cannot

be obtained by this method.

As we see, creative sets, enumerable sets with effectively nonenu-

merable complements, and m-complete sets form the same class, and

any two sets in this class differ only by a computable permutation.

Elements of a productive set can be generated by the following

inductive process. We start with the empty set. Applying to it the

productive function (i.e., the function mentioned in the definition of a

productive set), we obtain some element. It constitutes a one-element

subset. Applying the productive function to this subset, we obtain

another element. Then we can apply the productive function to the

6. Pairs of inseparable sets 67

two-element subset thus obtained again, and so on. The process yields

an infinite computable sequence of elements of the given productive

set. (We have already done this when we proved that an effectively

nonenumerable set contains an infinite enumerable subset.) But this

is not the end: the inductive process can be “transfinitely” continued:

given an enumerable subset of our productive set (the set of all terms

of the sequence), we can find another element of the productive set

(the element number ω, so to speak). We add it to the sequence,

apply the productive function again to obtain the (ω + 1)th element,

and so on; then a new sequence arises, then an (ω · 2)nd element, an

(ω · 3)rd,. . . , an ω2th element, etc.

But of course, it is impossible to obtain an algorithm enumerating

a productive (and hence nonenumerable) set.

Problem 49. Without using the Fixed Point Theorem (and

Theorem 42), show that for any productive set A there exists a total

computable function f such that Wn ⊂ A implies f(n) ∈ A \Wn.

(Hint : alternate Wn with the empty set, as we did in the proof of the

Lemma to Theorem 41.)

6. Pairs of inseparable sets

In this section we formulate a number of results concerning pairs of

disjoint enumerable sets. These results are parallel to the theorems

about m-completeness, productivity, effective nonenumerability, and

isomorphism of m-complete sets proved above.

Let A and B be two disjoint sets (of natural numbers). Recall

that they are called inseparable if there is no decidable set contain-

ing one of them and disjoint with the other. This definition can be

reformulated as follows: if Wx and Wy are two disjoint enumerable

sets containing A and B, respectively, then the union Wx ∪Wy does

not contain all natural numbers. (It will be convenient to denote enu-

merable sets by Wx and Wy, assuming that W is a Gödel universal

set.)

Now it becomes clear how an effective version of this definition

can be formulated. We say that disjoint sets A and B are effectively

inseparable if there exists a computable function h such that if A ⊂

68 6. m-Reducibility and Properties of Enumerable Sets

Wx, B ⊂Wy , and Wx∩Wy = ∅, then h(x, y) is defined and h(x, y) /∈

Wx ∪Wy .

The definition of inseparability can be formulated in a slightly

different way: there is no total computable function ϕn, equal to

zero at any point of the set A and equal to one at any point of the

setB. (We assume that ϕ is a Gödel universal function.) The effective

version changes accordingly: sets A and B are strongly effectively

inseparable if there exists a total computable function h that for any n

returns a point h(n) at which the function ϕn “errs.” There are three

possible error types: (1) ϕn(h(n)) is undefined, (2) h(n) ∈ A, but

ϕn(h(n)) is not equal to zero, or (3) h(n) ∈ B, but ϕn(h(n)) is not

equal to one.

Problem 50. Show that strong effective inseparability implies

effective inseparability (justifying our terminology).

The converse statement is also true, but its proof is more com-

plicated, and we will return to it later.

Do strongly effectively inseparable enumerable sets exist? It is

readily seen that the standard diagonal construction yields a pair of

such sets, namely, the sets {x | ϕx(x) = 1} and {x | ϕx(x) = 0}, for

which we can take the identity function as the function h.

Problem 51. Check this.

Extending our analogy between sets and pairs, let us define the

notion of m-reducibility for pairs. Again, we will have two versions.

Let 〈A,B〉 and 〈C,D〉 be two pairs of disjoint enumerable sets (A ∩

B = C ∩ D = ∅). We say that a total computable function f m-

reduces 〈A,B〉 to 〈C,D〉 if f(A) ⊂ C and f(B) ⊂ D.

Problem 52. (a) Show that if f reduces 〈A,B〉 to 〈C,D〉 and C

can be separated from D by a decidable set, then A can be sep-

arated from B by a decidable set as well. (b) Show that if f re-

duces 〈A,B〉 to 〈C,D〉 and the pair 〈A,B〉 is effectively inseparable,

then the pair 〈C,D〉 is effectively inseparable as well. (c) Show that

if f reduces 〈A,B〉 to 〈C,D〉 and the pair 〈A,B〉 is strongly effectively

inseparable, then the pair 〈C,D〉 is strongly effectively inseparable as

well.

6. Pairs of inseparable sets 69

The definition of reducibility can be strengthened by the addi-

tional requirement that f(x) /∈ C ∪D for x /∈ A ∪B (in other words,

f must simultaneously reduce A to C and B to D). In this case we

will say that f strongly reduces the pair 〈A,B〉 to the pair 〈C,D〉.

Now we can define m-completeness and strong m-completeness

for a pair of disjoint enumerable sets by requiring that any pair of

disjoint enumerable sets is m-reducible (strongly m-reducible) to the

given one.

Problem 53. Show that if a pair is strongly effectively insep-

arable, then it is strongly m-complete. (Hint. Let a pair 〈A,B〉 be

strongly effectively inseparable, and let 〈K,L〉 be any pair of disjoint

enumerable sets. For any natural number x we can construct a com-

putable function ψx with the following properties: if x ∈ K, then ψx

is total and differs from 1 only at finitely many points, all of them

in A; if x ∈ L, then ψx is total and differs from 0 only at finitely

many points, all of them in B; and if x /∈ K ∪ L, then ψx is equal to

0 on A and to 1 on B. To construct this function, we enumerate K

and L, adding to the graph of ψx pairs of the form 〈a, 0〉 and 〈b, 1〉

until the element x crops up in one of these sets; as soon as this hap-

pens, we declare ψx to be corresponding constant (0 or 1) at all other

points. Then it remains to use properties of the Gödel numbering ϕ

and strong effective inseparability of A and B.)

Problem 54. Show that any m-complete pair is strongly effec-

tively inseparable. (Hint : a strongly effectively inseparable pair exists

and is reducible to the pair in the exercise.)

From the statements of these exercises, it follows that the proper-

ties of m-completeness, strong m-completeness, and strong effective

inseparability are equivalent. It can be proved that the property

of effective inseparability, which seems to be weaker, is in fact also

equivalent to them. The proof is similar to that of Theorem 42 (which

establishes the m-completeness of any creative set). Notice that the

difference between effective inseparability and strong effective insepa-

rability is more or less the same as between productivity and effective

nonenumerability.

Problem 55. Let 〈A,B〉 be an effectively inseparable pair of

disjoint sets. Show that it is strongly m-complete. (Hint. Let K

70 6. m-Reducibility and Properties of Enumerable Sets

and L be arbitrary disjoint enumerable sets. Let h be the function

from the definition of effective inseparability (of the sets A and B).

Using the Fixed Point Theorem, construct total computable functions

x(n) and y(n) with the following properties: (1) if n ∈ K, then

Wx(n) = A, Wy(n) = B ∪ {h(x(n), y(n))}; (2) if n ∈ L, then Wx(n) =

A ∪ {h(x(n), y(n))}, Wy(n) = B; (3) if n /∈ K ∪ L, then Wx(n) = A,

Wy(n) = B. Then show that for n ∈ K, the value h(x(n), y(n)) is

defined and belongs to A; for n ∈ L, the value h(x(n), y(n)) is defined

and belongs to B; and for n /∈ K∪L the value h(x(n), y(n)) is defined

and lies outside A ∪B.)

Thus all the four properties formulated above are equivalent. Ex-

tending our analogy, we can show that any two pairs of effectively in-

separable sets are isomorphic; to this end, as a prerequisite, we must

learn how to obtain arbitrary many numbers “equivalent” to a given

number with respect to a pair of effectively inseparable sets.

More exactly, suppose that A and B are disjoint sets. We say

that two numbers are 〈A,B〉-equivalent in any of the following three

cases: they both belong to A, they both belong to B or they both do

not belong to A ∪ B. (So we have three equivalence classes: the set

A, the set B, and the remainder.)

Problem 56. Let 〈A,B〉 be a strongly m-complete pair of enu-

merable sets. Show that from any number k we can algorithmically

obtain arbitrary many pairwise distinct numbers that are 〈A,B〉-

equivalent to k. (Hint : Proceed by analogy with the proofs of Theo-

rem 22 and the Lemma to Theorem 41.)

Problem 57. Let 〈A1, B1〉 and 〈A2, B2〉 be two strongly m-

complete pairs of enumerable sets. Then they are computably isomor-

phic in the following sense: there exists a computable permutation

(bijection) i : N → N such that i(A1) = A2 and i(B1) = B2. (Hint :

Proceed by analogy with the proofs of Theorems 23 and 41.)

Chapter 7

Oracle Computations

1. Oracle machines

If a set B is m-reducible to a decidable set A, then B is also decid-

able. Furthermore, even if A is undecidable, but we have access to

an “oracle” for A that answers questions about the membership of

numbers in the set A, then we can use it to answer questions about

the membership of numbers in the set B. Indeed, if f is the reduc-

ing function and if we want to find out whether a certain number x

belongs to B, it suffices to ask the oracle whether f(x) belongs to A.

Clearly, m-reducibility employs the potential of the oracle in a

rather limited way: first, only one question is asked; second, an answer

to this question is taken as an answer to the original question about

the membership of a number x in the set B. Here is an example that

does not fit in this scheme: given an oracle for the set A, we can

answer questions about the membership of numbers in the set B =

N \ A. As before, only one question is asked, but the answer to it

is reversed. Another example: given an oracle for the set A, we can

answer questions about the membership of a pair of natural numbers

in the set B = A×A. (Here the oracle must be asked two questions.)

Therefore, it is natural to look for a more general definition

of reducibility of a set B to a set A. Let us say that B is re-

ducible to A if there exists an algorithm that decides the set B using

71

72 7. Oracle Computations

an “oracle” answering questions about the set A. In other terms:

there exists an algorithm that makes calls to an external function

a(x:integer):boolean; this algorithm decides the set B if the calls

to a(x) return correct values of the expression “x ∈ A” (i.e., return

true if x ∈ A and false if x /∈ A). If B is reducible to A, we also

say that B is A-decidable.

This kind of reducibility is called Turing reducibility, or T -

reducibility. Notation: B ≤T A means that B is Turing-reducible

to A. Here are a few simple facts about T -reducibility:

Theorem 43. (a) If B ≤m A, then B ≤T A. (b) A ≤T N \A for

any A. (c) If A ≤T B and B ≤T C, then A ≤T C. (d) If A ≤T B

and B is decidable, then A is decidable.

Proof. All these statements are almost obvious. Let us explain, e.g.,

statement (c). Suppose that we have an algorithm for A that includes

calls to an external decision procedure for B, as well as an algorithm

for B that includes calls to an external procedure for C. Then we can

replace the calls to the external B-procedure by the second algorithm

to obtain a deciding algorithm for A that uses calls to the external

procedure for C. �

Notice that a nonenumerable set can be T -reducible to an enu-

merable one. (This is impossible for m-reducibility.) For instance, the

complement of an enumerable undecidable set K is reducible to K.

We have defined the notion of an A-decidable set. We can define

the notion of an A-computable function in a similar way: a function f

is A-computable if there exists an algorithm M (with calls to an

oracle) that computes f if these calls are correctly answered by the

A-oracle. Recall that this means that if f(x) is defined, then the

algorithm terminates and returns f(x) on the input x, and if f(x) is

undefined, then it does not halt. In this case the (partial) function f

is said to be computable relative to the set A or A-computable.

In our definition of reducibility, the external function took only

two values (“yes” and “no”). This restriction is not essential. Let

α : N → N be an arbitrary total function. Then we can speak about

functions computable relative to α; the algorithms that compute them

1. Oracle machines 73

include calls of a function α. However, this generalization does not

give us anything new, as the following theorem shows:

Theorem 44. A partial function f is computable relative to a total

function α if and only if it is computable relative to the graph of the

function α, that is, relative to the set {〈n, α(n)〉 | n ∈ N}.

Proof. Indeed, if we can call a function α, then we can answer ques-

tions about the membership of an arbitrary pair in the graph of α.

Conversely, by using a decision procedure for the graph of α as an

oracle, we can find α(x) for a given x successively asking questions

about the membership of pairs 〈x, 0〉, 〈x, 1〉, . . . in the graph until we

get a positive answer. �

In the definition of α-relative computability, we assumed that the

function α is total. This restriction is fundamental: the semantics of

of calling nontotal functions is not well defined. Suppose that we have

called α(x) and it turned out that the function α is not defined at x.

Does this mean that the algorithm “hangs up” (with no output)? Or

we can launch a parallel computation and produce a result before the

answer α(x) arrives? Can we request several values of the function α

in parallel? For instance, is the function f(x) defined by the formula

f(x) =

{

0 if α(2x) or α(2x + 1) is defined,

undefined otherwise

computable relative to α? As we see, there are different (in fact, non-

equivalent) versions of definitions and each of them has its own defi-

ciencies. To avoid these problems, we will consider α-computability

only for total functions α.

Problem 58. Suppose that we have two different sets X and Y .

Let us consider programs that have access to two oracles, for X

and for Y , and functions that can be computed by means of these

programs. Show that this definition adds nothing essentially new:

there exists a set Z such that X-Y -computability coincides with Z-

computability.

74 7. Oracle Computations

2. Relative computability: equivalent

description

Now we are going to give an equivalent definition of α-computable

functions that does not involve oracle calls.

Recall that a function with natural values defined on a finite sub-

set of the set of natural numbers is called a pattern. A pattern is de-

fined by a list of pairs 〈argument, value〉. Patterns can be computably

numbered; after that, we can identify a pattern and its number and

speak about a decidable set of patterns, enumerable set of patterns,

etc.

Two patterns are called coherent if the union of their graphs is

the graph of a function, that is, if there is no point at which both of

them are defined and take different values.

Suppose that M is a set of triples of the form 〈x, y, t〉, where x

and y are natural numbers and t is a pattern. We will say that two

triples 〈x1, y1, t1〉 and 〈x2, y2, t2〉 are incompatible if the patterns t1
and t2 are coherent, x1 = x2, but y1 6= y2. A set M will be called

consistent if it does not contain incompatible triples.

Let M be a consistent set, and let α be some function. Consider

all the triples 〈x, y, t〉 ∈ M such that t is a part of α (i.e., the graph

of t is a subset of the graph of α). All patterns in the chosen triples

are coherent; therefore, since M is consistent, no two of the chosen

triples can have equal first and different second elements. This means

that by omitting the third elements of the chosen triples, we obtain

the graph of some function (generally speaking, a partial one). This

function will be denoted by M [α].

Theorem 45. A partial function f : N → N is computable relative to

a total function α : N → N if and only if there exists an enumerable

consistent set of triples M such that f = M [α].

Proof. Suppose that the function f is computed by a program p

with calls to the external procedure α. For each natural number x,

we simulate the program operation on the input x along all paths, that

is, taking into account that each call to α can return any value α(n).

Then for each x a tree of possible computation paths emerges: each

2. Equivalent description 75

call to the external procedure is represented by a fork with countable

branching. On some branches of the tree, the computation terminates

and the program returns an answer. Once we find out a branch that

produces an answer y on the input x, we form a triple 〈x, y, t〉, where t

is the pattern that contains all arguments and values of the function α

used along this branch.

The set M of triples thus obtained is enumerable (the proce-

dure described above allows us to generate all its elements one by

one). This set does not contain incompatible triples. Indeed, if two

triples 〈x, y1, t1〉 and 〈x, y2, t2〉 in this set have the same x and y1 6= y2,

then they correspond to different paths in the computation tree on

the same input x. These paths diverge at a certain point; this means

that at a certain step we have received different answers to the same

question. These different answers were registered in the patterns t1
and t2, so the patterns are not coherent. Therefore, the set M is

consistent.

Notice that the set M depends on the program p but not on the

function α (we took into account all possible answers that could be

given by the oracle, so we did not use α in the construction of M).

Now we have to check that for any total function α, the function M [α]

coincides with the function computed by the program p with α as an

oracle.

Suppose that the program p computes the function f using the

oracle α and f(x) = y, that is, the program p returns the answer y

on the input x. The computation involves a number of calls to the

function α and is represented by a certain branch of the tree consid-

ered above. Let t be the pattern that contains all the questions asked

along this branch and the corresponding answers. Then t is a part

of α. In addition, the triple 〈x, y, t〉 belongs to the set M . Hence

M [α](x) is defined and is equal to y.

Conversely, if M [α](x) = y, then there exists a triple 〈x, y, t〉 ∈M

such that t is a part of α. This triple corresponds to a certain branch of

the computation tree. Since t is a part of α, the α-oracle computation

follows this branch and the program returns the answer y.

76 7. Oracle Computations

Thus, for any program p, we have constructed an enumerable

consistent set M that specifies the same function as the program p,

which completes the proof of the “only-if” statement.

In order to prove the “if” statement, suppose that a consistent

set M is given. We must construct a program p equivalent to M . This

program, supplied with the oracle that computes α, will compute the

function M [α]. We define the program p as follows: having received

the input x, it enumerates the setM and picks out the triples with the

first element x. For each of these triples 〈x, y, t〉, it calls the external

procedure (questions the oracle) to find out whether t is a part of

the function α. If it is, the computation terminates and the program

returns the answer y, if not, then the enumeration of M continues.

Obviously, the program p thus constructed computes the func-

tion M [α]. �

Problem 59. Suppose that we have carried out this construction

in both directions: first, from a given consistent set M , we have

constructed a program as described in the second part of the proof,

and then, starting with this program, we constructed a consistent

set M ′. Can the two sets M ′ and M be distinct?

3. Relativization

Let us fix a total function α. Then the entire theory of computable

functions can be, as they say, “relativized” with respect to α, by

replacing computable functions in all definitions and statements by

α-computable functions (i.e., functions computable relative to α).).

In so doing, all the results formulated in previous chapters remain

valid, and their proofs undergo only slight changes.

In particular, we can define the notion of a set enumerable with

respect to α (or α-enumerable) in any of the following equivalent ways:

as the domain of an α-computable function, as the range of an α-

computable function, as the projection of an α-decidable (decidable

relative to α) set, and so on. But there also is a more direct description

of the class of α-enumerable sets.

Let E be an arbitrary set of pairs of the form 〈x, t〉, where x is a

number and t is a pattern. We take a total function α and pick out

3. Relativization 77

from the set E the pairs whose second components are parts of α;

the first components of these pairs form a set that will be denoted

by E[[α]].

Theorem 46. A set X is α-enumerable if and only if X = E[[α]] for

some enumerable set E. (Notice that in this case no special conditions

like consistency of the set are needed.)

Proof. Let X be the domain of a function f computable relative

to α. Then f = M [α] for some enumerable consistent set M . Let us

delete the second component of each triple from M . We obtain an

enumerable set of pairs; denote it by E. It is easy to see that E[[α]] is

the domain of the function M [α] = f , and so E[[α]] = X .

Conversely, suppose that X = E[[α]] for some function α. Then

consider the set M obtained by inserting 0 between the components

of each pair in E. Clearly, the set M is consistent and M [α] is the

function defined on X = E[[α]] that takes only zero values. �

In the ordinary (nonrelativized) theory of algorithms, an impor-

tant part is played by the universal function theorem. It remains true

after relativization.

Theorem 47. Let α be a total function. There exists a binary α-

computable function universal for the class of unary α-computable

functions.

Proof. As well as in other cases, we can reproduce the proof of the

corresponding nonrelativized theorem almost unchanged. Let us fix

any programming language (this time involving calls to external pro-

cedures) and assign numbers to all programs with calls to the external

procedure α. Now we can take as universal function the function

Uα(i, x) = (result of application of the ith program to x).

We have used the subscript to emphasize that the function Uα de-

pends on α. However, the text of the program that computes Uα

does not depend on α (although, naturally, it contains calls to α).

It is instructive to look at another proof, based on the definition

of computability in terms of consistent enumerable sets.

78 7. Oracle Computations

Consider a universal enumerable set Z of quadruples of the

form 〈n, x, y, t〉, where n, x, and y are numbers, and t is a pattern.

The term “universal” means here that any enumerable set of triples

coincides with one of the sections Zn for a suitable n.

There can be both consistent and inconsistent sets among Zn.

We want to forcedly correct the inconsistent sections leaving the con-

sistent ones intact. In other words, we want to construct a new enu-

merable set Z ′ with the following properties: first, all sections Z ′
n

must be consistent; second, if a certain section Zn is consistent, then

it should not change (Z ′
n = Zn).

The construction is simple: we enumerate Z and skip (do not put

into Z ′) the elements that make a certain section inconsistent when

added to it. Thus we get an enumerable set Z ′ universal for the class

of consistent enumerable sets.

Now it is easy to specify a consistent set W that yields a uni-

versal α-computable function. Namely, the set W consists of the

triples 〈〈n, x〉, y, t〉 (their first components are pairs, because a uni-

versal function depends on two arguments) such that 〈n, x, y, t〉 ∈ Z ′.

It can readily be seen that W is a consistent set. For a given func-

tion α, this consistent set specifies a certain α-computable binary

function Uα; its nth section is Z ′
n[α], where Z ′

n is the nth section of

the set Z ′. Therefore, any α-computable function is a section of the

function Uα, completing the proof. �

Of course, the notion of Gödel universal function has a coun-

terpart in the relativized theory of algorithms as well: a binary α-

computable function is called a Gödel universal function for the class

of unary α-computable functions if it is α-computable, universal for

the class of unary α-computable functions, and for any binary α-

computable function V there exists a unary total α-computable func-

tion s (“convertor”) such that V (n, x) = U(s(n), x) for all n and x.

The standard proof (p. 20, Theorem 15) shows that Gödel uni-

versal functions for the class of α-computable functions do exist. Fur-

thermore, we can notice that the function s constructed in the proof is

not only α-computable, but also computable (one version of the proof

4. 0′-computations 79

uses a function s of the form x 7→ [n, x], where the brackets denote a

fixed computable numbering of pairs and n is a fixed integer).

It is convenient to understand by numbers of α-computable func-

tions their numbers under such “strongly Gödel” numberings. In

particular, if we list all programs with oracle calls (in some natural

ordering) and then assign to each program its number in the list, we

get a “strongly Gödel” numbering.

Sometimes, when it goes about the relativized theory of algo-

rithms, the following metaphor is used. Let A be an undecidable set.

It may happen that there is an extraterrestrial civilization to which

the set A seems decidable. They can decide whether a number x

belongs to the set A directly, just by looking at it, this test is an ele-

mentary operation in their programs (like, e.g., the comparison of two

numbers is an elementary operation in our programs). Then their en-

tire theory of algorithms will automatically be relativized with respect

to A, but they will never notice this, and therefore, having read our

book up to this section (exclusively), will agree with all our theorems.

Furthermore, they can also read this section about relativization as

well, but whatever is B-computable to them, will be A-B-computable

for us (computable with the help of two oracles, for A and B).

However, you should not take this metaphor too seriously.

4. 0′-computations

In this section we consider computability with respect to an m-

complete enumerable set. Any two of these sets can be m-reduced

to each other, and all the more they can be T -reduced to each other.

Therefore, if some function is computable relative to one of them,

then it is computable relative to the other as well. Such functions are

called 0′-computable.

Recalling that the set of pairs {〈p, x〉 | program p halts on the

input x} is an m-complete enumerable set, we can say that 0′-com-

putable functions are computed by machines supplied with a special

oracle that solves the halting problem: we send a program and an

input to this oracle and it answers whether the program halts on this

80 7. Oracle Computations

input or not. (The program sent for examination is a normal one,

without any calls to an oracle.)

Clearly, any enumerable set is 0′-decidable, since it ism-reducible

to anm-complete enumerable set. (The converse is obviously not true:

the complement of an enumerable undecidable set is also 0′-decidable,

but not enumerable.)

The following theorem gives a simple description of the class of

0′-computable functions.

Theorem 48. (a) Let T be a total computable function of two natural

arguments. Take the limit in the second argument and consider the

function t thus obtained:

t : x 7→ lim
n→∞

T (x, n).

(This function may not be total, since for some x the limit may not

exist.) The function t is 0′-computable.

(b) Any 0′-computable function t can be so obtained from some

total computable function T .

Proof. (a) Let T be a binary total computable function. We will say

that a pair 〈x, n〉 is stable if T (x, n) = T (x,m) for the given x and for

all m > n. Notice that the set of unstable pairs is enumerable (having

found two pairs 〈x, n〉 and 〈x,m〉 with n < m and T (x, n) 6= T (x,m),

we include the pair 〈x, n〉 in the enumeration of all unstable pairs).

Therefore, the set of unstable pairs is 0′-decidable. In other words,

0′-algorithm can check stability of any pair.

Now consider the following 0′-algorithm computing the limit

function t. Having received an input x, we consider the

pairs 〈x, 0〉, 〈x, 1〉, . . . and for each of them check whether it is stable.

Once a stable pair 〈x, n〉 is detected, the value T (x, n) is sent to the

output. Obviously, this 0′-algorithm computes the function t.

(b) Now let us prove the converse statement. Let t be a par-

tial 0′-computable unary function. We must construct a computable

(without an oracle) binary total function T such that

t(x) = lim
n→∞

T (x, n)

4. 0′-computations 81

for all x (this means that both sides of this equation are defined

simultaneously and coincide when defined). For a while, let us al-

low the function T to take some additional special value, which will

be denoted by a star. This value is not allowed to be the limit

value, and lim
n→∞

T (x, n) = a means that for all sufficiently large n

the value T (x, n) is equal to a (and not equal to ⋆).

This allowance is in fact inessential: we can always replace each

star in a sequence by two different successive terms (no matter which);

then the new sequence will have the same limit (or have no limit, as

the original one).

Now let us define the function T . By assumption, the function t

is computed by a certain program p that has access to the charac-

teristic function of some enumerable set K. Denote by Kn the finite

subset of K consisting of the elements of K that appeared during the

first n steps of its enumeration. To compute the value T (x, n), we

run n steps of the program p with the set K replaced by its finite

approximation Kn. If we get no answer from the program during

these n steps (which can happen for various reasons: the time may

be too short for p to produce a result, the difference between Kn and

K may come into play, or t can simply be undefined at x), then

we set T (x, n) = ⋆. And if the program produces some answer in

n steps, then this answer is set to be the value of T (x, n) (with the

only exception explained later).

Let us try to prove that t(x) = lim
n→∞

T (x, n). Suppose that t(x) is

equal to some a. Then, after several steps, the execution of p (with the

regular oracle K) terminates, and the program returns the answer a.

In this computation, only a finite number of questions to the oracle

are asked. Therefore, for a sufficiently large n, the answers to these

questions will remain the same if K-oracle is replaced by Kn-oracle.

By taking, if necessary, a still greater value of n (so as to exceed the

total computation time of the program p on the input x), we can

ensure that for this and all greater values, T (x, n) is equal to a.

We have yet to show that if the limit exists and equals a,

then t(x) = a. But here an additional obstacle awaits us: It is possi-

ble that the program p does not halt using the original K-oracle, but

the computation with Kn-oracle terminates for each n (due to the

82 7. Oracle Computations

differences between Kn and K), accidentally returning the same an-

swer every time. Then t(x) is undefined, but limn→∞ T ′(x, n) exists,

and this is bad for us.

To overcome this difficulty, let us modify the definition of the

function T . Namely, let us agree that if the oracle query logs cre-

ated during the computation of T (x, n) and T (x, n−1) were different

(i.e., different questions were asked or different answers to the same

questions were received), then T (x, n) = ⋆. This will not corrupt our

previous reasoning, since for large n, the questions involved in the

computation of T (x, n) and the answers to them are the same as in

the original K-computation.

But we can now be sure that if the sequence T (x, 0), T (x, 1), . . .

has a limit, then t(x) is defined. Indeed, if the limit exists, then

the sequence contains finitely many stars. Hence for all sufficiently

large n, the oracle is asked the same questions and gives the same

answers. This means that these answers are correct, becauseKn tends

to K. Therefore, the original computation of p(x) using the K-oracle

also terminates (with the same result). �

Problem 60. The definition of computable real numbers given

in Exercise 14 (p. 9) can be relativized with respect to any set A.

Show that a number α is 0′-computable if and only if α is the limit

of a computable sequence of rational numbers.

5. Incomparable sets

The definition of Turing reducibility (recall that A is Turing reducible

to B if the set A is decidable with the help of an oracle for B) can

be viewed as a method to compare decidability problems for various

sets in their “difficulty.” (If A ≤T B, then the decidability problem

for the set A is, in a sense, simpler than that for the set B.)

A lot of natural questions concerning this classification arise. For

instance, we may want to know if there exist the most difficult decid-

ability problem in the world, that is, a set A such that B ≤T A

for any set B. It is readily seen that the answer is negative:

5. Incomparable sets 83

the A-relativized world has its own undecidable sets (and even A-

enumerable A-undecidable sets), since it obeys usual laws of the the-

ory of algorithms. (One can also notice that since there are countably

many programs, the family of all A-decidable sets is countable for any

set A.)

Another, less trivial question is: Are any two sets comparable?

The following theorem proved by Kleene and Post shows that here

the answer is also negative.

Theorem 49. There exist two sets A and B such that A6≤TB

and B 6≤TA. We can choose these sets to be 0′-decidable.

Proof. The sets A and B must satisfy the following requirements: no

B-oracle program (i.e., a program supplied with a B-oracle) decides

the set A, as well as no A-oracle program decides the set B.

Thus we have countably many requirements (since there are

countably many programs). We will treat them in turn, each once:

having ensured that a requirement is fulfilled, we will never consider

it again. Each step will fix the behavior of the sets A and B on some

initial segments of N; after that we can be sure that all the require-

ments considered up to this step, are satisfied. At the next step the

initial segments where A and B are fixed increase; in the limit, we

will obtain two sets, A and B, satisfying all the conditions. The en-

tire construction will be 0′-computable, so the resulting sets will be

0′-decidable.

Here are the details. Any function defined on a (finite) initial

segment of N that takes the values 0 and 1 will be called a fragment .

We say that a set A complies with a fragment a : {0, . . . ,m} → {0, 1}

if the characteristic function of A extends a. In other words, com-

pliance with a means a certain behavior of a set on natural numbers

that do not exceed m.

If a fragment a2 extends a fragment a1 (i.e., a2 is defined on a

greater segment and coincides with a1 on the domain of a1), then,

obviously, the compliance with a2 is more restrictive for a set.

Lemma. Let a and b be two fragments, and let p be a program

that includes calls to an external procedure. Then there exist exten-

sions a′ and b′ of these fragments with the following property: for

84 7. Oracle Computations

any sets A and B complying with a′ and b′, the program p, using the

B-oracle, does not decide the set A.

Assuming the Lemma has been proved, we can consider all pro-

grams one by one and ensure that none of them decides A using the

B-oracle. In so doing, we can alternate A and B as the Lemma is

applied, and thus simultaneously ensure that no program decides B

using the A-oracle.

(Remark. Obviously, we can assume that a′ and b′ are longer

than a and b: otherwise, they can be extended artificially. Then

in the limit we will obtain infinite sequences that are characteristic

functions of the two desired sets. However, this is not necessary: if

we incidentally obtain finite fragments in the limit, we can take any

two arbitrary sets complying with them.)

So, to complete the construction of the sets A and B, it remains

to prove the Lemma. (We will return to the issue of 0′-computability

later.)

The statement of the Lemma is asymmetric with respect to the

sets A and B; therefore, the reasoning will also be asymmetric. Let us

fix a number x outside the domain of the fragment a. The argument

depends on the answer to the question: Does there exists a set B

complying with the fragment b such that the program p with the

B-oracle returns one of the answers “yes” or “no” for input x?

If such a set does not exist, there is nothing at all to worry about:

the statement of the Lemma will be true simply for a′ = a and b′ = b.

Now suppose that such a set B exists. Let us run and trace the

program p on the input x for this set B. Before returning an answer,

the program p can make a finite number of calls to the characteristic

function of the set B. Let us take a fragment b′ with which B complies

and long enough to cover all the elements involved in the program

calls. Then for any set complying with b′, the program p will return

the same answer as for the set B. It remains to ensure that this

answer is wrong. This can be done by including x into the domain

of a′ and choosing a′(x) to contradict this answer. The proof of the

Lemma is complete.

5. Incomparable sets 85

Finally, it remains to prove the statement of the theorem con-

cerning the 0′-computability; to this end, we must ascertain that the

construction of a′ and b′ in the proof of the Lemma can be made 0′-

algorithmic. The key point here is the answer to the question posed

in the proof of the Lemma. Of course, it is impossible to test all

sets B complying with the fragment b. But we do not have to really

do this: it suffices simply to examine all the paths that the program p

can follow. When it asks the question about a number outside b, we

must consider two possibilities. Thus a tree of all possible computa-

tion paths emerges, and we want to know whether we get the answer

“yes” or “no” at least on one of the branches. This question can

be reformulated into the question whether a certain program halts

(namely, the program that examines all branches in parallel and ter-

minates once the answer “yes” or “no” is given on one of them), and

the 0′-oracle can provide an answer to this question.

This remark completes the proof of the theorem. �

A much more difficult question is, Do there exist enumerable Tur-

ing incomparable sets (rather than 0′-decidable Turing incomparable

sets)? This problem (called the Post problem) was solved indepen-

dently by the American mathematician Richard Friedberg and the

Russian mathematician Al’bert Abramovich Muchnik in 1950s; it is

interesting that their constructions of enumerable incomparable sets

used the same approach called the “priority method.” This construc-

tion is explained in the next two sections.

86 7. Oracle Computations

6. Friedberg–Muchnik Theorem: the general

scheme of construction

Theorem 50. There exist Turing incomparable enumerable sets.

We give the proof of this theorem as an example of the tech-

nique used in the theory of computable functions. However, it should

be mentioned that in the 1960s and 1970s much more sophisticated

methods have appeared, and now this proof looks relatively simple.

Proof. We want to construct two enumerable sets none of which is

Turing reducible to the other. We will construct them step by step;

at each step, only a finite part of the sets to be created will be known.

It will be convenient to use the following terminology.

Any pair 〈A,B〉 of finite sets of natural numbers will be called

an element . We will say that an element 〈A′, B′〉 extends an ele-

ment 〈A,B〉 if A ⊂ A′ and B ⊂ B′. We will construct a computable

sequence of elements; each element extends the previous one, and in

the limit (i.e., in the union) they form the desired enumerable incom-

parable sets.

A quadruple of finite sets 〈A+, A−, B+, B−〉 in which A+ is dis-

joint with A− and B+ is disjoint with B− will be called a directive.

The word “directive” is derived from the fact that these quadruples

will direct the construction of elements: A+ are the numbers that

must belong to A, and A− are the numbers that must not belong

to A; similarly for B. Formally, we say that an element 〈A,B〉 com-

plies with a directive 〈A+, A−, B+, B−〉 if A+ ⊂ A, A− ∩ A = ∅,

B+ ⊂ B, and B−∩B = ∅. A directive u2 is said to be stronger than

a directive u1 if any element complying with u2 complies with u1 also

(that is, all the components of the stronger directive are larger). Note

that according to this definition, any directive is stronger than itself.

Let α(X,Y) be an arbitrary condition on a pair of sets X,Y ⊂ N.

Any such condition specifies a game for two players, the “director”

D and the operator O. The game proceeds as follows: in the begin-

ning O presents to D a directive u0 and an element e0 complying

with u0. They will be called the initial directive and initial element.

(Eventually, the construction will involve several directors, and newly

6. Incomparable enumerable sets 87

appointed directors will receive their initial directives and elements

from their predecessors; but this is to be discussed later). Coming

back to the game, D replies to O with some directive u1; after that,

O chooses an element e1 complying with this directive; then D issues

some directive u2, O chooses e2 and so on (the game is infinite).

The rules of the game are as follows:

• Each element chosen by O must extend the previous one

(and so all of them extend the initial element); it must also

comply with the last directive of D (but D’s earlier directives

are not important).

• Each directive of D must be stronger than the initial direc-

tive (however, we do not require it to be stronger than D’s

earlier directives!).

• If D issues a directive that causes a stalemate (that is, there

are no elements complying with this directive and extend-

ing the previous element), then the game terminates and D

loses.

• If the game goes on indefinitely, then D is considered the

winner under two conditions. The first of them is that start-

ing from a certain move, D’s directives stop changing.

• Finally, the second condition is that the limit sets X and Y

should satisfy the above-mentioned condition α(X,Y). (If

the ith element ei is 〈Xi, Yi〉, then X and Y are the unions of

increasing chains of sets X0 ⊂ X1 ⊂ . . . and Y0 ⊂ Y1 ⊂ . . .)

A condition α(X,Y) is said to be winning if there exists a com-

putable winning strategy in the corresponding game. Our further

plan is as follows. We will show that for any program p with calls

to external procedure, the condition αp(X,Y) = “p with Y -oracle

does not decide X” is a winning one. (Much of the reasoning repeats

the proof of the Kleene–Post theorem, but in a more intricate way.)

Moreover, we will see that the strategy computably depends on p.

On the other hand, we will show how to construct a pair of enu-

merable sets that satisfies a countable family of winning conditions.

It is this last argument that makes use of the “priority” idea: we

88 7. Oracle Computations

will have one operator and countably many directors with different

priorities assigned to them.

7. Friedberg–Muchnik Theorem:

winning conditions

So, let us fix a program p that the director D wants to prevent from

deciding the set X relative to Y . What must D do for that? (We will

describe the course of events from D’s viewpoint.)

In the beginning, D receives from O a directive and an element

complying with it. All subsequent directives must be stronger than

the initial one: we (the director) should always prescribe that cer-

tain (initial) numbers be included in X and Y , whereas certain other

numbers should not (the sets of numbers of both kinds are finite).

Besides, an initial element (pair of sets) is given. As time goes by, O

increases these sets at his discretion; the only way for us to influence

this process is to issue directives.

So what do we do? At the first step we choose a number x outside

the initial set X and not mentioned in the initial directive. In our

first directive we will require that this x be not included in X , that

is, we will add x to the second component of the initial directive,

once denoted by A−. (If we wished the set Y to be undecidable by

the program with X-oracle, we would act symmetrically and add the

number to the fourth component, B−.)

If we keep replicating the first directive on and on, we will ensure

that the number x does not belong to the limit set X . But if at a

certain instant change our mind and choose to include x in X , it will

suffice merely to take x away from A− and add it to A+, which will

not stalemate the game. (Notice that the new directive will not be

stronger than its predecessor, but will remain stronger than the initial

one, which is required by the game rules.)

Our winning strategy chooses such an x, forms the first directive,

and keeps repeating it until we have a reason to wake up and change

our mind. Such a reason can be as follows:

At the nth move of the game, we simulate n steps of the program p

on the input x. (Recall that p is the program we want to prevent

7. Winning conditions 89

from Y -deciding the set X .) In so doing, every time the program

invokes the external procedure for Y , we answer using the current

state of Y (that is, according to the last element proposed by the

operator). Imagine that after the n steps the program p returns a

certain result. Then we wake up and examine the computation to

spot the numbers whose membership or nonmembership in the set Y

was used; the results of the examination are registered in our next

and all subsequent directives (which will never change any longer).

This will ensure that p will give the same answer with the limit set Y

as it gives now (i.e., for the current state of Y). On the other hand,

we can place x in the set X or outside it at will. (If we do nothing

and leave the things as they are, x will not belong to X ; to move it

into X , we simply move it to the positive component of the directive,

see above.) Our choice will be to make the answer of the program p

wrong.

Let us show that this strategy is winning indeed. There are two

possibilities. If we have waked up at a certain move, then, by con-

struction, the answer returned by the program p on the input x is

wrong. Otherwise, if we never wake up, p (with the limit value of

the oracle Y) does not return any answer on x at all. Why? Because

any answer it may return depends on a finite number of questions

to the oracle and requires a finite number of program steps; so, after

the game has been played sufficiently long (enough for the oracle to

include all the necessary numbers and for the program to complete

computation), we would have to wake up.

The computability of our strategy is obvious. It only remains

to explain why the number of different directives will be finite. But

this obviously follows from the construction. In fact, there can be at

most two: exactly two, if we have ever woke up to fall asleep forever;

otherwise, just one.

Note that the a winning strategy in the game with the program p

can be constructed effectively (by an algorithm) when p is given. This

observation plays an important role in the next section.

90 7. Oracle Computations

8. Friedberg–Muchnik Theorem: the priority

method

Now we forget about the specific nature of elements and directives

and show that if there is a sequence of winning conditions α1, α2, . . .

such that the corresponding winning strategies for D computably de-

pend on i, then there is a pair of enumerable sets satisfying all the

conditions.

To this end, imagine ourselves being an operator under a sequence

of directors with decreasing priorities (the first director is the most

important, the second is less important, and so on). All the directors

are responsible for their own conditions and have their own winning

strategies. We begin the game with the first director by executing

her directives. When they start to repeat, we assume that the first

director will not change them any more and pass the current element

and current directive as the initial data to the second director to

start the game with the latter. (All directives of the second director

will be stronger than the temporarily stabilized directives of the first.

Therefore, we do not violate the rules of the game played with the

first director, and at the same time obey the second director, unless

the first one starts changing her directives.) When the directives of

the second director also stop changing, we can link up the third one,

and so on.

What happens if one of the directors unexpectedly changes her

directive? In this case we follow this new directive paying no attention

to what the directors of lower priority say, apologize to them and

explain that we have invited them too early. But later we gradually

invite them back according to the same scheme.

Let us show that each director will sooner or later have a chance

to direct permanently. Indeed, the first one does not know anything

at all about the others, because her directives are the most impor-

tant and are always obeyed. Therefore, a moment will come when

she ceases to issue new directives. The incarnation of the second di-

rector launched after this moment will rule unhindered, because only

a change of the first director’s directives could interrupt the second

one’s directorship. Therefore, directives of the second director also

8. The priority method 91

stabilize, and so on. In so doing, all directors will secure the fulfill-

ment of their respective conditions.

Now we see why the initial elements and conditions were impor-

tant in the definition of our game: a true Director must be able to

achieve her objectives irrespective of the initial situation (who knows

what the predecessors could do to the business!).

The computability of all strategies of all directors (plus the

computable dependence on directors’ numbers) guarantees the com-

putability of the above-described process; thus we obtain enumerable

sets satisfying all our conditions.

This argument completes the proof of the Friedberg–Muchnik

Theorem. �

Problem 61. Show that there are countably many enumerable

sets no two of which are Turing comparable.

Chapter 8

Arithmetical Hierarchy

1. Classes Σ
n

and Π
n

As we have already said, enumerable sets can be equivalently defined

as projections of decidable sets: a set A ⊂ N is enumerable if and only

if there exists a decidable set B ⊂ N × N such that A is a projection

of B. Identifying sets and properties (=predicates), we can say that

a property A(x) of natural numbers is enumerable if and only if it

can be represented in the form

A(x) ⇔ ∃yB(x, y),

where B(x, y) is a certain decidable property.

(In this section we assume that the reader is familiar with the

basic logical notation: the quantifier ∃x is read as “there exists x,”

the quantifier ∀x is read as “for all x,” the symbol ∧ read as “and”

is called conjunction, the symbol ∨ read as “or” is called disjunction,

the symbol ¬ read as “it is not true that” is called negation. As

before, the symbol ⇔ denotes equivalence.)

A natural question arises: What can be said about other combi-

nations of quantifiers? For instance, what properties are representable

in the form

A(x) ⇔ ∃y∃zC(x, y, z),

93

94 8. Arithmetical Hierarchy

where C is a decidable property of triples of natural numbers? It

is readily seen that these are again enumerable sets. Indeed, two

consecutive quantifiers of the same type can be replaced by one us-

ing a computable numbering of pairs (which is denoted by brackets):

a property C′ such that C′(x, [y, z]) ⇔ C(x, y, z) is also decidable,

and A(x) ⇔ ∃wC′(x,w).

Another question: What properties can be represented in the

form

A(x) ⇔ ∀yB(x, y),

where B(x, y) is a decidable property? The answer is: the properties

with enumerable negations (also known as coenumerable). Indeed,

¬A(x) ⇔ ¬∀yB(x, y) ⇔ ∃y(¬B(x, y));

it remains to notice that decidability is preserved under negation.

Let us give a general definition. A property A belongs to the

class Σn if it can be represented in the form

A(x) ⇔ ∃y1∀y2∃y3 . . . B(x, y1, y2, . . . , yn)

(with n alternating quantifiers in the right-hand side), where B is a

decidable property. If the n alternating quantifiers in the right-hand

side start with the universal quantifier ∀, then we obtain the definition

of the class Πn.

The following two properties, in essence, have already been

proved.

Theorem 51. (a) The class Σn [Πn] does not change if allow groups

of quantifiers of the same type (∀ or ∃) instead of a single ∀- or ∃-

quantifier. (b) If a predicate belongs to Σn, its negation belongs to Πn

and vice versa. vice versa.

(The statement (a) implies, for example, that the predicate

∃y ∃z ∀u ∀v ∀w ∃t A(x, y, z, u, v, w, t)

with decidable A belongs to Σ3 since there are three groups starting

with ∃-group.)

1. Classes Σn and Πn 95

Proof. To prove the first statement, it suffices to combine neighbor-

ing quantifiers of the same type into one quantifier using the num-

bering of pairs. To prove the second statement, we use the laws

¬∀xA ⇔ ∃x¬A and ¬∃xA ⇔ ∀x¬A and recall that the negation of

a decidable predicate is decidable. �

We spoke about properties (predicates); in terms of sets,

the definition of the class Σn takes the following form: sets

of the class Σn are obtained from decidable sets by a sequence

of operations “projection–complement–projection–complement–. . . –

projection” with exactly n projections. Each projection decreases the

dimension of the set (the number of arguments of the corresponding

property) by one, so we must start with decidable subsets of Nn+1.

Theorem 52. The intersection and union of two sets of the class Σn

belong to Σn. The intersection and union of two sets of the class Πn

belong to Πn.

Proof. We have to prove that the conjunction and disjunction of any

two properties of the class Σn belong to this class again (and similarly

for Πn). For instance, suppose that

A(x) ⇔ ∃y∀zB(x, y, z),

C(x) ⇔ ∃u∀vD(x, u, v).

Then

A(x) ∧ C(x) ⇔ ∃y∃u∀z∀v[B(x, y, z) ∧D(x, u, v)];

the property written in the brackets is decidable, and it only remains

to combine pairs of quantifiers as described above. The classes Σn

and Πn for an arbitrary n can be treated similarly. �

The classes Σn and Πn were defined for sets of natural numbers;

in a similar way this can be done for sets of pairs or triples of natural

numbers and in general, for any “constructive objects”. Notice that

the projection of a set of pairs from the class Σn also belongs to Σn

(since two existential quantifiers can be combined into one).

By adding dummy quantifiers, it is easy to show that each of

the two classes Σn and Πn is contained in each of the classes Σn+1

96 8. Arithmetical Hierarchy

and Πn+1. We can write this as follows:

Σn ∪ Πn ⊂ Σn+1 ∩ Πn+1.

Theorem 53. The classes Σn and Πn are “hereditary downward”

with respect to m-reducibility in the following sense: if A ≤m B

and B ∈ Σn [B ∈ Πn], then A ∈ Σn [A ∈ Πn].

Proof. Suppose that A is reduced to B by a total computable func-

tion f , that is, x ∈ A ⇔ f(x) ∈ B. Suppose, for example, that

B belongs to Σ3:

x ∈ B ⇔ ∃y∀z∃uR(x, y, z, u),

where R is some decidable property. Then

x ∈ A⇔ f(x) ∈ B ⇔ ∃y∀z∃uR(f(x), y, z, u),

and it remains to notice that R(f(x), y, z, u) (as a property of a

quadruple 〈x, y, z, u〉) is decidable. �

Problem 62. Prove that if a set A belongs to the class Σn, then

the set A×A also belongs to this class.

Problem 63. Prove that if sets A and B belong to the class Σn,

then their set difference A \B belongs to the class Σn+1 ∩ Πn+1.

2. Universal sets in Σ
n

and Π
n

We have not shown yet that the classes Σn, as well as Πn, are distinct

for different n. To prove this, we will find in each of these classes a

universal set (for the corresponding class) and show that it does not

belong to junior classes.

Theorem 54. For any n, the class Σn contains a set universal for

all sets of this class. (The complement of this set is universal in the

class Πn.)

By a universal set of the class Σn (briefly, Σn-universal set) we

mean a set of pairs of natural numbers that belongs to the class Σn

such that any set of natural numbers in Σn is a section of this set of

pairs.

2. Universal sets in Σn and Πn 97

Proof. Notice that Σ1 is the class of enumerable sets. The existence

of a universal set for this class have already been discussed. Universal

sets for higher classes of the hierarchy will be constructed using this

set. (We have to start from the first level, because at the “zeroth

level,” there are no universal decidable sets.)

By the definition, Π2-properties are of the form S(x) ⇔

∀y∃zR(x, y, z), where R is a decidable property. But they can also

be defined equivalently as properties of the form S(x) ⇔ ∀yP (x, y),

where P is an enumerable property. Now it is clear how to construct

a universal set of the class Π2. Let U(n, x, y) be a universal enu-

merable property. Then any enumerable property of pairs of natural

numbers can be obtained from U(n, x, y) by fixing a suitable n. Hence

any Π2-property of natural numbers can be obtained from the prop-

erty T (n, x) = ∀yU(n, x, y) in the same way, by fixing n. On the

other hand, the property T itself belongs to the class Π2.

The complement of a universal Π2-set is obviously a universal

Σ2-set.

This reasoning applies to Σ3- and Π3-sets, as well, with one

amendment: here it is better to start with Σ3-sets, so as to have

the existential quantifier, which specifies an enumerable set, in the

innermost position. Σn- and Πn-sets are considered similarly. �

Theorem 55. Universal Σn-sets do not belong to the class Πn. Sim-

ilarly, universal Πn-sets do not belong to the class Σn.

Proof. Consider a universal Σn-property T (m,x). By definition, this

means that all Σn-properties occur among its sections (obtained by

fixing m). Suppose that T belongs to the class Πn. Then its diagonal,

the property D(x) = T (x, x), also belongs to the class Πn (for exam-

ple, because D ≤m T), and the negation of D, the property ¬D(x),

belongs to the class Σn. But this is impossible, since ¬D is not a sec-

tion of the property T (it differs from the mth section at the point m),

whereas T is universal. �

In particular, it follows from this theorem that any of the

classes Σn and Πn is a proper subset of any of the classes Σn+1

98 8. Arithmetical Hierarchy

and Πn+1. (Soon we will see that even the union Σn ∪Πn is a proper

subset of the intersection Σn+1 ∩ Πn+1.)

3. The jump operation

We want to show that the class Σn coincides with the class of all

A-enumerable sets for a certain set A (depending on n). To introduce

this set, we need a construction known as the jump operation.

Let X be an arbitrary set. Consider the class of all X-enumerable

subsets of N and a universal X-enumerable set for this class. This set

is m-complete in the class of X-enumerable sets in the sense that all

other X-enumerable sets are m-reducible to it. The reducing func-

tion, as we have seen, is of the form x 7→ [n, x] (and is computable

without any oracle, as the definition of m-reducibility requires). We

will denote by X ′ any m-complete set in the class of X-enumerable

sets. Such a set is defined uniquely up to m-equivalence.

More formally, we say that the sets P and Q are m-equivalent

if P ≤m Q and Q ≤m P . (It can be readily seen that this is an

equivalence relation indeed.) A class of equivalent sets is called an

m-degree. Now we can say that for each set X we have defined a

certain m-degree X ′.

In a similar way, T -degrees (also known as Turing degrees or

degrees of undecidability) are defined as classes of T -equivalent sets;

sets P and Q are called T -equivalent, or Turing equivalent, if P ≤T

Q and Q ≤T P , that is, if either set is decidable relative to the

other. If the sets P and Q are Turing equivalent, then the class

of P -computable functions coincides with the class of Q-computable

functions (and the class of P -enumerable sets coincides with the class

of Q-enumerable sets). Using the notion of T -degrees, we can say

that the m-degree X ′ is determined by the T -degree of the set X ,

and thus we have a mapping of the set of all T -degrees to the set

of all m-degrees. This mapping is called the jump operation; the

set (more exactly, m-degree) X ′ is called the jump of the set (more

exactly, T -degree) X .

Problem 64. Can this mapping take different T -degrees into

the same m-degree?

3. The jump operation 99

Problem 65. Prove that any two setsm-complete in the class Σn

are computably isomorphic (differ by a computable permutation).

Problem 66. Show that for any enumerable set A, one can find

a real number α such that the set of all rational numbers less than α

is enumerable and Turing equivalent to the set A.

The jump operation is usually considered as an operation on T -

degrees by setting its result equal to the T -degree containing X ′ (this

is quite legal, since the T -classification is more coarse).

In the sequel, we use the following T -degrees: 0 (the degree con-

taining all decidable sets), 0′ (its jump, the degree of m-complete

enumerable sets; it has already been considered), then 0′′ (the jump

of the degree 0′), 0′′′, and so on; in general, 0(n+1) = (0(n))′.

Theorem 56. For any n ≥ 1, the class Σn coincides with the class

of all 0(n−1)-enumerable sets.

(So far we know this for n = 1.)

Proof. First, we will prove that all Σn-sets are enumerable with re-

spect to 0(n−1). This is done by induction over n. For n = 1, we

already know this. Now consider an arbitrary set X from Σ2. By the

definition of Σ2,

x ∈ X ⇔ ∃y∀zR(x, y, z),

where R is a decidable predicate. The predicate ∀zR(x, y, z) has

enumerable negation. This negation is decidable with respect to 0′,

since it is m-reducible to an m-complete enumerable set. Hence the

predicate ∀zR(x, y, z) itself is decidable with respect to 0′. Therefore,

its projection, the set X , is enumerable with respect to 0′.

For other values of n, the argument is similar. If X belongs to Σ3,

then

x ∈ X ⇔ ∃yR(x, y),

where R belongs to Π2. The negation of R belongs to Σ2, so it is

0′-enumerable (by the induction assumption), so it is 0′′-decidable,

so R itself is 0′′-decidable as well, and so the projection of R is 0′′-

enumerable.

This completes the first half of the proof.

100 8. Arithmetical Hierarchy

For the second half, we must introduce one more property of the

classes Σn and Πn. Consider some computable numbering of all finite

sets of natural numbers. Denote by Dx the finite set whose number

is x. For an arbitrary set A, consider the set Subset(A) of all finite

subsets of A, more exactly, the set of all their numbers:

x ∈ Subset(A) ⇔ Dx ⊂ A.

Lemma 1. If a set A belongs to the class Σn [or Πn], then the

set Subset(A) also belongs to the class Σn [Πn, respectively].

(The statement of this lemma generalizes the statement about

the set A × A formulated in Problem 62: now we consider arbitrary

tuples instead of pairs.)

Proof of Lemma 1. Consider, for instance, a set A of the class Σ3:

x ∈ A⇔ ∃y∀z∃tR(x, y, z, t),

where R is a decidable property. Then {x1, . . . , xn} ⊂ A is equivalent

to

∃〈y1, . . . , yn〉∀〈z1, . . . , zn〉∃〈t1, . . . , tn〉[R(x1, y1, z1, t1) ∧ . . .

. . . ∧R(xn, yn, zn, tn)]

This formula involves quantifiers over tuples of natural numbers (of

variable length), but we can replace tuples by their numbers in some

computable numbering. Moreover, since the inner quantifier-free

formula corresponds to a decidable set, the entire formula is a Σ3-

predicate.

In this argument we made no difference between tuples and finite

sets; this is safe since the transition from the number of a set to the

number of some tuple consisting of all its elements is computable, so

this is no problem.

Lemma 1 is proved.

Problem 67. Prove that if A belongs to the class Σn [Πn], then

the set Intersect(A) of the numbers of finite sets having non-empty

intersections with A also belongs to the class Σn [Πn].

3. The jump operation 101

Problem 68. Suppose that a property R(x, y) of pairs of natural

numbers belongs to the class Σn. Show that the property

S(x) = (∀y ≤ x)R(x, y)

belongs to Σn. (The bounded quantifier (∀y ≤ x) is read as “for all y

not exceeding x.”)

Passing to the complements, we immediately obtain the following

corollary to Lemma 1:

Lemma 2. If a set A belongs to the class Σn [Πn], then the

set Disjoint(A) consisting of the numbers of finite sets disjoint with A

belongs to Πn [Σn].

Proof of Lemma 2. “To be disjoint with A” means “to be a subset

of the complement of A”; so it remains to use the previous lemma and

the fact that the complement of a set from the class Σn [Πn] belongs

to the class Πn [Σn]. The proof is complete.

Now we are ready to prove that all 0(n−1)-enumerable sets belong

to the class Σn. This is also proved by induction over n.

Let us begin with the first nontrivial case: Why any 0′-

enumerable set belongs to Σ2? (This can be explained using the

criterion of 0′-computability given above, but it will be more instruc-

tive to use the general argument valid for all values of n.)

Suppose that a set A is 0′-enumerable. Then it is enumerable

relative to a certain enumerable set B, i.e., it is enumerable relative

to the characteristic function b of B. By the criterion we have proved

above (Theorem 45, p. 74), this means that there exists an enumerable

set Q of pairs of the form 〈x, t〉, where x is a number and t is a pattern,

such that

x ∈ A⇔ ∃t[(〈x, t〉 ∈ Q) and (b extends t)].

Without loss of generality we can assume that the patterns we con-

sider here take only the values 0 and 1, because if t takes any other

values, then it cannot be a part of the characteristic function of B

and is of no significance to us. In terms of the set B, the condition

“b extends t” reads as follows: B contains the set of arguments at

which t takes the value 1 and is disjoint with the set of arguments

at which t takes the value 0. Therefore, instead of patterns, we can

102 8. Arithmetical Hierarchy

speak about pairs of finite sets; then instead of Q we must consider

the enumerable set P of triples of the form 〈x, u, v〉 and write:

x ∈ A⇔ ∃u∃v[(〈x, u, v〉 ∈ P) and (B contains Du)

and (Dv is disjoint with B)].

Now, instead of “B contains Du,” we can write “u ∈ Subset(B),” and

instead of “Dv is disjoint with B” we can write “v ∈ Disjoint(B)”. It

remains to notice that all the three properties joined by the conjunc-

tion “and” in the right-hand side belong to the class Σ2 and even to

lower classes. Namely, the first two belong to the class Σ1, because P

and B are enumerable (for the second property we apply Lemma 1).

As to the third property, it belongs to the class Π1 by Lemma 2.

Therefore, their conjunction belongs to the class Σ2, and the projec-

tion (the quantifiers ∃u∃v) leaves us within this class. This completes

the argument for n = 2.

Further, suppose that some set A is 0′′-enumerable. By the def-

inition, this means that A is enumerable with respect to a certain

0′-enumerable B. As we already know, B lies in Σ2. From here on

the reasoning can be simply repeated with all subscripts increased

by 1. All subsequent values of n are considered similarly. �

The theorem we have proved immediately implies the following

corollary:

Theorem 57. The intersection Σn ∩ Πn coincides with the class

of 0(n−1)-decidable sets.

Proof. Indeed, relativized Post’s Theorem (Theorem 2, p. 7) states

that a set is X-decidable if and only if both this set and its comple-

ment are X-enumerable (here X is an arbitrary oracle). �

Theorem 58. The class Σn∪Πn is a proper subset of the class Σn+1∩

Πn+1.

Proof. Recall that 0(n) is the degree of a set X m-complete in the

class of 0(n−1)-enumerable sets. Being m-complete in this class,

X is not 0(n−1)-decidable, that is, its complement is not 0(n−1)-

enumerable.

4. Classification of sets in the hierarchy 103

Therefore, by the previous theorem, X belongs to the class Σn,

whereas its complement does not. On the other hand, the comple-

ment of X belongs to Πn, but not to Σn. Now let us consider the

combination of the set X with its complement, i.e., the set

Y = {2n | n ∈ X} ∪ {2n+ 1 | n /∈ X}.

Both X and the complement of X are m-reducible to Y , hence Y

belongs neither to Σn nor to Πn. At the same time, Y is obviously

decidable with respect to X ; therefore, by Theorem 57, Y belongs

both to Σn+1 and Πn+1. �

4. Classification of sets in the hierarchy

It is interesting to find the position of a given specific set in the

hierarchy described above. For instance, what can we say about the

set of numbers of a given computable function in a Gödel numbering?

We have already said that the set of all numbers of all functions

with nonempty domains is enumerable, i.e., belongs to the class Σ1.

Consequently, its complement, the set Z of all numbers of the empty

function, belongs to the class Π1. (The set Z cannot belong to the

class Σ1, because Z is undecidable, see Theorem 21, p. 29.)

Problem 69. Prove that the set of numbers of the empty func-

tion in any Gödel numbering is m-complete in the class Π1.

What can we say about the numbers of other functions? For in-

stance, what can we say about the set of numbers of the zero function

(zero(x) = 0 for all x)? The following theorem gives a comprehensive

answer to this question.

Theorem 59. (a) Let U be a computable universal function for the

class of computable functions. Then the set of all n such that Un =

zero belongs to the class Π2. (b) If, in addition, U is a Gödel universal

function, then this set is m-complete in the class Π2.

It is essential that the universal function in statement (b) is a

Gödel one: as we have seen on p. 30, there exists a computable num-

bering such that any computable function has only one number.

104 8. Arithmetical Hierarchy

Proof. The property Un = zero can be rewritten as follows: for any k

there exists a t such that the computation of the value U(n, k) termi-

nates in t steps and returns 0. The highlighted property is decidable,

and is preceded by two quantifiers just of the desired type, which

completes the proof of item (a).

Let us prove statement (b). Let P be an arbitrary set of the

class Π2. Then

x ∈ P ⇔ ∀y∃zR(x, y, z)

for some decidable property R. Now we consider the function S(x, y)

computed by the following algorithm: searching through all natural

numbers, we look for a number z such that R(x, y, z) holds; once

(and if) such a number is found, we send 0 to the output. Clearly,

Sx = zero if and only if x ∈ P . Using the assumption that U is a

Gödel function, we can find a function s such that Us(x) = Sx. This

function reduces P to the set of all numbers of the zero function. �

What about other functions? For any computable universal func-

tion U and any computable function f , the set of all U -numbers of

the function f is a Π2-set. Even a stronger fact is valid: the prop-

erty Um = Un (integers m and n are numbers of the same function)

is a Π2-property of the pair 〈m,n〉, and therefore, any of its sections

(i.e., the set of numbers of some particular function) is all the more

a Π2-set. Indeed, the property Um = Un can be formulated as fol-

lows: “for any x and t1 there exists a t2 such that if the computation

of U(m,x) terminates in t1 steps, then the computation of U(n, x)

terminates in t2 steps with the same result, and vice versa.” The

highlighted property is decidable, and is preceded by a Π2-prefix.

It is possible to find out which functions have a Π2-complete set

of numbers: these are the functions with an infinite domain. If the

domain of a function is finite, then the set of all its numbers is 0′-

decidable (and so not Π2-complete). Indeed, using an oracle for the

halting problem, we can verify that the function is actually defined

where it must be defined (and make sure that the values are correct).

Then we can verify that it is undefined at all the remaining points

(the search for a point that lies outside a given finite set and belongs

to the function domain is an enumerable process, so we can check

whether it succeeds by asking the 0′-oracle).

4. Classification of sets in the hierarchy 105

If the domain of a function f is infinite, then there exists an

infinite decidable subset F of f ’s domain (Problem 12, p. 9). Now

we can use essentially the same construction as for the zero function,

but only inside F .

Problem 70. Complete this argument.

Problem 71. Show that the set of all numbers of all total func-

tions (in a Gödel numbering) is Π2-complete.

Problem 72. What is the lowest class of arithmetical hierarchy

that contains the set of numbers of all functions with infinite domain?

Is this set m-complete in this class?

Problem 73. Show that for any (not necessarily Gödel!) num-

bering the set T of all numbers of total functions is not enumerable.

Furthermore, T has no enumerable subset that includes at least one

number of each computable total function. (Hint : use the diagonal

construction.)

H. Rogers ([10], section 14.8) gives a lot of results of this kind for

many other properties of computable functions and enumerable sets.

For instance, for any m-complete set K, the set of all its numbers

is Π2-complete. (From here on, speaking about numbers we mean a

Gödel numbering of enumerable sets.) The set of numbers of all finite

sets is Σ2-complete. The set of numbers of the sets containing at least

one number of an infinite set is Σ3-complete. The set of numbers of

all decidable sets is Σ3-complete. The set of numbers of all the sets

with finite complements is Σ3-complete.

Problem 74. Prove these statements (or read the proofs in

Rogers [10]).

Problem 75. Consider the quantifier ∃∞x that means “there

exist infinitely many x such that. . . ”. Show that all properties of the

class Π2 (and only they) are representable in the form

∃∞x (a decidable property),

and that all properties of the class Σ3 (and only they) are repre-

sentable in the form

∃∞x∀y (a decidable property).

106 8. Arithmetical Hierarchy

(A similar statement holds for higher classes as well, see Theo-

rem XVIII in [10], section 14.8.)

Chapter 9

Turing Machines

1. Simple computational models:

What do we need them for?

Thus far, speaking about computations, we often referred to our ex-

perience with algorithms, programs, compilers, tracing, etc. This per-

mitted us to skip details of algorithms on the pretext that the reader

could easily restore them (or at least would take them for granted:

after all, writing Pascal compilers in Pascal is not so popular a hobby).

But in certain cases the commonsense approach does not suffice.

For instance, imagine that we want to prove that some problem is

algorithmically unsolvable, whereas the problem itself has nothing to

do with algorithms. In this chapter we consider one such problem,

the Thue, or word problem in semigroups. The undecidability of

such a problem is usually proved by reducing the Halting Problem to

it. To this end, we simulate an arbitrary algorithm in terms of our

problem (the example below will explain what we mean by that). In

so doing, we must use some precise definition of an algorithm, and it

is important to have as simple a definition (computational model) as

possible to simplify the simulation.

Let us sum up our plan. We start with a class of computing

devices with a relatively simple definition. They are known as Turing

machines and were introduced by Alan Turing. Then we will declare

107

108 9. Turing Machines

that any computable function can be computed by a Turing machine.

Finally, we will show that the Halting Problem for Turing machines

can be reduced to the word problem in semigroups.

Another reason why simple computational models (various kinds

of Turing machines, random access machines, and many other) are

important has to do with computation complexity theory, which fo-

cuses on time and space bounds for a computation. But this subject

is beyond the scope of our book.

2. Turing machines: the definition

A Turing machine has a tape infinite in both directions; the tape is

divided into squares, or cells. Each cell holds a character from a fixed

finite set, called the alphabet of the machine. One character is singled

out and is called the “blank symbol,” or “space.” Initially the tape

is assumed to be completely blank (i.e., filled with blank symbols)

except for a finite part with the input string.

To change characters on the tape, a Turing machine uses a

read/write head that can move along the tape. At each step, the

head is positioned over one of the cells. Depending on the character

read by the head and the internal state, the machine decides what

to do, i.e., what character to write in the current cell and where to

move next (to the left, to the right, or just to stay in place). The

state of the machine is also changeable; we assume that the machine

has finitely many states, or in other words, a finite internal memory.

(The tape can be viewed as external memory; it is potentially infi-

nite.) Finally, we must specify how the machine starts and when the

computation terminates.

The formal definition of a Turing machine includes the following

items:

• a finite set A (the alphabet, or tape alphabet); its elements

are called characters ;

• a designated character a0 ∈ A, called the blank symbol, or

space;

• a finite set S, whose elements are called states ;

2. Turing machines: the definition 109

• a designated state s0 ∈ S, called the initial state;

• a transition table, which determines the behavior of the ma-

chine as a function of its current state and current character

(see below);

• a subset F ⊂ S, whose elements are called terminal states :

when the machine attains any of these states, it stops.

The transition table assigns to each pair 〈current state, current

character〉 a triple 〈new state, new character, shift〉. The “shift”

here is one of the numbers −1 (left move), 0 (no move), or 1 (right

move). Thus the transition table is a function of the type S × A →

S × A× {−1, 0, 1} defined on the pairs in which the current state is

not terminal.

So how does this engine work? At each step, the situation is de-

scribed by the machine’s configuration which includes the tape con-

tents (formally, the tape contents is an arbitrary mapping Z → A),

the current position of the head (some integer), and the current state

of the machine (an element of S). A configuration is transformed into

the next one by natural rules: we look up the current state and tape

character in the table, read the corresponding entry, and change the

state of the machine and the character on the tape to new ones; then

we move the head to the left, to the right, or leave it in place (by

adding the “shift” to the “head position”). If the new state turns

out to be terminal, the process terminates. Otherwise, everything is

repeated again.

It remains to specify how the machine processes its input and

what is its output. We will assume that the tape alphabet, in addition

to the blank symbol, includes the characters 0 and 1 (and, possibly,

some other characters). The input and output of the machine are

finite zero-one sequences (bit strings). Initially, the input string is

written on the blank tape, and the head is placed on its first character.

Then the machine is put into the initial state and launched. If the

computation terminates, then the output is the 0-1-string starting

from the head position and delimited by any character distinct from 0

and 1.

110 9. Turing Machines

Thus any Turing machine defines a (partial) function on binary

strings. Each of there functions is said to be computable by a Turing

machine, or Turing-computable.

3. Turing machines: discussion

Our definition involves many insignificant details that could be

changed. For instance, the tape could be bounded on one side. Or

we could supply the machine with two tapes (and two heads). We

could allow the machine either write a new character or move, but

not both. We could confine the alphabet to, say, exactly 10 char-

acters. We could require that in the end the tape should contain

nothing except the output (all the remaining cells should be blank).

All these modifications, as well as many others, do not change the

class of Turing-computable functions.

However, some modifications can be quite dangerous. For in-

stance, if we forbid the machine to move left, the situation will change

dramatically: the tape will become practically useless, since we will

no longer be able to return to our old records.

How can one make difference between harmless and dangerous

modifications? Apparently, some experience in practical program-

ming for Turing machines will be helpful. To have some practice,

let us describe a machine that doubles the input string (makes a

string XX from the input string X).

If the machine sees the blank symbol at the first step (the input

string is blank), it immediately halts. If not, it memorizes the current

character and marks it, e.g., with a bar (in addition to the characters 0

and 1, the alphabet contains their “barred versions” 0 and 1). Then

the machine moves to the right until it reaches the first blank cell and

writes the copy of the memorized character in it. Then it goes back

to the mark. Once it arrives at the mark, it makes one step right,

memorizes the next character, and so on, until the entire string is

copied.

An experienced Turing machine programmer will readily discern

fragments of the transition table behind this informal description.

For instance, the words “it memorizes the character and moves right”

3. Turing machines: discussion 111

imply that states are divided into two groups: one for the situations in

which the character 0 is memorized, the other for 1, and the program

that pushes the head to the first blank cell on the right is encoded

inside each group.

But a more experienced programmer will see a bug in this de-

scription: we did not explain how the machine is supposed to learn

that the whole string has been copied and it is time to stop: it cannot

distinguish the copied characters from the original string. It is also

clear how to patch the program: we must write some other special

characters as the copies, say, 0̃ and 1̃; after the string is doubled, these

characters must be replaced by 0 and 1.

Problem 76. Show that the inversion function i that rewrites a

given string backwards (e.g., i(001) = 100) is Turing-computable.

Here is another example of informal reasoning: let us explain

why additional characters distinct from 0, 1, and the blank symbol

(space) are, in fact, unnecessary (i.e., the class of Turing-computable

functions does not change if we restrict ourselves to these three char-

acters). Consider a Turing machine M with a large alphabet of N

characters. Let us construct a new machine that will simulate M

using only the three “main” characters. Each cell on the tape of M

corresponds to a k-cell block on the tape of the new machine. The

block length k is chosen so as to be able to encode (by a string of k

zeros, ones, and spaces) any of the N initial characters. In particular,

the characters 0, 1, and space of the original alphabet will be encoded

as 0 followed by (k − 1) spaces, 1 followed by (k − 1) spaces, and a

group of k spaces, respectively.

To begin with, the neighboring characters of the input string

must be moved apart at a distance of k, which can be done without

additional characters. (The head goes to the rightmost input bit and

carries it to the right, k cells away; then it comes back to the next

bit and carries it together with the first one, and so on. The end of

the string can be identified as the bit followed by at least k spaces.)

Clearly, the procedure can be implemented using only a finite memory

(depending on k).

Once the spaces are inserted, we are ready to simulate any com-

putation performed by the machine M step by step, and this also

112 9. Turing Machines

requires only a finite memory (i.e., finitely many states), because we

must take into account only a finite neighborhood of the head of the

machine. In the end, the output string must be compressed back by

deleting spaces between bits.

What functions can be computed by Turing machines? According

to the Turing Thesis, any computable function is Turing-computable.

Naturally, the meaning of this statement depends on what is under-

stood by the term “computable function.” If it is understood in a

vague intuitive sense (as “a function that can be evaluated algorithmi-

cally,” that is, “by clear unambiguous rules” or something like that),

then, of course, a rigorous proof of the Turing Thesis is out of the

question. The only thing we can say is that the centuries-old prac-

tice of the mankind from Euclid to Knuth have never encountered

an example of an algorithm that could not be translated into a Tur-

ing machine program, and the like. However, below we give another

argument (not too convincing, though).

But if we think of the term “computable” in the Turing Thesis

as “computable by means of a Pascal program” and imagine for a

while that the syntax and semantics of Pascal programs are defined

well, then the Turing Thesis becomes a clear-cut statement that can

be proved or disproved. Of course, such a proof must be based on a

formal description of the syntax and semantics of Pascal, and so it

was never carried out. However, for simpler computational models,

proofs of this sort have actually been given. They are akin to proofs

of correctness of lengthy programs; few are the volunteers to write

such proofs, but even fewer are the volunteers to read them.

In conclusion, we present the above-mentioned informal argument

in favor of Turing machine computability of any computable function.

Suppose that you (or any other human being) can evaluate a certain

function f for any given argument. Let us describe a Turing machine

that simulates your work.

You will naturally use paper and pencil (with eraser), because the

amount of information you can keep in your head is limited. Let us

assume that you write on paper sheets of the same size: you have two

stacks of sheets on both sides of the current sheet; having completed

4. The word problem 113

your work with the current sheet, you can put it onto either stack

and take the next working sheet from the top of the other stack.

To be able to discern the letters on the sheet, you will write

them not too small, and so there are finitely many discernible states

of the sheet. Therefore, we can assume that a sheet always holds

only one character from an enormous, but finite, alphabet. Human

memory is also finite and can be represented by a finite set of states.

Furthermore, all your possible actions in any of your states and for

any character on the current sheet can be entered into a table saying

what you will write on the sheet after you process it, what your next

state will be, and how you will rearrange the sheets. This table can

be viewed as the transition table of our “human Turing machine”

with very large (but finite) alphabet and large (but finite) number of

internal states.

4. The word problem

We are going to use Turing machines to prove the unsolvability of a

certain algorithmic problem concerning words and their transforma-

tions.

Recall that an alphabet is a finite set whose elements are called

characters ; finite sequences of characters are called strings (or words).

Let us fix an alphabet A. An arbitrary expression of the

form P → Q, where P and Q are strings over the given alphabet (we

assume that the arrow symbol itself does not belong to A) is called

a (string-rewriting or transformation) rule (another term you may

encounter is “production”). Any (unordered) finite set of transfor-

mation rules is called a string-rewriting system or semi-Thue system.

So how do we use these rules in string rewriting? We say that a

rule P → Q is applicable to a string X if P is a substring of X , i.e.,

if X = RPS for some strings R and S. In this case we are allowed to

replace P by Q and get RQS. There can be several occurrences of P

in X ; then we can apply the same rule to the same string in a number

of ways. The system can contain several different rules applicable to

a given string; then we can apply any of them. After that, the same

or another rule of the system can be applied to the string again, and

so on.

114 9. Turing Machines

Let us repeat this definition more formally. We say that a

string X can be transformed into a string Y by the rules of a system I

if there exists a finite sequence of strings

X = Z0, Z1, Z2, . . . , Zk−1, Zk = Y

in which every string Zi is obtained from the preceding string Zi−1 by

one of the rules from I: there is a rule P → Q in I such that Zi−1 =

RPS and Zi = RQS for some strings R and S.

Thus, each set of rules I determines a certain set of pairs of

strings, namely, the set of pairs 〈X,Y 〉 such that X can be trans-

formed into Y by the rules from I.

Theorem 60. For any system I the corresponding set of pairs P (I)

is enumerable. There exists a system I such that the set P (I) is

undecidable.

We prove this theorem in the following section. The first state-

ment is easy: the set of all the chains Z0 → Z1 → . . .→ Zk complying

with the rules of the system is decidable and hence enumerable. Tak-

ing only the first and last strings from these chains, we obtain an

enumeration of the set P (I).

It remains to construct an example of undecidable string-

rewriting system I (i.e., a system with an undecidable set P (I)).

To this end, we will show that any Turing machine can be simulated

in terms of string-rewriting systems and then take the system corre-

sponding to a machine with undecidable Halting Problem.

5. Simulation of Turing machines

Theorem 61. Let M be a Turing machine whose tape alphabet in-

cludes the characters 0 and 1. Then we can construct a string-

rewriting system I (whose alphabet includes 0, 1, the brackets [,]

and, possibly, some other characters) with the following property: for

any two binary strings X and Y , the machine M run on the input X

yields the output Y if and only if the string [X] can be transformed

into the string Y by the rules of the system I.

Recall that the output of the machine is defined as the maximal

string of zeros and ones read to the right of the final head position.

5. Simulation of Turing machines 115

Notice also that the alphabet of the system I is assumed to contain,

together with the characters 0 and 1, additional characters [and]

and, possibly, other characters.

Problem 77. Show that the auxiliary characters [and] are

indispensable: the theorem will not hold if we replace the string [X]

in it by X . (Hint : if a string Y can be obtained from X by the

rules of the system, then the string PY Q can be obtained from the

string PXQ by the same rules.)

Proof. The idea of the simulation is as follows. We encode all con-

figurations of the Turing machine (configurations include the tape

contents, the head position, and the state) by strings in such a way

that every single operation of the machine corresponds to the appli-

cation of a certain rule from the system I.

Let us explain the encoding in more detail. The configurationblank symbols blank symbolsP Qs
is encoded by the string [P sQ]. Thus the alphabet A of our system

will consist of all tape characters of the Turing machine including the

blank symbol (denoted by “_”), all states of the machine (we assume

that the set of states is disjoint with the tape alphabet), and the

special characters [and]. Notice that the encoding is not unique

because the string P can have leading blanks and Q can have trailing

blanks. For instance, if a, b, and c are characters of the alphabet, and

s is a state, then the string [absc] encodes the configuration with

the machine’s state s, the tape contents ...__abc__..., and the

head positioned against c. The same configuration can be encoded,

e.g., by the strings [_absc] and [absc_]. A few other examples

of configuration encoding: the string [sabc] encodes the state s,

the tape ...__abc__..., and the head against a; the string [abcs],

corresponds to the tape contents ...__abc__... with the head to

the right of c; and the string [s] corresponds to the blank tape.

Now we must write the rules of the system simulating M . Our

system will have the following property: for each configuration C,

116 9. Turing Machines

encoded by a string E, there exists unique rule that can be applied

to E; this rule produces the string E′ that encodes the next con-

figuration C′ of M . Then each transformation by a single rule will

corresponds to a single step of the machine computation.

In fact, what we are going to do is to translate the transition

table of the Turing machine into the language of rules. For exam-

ple, suppose that the table contains the instruction “if the current

character is x and the current state is s, switch to the state s′, print

the character x′, and stay in place” (in other words, the transition

function takes 〈s, x〉 to 〈s′, x′, 0〉). Then we add to our system the

rule

sx→ s′x′.

The instruction “if the current character and state are x and s,

switch to the state s′, print the character x′, and move left” (the

transition from 〈s, x〉 to 〈s′, x′,−1〉) generates the rules

αsx→ s′αx′

for all characters α of the tape alphabet.

The transition from 〈s, x〉 to 〈s′, x′, 1〉 (right move) generates the

rule

sx→ x′s′.

But we also must take care of the situations in which the string P ,

or Q, or both (see the figure) are blank. Here we need these rules:

the transition generates the rule

from 〈s, x〉 to 〈s′, x′,−1〉 [sx→ [s′_x′

from 〈s, _〉 to 〈s′, x′, 0〉 s] → s′x′]

from 〈s, _〉 to 〈s′, x′,−1〉 αs] → s′αx′]

[s] → [s′_x′]

from 〈s, _〉 to 〈s′, x′, 1〉 s] → x′s′]

The special cases described in this table are the left move for the

blank string P and the blank symbol under the head with the blank

string Q.

Applying these rules one by one, we simulate the computation by

the Turing machine. Yet it remains to “preprocess the input,” and

5. Simulation of Turing machines 117

to “postprocess the output.” We will start with the second, more

complicated operation. It is intended to extract the result of the

computation from the code of the terminal configuration of M . If

the terminal state of M is s, then this code is of the form [PsQ].

That is, we must delete the string P and the opening bracket from

the code, single out the maximal 0-1-prefix of the string Q, and erase

the rest of this string. This can be done as follows.

We introduce an additional character ⊳, and the rules

s→ ⊳ (for each terminal state s),

α⊳→ ⊳ (for each character α 6= [),

[⊳→ ⊲.

By these rule, the character ⊳ will replace the terminal state symbol

s, then it will gobble all characters to the left of itself up to the

bracket, then swallow the bracket and at the same time flip into the

new character ⊲. This character obeys the following rules:

⊲ 0 → 0 ⊲,

⊲ 1 → 1 ⊲,

⊲ α→ ▽α

(the last rule is applicable to all characters α except 0 and 1). The

character ⊲ walks through the result of computation (the 0-1-string to

the right of itself) and turns into the character ▽ at the string’s end.

Finally, the third triangular character wipes out everything to the

right of itself and then annihilates together with the closing bracket.

The rules are these:

▽α→ ▽ (for all characters α 6=]),

▽] → Λ (Λ denotes the blank string)

These rules enable us to extract the output of the machine from

the code of the terminal configuration. Now it is safe to say that

the machine yields the output Y on the input X if and only if the

string Y can be obtained by the rules above from the string [s0X].

The only distinction from the statement of the theorem is in the new

character s0; but this is easily corrected: we add the new character [′,

the rule [→ [′s0, and replace [in all the other rules by [′. (This

118 9. Turing Machines

is just the above-mentioned “preprocessing” of the input.) Now, at

last, everything has been brought into exact correspondence with the

statement of the theorem, and we can declare the proof completed.

(Alas, an accurate implementation of an almost obvious idea often

requires explanations of numerous details.) �

Now we are ready to construct the undecidable string-rewriting

system (Theorem 60), i.e., a string-rewriting system I with an unde-

cidable set P (I).

Let us take an enumerable undecidable set K. Consider the Tur-

ing machine that halts and returns the blank string Λ on any input

from K, and does not halt on any input not in K. (Since K is enu-

merable set, the function defined on K that takes the value Λ on

any input in K is computable, and so, by the Turing Thesis, it is

Turing-computable).

Let us construct the string-rewriting system that simulates this

machine as described above. For this system, there is no algorithm

that could find out whether an arbitrary given string U can be trans-

formed into another given string V . Indeed, any such algorithm (ap-

plied to the strings [X] and Λ) would tell us whether the string X

belongs to the undecidable set K or not.

6. Thue systems

It turns out that the argument of the previous section can be slightly

strengthened. If each rule X → Y in a given set of rules is accompa-

nied by the inverse rule Y → X , then this set is called a Thue system

(hence the term semi-Thue systems for the sets of rules considered

above).

Theorem 62. There exists a Thue system such that no algorithm

can determine whether one string can be obtained from another by

the rules of this system.

Proof. The proof uses the above construction of the undecidable

string-rewriting system I (that simulates a Turing machine M with

undecidable halting problem) with minor modifications. First, the

rule ▽] → Λ is replaced by the rule ▽] → ⋆ (soon we will see what

6. Thue systems 119

this is done for). Second, for each rule from I, we add the inverse one.

The new system I ′ thus obtained simulates the Turing machine M as

well:

Lemma. A binary string Y is the output of the machine on the

input binary string X if and only if the string [X] can be transformed

into the string Y ⋆ by the rules of the system I ′.

Proof of the Lemma. If the inverse rules were not added, then I ′

would be no different from the system I constructed in the previous

section (except for the last step, where the star remains, but this

is obviously inessential). Therefore, it will suffice to show that if

[X] can be transformed into the string Y ⋆ by the I ′-rules, then this

transformation can be performed without applying the inverse rules,

only by the direct ones.

This is proved as follows. Let us call the following characters

“active”: the [character (which, as we know, is replaced at the very

first step), all states of the machine, ⊲, ⊳, ▽, and ⋆. Then each rule

of our system contains exactly one active character on either side of

the arrow. Hence all the strings in any sequence of direct and inverse

rules transforming [X] into Y ⋆ contain one active character each.

Now let us notice that there is at most one direct rule applicable

to a string with a single active character. (This can be verified by

inspecting all the rules; the reason is that the rules simulate a de-

terministic Turing machine in which each configuration is uniquely

defined by the previous one.) Therefore, we can delete all inverse

rules from the sequence that transforms [X] into Y ⋆.

Indeed, consider the last occurrence of an inverse rule in this

sequence of transformations. It cannot be the last in the sequence,

because inverse rules do not generate the character ⋆. Therefore, it

is followed by the application of a certain direct rule. But we already

have one applicable direct rule: this is the rule whose inversion is the

inverse rule in question. By uniqueness, we see that our inverse rule

is followed by its direct counterpart. Therefore, these rules cancel out

to yield a shorter sequence in which we can find the last inverse rule

again, etc. This completes the proof of the Lemma.

120 9. Turing Machines

The Lemma immediately implies the existence of undecidable

Thue systems, which proves the statement of the main theorem of

this section. �

7. Semigroups, generators, and relations

The property of Thue systems proved in the previous section (Theo-

rem 62) can be translated into algebraic language. (We are not going

to prove any essentially new statements; this is only a translation.)

Recall some relevant algebraic material.

A semigroup is an arbitrary nonempty set G with an associative

operation, which will be written as multiplication. All the semigroups

we consider also have a unit element 1 (such that 1×x = x×1 = x for

all x ∈ G). Such semigroups are usually called monoids, but we do

not use this term. If A is a subset of a semigroup G and any element

of G can be represented as the product of elements of A, then we say

that A generates G; elements of A are called generators. (Empty

product is also allowed; it is assumed to be equal to 1). A semigroup

is said to be finitely generated if it has a finite set of generators.

Let A = {a1, . . . , an} be an alphabet. Then the set of all strings

over the alphabet A with string concatenation (i.e., juxtaposition of

the two strings) as multiplication is a semigroup. The unit element

here is the blank string. Obviously, the characters a1, . . . , an are

generators of this semigroup. (It is more correct to speak about one-

character strings as generators.) This semigroup is called the free

semigroup with generators a1, . . . , an and denoted by F(a1, . . . , an).

Let G be an arbitrary semigroup, and let g1, . . . , gn be its arbi-

trary elements. Then there exists a unique homomorphism h of the

semigroup F(a1, . . . , an) to the semigroup G such that h(ai) = gi.

(A homomorphism of semigroups is a mapping that takes the prod-

uct of elements into the product of their images and the unit element

of one semigroup into that of the other.) It transforms any string of

the characters ai into the product of the corresponding elements gi;

the image of the blank string is the unit of G. Obviously, the image

of F(a1, . . . , an) under this homomorphism coincides with the entire

semigroup G if and only if the elements g1, . . . , gn are generators of G.

7. Semigroups, generators, and relations 121

Equations of the form X = Y , where X and Y are elements of the

free semigroup F(a1, . . . , an), that is, strings over the alphabet A, are

called relations. We say that a relationX = Y holds in a semigroupG

with marked elements g1, . . . , gn if the images of the strings X and Y

under the homomorphism described above, that is, the products of

the corresponding elements gi, are equal. Suppose that we have a

set of relations X1 = Y1, . . . , Xk = Yk. We will consider various

semigroups G with n marked elements in which all these relations

hold and the marked elements are generators. (For instance, one

of these semigroups is the semigroup consisting of a single element,

the unit.) As we will see soon, among these semigroups there is a

“maximal” one, with the smallest number of relations.

Let us introduce an equivalence relation on A-strings by set-

ting P ≡ Q if P can be transformed into Q in the Thue system with

the rules X1 ↔ Y1, . . . , Xk ↔ Yk. (In other words, we are allowed to

replace the substring Xi of any string by the substring Yi and vice

versa.) Obviously, this relation is indeed an equivalence. Notice that

if P ≡ Q, then for an arbitrary string R, PR ≡ QR and RP ≡ RQ

(we can add R on the right or on the left of each string in the se-

quence of transformations). Consider equivalence classes with respect

to this relation. We can define multiplication of classes by setting the

product of two classes containing strings P and Q to be the class

containing their concatenation PQ. The above-mentioned property

of equivalence guarantees that the product is well defined (the class

of the product does not depend on the choice of representatives in

the factors). Thus we obtain a semigroup G with the class of the

blank string as the unit element and the equivalence classes gi = [ai]

of one-character strings as generators. This semigroup is denoted by

F(a1, . . . , an)/(X1 = Y1, . . . , Xk = Yk)

and is called the semigroup with generators a1, . . . , ak and rela-

tions X1 = Y1, . . . , Xk = Yk. Clearly, the initial relations Xi = Yi

hold in the semigroup G. Also, we can readily see that any relation

in it is a corollary of the initial ones:

Theorem 63. If the relation X = Y holds in the semigroup

F(a1, . . . , an)/(X1 = Y1, . . . , Xk = Yk),

122 9. Turing Machines

then it holds in any semigroup G with marked elements g1, . . . , gn in

which all the relations Xi = Yi hold.

Proof. We have assigned to the strings X and Y their equivalence

classes with respect to the relation specified above so that Y can ob-

tained from X by the rules of the Thue system. But none of these

rules changes the value of a string in any semigroup satisfying the re-

lations Xi = Yi; so in any such semigroup the elements corresponding

to X and Y will be the same. �

Problem 78. What is the semigroup with two generators a1

and a2 and the relations a1a2 = Λ, a2a1 = Λ?

Problem 79. What is the semigroup with two generators a1

and a2 and the relation a1a2 = a2a1?

Problem 80. What is the semigroup with two generators a1

and a2 and the relations a1a1 = Λ, a2a2 = Λ, a1a2 = a2a1?

Problem 81. What is the semigroup with two generators a1

and a2 and the relations a1a1 = Λ, a2a2a2 = Λ, a1a2 = a2a2a1?

Now we are ready to reformulate the statement about undecidable

Thue systems in terms of semigroups.

Theorem 64. There exists a semigroup with finitely many gener-

ators and finitely many relations in which the problem of verifying

the equality of two strings of generators is algorithmically unsolvable

(there is no algorithm to determine whether or not two given strings

are equal in this semigroup).

Proof. By the definition, the equality of two strings of generators

means that one of them can be transformed into the other by the

rules of the Thue system; so this theorem is a reformulation of The-

orem 62 (p. 118). �

This theorem was proved around 1947 independently by Emil Post
and Andrei Markov (Jr.); soon after that Pyotr Novikov and later William
Boone strengthened it: they have constructed an example of a group (rather
than a semigroup!) with finitely many generators and relations for which
the problem of equality of two strings of generators is undecidable.

Chapter 10

Arithmeticity of
Computable Functions

1. Programs with a finite number of variables

We are going to show that the graph of any computable function

is an arithmetical set, that is, can be specified by an arithmetical

formula. It will be convenient to do this using a model other than

Turing machines. This model can conventionally be called “machines

with finitely many registers.”

A program for such a machine uses a finite number of variables

whose values are natural numbers. (These numbers can be arbitrary

large, so actually, the machine’s memory is unbounded.) A program

consists of numbered commands of one of the following forms each:

• a:=0

• a:=b

• a:=b+1

• a:=b-1

• goto 〈number〉

• if a=0 then goto 〈number1〉 else goto 〈number2〉

• stop

123

124 10. Arithmeticity of Computable Functions

(where a and b are some variables).

For the readers unfamiliar with the goto command, we explain

how the if command is executed: if the value of the variable a is equal

to zero, then the command to be executed next is the one with the

number specified after then; if a is not equal to zero, then we proceed

to the command with the number specified after else. The uncondi-

tional command goto always transfers control to the command with

the number it specifies.

Since we assume that the values of variables are natural numbers

(nonnegative integers), we set the difference 0−1 equal to 0 (however,

this is not that important; such an event could be regarded as error

condition).

By the stop command, the program halts.

As in the case of Turing machines, it will be useful to gain some

programming experience. Let us program the addition of two num-

bers. The program must put the sum of the numbers a and b in the

variable c. The corresponding Pascal program would look like this:

c:=a;

{invariant: answer=sum of the current values of c and b}

while b<>0 do begin

c:=c+1;

b:=b-1;

end;

The program for our machine is obtained by simulating the loop using

the goto statements:

1 c:=a

2 if b=0 then goto 6 else goto 3

3 c:=c+1

4 b:=b-1

5 goto 2

6 stop

Now it is clear how to write programs for subtraction, multipli-

cation (iterated addition), division, remainder (mod operation), expo-

nentiation, testing for primality, computing the nth prime number,

1. Programs with a finite number of variables 125

etc. In general, this language is more customary as compared to

Turing machines, and for this reason it is easier to believe that all

algorithms can be programmed in it.

The only thing it really lacks is arrays. But we can easily over-

ride this deficiency with arbitrary large numbers available, because

(as is common in the general theory of algorithms) we do not care

about the number of operations. Instead of a bit array, we can store

the number whose binary notation coincides with this array. Arrays

of numbers can be encoded by one number. For example, we can

store a sequence 〈a, b, c, d, e〉 as the number 2a3b5c7d11e. Then the

commands a[i]:=b and b:=a[i] will be replaced by small programs

involving, among others, the variables a, b, i. (In particular, these

programs will include the computation of the nth prime for a given n.)

It is easy to give the definition of computable functions in this

model. A program that evaluates a function f will have two vari-

ables x and y (and possibly, some others). To find f(n) for a given

number n, we put n in the variable x and initialize to zero all the

other variables. Then we run the program. If it does not halt, then

f is undefined at n. If the program halts, then the value f(n) will be

found in the variable y. A function is said to be computable (in this

model) if there exists a program that computes it.

As usual, many details in this definition are inessential. Some

commands could have been added (for instance, addition), other re-

moved (say, using a little trick we can do without copying).

Problem 82. Show that the class of computable functions will

remain the same if we remove the copy command (a:=b) from the

definition.

The following fact is even more surprising. (It will not seem that

strange, though, if we recall that a whole array can be squeezed into

one variable.)

Problem 83. Prove that the number of variables can be limited

by a fixed value, say, 100, without changing the class of computable

functions.

126 10. Arithmeticity of Computable Functions

2. Turing machines and programs

The computation model constructed above is not weaker than Turing

machines in the following sense:

Theorem 65. Any Turing-computable function can be computed by

a program with finitely many variables.

We should specify what we mean, because for a Turing machine

the initial data and the result are binary strings, whereas for a pro-

gram with finitely many variables they are natural numbers. We

identify strings Λ (blank string), 0, 1, 00, 01,. . . with the numbers

0, 1, 2, 3, 4. . . (to obtain a string from a number, we add 1 to the

number, then convert the sum into the binary notation and trim the

leading bit 1).

Proof. As before, we give only an approximate description of how

to construct a program with finitely many variables that computes

the same function as a given Turing machine. First of all we must

encode the configuration of the Turing machine by integers. This can

be done, for instance, by assigning four integers to each configuration:

the number of current state, the number of current character (the one

under the machine’s head), the code of the tape contents to the left of

the head, and the code of the tape contents to the right of the head.

To choose the most suitable way of encoding the two halves of

the tape contents, we notice that the Turing machine treats them as

stacks. (A stack is a data structure that resembles a pile of paper

sheets. You can put a sheet on its top, get the top sheet, and check

if there are other sheets.) Indeed, the right shift of the head can be

thought of as moving the top element of the right-hand stack to the

left-hand stack; the left shift works the other way round. Stacks are

easily simulated by numbers: for instance, if the characters stored

in a stack are 0 and 1, then pushing 0 or 1 is represented by the

operation x 7→ 2x or x 7→ 2x+1, respectively, while removing the top

element corresponds to the division by 2. In other words, we think

of the binary notation of a number as a stack with the top element

at its right end, in the lowest bit. In the same way, we can use the

2. Turing machines and programs 127

k-nary notation to represent a stack with k possible characters in each

position.

Now one can represent the basic loop of the Turing machine as a

program that changes the four above-mentioned numbers (the current

character, state, left stack, and right stack). However, a few things

should be taken care of.

First, stacks are finite, whereas the tape is infinite; so let us agree

that once the stack is emptied, we automatically put the blank symbol

in it. So the infinite blank tails of the tape will reside in the stacks

virtually.

Second, recall that we have agreed to identify binary strings

(used as the inputs of the Turing machine) with their codes stored

in the variables of our program). Therefore, after receiving the code

of the input string, we must disassemble it into characters and put

these characters one after another in the stack (the program and the

machine use different number systems, so we cannot simply rewrite

strings as they are). Similar problems arise when the output (a part

of the right-hand stack contents) is converted into the corresponding

number, but all of them can be easily resolved, and we will skip the

details. �

The converse statement is also true:

Theorem 66. Any function computable by a program with finitely

many variables is Turing machine computable.

Proof. We must simulate the computation carried out by a program

by means of a Turing machine. Suppose that the values of variables

are written on the tape (in the binary notation) and are separated by

a special character. Then the machine can find any variable moving

from the beginning of the tape and counting separating characters,

process this variable, and then come back to the beginning. (It is not

necessary to keep the number of the executed command on the tape,

since there are only finitely many commands, and the machine can

store the current command number as part of its state.) The add-

one and subtract-one operations are easily performed in the binary

notation (when moving from right to left). We should only take into

128 10. Arithmeticity of Computable Functions

account that the number length may change after these operations.

Addition may increase the length; then we must clear an extra cell to

the left of the number by shifting all the characters one position to the

right of the head. (After subtraction, the characters will possibly have

to be shifted to the left.) Clearly, this can also be easily performed

by our Turing machine.

If numbers are written in binary notation, then the input–output

recoding boils down to filling with zeros the other variables before the

computation starts and landing the head on the terminal tape cell in

the end). �

3. Computable function are arithmetical

Now we will prove that functions computable by programs with

finitely many variables are arithmetical, that is, their graphs are

arithmetical sets. In this section we assume again that the reader

is familiar with basic logical notation. We will consider arithmeti-

cal formulas containing nonnegative-integer variables, the equality

relation, the constants 0 and 1, operations of addition and multipli-

cation, the logical connectives (AND, OR, NOT), and the quantifiers

“for all” and “there exists.” Formally, we will deal with the first-

order language that contains one binary predicate symbol (equality),

two constants (0 and 1), and two binary functional symbols (addition

and multiplication). By saying that such a formula is true, we mean

that it is true in the standard interpretation over the set N of natural

numbers.

A set A ⊂ Nk is said to be arithmetical if there exists an arith-

metical formula α with parameters x1, . . . , xk that represents it in the

following sense: 〈n1, . . . , nk〉 ∈ A if and only if the formula α is true

for the parameter values x1 = n1,. . . , xk = nk.

Theorem 67. The graph of any function computable by a program

with finitely many variables is an arithmetical set.

Proof. Let f : N → N be the function computed by a program P

with finitely many variables k1, . . . , kN . We will assume that the

input and output variables are k1 and k2, respectively. We want

to write a formula with two variables x and y that would be true

3. Computable function are arithmetical 129

if and only if y = f(x). A state of a program with finitely many

variables is completely specified by the values of variables and the

current command number (the corresponding register in processors

is often called the program counter). It can be readily seen that the

correspondence between two consecutive states of a program with

finitely many variables is arithmetical. That is, one can write an

arithmetical formula

Step(s1, . . . , sN , p, s
′
1, . . . , s

′
N , p

′),

with 2N+2 variables which says that one step of the program P takes

it from the state with variables equal to s1, . . . , sN and the program

counter equal to p into the state with variables equal to s′1, . . . , s
′
n and

the program counter equal to p′. (We can and will assume that the

value p′ = 0 indicates the program halt.) This formula is obtained as

the conjunction of individual statements corresponding to each line of

the program. For instance, suppose that the 7th line of the program

is of the form k2:=k3. Then the conjunction will include a term of

the form

(p = 7) ⇒ ((s′1 = s1) ∧ (s′2 = s3) ∧ (s′3 = s3) ∧ . . .

. . . ∧ (s′N = sN) ∧ (p′ = 8)).

A string with a conditional branch like

3 if k5=0 then goto 17 else goto 33

will be represented in the formula by two conjunctive terms (for each

of the two cases of transfer):

((p = 3) ∧ (s5 = 0))⇒((s′1 = s1) ∧ . . . ∧ (s′N = sN) ∧ (p′ = 17))

and

((p = 3) ∧ (s5 6= 0))⇒((s′1 = s1) ∧ . . . ∧ (s′N = sN) ∧ (p′ = 33)).

Also, we must add the halting condition: for p = 0 all the variables

preserve their values on the next step, and the program counter re-

mains equal to zero (p′ = 0).

Thus it is not difficult to prove that a single program step is

arithmetical. But a computation is a sequence of steps that starts at

the initial state, ends at a state satisfying the halting condition (with

zero program counter), and such that each step in it is correct. So we

130 10. Arithmeticity of Computable Functions

still have to answer the main question: how to write a formula that

would express the existence of such a sequence? The difficulty lies in

that we have to write something like a variable number of existential

quantifiers, or the quantifier “there exists a finite sequence of natural

numbers.”

This is done by means of the technique traditionally called Gödel’s

β-function. This is what we mean:

Lemma 1. For any k, there exists an arbitrary large positive

integer b such that the first k terms of the sequence b+ 1, 2b+ 1, 3b+

1, . . . are pairwise coprime.

Proof. Any common prime divisor p of two terms of the sequence

is a divisor of their difference, i.e., the number lb for 0 < l < k;

taking b to be a multiple of k!, we ensure that p divides the number b,

whereas all terms of our sequence are coprime with b. This completes

the proof of the lemma.

Lemma 2. For any sequence x0, x1, . . . , xn of natural numbers,

one can find numbers a and b such that xi is the remainder of a when

divided by b(i+ 1) + 1.

Proof. By the previous lemma, we can assume that the divisors

b(i+ 1) + 1 are coprime (and arbitrary large). So it remains to apply

the Chinese Remainder Theorem, which states that if positive integers

d1, . . . , dk are coprime, then we can choose an integer u that yields

any given set of remainders upon division by the numbers d1, . . . , dk.

Indeed, there are d1d2 . . . dk such tuples (since the remainders

upon division by di are the numbers from 0 to di−1). All the numbers

u = 0, 1, . . . , d1d2 . . . dk − 1 yield different sets of remainders (if two

of these numbers, u′ and u′′, yield the same tuple of remainders, then

their difference is divisible by all the numbers di, which is impossible

because the numbers di are coprime, and the difference is less than

their product). Now recall that there are equally many numbers u

and tuples of remainders; hence any tuple can be represented as the

remainders of one of the numbers u.

This completes the proof of Lemma 2.

Lemma 2 shows that a sequence of an arbitrary length can be

encoded by three numbers a, b, and n. Thus, in a certain sense, we

3. Computable function are arithmetical 131

can replace the “formula”

∃〈x0, . . . , xn〉(∀i ≤ n)[. . . xi . . .]

(which actually is not a valid formula, since it contains the quantifier

over finite sequences) by the formula

∃a∃b ∃n (∀i ≤ n)[. . . (the remainder of a when divided by b(i + 1) + 1) . . .].

We will write the remainder of a upon division by b(i + 1) + 1

as β(a, b, i) (hence the term “beta-function”).

Returning to the program P with finitely many vari-

ables k1, . . . , kN and the function f it computes, we can write any

statement of the form f(x) = y as follows: there exist a number n of

steps and numbers a1, b1, a2, b2, . . . , aN , bN , a, b such that

• β(a1, b1, 0), . . . , β(aN , bN , 0) are the correct initial values of

variables (the first one being equal to x, all the rest to 0);

β(a, b, 0) is the correct initial value of the program counter,

i.e., β(a, b, 0) = 1.

• for any i from 0 to n− 1 we have

Step(β(a1, b1, i), . . . , β(aN , bN , i), β(a, b, i),

β(a1, b1, i+ 1), . . . , β(aN , bN , i+ 1), β(a, b, i+ 1)),

that is, each transition complies with the program;

• β(a2, b2, n) = y (the value of the output variable k2 at the

end of the computation is equal to y) and β(a, b, n) = 0 (the

value of the program counter at the end of the computation

is equal to 0, which corresponds to the program halt by our

agreement).

This completes the proof of the arithmeticity of functions computable

by machines with finitely many variables. �

Recalling Theorem 65, we conclude that any Turing-computable

function is arithmetical. Using the Turing Thesis, we conclude that

the graph of any computable function is an arithmetical set.

132 10. Arithmeticity of Computable Functions

4. Tarski and Gödel’s Theorems

Thus, the graphs of computable functions are arithmetical. It fol-

lows immediately that decidable and enumerable sets are arithmeti-

cal as well. This justifies the name “arithmetical hierarchy” for the

classes Σn and Πn:

Theorem 68. Any set that belongs to one of the classes Σn or Πn

(for any n) is arithmetical (i.e., the membership in this set can be

expressed by an arithmetical formula).

Proof. After we have proved that computable functions are arith-

metical, everything is clear: sets of the classes Σn and Πn are obtained

by quantification of decidable predicates, and decidable predicate are

arithmetical. �

The converse statement is also true:

Theorem 69. Any arithmetical set belongs to the class Σn or Πn for

a certain n (and of course, for all greater values).

Proof. Let us convert the formula that defines an arithmetical set to

the prenex normal form (by moving all the quantifiers to the left of

the formula). Clearly, the part without quantifiers defines a decidable

set; therefore, the initial set belongs to one of the classes Σn or Πn.

Instead of using the prenex normal form, we could apply induc-

tion on the formula length and refer to the fact that the intersection,

union, and complement, as well as projection, do not take us out-

side the arithmetical hierarchy (the union of all the classes Σn and

Πn). �

Now let us consider the set T consisting of all true arithmetical

formulas without parameters (to be more exact, the set of all their

numbers in a certain computable numbering of all formulas.)

Theorem 70. Any arithmetical set is m-reducible to the set T .

Proof. This statement is almost obvious. Let A be an arbitrary

arithmetical set. Let α(x) be a unary formula that expresses the

membership in A. This means that α(n) is true if and only if n

4. Tarski and Gödel’s Theorems 133

belongs to A. Then the computable function n 7→ (the number of

the formula obtained by substituting the constant n into α(x)) m-re-

duces A to T . �

Theorem 71. The set T is not arithmetical.

Proof. The background we have built up makes this statement obvi-

ous: if the set T were arithmetical, then it would lie in one of the Σn

classes. Then, since any arithmetical set reduces to T , by Theorem 53,

all arithmetical sets would belong to this class. But we know that sets

of higher classes of the hierarchy are also arithmetical, though they

do not belong all to Σn. �

This fact is called Tarski’s theorem. It can be read as follows:

“the set of arithmetical truths is not arithmetical”. Or, “the notion

of arithmetical truth cannot be defined in arithmetical terms”.

Theorem 72. The set T of arithmetical truths is not enumerable.

Proof. Indeed, any enumerable set is arithmetical. �

This statement is called Gödel’s Incompleteness Theorem. It can

be reformulated as follows: if a formal system generating arithmetical

formulas (i.e., an algorithm that enumerates a certain set of such

formulas) is sound (i.e., it cannot generate a false formula), then it

is incomplete (it cannot generate a certain true formula). (And any

complete system is not sound.)

Problem 84. Show that for any N the set of all true closed

arithmetical formulas with at most N quantifiers is arithmetical.

Problem 85. Formulate and prove a similar statement for for-

mulas of bounded quantifier depth (the quantifier depth is the number

of nested quantifiers; it is equal to the greatest length of a chain of

quantifiers each of which belongs to the domain of its left neighbor),

and for formulas with a bounded number of quantifier changes in the

prenex normal form.

134 10. Arithmeticity of Computable Functions

5. Direct proof of Tarski and Gödel’s Theorems

We have obtained Tarski and Gödel’s Theorems as simple conse-

quences of definitions and facts related to the theory of algorithms.

This allows us to understand better the place of these theorems in the

general context of mathematical logic and the theory of algorithms.

On the other hand, it would be instructive to convert these arguments

into more direct proofs. Such proofs are given below.

We start to prove Tarski’s theorem by assuming that the set T

of numbers of all true arithmetical closed (parameter-free) formulas

is arithmetical. Let τ(x) be the corresponding formula. Also, let us

enumerate all formulas with one parameter x, and let Fn(x) be the

nth formula in this numbering. Consider the formula with a single

parameter x stating that the substitution of the constant x into the

xth formula is false. This formula can be written as follows:

∃z(¬τ(z) ∧ Subst(z, x, x)),

where Subst(p, q, r) is the three-parameter formula that expresses the

property “in a numbering of all parameter-free formulas, p is the

number of the formula obtained by substituting the constant r for

the parameter into the qth one-parameter formula .” The property

in quotes describes the graph of a certain computable function (cor-

responding to simple syntactic operations and the conversion of one

numbering to the other); therefore, it can be expressed by a formula.

Thus we have written a certain formula with a single parameter x.

Suppose that its number is N . We substitute this number N for the

parameter to obtain a parameter-free formula FN (N). It follows from

the construction that this formula is true if and only if the result of the

substitution of N into the Nth formula (that is, the formula FN (N)

itself!) is false.

The contradiction thus obtained completes the direct proof of

Tarski’s theorem. In this proof, we used the fact that one particular

function (rather than any computable function) was arithmetically

expressible. If you have enough patience, the arithmetical formula

for this function can actually be written. This would make the proof

virtually “tangible.”

5. Direct proof of Tarski and Gödel’s Theorems 135

Now we will present the proof of Gödel’s Theorem in the same

style. As we have already said, a formal system is a mechanism (al-

gorithm) that can generate certain formulas of the language of arith-

metic (for simplicity we assume that only parameter-free formulas are

generated). This yields a certain enumerable set, usually specified as

the projection of a decidable set. Namely, a notion of proof is intro-

duced. Proofs are strings over a certain alphabet. The set of proofs is

decidable, that is, we can algorithmically distinguish between proofs

and strings that are not proofs. In addition, we have the (decidable)

property of a pair of strings x and y that declares x to be a proof of

the formula y. Let us enumerate all proofs and formulas and write

arithmetical expressions for the decidable properties described above.

Thus we arrive at the formula Proof(x, y) which is true whenever x is

a number of the proof of the yth formula.

Now let us write a formula with one parameter x that says that

the result of the substitution of x for the parameter into the xth

one-parameter formula has no proof:

¬∃z∃p[Subst(z, x, x) ∧ Proof(p, z)]

Suppose that in the numbering of one-parameter formulas this for-

mula has a number N . Let us substitute N for the parameter. We

obtain a formula ϕ without parameters. By the construction, the

formula ϕ is true whenever the result of the substitution of N into

the Nth one-parameter formula is unprovable. But this result is the

formula ϕ itself, so it is true if and only if it is unprovable. It follows

that our formal system either allows us to prove the false formula ϕ

(if ϕ is false; in this case we say that the formal system is not sound)

or does not allow us to prove the true formula ϕ (in this case the

formal system is said to be incomplete).

Notice that both proofs we considered resemble the construction

of a fixed point as well as the classical Liar’s Paradox:

the statement in the frame is false.

136 10. Arithmeticity of Computable Functions

6. Arithmetical hierarchy and the number of

quantifier alternations

We have established that the class of arithmetical sets coincides with

the union of all the classes Σn and Πn. Let us consider the relationship

between the index of a class and the number of quantifier alternations

in arithmetical formulas.

To do this, we must explain precisely what formulas will be con-

sidered as quantifier-free. If addition and multiplication are repre-

sented by predicate symbols, then quantifier-free formulas will be

logical combinations of the formulas xi + xj = xk and xi × xj = xk;

here we need a quantifier even to write the formula a+ b + c = d: it

is written as ∃u((a + b = u) ∧ (u + c = d)). However, addition and

multiplication are usually thought of as functional symbols, which

enables us to use arbitrary polynomials with integer coefficients in

quantifier-free formulas. From this point of view, quantifier-free for-

mulas are logical combinations of expressions of the form P = Q,

where P and Q are arbitrary polynomials with integer coefficients.

Then the following theorem holds.

Theorem 73. A set A ⊂ N belongs to the class Σn (n ≥ 1) if and only

if the membership in this set is expressed by a formula in the prenex

normal form that starts with the existential quantifier and contains

n groups of similar quantifiers.

(Passing to the complements, we see that a set belongs to the

class Πn if and only if the prenex normal form of the formula for

the membership in this set involves n groups of similar quantifiers

starting with the universal quantifier.)

Proof. We will prove this theorem only partly. First, if a set is given

by a formula in the prenex normal form with n groups of quantifiers,

then it belongs to the class Σn (or Πn, depending on which quantifier

is the first): recall that the computable bijection between Nk and N

allows us to replace a group of k consecutive similar quantifiers by

one quantifier.

The proof of the converse statement is more difficult. The main

problem is the case n = 1. In 1970 Yu. V. Matiyasevich, solving the

6. Arithmetical hierarchy and alternation of quantifiers 137

10th Hilbert Problem, showed that any enumerable set is the set of

nonnegative values of a polynomial of several variables (that range

over N) with integer coefficients for natural values of the variables.

This property can obviously be written in the form of a formula with

a quantifier prefix of existential quantifiers. Thus the case of n = 1

was explored completely.

Matiyasevich’s result makes the proof obvious, since each subse-

quent class is obtained from the previous one by an additional quan-

tifier.

However, let us try to avoid (rather complicated) Matiyasevich’s

construction and see what can be extracted from the above proof of

the fact that computable functions are arithmetical. Suppose that

we are given an arbitrary enumerable set. It can be viewed as the

domain of a computable function all of whose values are zero. Then

we can apply the procedure described above. It yields a formula that

starts with existential quantifiers (‘there exist numbers encoding the

sequence of values of each variable by means of Gödel’s β-function”).

Then follows the universal quantifier (over the program step number:

“at any step the transition must comply with the program”). Next is

a formula that would be quantifier-free if not for the mod-operations

it may contain. But the mod-operation can be expressed by universal

quantifiers: a statement of the form

∀i [. . . the remainder of P when divided by Q . . .],

where P and Q are some expressions with variables (from the defini-

tion of β-encoding), by the definition of the remainder can be rewrit-

ten as

∀i ∀u ∀v [(P = uQ+ v) ∧ (v < Q)] ⇒ [. . . v . . .].

Therefore, we can represent any enumerable set in the form of a

∃ . . . ∃∀ . . .∀-formula. This yields a representation of any Σn-set in the

prenex normal form with n+1 groups of quantifiers starting with ex-

istential quantifiers, and of any Πn-set by a formula with n+1 groups

of quantifiers starting with a universal quantifier. �

So we get a weaker result (with n + 1 instead of n) without re-

ferring to the solution of the 10th Hilbert problem.

Chapter 11

Recursive Functions

1. Primitive recursive functions

Programs with finitely many variables resembled the assembler lan-

guage; recursive functions, considered in this chapter, are more like

functional programming, where some functions are defined in terms

of other. We will consider functions with natural arguments and val-

ues. In general, these functions are partial, so by an n-ary function

we mean a function defined on a subset of Nn with values in N.

Suppose that we have a k-ary function f and a k-tuple of n-ary

functions g1, . . . , gk. Then we can form one n-ary function

〈x1, . . . , xn〉 7→ f(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)).

We say that this function is obtained from the functions f

and g1, . . . , gk by substitution.

Another operation, called recursion, or primitive recursion, is ap-

plied to a k-ary function f and (k + 2)-ary function g. It yields the

(k + 1)-ary function h defined as follows:

h(x1, . . . , xk, 0) = f(x1, . . . , xk);

h(x1, . . . , xk, y + 1) = g(x1, . . . , xk, y, h(x1, . . . , xk, y)).

139

140 11. Recursive Functions

Each value in the sequence h(x1, . . . , xn, 0), h(x1, . . . , xn, 1), . . . is de-

fined in terms of the previous one; therefore, if one of these values is

undefined, then all subsequent values are undefined either.

For uniformity, constants are considered as 0-ary functions (func-

tions without arguments); this will allow us to define unary functions

recursively.

We say that a function is primitive recursive if it can be obtained

using substitution and recursion from the following base functions:

the constant 0, the “successor” function s : x 7→ x+1, and the family

of projection functions: for each k, this family consists of k k-ary

functions πi
k(x1, . . . , xk) = xi.

Projection functions enable us to perform “nonhomogeneous”

substitution. For instance, we can construct the function 〈x, y〉 7→

f(g(x), h(y, x, y), x) from functions f and h combining them with

projections: first we obtain the function 〈x, y〉 7→ g(x) (by substi-

tuting π1
2 into g), then 〈x, y〉 7→ h(y, x, y) (by substituting π2

2 , π
1
2 , π

2
2

into h), and then the two functions thus obtained together with the

function π1
2 are substituted into f .

Substituting the constant 0 into the add-one function yields the

constant (0-ary) function 1. After that we can obtain the con-

stants 2, 3, etc.

2. Examples of primitive recursive functions

Again, it will be helpful to acquire some programming experience, as

we did with other computational models.

Addition. The function 〈x, y〉 7→ sum(x, y) = x+ y is obtained by

recursion:

sum(x, 0) = x;

sum(x, y + 1) = sum(x, y) + 1.

Of course, the right-hand side of the second equation must be

represented in terms of substitution. Formally, here the function

h(x, y, z) from the definition of recursion must be set equal to s(z),

where s is the successor function.

3. Primitive recursive sets 141

Multiplication. The function 〈x, y〉 7→ prod(x, y) = xy is obtained

by recursion (that involves addition):

prod(x, 0) = 0;

prod(x, y + 1) = prod(x, y) + x.

Likewise, we can pass from multiplication to exponentiation.

Truncated subtraction. We consider “truncated subtraction” x −̇

y = x − y for x ≥ y and x −̇ y = 0 for x < y, because we deal only

with natural (nonnegative integer) numbers. The unary function of

truncated subtraction of 1 is defined recursively:

0 −̇ 1 = 0;

(y + 1) −̇ 1 = y.

(This is only a formal recursion, since the previous value is not used.)

Then the truncated subtraction for arbitrary arguments can be de-

fined as follows:

x −̇ 0 = x;

x −̇ (y + 1) = (x −̇ y) −̇ 1.

3. Primitive recursive sets

A set is called primitive recursive if its characteristic function is prim-

itive recursive. (Or, equivalently, if it is the set of zeros of a primitive

recursive function. The equivalence of the two versions of the defini-

tion follows by substitution into the function x 7→ 1 −̇ x.)

The intersection and union of primitive recursive sets are primi-

tive recursive (we can add or multiply the two functions whose sets

of zeros are the sets in question). The complement of a primitive

recursive set is primitive recursive. Identifying sets and properties,

we can say that conjunctions, disjunctions, and negations of primitive

recursive properties are primitive recursive.

The properties x = y and x 6= y are primitive recursive (x = y if

and only if (x −̇ y) + (y −̇ x) = 0).

The function f(x) defined by the relation

f(x) = [if R(x) then g(x) else h(x) fi],

142 11. Recursive Functions

is primitive recursive if such are the functions g and h and the prop-

erty R. Indeed, f(x) can be written as r(x)g(x) + (1 −̇ r(x))h(x),

where r is the characteristic function of the property R.

Now we can write a formula that adds one modulo n to a number

less than n:

x+ 1 mod n = [if x+ 1 = n then 0 else x+ 1 fi]

After that the function x mod n (the remainder upon division by n)

can be defined recursively:

0 mod n = 0;

(x+ 1) mod n = (x mod n) + 1 mod n.

Let us show that bounded quantifiers applied to primitively recur-

sive properties (sets) yield primitive recursive properties again. This

means, for instance, that if a property R(x, y) is primitive recursive,

then the properties

S(x, z) = (∃y ≤ z)R(x, y)

and

T (y, z) = (∀y ≤ z)R(x, y)

are primitive recursive as well. To prove this, we notice that in terms

of functions, a bounded quantifier can be replaced by multiplication

or summation: if a property R(x, y) is equivalent to r(x, y) = 0, then

S(x, z) ⇔

[

z
∏

y=0

r(x, y) = 0

]

.

And the product here can be defined recursively:

0
∏

y=0

r(x, y) = r(x, 0);

t+1
∏

y=0

r(x, y) =

[

t
∏

y=0

r(x, y)

]

· r(x, t + 1);

summation is handled similarly.

Now it is readily seen that the property “to be a prime number”

is primitive recursive (any smaller number either is zero or 1 or is not

a divisor).

4. Other forms of recursion 143

We proceed to show that if the graph of a function f is primitive

recursive and the values of f are bounded from above by a primitive

recursive function g, then the function f itself is primitive recursive.

Indeed, if r is the characteristic function of the graph, i.e., r(x, y) = 1

for y = f(x) and r(x, y) = 0 for y 6= f(x) (for simplicity we consider

only the case of unary functions), then

f(x) =

∞
∑

i=0

y · r(x, y);

in fact, the summation is bounded from above by the value g(x). It

remains to use the primitive recursiveness of a bounded sum.

Hence it is not difficult to derive that if a function g and a prop-

erty R(x, y) are primitive recursive, then the function f defined by

the following formula is also primitive recursive:

x 7→ f(x) = the smallest y ≤ g(x) such that R(x, y)

(if there is no such y for a given x, we set the value of f equal to,

say, g(x) + 1). Indeed, the graph of the function f can be specified

using bounded quantifiers.

This function-building operation is called bounded minimization

as distinct from unbounded minimization, in which no specific bound-

ary g(x) is known in advance. As we will see, the function created in

the second case need not be primitive recursive.

Bounded minimization can be used to show that the function x 7→

(the smallest prime number greater than x) is primitive recursive

(Euclid’s proof of the infinity of the set of prime numbers yields the

boundary function g(x) = x! + 1, and the factorial is primitive recur-

sive). Now it is easy to defined recursively the function n 7→ (the nth

prime).

4. Other forms of recursion

Thus far, by “recursive definition of a function” we meant the def-

initions that employed primitive recursion. However, this term can

be understood in a wider sense, as any definition of a function that

relates its value at a given point with its other values. As we will

see in the discussion of Ackermann’s function below, some of these

144 11. Recursive Functions

schemes of recursive definitions lead us beyond the class of primitive

recursive functions. On the other hand, some of them can be reduced

to the scheme considered above.

We will give two examples of the latter: simultaneous definition

of several functions and recursion that involves arbitrary numbers

smaller than the value of the variable.

Joint recursion. Let f and g be two unary functions specified by

the relations

f(0) = a,

g(0) = b,

f(n+ 1) = F (n, f(n), g(n)),

g(n+ 1) = G(n, f(n), g(n)),

where a and b are arbitrary numbers and F and G are primitive

recursive ternary functions. Then the functions f and g are primitive

recursive.

To prove this we will need a primitive recursive numbering of

pairs, i.e., a function 〈x, y〉 → [x, y] (where the brackets denote the

number of a pair) which is primitive recursive along with its two in-

verse functions p1 and p2 (that return the first and second components

of a pair given its number). Using this numbering, we can recursively

define the function h(n) = [f(n), g(n)]:

h(0) =[a, b],

h(n+ 1) =[F (n, p1(h(n)), p2(h(n))),

G(n, p1(h(n)), p2(h(n)))].

If h is a primitive recursive function, then the functions f and g (ob-

tained by substituting of the function h into p1 and p2) are primitive

recursive as well.

It remains to construct a primitive recursive numbering of pairs.

The desired bijection N×N → N is illustrated by the following table:

6

3 7

1 4 8

0 2 5 9

4. Other forms of recursion 145

Problem 86. Show that this bijection can be specified by a qua-

dratic polynomial of two variables (Hint : this polynomial is uniquely

determined by the values shown in the table).

The primitive recursiveness of the inverse mappings p1 and p2 is

established by bounded minimization, since p1(n) is the minimal x ≤

n such that there exists a y ≤ n with [x, y] = n.

A less symmetric numbering of pairs is given by the for-

mula [a, b] = (2a + 1)2b. We may also notice that it is not neces-

sary for each nonnegative integer to be the number of some pair; so

another suitable numbering is [a, b] = 2a3b.

A similar construction is applicable in the case of more than two

simultaneously defined functions and for functions of many variables.

Using previous values. The next statement shows that a recursive

definition can involve not only the value at the immediately preceding

point, but any previous values as well.

Theorem 74. Suppose that g is a primitive recursive unary function

such that g(x) < x for x > 0, F is a primitive recursive binary

function, c is an arbitrary constant. Then the function h defined by

the relations

h(0) = c,

h(x) = F (x, h(g(x))) for x > 0

is primitive recursive.

Proof. We will prove this theorem using the following numbering of

finite sequences of natural numbers: the empty sequence is given the

number 1; the one-element sequence 〈a〉 is given the number 2a+1; the

sequence 〈a, b〉 is given the number 2a+13b+1; the sequence 〈a, b, c〉 is

given the number 2a+13b+15c+1, and so on (the bases of the pow-

ers are successive primes). Let us denote the number of the se-

quence 〈a, b, . . . , z〉 by [a, b, . . . , z]. In a certain sense, this numbering

is primitive recursive. Of course, this statement should not be under-

stood literally, because this numbering is a “function with a variable

number of arguments.” But many related functions are primitive

recursive. In particular, such are the functions

• Length(x) = the length of the sequence number x;

146 11. Recursive Functions

• Select(i, x) = the ith term of the sequence number x;

• Append(x, y) = the number of the sequence obtained by

appending y to the sequence number x.

All these functions (as well as many similar ones) can be constructed

using of various operations with prime numbers and factors, and these

operations have already been considered.

Now it will suffice to show that the function

x 7→ H(x) = [h(0), h(1), . . . , h(x)]

is primitive recursive. We have H(0) = [c] and

H(k + 1) = Append(H(k), F (k + 1, Select(g(k + 1), H(k)))).

�

A similar approach works for the recursive definitions that use

several previous values.

5. Turing machines and primitive recursive

functions

We have considered various technique for building primitive recursive

functions. However, it is not quite clear yet how wide is this class.

Now we will show that it includes all functions that are computable

in a reasonable (not extremely long) time.

Theorem 75. Any function computable by a Turing machine whose

computation time is bounded by a primitive recursive function of the

input length, is primitive recursive.

Proof. By our definition of a Turing machine, its input and output

are strings of zeros and ones. Since the arguments and values of prim-

itive recursive functions are numbers, the theorem will make sense

only if we agree to identify numbers and strings. As we have already

said, a number n is identified with the string obtained by erasing the

leading bit 1 from the binary notation of the number n+ 1.

To simulate a Turing machine by a suitable program, we en-

coded the machine configurations by four numbers corresponding to

5. Turing machines and recursive functions 147

the codes of the left-hand and right-hand parts of the tape, the cur-

rent state and the character under the head. In our encoding system

the left-hand part of the tape was interpreted as the notation of some

number to the base equal to the tape alphabet size (the blank symbol

being read as zero) and the right-hand part of the tape was treated

likewise, but in reverse order (low bits starting from the head). Un-

der this agreement, inserting or deleting of the character amounts to

simple arithmetical operations (deleting is division and inserting is

the multiplication by the base of the number system followed by ad-

dition). In this encoding, the transition functions (four functions of

four variables that yield the next configuration of the machine as a

function of the preceding one) are expressed by simple formulas and

are primitive recursive.

Now let us consider the iterated transition function, which speci-

fies the Turing machine configuration after t steps. More exactly, we

have four functions of five variables (the first four variables encode the

state and the fifth is the number of steps). They are defined by joint

recursion, considered in the previous section. Therefore, these func-

tions are primitive recursive. We will assume that once the machine

terminates, its configuration never changes again. Since the number

of steps of the Turing machine is bounded by a primitive recursive

function, it will suffice to substitute this bound for the fifth argument

(the number of steps) to ascertain that the terminal configuration

of the machine is a primitive recursive function of its initial config-

uration. Hence the output of the machine is a primitive recursive

function of the input.

This reasoning implicitly involves primitive recursiveness of var-

ious functions used in the conversions from one data representation

to another. For instance, the input of the Turing machine is a binary

string, which we have agreed to identify with a certain number x.

This input is converted into the initial configuration of the Turing

machine, which is encoded by four numbers. It is important that

these four numbers primitive-recursively depend on x. This becomes

clear after we notice that the conversion is connected with transition

from one number notation to another (the same string encodes differ-

ent numbers in different notations), and the primitive recursiveness

148 11. Recursive Functions

of this sort of functions is readily established using our technique. In

addition, we must compute the input length (in order to substitute

it into the primitive recursive function that bounds the number of

steps), and in the end the result must be primitive-recursively ex-

tracted from the output configuration and recoded. But all these

operations remain within the scope of the above-considered methods,

and we will not dwell on them. �

This theorem convinces us of primitive recursiveness of many

pretty sophisticated functions. For instance, consider the func-

tion n 7→ (the nth decimal digit of the number π). It is well known

that millions of these digits have been calculated. So there is a good

reason to believe that there exist rather efficient algorithms to com-

pute π: even taking into account all the clumsiness of Turing ma-

chines from the programmers’ viewpoint, it would be very strange if

the computation of the nth digit of π needed a time greater than,

say, c × 2n for a large enough c. But this estimate is primitive re-

cursive, which allows us to refer to our theorem. (In fact, we have

a wide safety margin here: there exist primitive recursive functions

that grow much faster than 2n.)

6. Partial recursive functions

Operations of primitive recursion and substitution do not take us

beyond the class of total functions. The situation is different with

the minimization, which has already been mentioned. It is applied

to a (k + 1)-ary function f and yields a k-ary function g defined as

follows: g(x1, . . . , xk) is the smallest y for which f(x1, . . . , xk, y) = 0.

The meaning of the italicized words is clear if the function f is

total. Otherwise, they must be understood as follows: the value

g(x1, . . . , xk) is equal to y if f(x1, . . . , xk, y) is defined and equal to

zero, and all the values f(x1, . . . , yk, y
′) for y′ < y are defined and

not equal to zero.

Minimization is often denoted by

g(x1, . . . , xk) = µy (f(x1, . . . , xk, y) = 0),

and for this reason it is also called the µ-operator.

6. Partial recursive functions 149

Clearly, this definition ensures the computability of g whenever f

is computable (we search through all y in ascending order waiting for

the zero value to appear).

Problem 87. Show that if the definition is modified so as to

permit f(x1, . . . , xk, y
′) to be undefined for y′ < y, then the function g

can be noncomputable even if f is computable.

The functions that can be built from the base functions (zero,

projection, and the add-one function) by means of substitution, prim-

itive recursion, and minimization are called partial recursive. If such

a function turns out to be total, then it is called a total (or general)

recursive function.

Theorem 76. Any Turing machine computable function is partial

recursive.

Proof. Let f be a unary function computable by a Turing ma-

chine M . Denote by T (x, y, t) the property of the machine M to

return y on the input x in a time not exceeding t. As we have seen

above, from the input of the Turing machine and the time t, we can

primitive-recursively compute its state at the moment t. It is also

clear that we can find out whether the machine has completed the

job and, if it has, whether the answer was equal to y. Thus the

property T is primitive recursive.

Now let us combine the arguments y and t into a pair by a

primitive recursive numbering; we obtain a primitive recursive func-

tion T ′ such that T ′(x, [y, t]) = T (x, y, t). Now we can write f(x) =

p1(µzT
′(x, z)), where p1 assigns the first component of a pair to the

pair’s number, and µz stands for “the smallest z such that” Thus

the function f is partial recursive. �

The converse statement is also true:

Theorem 77. Any partial recursive function is Turing machine com-

putable.

Proof. It is not hard to write a program with finitely many variables

computing any partial recursive function (substitution is the consec-

utive execution of programs, recursion is a for-loop, minimization is

150 11. Recursive Functions

a while-loop; both types of loops are easily implemented by means

of conditional goto-statements).

After that it remains to refer to the fact that any function com-

putable by a program with finitely many registers, is computable by a

Turing machine (as we have shown in Section 10.2, Theorem 66). �

Therefore, if we believe in the “Turing Thesis,” which claims that

any computable function is Turing machine computable, then we must

just as well believe in the “Church Thesis” (any computable function

is partial recursive), so these theses are equivalent.

The real history of the subject is more complicated and can roughly
be described as follows. The definition of a primitive recursive function
was given by the great logician Kurt Gödel and was used as a technical
means in the proof of Gödel’s Incompleteness Theorem in early 1930s. The
definition of a total recursive function was also given by Gödel (it differs
from, but is equivalent to the one we gave above). The American logician
Alonzo Church formulated his thesis for total functions, having conjectured
that any total computable function is total recursive. Then the American
mathematician Kleene suggested that this thesis should be extended to
partial functions.

At the same time, the English mathematician Turing and the American
mathematician Post proposed their models of abstract computing machines
(Turing and Post machines) that differed only in some details, and conjec-
tured that these machines cover the entire class of algorithmic processes.
Soon it became clear that the computability of functions by these machines
is equivalent to partial recursiveness. (More historical details can be found
in Kleene’s book [4].)

Now the expressions “Turing Thesis,” “Church Thesis,” “Post Thesis,”
and so on are usually used synonymously: these theses claim that the
class of computable (in the intuitive sense) partial functions coincides with
the class of partial recursive functions (the Church Thesis), or Turing-
computable functions (Turing Thesis), and so on. All these versions are
equivalent, because all usual formal definitions of computability (partial
recursiveness, Turing machines, etc.) lead to the same class of functions.

(Let us notice parenthetically that another computational model, nor-

mal algorithms, or Markov algorithms, were proposed by Andrei Andree-
vich Markov Jr. (Markov chains and Markov processes are named after
his father, A. A. Markov Sn.). But this happened later, in 1950s. The
corresponding principle (any algorithm is equivalent to a normal one) was
introduced by Markov; he called it the normalization principle. In Markov’s

6. Partial recursive functions 151

papers, normal algorithms were used for the construction of an undecid-
able string-rewriting system (see Section 9.4). It is worth mentioning that
Markov has explicitly written in every detail the construction of the uni-
versal algorithm and gave an exact proof of its correctness; it seems that
this achievement has never been repeated since then: no one was persistent
enough to write a compiler of some programming language in this language
and formally prove its correctness.)

Our proofs of Theorems 76 and 77 yield one more corollary, some-

times called Kleene’s Normal Form Theorem:

Theorem 78. Any partial recursive function f is representable in

the form

f(x) = a(µz(b(x, z) = 0)),

where a and b are primitive recursive functions.

Proof. Indeed, any partial recursive function is Turing machine com-

putable, and hence, as is seen from the proof of Theorem 76, can be

represented in the desired form (where a is the function that assigns

the first component of a pair to the pair’s number). �

This theorem can be extended from the unary functions f to a

similar statement for functions of several variables (the proof remains

almost the same).

Problem 88. Show that one µ-operator applied last will not

suffice: a partial recursive function may not be representable in the

form

f(x) = µz(b(x, z) = 0)

where b is a primitive recursive function.

Kleene’s Normal Form Theorem implies the following statement:

Theorem 79. Any enumerable set is the projection of a primitive

recursive set.

Proof. Any enumerable set is the domain of a recursive function.

Having represented the function in normal form, we see that its do-

main is the projection of the set {〈x, z〉 | b(x, z) = 0}. �

152 11. Recursive Functions

7. Oracle computability

The definition of the class of partial recursive functions is readily

modified for the case of oracle computability. Suppose that α is a total

function. Consider the class F [α] consisting of the base functions, the

function α, and all the functions that can be obtained from them by

substitution, primitive recursion, and minimization.

(Formally, F [α] is the minimal class containing the base func-

tions and the function α which is closed under substitution, primitive

recursion, and minimization. This minimal class exists: it suffices to

take the intersection of all the classes with these properties.)

Theorem 80. The class F [α] consists of all α-computable functions

(that is, functions computable by programs that call α as an oracle).

Proof. First of all, let us notice that all functions of the class F [α]

are computable by the programs in question. This can be explained,

for example, as follows. Programs with finitely many variables com-

pute all partial recursive functions. If we allow to use the state-

ment a:=α(b), then they will just as well compute all functions of the

class F [α].

The converse statement is more interesting: we want to prove

that if a certain (in general, partial) function is α-computable, then

it can be constructed from the base functions and the function α by

substitution, recursion, and minimization.

To this end, let us recall the criterion of relative computability

from Chapter 7.2 (Theorem 45). Let a function f be computable

relative to a total function α. Then, as we know, there exists an

enumerable set W of triples of the form 〈x, y, t〉, where x and y are

natural numbers, and t is a pattern (a function with finite domain),

which is consistent (the patterns of any two triples with the same x,

but different y are not coherent) and satisfies

f(x) = y ⇔ ∃t (〈x, y, t〉 ∈ W and t is a part of α).

We will show that the property “t is a part of α” is primitive recursive

relative to α, i.e., its characteristic function is obtained from the

base functions and from α by means of substitution and recursion

7. Oracle computability 153

operations. (Recall that we identify patterns with their numbers in a

certain numbering; the choice of the numbering is discussed later.)

Then it will suffice to write W as the projection of a primitive

recursive set (〈x, y, t〉 ∈ W ⇔ ∃u (v(x, y, t, u) = 0), where v is a prim-

itive recursive function), and use the equation

f(x) = p1(µz v
′(x, z) = 0),

where v′ is an α-primitive recursive function such that v′(x, [y, t, u]) =

0 if and only if [v(x, y, t, u) = 0 and t is a part of the function α], and

the function p1 computes the first component y of the triple 〈y, t, u〉

from the triple’s number [y, t, u].

Finally, it remains to show that the set {t | the pattern with

number t is a part of α} is α-primitive recursive. In the proof we will

assume that the numbering of patterns is chosen so that the following

functions are primitive recursive (they are well-defined for patterns

with nonempty domain; for the empty pattern we define them at will):

• last-x(t), the largest of the numbers on which the pattern

with number t is defined;

• last-y(t), the value of the pattern with number t at the max-

imal point in its domain (recall that patterns are functions);

• all-but-last(t), the number of the pattern obtained from the

pattern with number t by removing the maximal point of

the domain.

Then we can write the following recursive definition: the pattern with

number t is a part of the function α if either this pattern is empty or

α(last-x(t)) = last-y(t) and the pattern with number all-but-last(t) is

a part of the function α.

This definition uses the type of recursive definition considered in

Theorem 74 (p. 145); the value of the function is defined recursively in

terms of its values at smaller points. We only have to choose the num-

bering of patterns so as to ensure that all-but-last(t) is smaller than t

for all t. But this is easy: for instance, we can use primes, assigning

to the pattern {〈a, b〉, . . . , 〈e, f〉} the number p
(b+1)
a . . . p

(f+1)
e , where

pi is the ith prime number (so that p0 = 2, p1 = 3, p2 = 5, . . .). �

154 11. Recursive Functions

Notice that the proof could be slightly simplified by using only

patterns whose domain is an initial segment of the set of natural num-

bers. In that case we could start with establishing the primitive re-

cursiveness (relative to α) of the function n 7→ [α(0), α(1), . . . , α(n)].

Also, it is easily seen that in the definition of relative computability,

we can confine ourselves only to patterns of this type.

8. Estimates of growth rate. Ackermann’s

function

Now we turn to the question that could have been asked long ago: do

their exist total recursive, but not primitive recursive functions? We

will give two proofs of their existence. The first of them is based on

general considerations:

Theorem 81. There exists a binary total computable function uni-

versal for the class of all unary primitive recursive functions.

Obviously, if U is such a function, then the function d defined

by d(n) = U(n, n) + 1 will be total, computable, and distinct from

any primitive recursive function (it differs from the nth function at

the point n).

Proof. Any primitive recursive function is built from the base func-

tions by a sequence of substitutions and recursions. This sequence

can be represented as a string over a finite alphabet, which can be

viewed as a sort of a program (that successively defines various primi-

tive recursive functions by specifying for each of them other functions

they are built from and the operations applied). From all these pro-

grams, we select programs of unary functions (of course, intermediate

functions in the programs can have any number of variables). The

set of all such programs is decidable, and they can be computably

numbered. Then the function 〈n, x〉 7→ (the result of application of

the function specified by the nth program to the number x) is com-

putable and, by construction, is universal for the class of primitive

recursive functions. �

However, it is interesting to point out a more specific reason that

prevents some computable functions from being primitive recursive.

8. Estimates of growth rate. Ackermann’s function 155

One of such reasons is that primitive recursive functions cannot grow

too fast. This idea dates back to Ackermann who constructed a func-

tion growing faster than all primitive recursive functions called Acker-

mann’s function. We will give a slightly different construction based

on the same idea.

First, we define a sequence α0, α1, . . . of unary total functions.

Denote by f [n](x) the iteration f(f(. . . f(x) . . .)), where the func-

tion f is repeated n times. Set α0(x) = x+ 1 and

αi(x) = α
[x+2]
i−1 (x)

(we will explain later why it is convenient to apply the function αi−1

exactly x+ 2 times). For example, α1(x) = α
[x+2]
0 (x) = 2x+ 2.

The following properties are obvious (a formal proof is by induc-

tion):

• αi(x) > x for all i and x;

• αi(x) is a strictly increasing function of x;

• αi(x) is a strictly increasing function of i (for any fixed x);

• αi(x) ≥ αi−1(αi−1(x)).

Now we can estimate the growth rate of any primitive recursive

function.

Theorem 82. Let f be a primitive recursive function of n variables.

Then for a certain number k,

f(x1, . . . , xn) ≤ αk(max(x1, . . . , xn))

for all x1, . . . , xn.

Proof. The idea is simple: we will bound the growth rate of the

composition of functions if bounds for all involved functions are given;

the same will be done for recursion. Formally, the proof follows the

inductive definition of primitive recursive functions.

For the base functions, the bound is obvious. Consider a function

obtained by substitution. Suppose that

f(x) = g(h1(x), . . . , hk(x))

156 11. Recursive Functions

(here letter x stands for the tuple of variables). If all the func-

tions h1, . . . , hk and the function g are bounded by αN , i.e., hi(x) ≤

αN (max(x)) for all i and x, and g(y) ≤ αN (max(y)) (here

max(u) means the greatest element in the tuple u), then f(x) does

not exceed

αN (max(h1(x), . . . , hk(x))) ≤ αN (αN (x)) ≤ αN+1(x)

(we use the above-mentioned properties of the functions αi).

Recursion is treated in a similar (but somewhat more difficult)

way. Suppose that a function f is defined recursively:

f(x, 0) = g(x);

f(x, n+ 1) = h(x, n, f(x, n)),

where x denotes the tuple of variables. If the functions g and h are

bounded by the function αN , then

f(x, 1) = h(x, 0, f(x, 0)) ≤ αN (max(x, 0, f(x, 0))) ≤

≤ αN (max(x, 0, αN (max(x)))) ≤ αN (αN (max(x)))

(the last inequality follows from the estimate αN (t) > t). Similarly,

f(x, 2) ≤ αN (αN (αN (max(x)))), and in general,

f(x, i) ≤ α
[i+1]
N (max(x)) ≤ αN+1(max(i,max(x))),

which completes the proof. �

Notice that each application of substitution or recursion increases

the index i in the upper bound αi by 1, so the function specified by

at most 100 operators is bounded by α101.

The following statement is an obvious corollary of the above es-

timate:

Theorem 83. The function A(n) = αn(n) grows faster than any

primitive recursive function.

It should be mentioned that the definition of Ackermann’s func-

tion (more exactly, of the function 〈n, x〉 7→ αn(x)) can be considered

a recursive definition: each value of this function is defined in terms

of others values of the same function, with a smaller first argument.

8. Estimates of growth rate. Ackermann’s function 157

This is an example of a recursive definition that cannot be reduced

to primitive recursion.

Problem 89. Show that the direct enumeration (in ascending

order) of an infinite primitive recursive set need not be primitive

recursive.

Problem 90. Show that the function inverse to a primitive

recursive bijection i : N → N need not be primitive recursive.

Problem 91. Prove that if g is a ternary primitive recursive

function and h is unary primitive recursive function, then the binary

function f defined by the equations

f(x, 0) = h(x);

f(x, i+ 1) = g(x, i, f(2x, i)),

is primitive recursive.

Bibliography

[1] George S. Boolos, John P. Burgess, Richard C. Jeffrey, Computability

and Logic. Fourth edition, Cambridge University Press, 2002. (ISBN
0521007585)

[2] Nigel Cutland, Computability: An Introduction to Recursive Function

Theory. Cambridge University Press, 1980 (ISBN 0521294657)

[3] Yu. L. Ershov, Theory of Numberings. Nauka, Moscow, 1977. (Series:
Mathematical Logic and Foundation of Mathematics.)

[4] S. K. Kleene, Introduction to Metamathematics. North-Holland, 11
repr. 1996 (ISBN 0720421039)

[5] A. I. Maltsev, Algorithms and Recursive Functions. Nauka, Moscow,
1965.

[6] Yu. I. Manin, Computable and Incomputable. Soviet Radio, Moscow,
1980.

[7] Yu. I. Manin, A course in mathematical logic. Springer, 1977.

[8] M. Minsky, Computation: Finite and infinite machines. Prentice-Hall,
1967.

[9] Piergiorgio Odifreddi, Classical Resursion Theory, Vol. I, 1989. Vol. II,
1999. North-Holland.

[10] Hartley Rogers, Jr., Theory of Recursive Functions and Effective Com-

putability, MIT Press, 1987. (ISBN 0262680521)

[11] J. Shoenfield, Degrees of Undecidability. North-Holland, 1971.

[12] Michael Sipser, Introduction to the Theory of Computation, PWS Pub-
lishing Company, 1997.

159

160 Bibliography

[13] Robert I. Soare. Recursively enumerable sets and degrees. Springer,
1987.

[14] The Handbook of Mathematical Logic. J. Barweis (Editor). North-
Holland, 8th reprint, 1999. (ISBN 0444863885)

[15] V. A. Uspensky, Lectures on Computable Functions. Fizmatgiz,
Moscow 1960.

[16] V. A. Uspensky and A. L. Semenov, Algorithms: Main Ideas and Ap-

plications. Kluwer Academic Publishers, 1993. (ISBN 079232210X)

Index

A-computable function 72, 98
A-decidable set 72, 98
A-enumerable set 98
Dx 100
T -degree 98
T -equivalent sets 98
T -reducibility 72
Disjoint(A) 101
Γ(T) 36
Γ(t) 36
Π2 103
Πn 93–96, 132, 136
Proof(x, y) 135
Σn 93–96, 99, 132, 136
α-computable function 76, 152
α-enumerable set 76
0
′-computable function 79

0, 0′, . . . , 0(n) 99
F [α] 152
∃x, ∀x 93
∧, ∨, ¬ 93
≤m 55
≤T 72
µ-operator 148
Subset(A) 100
π 3, 148
e 3
k-ary function 11, 139
m-complete set 57, 61, 62, 69, 70, 98
m-degree 98
m-equivalent sets 98
m-reducibility 55, 69, 96, 132

of pairs 68
m-reducing function 55
10th Hilbert Problem 136

Consistent set 74

Ackermann’s function 144, 155
Addition, recursive definition 140
Alphabet 108, 113, 120

of a Turing machine 108, 113
reduction 111

Arithmetical formula 123, 128
Arithmetical function 128
Arithmetical hierarchy 93, 132, 136
Arithmetical set 123, 128, 132, 136
Arrays, simulation 125

Base functions 140
BASIC 46
Binary function 11
Blank string 120
Blank symbol 108
Bounded minimization 143
Bounded quantifier 142

C, programming language 35
Cartesian product of sets 6
Character 108, 113
Characteristic function 3, 56
Chinese Remainder Theorem 130
Church Thesis 150
Coenumerability 94
Coherent patterns 74
Complement 6, 95
Composition of functions 19, 22
Computability 8

by a machine with finitely many
registers 125

with respect to α 76
Computable function 1, 4, 123, 150
Computable numbering 20, 24
Computable permutation 62
Computable real number 9, 16

161

162 Index

Computably isomorphic sets 51
Computation time 146
Concatenation 120
Configuration of a Turing

machine 109, 115, 126
Conjunction 93, 95
Constructive object 2
Converter 35
Coprime numbers 130
Correct set 152
Creative set 66

Decidable set 3, 7, 9, 93, 132
Degree of undecidability 98
Diagonal function 43
Diagonal section 15, 57, 68
Diophantine equation 9
Directive in the priority method 86
Disjunction 93, 95
Domain 4

Effectively inseparable sets 67–69
Effectively nonenumerable set 59
Element 86
Empty function 1, 103
Enumerability 8
Enumerability with respect to α 76
Enumerable inseparable sets 32
Enumerable properties of functions 36
Enumerable set 4, 6, 7, 9, 93, 132, 137

undecidable 14, 99, 118
universal 97

ExecuteProgram, procedure 47

Finitely generated semigroup 120
Fixed point 41, 135
Fixed Point Theorem 41

for sets 50
with parameter 49

Formula representing a set 128
Fragment 83
Free semigroup 120
Friedberg–Muchnik theorem 86
Function

A-computable 72, 98
α-computable 76
0
′-computable 79

k-ary 11, 139
m-reducing 55
arithmetical 128
binary 11
characteristic 3, 56
computable 1, 4, 123, 150
diagonal 43
empty 103
empty (nowhere defined) 1
general recursive 149
partial 1

recursive 148, 149

primitive recursive 139, 140, 146,
150

recursive 139
semicharacteristic 4, 56
ternary 11
total 3

recursive 149, 150
Turing machine computable 149
Turing-computable 110
unary 11
universal 11, 151, 154

computable 12, 14
Function graph 8

Gödel
numbering 20, 21, 27
universal function 20, 23

relative to α 78
universal set 24, 25, 57

Gödel’s β-function 130, 137
Gödel’s Incompleteness Theorem 133,

134
General recursive function 149
Generators of a semigroup 120, 121
GetProgramText, procedure 47

Halting Problem 107
Halting problem 15
Head, of a Turing machine 108
Homomorphism 120

Image of a set 8
Immune set 17, 18, 58, 61
Incompatible triples 74
Incompleteness 133
Initial state 109
Input string of a Turing machine 109
Inseparable sets 16, 67
Intersection

of enumerable sets 25
of sets 6

Isomorphism
of m-complete pairs 70
of m-complete sets 62
of Gödel numberings 34
of universal sets 51

Joint recursion 144
Jump operation 98

Kleene’s
Fixed Point (Recursion)

Theorem 41
Normal Form Theorem 151

Liar’s paradox 135
Lower point 15

Machine
oracle 71

Index 163

Post 150
Turing 126, 146, 150
with finitely many registers 123

Markov algorithm 150
Minimization 143, 148
Multiplication, recursive

definition 141

Natural numbering 19
Natural numbers 2
Negation 93, 94
Nondeterministic algorithm 6
Normal algorithm 150
Normalization principle 151
Nowhere defined function 1
Number 19

computable 9, 16
enumerable from below/above 10,

16
of a function 103
of a pair 21

Numbering 19, 20
computable 20, 24
Gödel 20, 21
natural 19
of finite sequences 145
of finite sets 100
of pairs 21

Oracle 71
computability 71, 152
machine 71

Output string of a Turing
machine 109

Partial function 1
Partial recursive function 148, 149
Pascal 35, 107, 112
Pattern 36, 74, 101, 152

extension of 36
Post

machine 150
problem 85
Thesis 150

Post’s Theorem 7, 28, 102
Preimage 8, 56
Previous values in recursion 145
Prime number 125, 142, 143
Primitive recursive function 139, 140,

146, 150
Primitive recursive set 141
Problem

undecidable 15
Productive set 64
Program

counter 129
that prints its text 44
with finitely many variables 126

Programming language 20
Projection 7, 95

Proof 135
Pseudoinverse function 9

Quantifier 93, 136
bounded 142

Range 4
Recursion 139, 143

joint 144
primitive 139

Recursive function 139
Reducibility of numberings 27
Reduction 28
Relations in a semigroup 120, 121
Relative computability 72, 152
Relativization 76
Representation of a set by a

formula 128
Rice–Uspensky theorem 28, 103
Rogers’ Theorem 53
Rogers’ theorem 34
Rule 113

Section
diagonal 15
of a function 11
of a set 12

Semi-Thue system 113
Semicharacteristic function 4, 56
Semigroup 120, 121

finitely generated 120
free 120
generators of 120
relations in 121

Set
A-decidable 98
A-enumerable 98
m-complete 57, 61, 98
arithmetical 123, 128, 132, 136
creative 66
decidable 3, 7, 9, 93, 132
effectively nonenumerable 59
enumerable 4, 6, 7, 9, 93, 132, 137
enumerable undecidable 14, 99, 118
immune 17, 18, 58, 61
of numbers 31, 103

of empty function 27
primitive recursive 141
productive 64
simple 17, 62
undecidable 4
universal 12
universal in Σn/Πn 96

Sets
′-equivalent 98
m-equivalent 98
effectively inseparable 67–69
inseparable 16, 67

Simple set 17, 62
Simulation 114

164 Index

Sound formal system 133
Space 108
Stack 126
State 108, 113

initial 109
terminal 109

String 109, 113, 120
doubling 110
transformation 114

String-rewriting system 113
undecidable 114, 118, 151

Strongly Gödel numbering 79
Substitution 139
Substring 113
System

semi-Thue 113
string-rewriting 113
Thue 118, 121

Tape 108
alphabet 108

Tarski’s theorem 133, 134
Terminal state 109
Ternary function 11

universal 21
Thue problem 107
Thue system 118, 121
Total function 3

recursive 149, 150
Transition table 109, 116
Truncated subtraction, recursive

definition 141
Turing

degree 98
equivalence 98
incomparable sets 83
machine vii, 107, 108, 110, 112,

119, 126, 131, 146, 149, 150
computability 110, 126
configuration 109, 115

reducibility 72, 82
Thesis 112, 131, 150

Unary function 11
Undecidability

of the word problem 114, 118
Undecidable set 4
Undecidable string-rewriting

system 114, 118, 151
Uniformization Theorem 9
Union of sets 6
Universal enumerable set 97
Universal function 11, 151, 154

computable 12, 14
non-Gödel 30

Universal set 12
enumerable 13

Winning condition 87
Word problem 107, 113

undecidability of 114, 118

