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Filtering data

+ (Chromium data loading will be seen at the exercises.)

+ Three main filtering steps (order can change):

— Eliminate cells with too low a total UMI or too low a number of distinct
genes

— Eliminate likely dead cells, typically based on high mitochondrial content
— Eliminate doublets

+ Optional: remove very high UMI/gene counts that may be due to
amplification bias

+ As in bulk RNA-seq, reduce the count matrix to those genes that
are at least expressed at a minimum level in some samples
(criteria may vary, no single rule, but common sense should
suffice)



Normalization

+ The total number of UMIs or gene counts varies significantly
between cells even after low complexity filtering
— Technical reason: different sequencing depth

— Biological reason: different cell types contain more or less RNA or express
more or less different genes

+ Elementary solution:

— Divide each column of the matrix by its total and multiply by some
arbitrary large number, say 10,000

— Log-transform data to avoid excessive weight of highly expressed genes

+ More advanced statistical procedures have been proposed



Clustering and 2D-projection

+

After a clean and normalized count matrix has been obtained, the
usual next steps are to identify cell populations by clustering and
to visualize data through a 2-dimensional projection

Although some clustering procedures could use the 2D-
projection, it is usually not the case: clustering is performed
independently

A common «exception» to this rule is to help the clustering
algorithm by reducing data dimensionality before the latter is
applied:

— Reduce data dimension from >1000 to 50 or 30 for instance with principal

component analysis (PCA)

— Apply a clustering method on the reduced data

— Compute a 2D-projection from the original data or the PCA-reduced data

— ldentify the clusters by colors in the 2D view



Principal component analysis (PCA)

+ A classical method is PCA that projects n-dimensional vectors on
to a k-dimensional space (k<n) by preserving maximum variance
in the data (limited loss of information in the projection)

+ A first direction in space (the first principal component) is found
along which the projected data retain the largest variance

+ A second, orthogonal direction is
then searched (second principal
component)

+ Repeated until the kt" principal
component

+ Well defined and understood
mathematically

+ Very good to reduce dimension, not

always to obtain a good 2D-projection 2 first principal
components

Source: Wilkipedia



PCA on genotypes

0.01 A

-0.01 1

PC1 (67.6%)

-0.03 -

aJPT
HAN
*CHB
*CHD
* HGDP-Han
+MEX
o GIH
TSI
CEU
< ASW
MEKK
& LWK
*YRI

-0.05
-0.06

-0.04

-0.02

0

PC2 (22.2%)

0.05

0.00 -

-0.05 -

PC1 (15.1%)

-0.10

# Beijing
+ Guangzhou
Shanghai

-0.15 T .
-0.06 -0.02 0.02

0.06

0.10
PC2 (10.4%)

0.14 0.18

B 015
~JPT
HAN
* CHB it
« CHD S
0.1 |« HGDP-Han :%a
<
[{]
9 0.05 A )
o -
0 - A
'.' ..g.- -
-0.05 T T T T
-0.1 -0.05 0 0.05 0.1
PC2 (12.0%)
D
0.05
0.00 A O LY « »
—_— - ° [ 5
S et ..,
s -0.05 - ...:?'_"
: L ] '
6 .
ale .
o
-0.10 - s
- . » 5-Han
N-Han
-0.15 . . T T : T
-0.06 -0.02 0.02 0.06 010 014 0.18

PC2 (10.4%)

Source: Xu et al., AJHG, 2009




+ Transcriptomes of 113 normal adjacent
and 1,094 cancer breast samples

+ Selection of the 246 most variable genes
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PCA on the BRCA transcriptomes
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We see that projection onto the first
two principal components captures an
important part of the variance and
preserves the clusters found with

. . . . hierarchical clustering reasonably well
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t-SNE

7

+ t-distributed stochastic neighbor embedding

T

+ t-SNE is a recent algorithm that outperforms

PCA to generate a 2D view
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(1) C57BL/6 -8 weeks (2) Keratinocyte isolation (3) Cell capturing (4) Single-cell RNA-seq (5) Clustering (6) Tissue expression by
IHC/FISH (24/25 clusters)
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t-SNE principle

+

A parameter called perplexity (o) is chosen by the user that controls how
local/global the algorithm is

In the original space (high dimension), the similarity p; ; between each pair of
data point x; and x; is computed

p; j = similarity between data points i and j = Gaussian density at distance
||xl- — xj” normalized by the total of such densities:

exp (—||zi — ;]|%/20?)
D k1 &P (= |2k — z1]|%/202)

Pij

In the projection space (dimension 2 usually), projected data points are placed
randomly and their similarity computed after the same principle but with a t

distribution instead of a Gaussian: o
1+ |y — ;7))

gi; = 2
Zk;if(l + |lye —wi||7)?

The projected data points are moved by a gradient descent algorithm to
minimize the Kullbak-Leibler divergence from the distribution p; ; to q; ;

10



UMAP

+ Uniform manifold approximation and projection

+ This complex algorithm relies on advanced geometry and
topology to approximate a manifold by a low dimensional
representation

+ A first step involves the construction of a graph based on
simplices to connect data points

+ In a second step, this graph is projected to a lower-dimensional
space

+ UMAP is usually faster than t-SNE and its strong theoretical
background «guarantees» better preservation of data properties
in the projection

+ Check https://pair-code.github.io/understanding-umap/ for a
nice interactive presentation

11


https://pair-code.github.io/understanding-umap/

Comparisons on artificial data sets

COIL20 MNIST Fashion MNIST Word Vectors

LargeVis t-SNE UMAP

Laplacian Eigenmaps

Source: Mclnnes,
arXiv.org, 2020

PCA
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A comparison on real data

(a) UMAP (b) t-SNE

Flow cytometry data, red is 10% of the whole data set (in blue). UMAP can learn a reliable

representation from 10% of the data only. Source: Mclnnes, arXiv.org, 2020.
13



Clustering

+ Clustering algorithms are meant to group similar objects together and to
separate dissimilar objects

Obviously, how similar is defined has an impact on the obtained clusters
We usually use a notion of distance to measure similarity (close is similar)

+ Dendrograms are the graphical representation
of a powerful way to cluster data called
hierarchical clustering

+ Their topology depends on the distance used | [ ] | ____

to compare objects and on the rule that decides
when to link data points in the dendrogram } ‘ g
®

+ These notions are detailed in the next slides

14



Distances

+ Without loss of generality, each object is described by p features, which can be
coded as real numbers

Each object is thus represented by a real-valued vector x € RP

For instance, the objects can be biological samples and the features are the
expression levels of the genes (transcriptomes)

There exists an infinite number of distances between RP points
Common distances are provided by the Minkowski metric

k
di(x,y) = \/Zf’zllxi —yil%, x,yeERPk>1

+ Familiar special cases are: Euclidean distance (k = 2), Manhattan distance
(k = 1), and maximum distance (k = oo)

+ An example of non-Minkowski distance is the Canberra distance
4

lx; — il

dx,y) = ) ———

7T Ll + Iyl
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Hierarchical clustering

+ The principle of (agglomerative) hierarchical clustering is to assign each object
to its own cluster and to proceed iteratively, merging the two closest clusters
at each step

+ Let us assume that the feature vectors are 2-dimensional, then agglomerative
hierarchical clustering is represented by the following schema:

[ Aqgqglomerative Hierarchical Clustering ]

O O

® ®) \"‘-
@-@@@ 0®60 0@/{9 / O@/éb )
(®/ =\ \_ Y
60 = G = CODN = /@ N\
®@ © G\ /0 |®\ o) (@ ®|| /
® © o 6/ Q C\/f \®' @ /

/’,

+ The relationships between the embedded clusters can be repreSE e By g
tree (right) called a dendrogram

Source: Statistics How To 16



Rules to join/merge clusters

+

Single linkage defines the distance
between two clusters as the smallest
distance between all possible pairs

Complete linkage takes the largest
distance

Average linkage (UPGMA) uses the
average of all the distances between all
the pairs

At every step, the two closest clusters
are merged

Ward’s method tries to minimize the
new clusters internal variance

Single Linkage

Complete Linkage

-

Average Linkage

i

Source: Girke.bioinformatics.ucr.edu
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Distances and cuts in a dendrogram

+ A dendrogram plot retains distance information on its vertical axis

Cluster distance

a)lb)(c)id)(e)(f)lg)(h)li)j)lk){L)m n

+ The sum of vertical distances in the dendrogram is equal to the distance
between two objects

Cutting at a certain height defines clusters

There are many rules (silhouette plots, |
gap statistics, etc.) to choose the best e iy
height(s), none is universally reliable! HH . fu. *

+ Check that cluster contents make sense and cluster are robust. For instance,
compute clusters on 90% of the data and check 2 given objects cluster
together most of the time or similar concepts

®
L] LJ
....
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K-means

(a) (b) | o .
0008 - 090“ __________________ euu"’ _____________
® e ‘z v J“‘*@.‘%—"i" J\‘er%"é’— _
+ K-means is a old and . e¥e| e\ 0 3| oy 0 o3
widely used algorithm Yoo ¢ S ¢ BT '
e %% I %%
+ The principle is to ‘ T Ve e
. X Y Y
construct k prototypical
data points, i.e., proteomes | © s g £ ™
or transcriptomes for us, o0, oe?o o o?,
e @ P “~ e o " e @
and to cluster all the data O“ O\fo:}o e ;::o v :;:,o
. H v
points around these j..:; Ol < il
. P ° QO‘:“" QU““
representative prototypes i 3 .

+ The number of clusters k is
decided in advance (there are criteria to compare different k values)

+ Algorithm: (a) N data points should be clustered; (b) k random prototypes
are chosen; (c) each data point is assigned to the closest prototype; (d)
prototypes are updated to be equal to the average of the data points in
the clusters they represent; (e) new assignments to the closest prototype,
etc. until nothing changes. (f) Final clustering

+ Very simple and effective algorithm _ _
Figure source: Chen & Lai, Phys Rev

E, 2018
19




K-means

+ Murine cells were treated
with DNA damage-inducing
reagent

+ Atm and Atmin (involved
in DNA repair) were KO

+ Selection of regulated
genes with edgeR
identifies genes associated
with the experimental
conditions

+ Hierarchical clustering
unravels clear patternsin
gene expression data

20



K-means

+ The K-means algorithm identifies typical gene expression patterns (thick lines)
that represent clusters of individual gene expression profiles (thin lines)

+ k=10 in this example ; R script in example-K-means.R
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Graphs and communities

+ Graphs are a very versatile mathematical Bave __..Tﬁ‘pp'ef'““‘e o6
framework to model re.Ia’Flonshlp's between . _Featg;rjl.[m P )
objects : gene or protein interactions, D16 "61.'{' \/ - .

. . . . N\ '%/ aallatin: . \us
signaling pathways, social or commercial ---7"-(}'“";5 [/ Jet
networks, airlines, roads, etc. Boe | 'Upbang..- Ff\uumben 'Notch

+ One common problem in graph theory is the igeescratch )'kmt

detection of communities, i.e. subsets of IR WA C

graph nodes that are more connected with
eachother than with the rest of the network :
genes involved in a same biological function,
friends, commercial partners, etc.

Hook %hmuddel O
Patchback Prork Whitetip

MN105 OStrlpes O
O A OT TSN83
SMN5 TFH 20 R8s

Source : Leskovec et al. C Source : S Fortunato, 2010
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Communautés multi-échelles

23

Source : Nicolas Tremblay, ENS, Lyon



Meéthodes par suppression d’arétes

+

Une approche de la recherche de communautés consiste a
supprimer des arétes afin de décomposer le graphe en
composantes connexes

Girvan et Newman (2002) on proposé l'algorithme suivant:

— Calculer le betweenness des arétes (concept similaire au betweenness des
noeuds ci-dessus)

— Supprimer 'aréte de betweenness le plus élevé
— Répéter

On obtient une décomposition toujours plus fine

Pour décider ou s’arréter, on peut appliquer un critere de qualité
aux communautés, par exemple la modularité (= #arétes
internes/#arétes externes)

24



Exemple Girvan & Newman

Carrés et disques dénotent le premier découpage. Les disques sont ensuite
découpés plus finement par 'algorithme.

Source : MEJ Newman
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Graph-based clustering

Broad family of clustering methods

The general principle is to build a graph by linking data points that are close
enough in the original space

+ A graph is thus obtained, which is submitted to a community detection

algorithm

+ The communities are
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(c) CLR_L1 Result

(d) CLR_L2 Result
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Louvain algorithm (used in Seurat and common in sc studies)
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A heatmap also provides an excellent 2D-projection

+ The plotisindeed in 2 dimensions

+ It does the clustering as well

+ A glimpse of how and why the
different clusters differ is provided

+ PCA, t-SNE, or UMAP 2D-
projections do not reveal the nature
of the differences between clusters
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