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The extravagant plumage traits of male birds are a favourite example of sexual selection. However, to date

the units that selection is acting upon, the genes themselves have been a ‘black box’. Here, we report

evidence of change driven by sexual selection at a pigmentation gene locus in the galliform birds. Across

species, we find a correlation between the rate of amino acid change (dN/dS ) at this locus (MC1R) and the

degree of sexual dichromatism, which we use as a measure of the strength of sexual selection. There is no

evidence for a similar pattern in any of five other loci (four candidate and one control locus). This is

consistent with previous work on colour polymorphisms and suggests that MC1R may be a key target for

selection acting on plumage colour. The pattern of selection at MC1R seems to be consistent with the

continuous or cyclical evolution of traits and preferences that is the outcome of several Fisherian and good-

genes models of sexual selection. In contrast, we found no support for models of sexual selection that

predict an increase in purifying selection as a result of purging of deleterious mutations or for models that

predict an increased rate of mutation in association with stronger sexual selection.
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1. INTRODUCTION
The extravagant plumage traits of many male birds are a

classic example of sexual selection (Darwin 1871;

Hamilton & Zuk 1982). Many empirical (e.g. Zuk et al.

1992; Owens & Hartley 1998) and theoretical (e.g.

Kirkpatrick 1982; Mead & Arnold 2004) studies have

greatly improved our understanding of how these appa-

rently costly secondary sexual traits can arise and

be maintained. However, the proximate mechanisms

linking selection to the resulting male plumage traits have

largely been treated as a ‘black box’. An understanding of

the genes involved would allow us to fill this gap and

investigate the individual units on which selection is acting.

There are many hypotheses about sexual selection and

how it acts to bring about the traits seen in nature. Many of

these are hard to evaluate using conventional comparative

data on the phenotypes of extant taxa (Bennett & Owens

2002). Although neither few-locus models nor quan-

titative genetic models make specific predictions about the

accumulation of mutations at a single locus, the evolution-

ary scenarios produced by different quantitative genetic

models can be investigated at the single-locus level. For

example, certain (particularly ‘good-genes’) models

predict evolution leading to a stable outcome or equili-

brium, while others predict ongoing or cyclical evolution

(Mead & Arnold 2004). This second scenario has been

found under Fisherian, sexual conflict and some good-

genes models and would lead to prolonged or continual

change at a locus.

Most good-genes models of sexual selection, in which

females select male traits because they indicate condition
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or viability, rely on mutation–selection balance to

maintain genetic variance in a trait under sexual selection

(Pomiankowski & Møller 1995; Rowe & Houle 1996;

Houle & Kondrashov 2002). This would predict higher

degrees of purifying selection to be associated with higher

levels of sexual selection. In what could perhaps be seenas an

extension of this idea are models that predict an increased

rate of mutation in taxa with higher levels of sexual selection

(Møller & Cuervo 2003). This could be due to higher levels

of sperm competition leading to more meiosis and so a

higher rate of mutation (Bartosch-Harlid et al. 2003) or to

specific mutator alleles (Petrie & Roberts 2006).

The galliform birds (pheasants, partridges and allies)

show extraordinary diversity in ornamental male plumage

colour, and there is evidence that these traits can be used

in female choice (Petrie et al. 1991; Zuk et al. 1992) or

male–male competition (Mateos & Carranza 1997).

Plumage colour in this group of birds is largely due to

melanins and fine feather structures, while carotenoids are

generally considered not to be used. Further, melanin

granules are an essential part of all known structural

colours in galliform plumage (Prum 2006).

In this study, we investigate the effect of sexual selection

on a set of genes involved in melanin synthesis in the

Galliformes. MC1R (melanocortin-1-receptor) is involved

in the regulation of melanogenesis. In birds, the relative

activity level of this receptor acts as a switch from synthesis

of red/yellow pheomelanin (chicken, Takeuchi et al. 1998)

or no melanin synthesis (bananaquit, Theron et al. 2001),

to synthesis of black/brown eumelanin. TYR (tyrosinase),

TYRP1 (tyrosinase-related protein-1) and DCT (DOPA-

chrome tautomerase, also known as tyrosinase-related

protein-2, TYRP2) are all in the tyrosinase gene family,

coding for melanogenesis enzymes. AGRP (agouti- related

protein) is an endogenous antagonist of the melanocortin
This journal is q 2007 The Royal Society
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system in the central nervous system, with possible

involvement in the peripheral system but is treated

primarily as a control for the purposes of this study.

TYRP1 is located on the Z chromosome in chickens; all

other nuclear loci investigated were autosomal. Addition-

ally, as a control, we included CYTB, a mitochondrial

gene not involved in pigmentation.
2. MATERIAL AND METHODS
(a) Laboratory methods

Samples of soft tissue, blood or feather were obtained from 36

galliform species in 25 genera (for list of taxa sampled, see

table 1 of electronic supplementary material). Species were

selected based on the availability of samples while trying to

sample species that spanned the galliform phylogeny and were

as representative of the observed variation in sexual plumage

dichromatism as possible. Genomic DNA was extracted from

samples using standard methods. We sequenced 859 bp of the

MC1R exon, 772 bp of TYR exon 1, 267 bp ofTYRP1 exon 1,

233 bp of DCT exon 2 and 432 bp of the AGRP coding

sequence (comprising exon 2 and parts of exons 1 and 3). We

also sequenced the entireAGRP introns 1 and 2. PCR primers

are given in table 2 of electronic supplementary material. PCR

products were directly sequenced on both strands. CYTB

sequences were downloaded from GenBank or sequenced as

described previously (Kimball et al. 1999).

PCRs were performed in a 50 ml total reaction containing

1 unit Taq polymerase (Thermoprime plus DNA poly-

merase), 1! reaction buffer, 1.5 mM MgCl2, 0.1 mM each

dNTP, 0.4 mM each primer and 50–200 ng DNA. PCRs were

performed in a DNA Engine (MJ Research), with the

following cycling parameters: 948C for 2 min; 35!(948C

for 30 s, 55–658C for 45 s, 728C for 1 min); and 728C for

5 min. Cycle sequencing on both strands was carried out

using BIG DYE v. 3.1 (PE Biosystems) under standard

conditions. Sequences were edited in SEQMAN v. 5.05

(DNASTAR Inc.). Sequences were aligned using CLUSTAL

W and adjusted manually. Sequences have been deposited in

GenBank (accession numbers EF569209 and EF57103–

EF571223, see table 1 of electronic supplementary material).

(b) Phylogenetic analysis

The phylogeny we used was based on AGRP intron, CYTB

and the coding sequences as described above. Two combined

(partitioned) datasets, one of AGRP introns and CYTB,

and one containing these plus the coding sequences for the

five nuclear genes, were analysed using MRBAYES v. 3.0

(Huelsenbeck & Ronquist 2001) with 550 000 generations,

discarding the first 50 000 as burn-in and sampling every 100

generations. Fifty per cent consensus trees for these datasets

were similar (see figure 1 of electronic supplementary

material), although with improved resolution for the larger

dataset. These phylogenies were largely consistent with

previously published phylogenies (Kimball et al. 1999; Kaiser

et al. 2006), but with improved resolution among many of

the Phasianidae.

The consensus tree from the larger dataset was used as the

main phylogeny for the analysis. To check that this phylogeny

did not affect the results, the MC1R dataset was also analysed

using six additional phylogenies with noticeably different

topologies arbitrarily sampled from within the set of trees

generated by MRBAYES (figure 2 of electronic supplementary

material), and also analysed using the consensus tree from the
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analysis of AGRP introns and CYTB only, to check that using

a phylogeny based on the pigmentation gene-coding

sequences did not bias the results. The two outgroup taxa

(curassow and megapode) were not included in the

comparative analysis, as the long branches leading to them

created uncertainty in dichromatism reconstruction.

Most genera in the study were found to be unambiguously

monophyletic in all phylogenetic reconstructions. The only

exception was the francolins (Francolinus), in which the two

sampled species under some reconstructions were polyphy-

letic with respect to the jungle fowl (Gallus). The monophyly

of the francolins has previously been questioned (Bloomer &

Crowe 1998) and these two species assigned to separate

genera (Scleroptila and Francolinus). Our phylogenies show

some support for the latter classification and therefore it was

adopted for the present analysis.

(c) Character state scoring and reconstruction

Sexual plumage dichromatism was scored from field guide

information and illustrations (Madge & McGowan 2002) on

a scale of 0–6. This was based on three body regions (head

and neck; back, wings and tail; chest, belly and legs). Each

region was scored from 0 to 2, where 0 was no difference in

plumage colour between males and females; 1 was a

difference of shade or feather patterning; and 2 was a

difference in colour. Scoring was performed by two

independent observers. Scores between observers were

found to have high repeatability (rZK0.89, p!0.01,

intraclass correlation coefficient). The mean of the two scores

was used. This scoring system was based on that of Owens &

Bennett (1994), which has been widely used and found to

correlate with other measures of the strength of sexual

selection (Dunn et al. 2001). Ideally, mating system might

have been used to measure the potential for sexual selection

but this information is only sparsely available for the species

in this study. Sexual size dimorphism was also measured and

found to correlate with dichromatism under a correction for

phylogenetic non-independence (r 2Z0.17, pZ0.02),

suggesting that these traits are both evolving in response to

sexual selection. Measurement of UV reflectance was

considered unnecessary in this case, given that galliforms

are less sensitive to UV than other bird taxa and their ‘violet’

cone has a peak sensitivity similar to that of the ‘blue’ cone of

humans (Bowmaker et al. 1997; Ödeen & Håstad 2003).

Dichromatism scores were reconstructed over the galli-

form phylogeny (figure 1) using MACCLADE v. 4 (Maddison &

Maddison 2000). Branches with equivocal states were

resolved by equivocal cycling. Branches on which changes

in dichromatism occurred were scored as three categories

(increase, no change or decrease).

(d) Main analysis

dN/dS ratios were obtained by maximum likelihood using a

codon-based substitution model in PAML v. 3.14 (Yang 1997).

Branch-specific models were implemented in which dN/dS

ratios were estimated separately for lineages grouped by the

reconstructed levels of dichromatism (seven branch categories,

one for each level of dichromatism, see figure 1). Heterogeneity

in dN/dS among these lineages was tested using likelihood ratio

tests comparing these models tonull modelswith a single dN/dS

ratio across the phylogeny. Linear regressions were performed

with dN/dS as the dependent and dichromatism as the

independent variables. If sexual selection were having a

consistent effect on any of the pigmentation genes, we would
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Figure 1. Reconstruction of plumage dichromatism evolution on the phylogeny of the galliform species used in this study. dN/dS
ratios at MC1R are estimated for each dichromatism category, excluding grey branches genera are listed as: common name
(scientific name, number of species sampled). An image of a male from each genus is shown to the right.
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expect both of these tests to be significant. Within this

hypothesis, if sexual selection were causing ongoing or cyclical

evolution, we wouldexpect a positive regression between dN/dS

and dichromatism, but if it were increasing purifying selection,

as under the good-genes models, we would expect a negative

regression. The same analysis was performed with dN/dS

ratios estimated for lineages grouped by the reconstructed

change in dichromatism.

Several different site-specific models in PAML were also

implemented (M1, M2, M3, M7 and M8, see Yang et al.

(2000) for details), which allow individual codons to be under

different selective pressures but assume that the selective

pressure on each codon remains constant along all lineages.
(e) Genus-level analysis

As further, independent tests of the above hypotheses, the

relationships between dN/dS and dichromatism were also

analysed at the genus level. Free-ratio models were
Proc. R. Soc. B (2007)
implemented in PAML, which estimate a dN/dS ratio for

every branch on the phylogeny. From this, mean dN/dS

ratios (weighted by branch length) were calculated for each

genus (including the branch leading to the common ancestor

of all species within the genus and all branches leading from

this level to the tips). Dichromatism scores averaged at the

genus level and dN/dS values were analysed as traits in

the software package CONTINUOUS (Pagel 1999). For all of

the loci, dN/dS values based on three or fewer nucleotide

changes were excluded from the analysis since these do not

provide enough information to estimate dN/dS. Covariance

between dN/dS and dichromatism was tested using a

likelihood ratio test (LRT) to compare a model where

covariance between traits was set to zero with one where

covariance was allowed. Covariance between dS and

dichromatism was also analysed using this approach to test

the hypothesis that sexual selection is associated with higher

rates of mutation.
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Figure 2. Relationships between sexual plumage dichromatism and dN/dS for different categories of dichromatism at each of the
six loci. For clarity, y-axes are on different scales. (a) MC1R, likelihood ratio test for heterogeneity: LRSZ26.82, d.f.Z6,
p!0.001; (b) TYR: LRSZ7.38, d.f.Z6, pZ0.287; (c) TYRP1: LRSZ8.90, d.f.Z6, pZ0.179; (d ) DCT: LRSZ1.96, d.f.Z6,
pZ0.923; (e) AGRP : LRSZ3.74, d.f.Z6, pZ0.712; and ( f ) CYTB: LRSZ7.68, d.f.Z6, pZ0.263.
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3. RESULTS AND DISCUSSION
There was significant heterogeneity in dN/dS ratios at the

melanocortin-1 receptor locus (MC1R) among lineages

with different levels of dichromatism (likelihood ratio

statistic, LRSZ26.8, d.f.Z6, p!0.001). Furthermore, a

strong and significant positive regression was found

between dichromatism and dN/dS ratios at MC1R (r 2Z
0.81, pZ0.006; figures 1 and 2). These results were

significant under a Bonferroni correction for multiple tests

(corrected a-levelZ0.008 for six tests). When this analysis

was performed at the other loci, no significant hetero-

geneity or regressions between dichromatism and dN/dS

were found (figure 2). At DCT, there was a tendency

towards a negative relationship (r 2Z0.56, pZ0.05), but

this was far from significant in a sequential Bonferroni test

(corrected a-levelZ0.01) and the absence of hetero-

geneity in dN/dS ( pZ0.923) makes any trend highly

unlikely to be meaningful.

To verify that a relationship between dN/dS at MC1R

and dichromatism was robust to changes in the phylogeny

and alternative reconstructions of dichromatism, we

performed a separate analysis concentrating at the level

of the genus. This used the program CONTINUOUS, a

maximum-likelihood-based implementation of a general-

ized least squares (GLS) model of trait evolution (Pagel

1999). This corrects for any effect of phylogenetic

relationships on the observed correlation, with ‘indepen-

dent contrasts’ (Felsenstein 1985) being a special case of

this approach. The basic result was similar: there was a

significant covariance between dichromatism and dN/dS

at MC1R (LRSZ8.5, pZ0.004; again significant at p!
0.05 level after Bonferroni correction), but not for any

other loci (figure 3 of electronic supplementary material).

Significant covariance between MC1R dN/dS and dichro-

matism was also found with seven alternative phylogenies

(LRS rangeS6.2, p%0.013). The absence of this pattern

at any of the other loci investigated suggests that the result
Proc. R. Soc. B (2007)
at MC1R cannot be due to non-selective confounding

factors, such as time since divergence or population size,

which can affect dN/dS values (Rocha et al. 2006).

The pattern of higher dN/dS ratios for MC1R in

lineages with stronger dichromatism, together with dN/dS

values that do not exceed one, could be due to a higher

level of positive selection acting on the MC1R gene, an

increased rate of change due to decreased constraint

and/or neutral drift, or a combination of these

mechanisms. In this case, we suggest that the most

probable explanation for this pattern is positive selection

acting on the MC1R in temporal bursts, and/or in

restricted parts of the gene, masked by the background

of strong constraint at MC1R (average dN/dSZ0.03).

Site-specific analyses of MC1R evolution in PAML did not

reveal a category of sites under positive selection (not

shown), but the power of this analysis is low since a large

number of sites are known to affect MC1R function, and

different sites may have been involved in different lineages

(e.g. position 92, see discussion below). It is hard to

envisage a scenario under which constraint would

decrease systematically with degree of dichromatism,

without invoking selection, although this possibility

cannot be ruled out. Sexual dichromatism is widely

accepted as a measure of pre-mating sexual selection

(McLain et al. 1999; Prinzing et al. 2002) and several

studies have found a correlation with other measures of

sexual selection such as mating system (Figuerola &

Green 2000; Dunn et al. 2001) or extra-pair paternity

(Owens & Hartley 1998). Therefore, the robust relation-

ship that we have detected between dichromatism and

evolutionary change at the MC1R locus is extremely

interesting as a possible signature of sexual selection,

particularly given what we know about the extreme mating

systems and extravagant ornamental traits in male galli-

forms (Petrie et al. 1991; Zuk et al. 1992; Mateos &

Carranza 1997).
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The MC1R locus is well known for its association with

melanic polymorphisms in several bird and other

vertebrate species that affect both sexes equally (reviewed

in Hoekstra 2006), raising the issue of how protein-coding

changes in this locus could affect sexually dimorphic

coloration, which clearly involves differential gene

regulation among the sexes. In fact, there are precedents

forMC1R affecting coloration where regulation is involved:

different MC1R alleles have differential effects on color-

ation among the sexes in domestic chickens (Kerje et al.

2003). In addition, MC1R variation is associated

with male-specific coloration in fairy wrens (Malurus

leucopterus; Doucet et al. 2004) and seasonal variation in

coloration in arctic foxes (Alopex lagopus; Våge et al. 2005).

A simple model to explain the results presented here is that

the basic level of sexual dichromatism in galliforms is

determined by variation at other loci, with MC1R then

having a disproportionate effect on male-specific color-

ation. Corroborative evidence for important functional

changes in MC1R during galliform evolution is found in

two taxa (Polyplectron and Crax) with relatively dark

coloration that have a glutamate to lysine change at

amino acid position 92 in MC1R, which is known to be

associated with increased melanin deposition in several

birds and mice (Robbins et al. 1993; Takeuchi et al. 1996;

Nadeau et al. 2006).

To determine whether dN/dS at MC1R was responding

to a constant level of dichromatism or to changes in

dichromatism, we also performed an analysis using branch

groupings corresponding to the change in dichromatism

(decrease, dN/dSZ0.02; no change, dN/dSZ0.04;

increase, dN/dSZ0.03). These categories did not signi-

ficantly explain the variation in dN/dS at MC1R (LRSZ
3.44, d.f.Z2, pZ0.18). This suggests that the pattern of

increased dN/dS at MC1R is not due to changes in the

degree of dichromatism (which according to our scoring

scheme involve changes in the overall degree of male–

female colour differences but not differences in the colour

itself ) but instead corresponds to periods of a sustained

high level of dichromatism. The most plausible expla-

nation for this seems to be that change at MC1R is ongoing

in lineages with high sexual dichromatism. This seems

feasible because changes in plumage colour, particularly in

males, do appear to occur frequently between closely

related lineages that have similarly high levels of sexual

dichromatism. The absence of a clear relationship

between MC1R evolution and changes in the level of

dichromatism may either be because such changes occur

rapidly and therefore only produce a small molecular

signal and/or because selection on MC1R plays a limited

role in evolutionary change in the degree of dichromatism,

which would be consistent with the model outlined above.

The detectable signature of selection implies that novel

functional variants of MC1R have become repeatedly fixed

in galliform evolution. This increased rate of substitution

occurs once a high level of dichromatism has been

attained, as it is not associated with increases in the

level of dichromatism. This is consistent with continuous

or cyclical evolution in ornaments and preferences

(Pomiankowski & Iwasa 1998; Mead & Arnold 2004).

Furthermore, point substitutions at MC1R are associated

with large-scale variation in melanin distribution in several

bird species (Theron et al. 2001; Mundy et al. 2004).

Sexual selection for such mutations would promote their
Proc. R. Soc. B (2007)
rapid fixation, with further mutations at MC1R producing

minor or no phenotypic ‘improvements’ under the same

selective regime. Thus, under constant sexual selection,

we predict that relatively few substitutions would occur in

MC1R, and these would be hard to detect using our

methods. Our results therefore strongly suggest an

alternative scenario in which sexual selection has not

been constant within lineages. Instead, novel MC1R alleles

of moderate to large phenotypic effect became fixed during

one regime of sexual selection, with other alleles selected

under subsequent regimes. This model is consistent with

the general view that galliforms are prominent examples of

rapid plumage change under sexual selection (Andersson

1994; Young et al. 1994).

The prediction of stronger purifying selection (i.e. lower

dN/dS ) on branches with higher dichromatism, which is

expected under most good-genes models (Rowe & Houle

1996), is clearly refuted atMC1R and at four out of the five

other loci studied (TYR, TYRP1, AGRP, CYTB). The

slope of the regression between dichromatism and dN/dS

at DCT is negative, but neither the regression nor the LRT

for heterogeneity reach significance (LRSZ1.96 pZ0.92).

Other models have predicted a genome-wide increase in

the level of background mutation in lineages under strong

sexual selection (Møller & Cuervo 2003). We found no

evidence for this, as there was no covariance between dS

and dichromatism in a combined analysis of all five nuclear

loci controlled for phylogeny (LRSZ0.02, pZ0.88). It has

also been widely suggested that sex-linked loci, particularly

on the Z chromosome, should be more easily co-opted by

sexual selection than autosomal loci (Sætre et al. 2003;

Kirkpatrick & Hall 2004; Albert & Otto 2005). However,

we did not find this pattern here: MC1R is autosomal and

we found no evidence for sexual selection acting on

TYRP1, the only sex-linked locus in the study.

Our study is the first to our knowledge to make a link

between molecular evolution of specific loci and secondary

sexual traits in vertebrates. In contrast, previous work has

concentrated on rapidly evolving loci thathave a direct role in

reproduction, particularly in males (e.g. Dorus et al. 2004). A

surprising feature of our results is that despite the enormous

diversity in male–female colour differences in galliform birds

generated over their approximately 50 Myr history of

diversification (van Tuinen & Dyke 2004), a proportion of

this variation has a common genetic basis. These results

suggest that it is possible to detect a signal of sexual selection

even against a background of strong constraint, and pave the

way for a far deeper mechanistic understanding of sexual

selection than has so far been achieved.
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