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Overview

+

Single-cell transcriptomics data are potentially very rich and
depending on the research project many specialized analyses can
be performed

In these additional slides, we cover two common such analyses:

— The inference of ligand-receptor interactions between cells (cellular
network)

— The inference of a pseudo-time to follow the differentiation process
between related cell populations

Different tools and approaches exist for the two general
guestions above, we only one solution for each

Examples of (uncovered) other analyses: estimation of copy
number variation in individual cancer cells and detection of
subclones, prediction of the transcription factors activated in
each population, etc.



Pseudo-time type-of analyses

+ Classical 2D-projections tend to magnify differences between
different cells (in different clusters), e.g., t-SNE, or rely on linear
relationships between individual transcriptomes, e.g., PCA

+ Different authors have proposed methods to reduce data
dimensionality such that distances in the projection are close to
the distances in the original, high-dimensional space

+ For cells that are typically related by a differentiation process
such as hematopoeisis, these methods tend to organize the cells
along a curve and positions along this curve are related to a
pseudo-time representing the stages of differentiation



Diffusion maps

+ Diffusion maps (DM) (Coifman, PNAS, 2005) originates from the field of
manifold dimension reduction like UMAP. It relies on advanced mathematics
that are irrelevant here.

+ Compared to UMAP, DM better preserve the original distances in the projected
space. You can use the Bioconductor package «destiny» that provides a fast
implementation adapted to single-cell data (Angerer, Bioinformatics, 2016).

+ DM output contains multiple diffusion coordinates sorted in decreasing order
of importance, and using the first two provides with a 2D-projection
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Pseudo-time

+ DM do not determine any pseudo-time, they are just «more compatible» with
this notion than common dimensionalty reduction techniques

+ To actually get pseudo-time line(s), we can use the package «Slingshot»
(Street, BMC Genomics, 2018)

+ Slingshot does not require DM specifically, it can accomodate different upfront
dimensionality reductions
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Fig. 1 Schematics of Slingshot's main steps. The main steps for Slingshot are shown for: Panel (a) a simple simulated two-lineage two-dimensional

dataset and Panel (b) the single-cell RNA-Seq olfactory epithelium three-lineage dataset of [26] (see Results and discussion for details on dataset and

its analysis). Step 0: Slingshot starts from clustered data in a low-dimensional space (cluster labels indicated by color). For Panel (b), the plot shows

the top three principal components, but Slingshot was run on the top five. Step 1: A minimum spanning tree is constructed on the clusters to

determine the number and rough shape of lineages. For Panel (b), we impose some constraints on the MST based on known biology. Step 2:

Simultaneous principal curves are used to obtain smooth representations of each lineage. Step 3: Pseudotime values are obtained by orthogonal

projection onto the curves (only shown for Panel (a)) 5



Cellular networks

+

The majority of interactions between cells involve ligand-receptor
interactions (LRIs)

A large number of LRIs are known and can be compiled in a
database

Based on each cell population average expression profiles, it is
possible to check whether the ligand and the receptor of a known
LRI are expressed

+ Based on this idea, we can infer LRIs

+ In practice, we need a notion of score to control the false positive

rate

Most tools focus on ligands and receptors that are significantly
expressed by one or several populations compared to all the
populations of cells

The real significance of the LRI itself is usually not evaluated!



SingleCellSignalR
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SingleCellSignalR
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