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Abstract

This paper investigates in terms of Kolmogorov complexity the di*erences between the in-
formation necessary to compute a recursive function and the information contained in its graph.
Our -rst result is that the complexity of the initial parts of the graph of a recursive function,
although bounded, has almost never a limit. The second result is that the complexity of these
initial parts approximate the complexity of the function itself in most cases (and in the average)
but not always. c© 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

This paper is the long version of [2]. Its goal is to compare the information contained
in the graph of a function to the information needed to compute the function. Our
approach is based on Kolmogorov complexity (also known as algorithmic information
theory). In this framework we compare the Kolmogorov complexity of a recursive
function f, i.e. the size of a smallest program that computes f, with the conditional
Kolmogorov complexities of initial parts of the graph of f. As far as we know, the
only result in this -eld is a theorem of Meyer (see Theorem 2 in this paper), reported
in the well-known article of Loveland [5]. A proof of this theorem is also given in
the fundamental article of Zvonkin and Levin [8]. However, the point of view of these
papers is di*erent from ours: they are mainly interested in non-recursive sequences
and in randomness. They also investigate varieties of Kolmogorov complexity (see on

∗ Corresponding author.
E-mail addresses: bruno.durand@gyptis.univ-mrs.fr, bdurand@cmi.univ-mrs.fr (B. Durand), porrot@li5.fr

(S. Porrot).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00029 -9



38 B. Durand, S. Porrot / Theoretical Computer Science 271 (2002) 37–46

this topic the paper by Uspensky and Shen [7]). We focus on recursive sequences (or
functions).
Our study is also motivated by the analysis of data 5ows (see also [6]). Imagine

a 5ow that, step by step, produces integer numbers. The information contained in
the 5ow up to time t can be understood as the conditional Kolmogorov complexity of
the outputs obtained before time t, knowing t. Our goal is to analyze the variations of
this information when t varies.
Our results are rather surprising: the -rst one is that this information is bounded

when the function is recursive, but has no limit, except for a -nite number of functions
(Theorem 1). Our second result is that the complexities of the initial parts of a graph do
not always constitute an approximation of the complexity of the function (Theorem 3).
In the case of data 5ows it means that, if we consider any recursive family of systems
producing data 5ows, the amount of information issued by some of the systems is
much lower than the information contained in the systems themselves. But we prove
in Theorem 4 and in Corollary 1 that this strange behaviour appears rather rarely in
the family, and that, on the average, this approximation is justi-ed.
A more theoretical -eld of investigation is to compare the maximum of the com-

plexity of the graph, its lim sup, the Kolmogorov complexity of the function and
some other varieties of de-nitions of its Kolmogorov complexity relativised to oracles
(e.g. the standard oracle set K, also called as 0′ in recursion theory), see [3].

1. Preliminaries

1.1. Kolmogorov complexity

Theory of Kolmogorov complexity [4], also called Algorithmic Information The-
ory [1], gives rigorous mathematical foundations to the notion of “information content”
of an object x (represented by a word over the binary alphabet {0; 1}). This quantity
K(x) is the length of a smallest program that halts and outputs x on an empty input.
The programming language must satisfy an important technical property called additive
optimality which is true in all “natural” programming languages:

∀K1; K2 ∃C ∀x |K1(x)− K2(x)| ¡ C;

where K1(x) and K2(x) are Kolmogorov complexities de-ned for two di*erent addi-
tively optimal programming languages.
In order to talk about the complexity of integers, we use the following one-to-one

mapping between words and integers: we associate each word with its index in the
ordering, -rst by length, then lexicographically.

(�; 0); (0; 1); (1; 2); (00; 3); (01; 4); (10; 5); (11; 6); : : : :
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1.2. De=nitions of models

We study recursive functions and their graphs Gf = {〈x; y〉; y=f(x)}. We denote by
Gn
f the initial part of the graph Gf, i.e. Gn

f = {〈x; y〉; x6n; y=f(x)}. As it is de-ned
here, Gn

f is a set. So there is a choice of di*erent representations for this set. We choose
to identify Gn

f with 〈f(0); f(1); : : : ; f(n)〉n where 〈:〉n denotes the standard encoding
of Nn in N. Any other recursively equivalent de-nition could have been chosen.
Note that the special case where the images of the functions are restricted to the pair

{0; 1} is equivalent to the study of recursive in-nite sequences. All results in the sequel
remain valid if recursive functions from N to N are replaced by recursive sequences
over the alphabet {0; 1}.

De�nition 1. A program P is a weak model of a function f over a domain D if D is
an in-nite subset of N and ∀n∈D P(n) halts and outputs Gn

f .

Note that if n =∈D, either P(n) does not halt, or P(n) halts and its output can be
di*erent from Gn

f .

De�nition 2. The weak complexity of a function f is de-ned by

Kw(f) = lim sup
n→∞

K(Gn
f|n):

Note that the graph Gn
f has been properly encoded (see above) thus K(Gn

f |n) is
correctly de-ned and any limit point of K(Gn

f |n) (reached over an in-nite subset D of
N) corresponds to the size of a smallest weak model of f over D.

De�nition 3. A strong model of a function f is a program P accepting one input n
and that, for all n, halts and outputs Gn

f , i.e. ∀n∈N P(n)=Gn
f .

We could present a di*erent de-nition of a strong model e.g. ∀n∈N P(n)=f(n)
instead of ∀n∈N P(n)=Gn

f . It gives, up to an additive constant, the same notion of
strong complexity (see below).

De�nition 4. The strong complexity Ks(f) of a function f is the length of a smallest
strong model of f if it exists, the in-nity otherwise.

Remark that f is recursive if and only if Ks(f) is -nite.

2. A study of weak models

A strong model of a function is also a weak model of this function. Thus we get
the following straightforward proposition:
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Proposition 1. If f is a recursive function; then there exists a strong model of f and
we have Kw(f)6Ks(f).

If other (equivalent) de-nitions of Kw and Ks are given, then an additive constant
is added to the previous proposition: Kw(f)6Ks(f) + C.
We now present some results concerning the series K(Gn

f |n) in order to justify the
choice of the upper limit in the de-nition of the weak complexity. Indeed,

1. the limit of K(Gn
f |n) exists at most for a -nite number of recursive functions f

(Theorem 1);
2. the lower limit of K(Gn

f |n) is bounded by a constant not depending on f (Lemma 1),
due to the fact that the whole information describing f can be in-nitely often found
encoded in the parameter n;

3. the upper limit of K(Gn
f |n) is the size of a smallest weak model for which the input

n provides no information on f; thus a counting argument proves that it cannot be
uniformly bounded (Lemma 2).

Lemma 1. There exists a universal weak model for recursive functions: there exists
a program Pu(n) such that for all recursive function f; Pu is a weak model of f.

Proof. Let Pu(n) be the following program:

Program Pu(n)
If there exist k; x such that n=1k0x then

Simulate program x on input n
Else

Loop indefinitely

End if
End

Let f be a recursive function of strong model Pg: Pu is a weak model of f since
for all n in {1k0Pg | k ∈N}; Pu(n) computes Gn

f .

Lemma 2. Given A¿0; the set of functions having a weak complexity bounded by A
is =nite.

Proof. Given A¿0, assume that there are in-nite many functions f such that
Kw(f)6A. Let f1; : : : ; f22A be such distinct functions. We have

1. ∀k =1; : : : ; 22A ∃nk ∀n¿nk K(Gn
fk
|n)6A,

2. ∃n0 ∀n¿n0 ∀i; j=1; : : : ; 22A i 
= j Gn
fi

=Gn

fj
.
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Let n= max{n0; n1; : : : ; n22A}. There exist 22A distinct graphs Gn
fk

with complexity less
than A, which is obviously impossible.

Lemmas 1 and 2 clearly imply the following theorem:

Theorem 1. The set of recursive functions such that limn→∞ K(Gn
f |n) exists is =nite.

In this theorem the -nite number of functions such that a limit exists depends on
the programming system. Let us -rst present a system in which this number is zero.
Consider a standard enumeration of partial recursive functions �i and let us de-ne
the following programming system:  0 =fu; fu being the partial recursive function
computed by Pu;  1; : : : ;  1998 are functions of which indexes are programs that al-
ways diverge,  i =�i for all i¿1998. In this system, lim inf K(Gn

f |n)= 0 and clearly
lim sup K(Gn

f |n)¿ length(1998).
Now let us present a programming system in which the limit exists for some func-

tions: �0; : : : ; �1998 are distinct total recursive functions, �1999 =fu and �i =�i for all
i¿1999.

3. Comparison between strong and weak models

3.1. Existence of a strong model

A well-known theorem (here Theorem 2) due to Meyer and reported in [5, 8] states
that if K(Gn

f |n) is bounded over an in-nite recursively enumerable domain D, then f
is recursive. A weaker version of this theorem states that if the weak complexity of
f is -nite then f is recursive. In other terms, the hypothesis is that there is a -nite
number of weak models computing Gn

f for all n. This result is not obvious (and is
rather strong) since we do not know a priori which one of all weak models computes
Gn
f for a given n in D.

Theorem 2 (Meyer). A function f is recursive if and only if there exists an in=nite
recursively enumerable set D⊂N where K(Gn

f |n) is bounded.

3.2. Comparing weak and strong complexities

We have just seen that a -nite weak complexity implies the existence of a strong
model. Does weak complexity approximate strong complexity? The proof of Theo-
rem 2 does not provide any answer to this question, because it is not constructive.
Indeed, no proof of this theorem can be constructive as shown below in Theorem 3. As
Kolmogorov complexity is de-ned up an additive constant, we need a family of func-
tions to express this fact.

Theorem 3. Let F= {fi}i∈N be any recursive family of distinct recursive functions.
Then ∀C ∃fi ∈F Ks(fi)− Kw(fi)¿C.
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Fig. 1. Graph of K(Gn
f |n).

More precisely, a recursive family of recursive functions is a family such that
∃P ∀i; x P(i; x) halts and outputs fi(x). In the sequel, we prove a stronger result:
Ks is in-nitely often of order k when Kw is of order log(k).

Example. The family F de-ned by

∀n6i fi(n) = 1 and ∀n ¿ i fi(n) = 0

satis-es the hypothesis of Theorem 3, and therefore we cannot bind by a constant the
di*erence between the weak and the strong complexities of functions of this family.

In general, according to Lemma 1 and Theorem 3, the behaviour of the series
K(Gn

f |n) as a function of n is illustrated by Fig. 1.
In order to prove Theorem 3 we need some preliminary results. In the following, the

standard notation Step(P; x; t) denotes the program that simulates t steps of program
P with x as input, gives as result P(x) + 1 if convergence is observed, else gives as
result 0. In the proofs, the notation Ok(1) (resp. Ok; n(1)) denotes a function of k (resp.
of k and n) that is bounded by a constant.

De�nition 5. Let P be a program and f a function. We de-ne the extension properties
P⊂f and for all n P⊂n f by

(P⊂f) ⇔ (if P(x) converges; then P(x) = f(x));

(P⊂n f) ⇔ (∀x6n Step(P; x; n) 
= 0 ⇒ Step (P; x; n)=f(x) + 1):

De�nition 6 (Goodness). We say that i is good for k; i62k , if

∃P; |P| ¡ k; (P⊂fi and ∀i′62k ; i′ 
= i; P 
⊂fi′);

We say that i is n-good for k; i62k , if

∃P; |P| ¡ k; (P⊂n fi and ∀i′62k ; i′ 
= i; P 
⊂n fi′):
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We say that i is bad for k (resp. n-bad) if it is not good (resp. n-bad), i.e., respec-
tively

∀P; |P| ¡ k; (P⊂fi) ⇒ (∃i′62k ; i′ 
= i; P⊂fi′);

∀P; |P| ¡ k; (P⊂n fi) ⇒ (∃i′62k ; i′ 
= i; P⊂n fi′):

Lemma 3. For all n; k there exists i62k such that i is n-bad for k.

Proof. There is 1 more function {fi}i62k than programs of length 6k.

The relation ⊂n is an approximation of ⊂ as proved in the following lemma, but
beware that the convergence speed of ⊂n to ⊂ is not computable.

Lemma 4. Given k; for all large enough n; i(n; k) is stationary and equal to i(k).

The idea is that only -nitely many n can change the n-goodness of the -nitely many
(i; k).

Proof. All integers between 0 and i(k) − 1 are good for k while i(k) is bad for k.
First consider the integer 0. As it is good we are sure that there exists a program
P; |P|¡k, such that P⊂f0. Clearly P⊂n f0. We are sure not to have P⊂fi; i 
=0
and i62k . Thus there exists n0 such that for n¿n0 we do not have P⊂n fi; i 
=0 and
i62k . Hence for all n¿n0, 0 is n-good for k. Then let us iterate this process and -nd
n1¿n0 such that for all n¿n1, 1 is n-good for k. Let us continue up to i(k)−1. Then
let us examine the integer i(k): i(k) is bad for k: it means that either there does not
exist a program of size less than k that computes a restriction of fi(k), or there exists
such a program, but in this case it also computes a restriction of another fi; i62k . In
the -rst case, we just have to wait for all programs of length lower than k to give an
output not compatible with f. Hence, for all suPciently large n; i(k) is n-bad for k.
In the second case, if P computes the restriction of two functions fi, then it is also
the case when restricted to n steps. For all n; i(k) is n-bad for k. In conclusion, for n
large enough i(n; k)= i(k).

Proof of Theorem 3 (see acknowledgements). It is suPcient to prove the following
inequalities:
1. ∀k Ks(fi(k))¿k,
2. ∀k lim supn→∞ K(Gn

fi(k)
|n)6 log(k) + Ok(1).

Step 1: Suppose there exists k such that Ks(fi(k))¡k. Then there exists a program
P(n), |P|¡k, computing fi(k)(n) for all n. Since i(k) is bad for k, there exists i′ 
= i(k)
such that P⊂fi′ . Since P always converges, it means that for all n; P(n) halts and
outputs fi′(n). Thus fi(k) =fi′ which is false according to the hypothesis on the family
F.
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Step 2: Since F is a recursive family of recursive functions there exists a program
P such that for all i; x; P(i; x) halts and outputs fi(x). Consider the following program
P(n; k) accepting two inputs n and k and computing i(n; k):

Program P(n; k)
Simulate n steps of all programs of length less than k with

all inputs less or equal to n.
Compute the 2k first functions fi on [0; n] using program P.
Compare the results and output the smallest i that is bad

for k.
End

Lemma 3 indicates that P(n; k) computes i(n; k) for all n and all k.
Because of the recursivity hypothesis on family F, we can compute Gn

fi
from input

i and n using P, thus ∀i K(Gn
fi
|n)6K(i|n)+On(1). Moreover, since for all n; k; P(n; k)

computes i(n; k), we have

∀n; k K(Gn
fi(n;k)

|n)6 |P(:; k)|+ On;k(1)

6 log(k) + On;k(1):

With Lemma 4, given k, there exists nk such that ∀n¿nk i(n; k)= i(k). Therefore,
we get

∀k ∃nk ∀n¿nk K(Gn
fi(k)

|n)6 log(k) + On;k(1)

and -nally we obtain

lim sup
n→∞

K(Gn
fi(k)

|n)6 log(k) + Ok(1):

We have just seen that even for reasonable family of functions, the complexities of
the initial parts of a graph do not always constitute an approximation of the complexity
of the function itself, since some functions appear to be pathological. However, in most
cases, both complexities are close to each other, as shown in the following theorem:

Theorem 4. Let F= {fi}i∈N be any recursive family of distinct recursive functions.
There exist a constant A such that for all " and all k; there are at most a proportion
of A=2" functions; among the k =rst functions fi; for which the di?erence between
strong and weak complexities is greater than "; i.e.

∃A ∀" ∀k Card{i6k |Ks(fi)− Kw(fi)¿"}
k

6
A
2"

:
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Proof. Since the family F is a recursive family of recursive functions, there exists a
program computing fi for all i, thus we have

∃A ∀i Ks(fi)6 log(i) + A: (1)

Since Kw(fi)= lim supn→∞ K(Gn
fi
|n) we get

∀i ∃n′i ∀n¿n′i Kw(fi)¿K(Gn
fi
|n) (2)

and from Eqs. (1) and (2) we obtain

∃A ∀i ∃n′i ∀n¿n′i Ks(fi)− Kw(fi)6 log(i) + A− K(Gn
fi
|n): (3)

Let k and " be -xed. Since all functions of family F are distinct, there exists nk

such that, for all n¿nk , all truncated graphs (Gn
fi
)i¡k are distinct. Let S("; k) denote the

set {i6k; Ks(fi) − Kw(fi)¿"}. Given n¿max{nk ; (n′i)i6k} and according to Eq. (3)
we have

S("; k)⊂ {i6k; log(i) + A− K(Gn
fi
|n)¿"}

= {i6k; K(Gn
fi
|n)6 log(i) + A− "}

⊂ {i6k; K(Gn
fi
|n)6 log(k) + A− "}:

Since n¿nk all truncated graphs (Gn
fi
)i6k are distinct. Thus all smallest programs

computing these truncated graphs are distinct too and we can conclude that

Card(S("; k))62log(k)+A−":

Corollary 1. Let F= {fi}i∈N be any recursive family of distinct recursive functions.
The di?erence between strong and weak complexities is in average bounded by a
constant:

∃C ∀k
∑

i6k(Ks(fi)− Kw(fi))

k
6C:

Proof. Let d("; k)=Card{i6k |Ks(fi) − Kw(fi)= "} for all " and k. According to
Theorem 4 we have ∃A ∀" ∀k d("; k)6A=2"k. Thus,

∑

i6k
(Ks(fi)− Kw(fi)) =

∞∑

"=0
d("; k)"

6
∞∑

"=0

A
2"

k":

Since
∑

(A=2")" converges, we have the expected result.
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4. Open problems

In this paper we have studied graphs of recursive functions. These graphs are
relations on N×Z with some additional properties: not only the relation is recursive
but also all its projections to given abscissas are uniformly recursive. If we consider
a data 5ow, we may represent it by a relation R such that for all x there exists a
-nite number of y such that R(x; y). It means that at each time step, a -nite (but not
bounded) number of outputs is issued. It may be interesting to extend this study to
these relations or, more generally, to any recursive relation.
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