- HAI503I: Algorithmique 4 -

Chap. 4 – Tables de hachage

L3 informatique Université de Montpellier

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

2. Résolution des collisions

- 2.1 Problématique
- 2.2 Résolution par chaînage
- 2.3 Adressage ouvert

- 1. Introduction
- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

- 2. Résolution des collisions
- 2.1 Problématique
- 2.2 Résolution par chaînage
- 2.3 Adressage ouvert

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

- 2. Résolution des collisions
- 2.1 Problématique
- 2.2 Résolution par chaînage
- 2.3 Adressage ouvert

Les dictionnaires Python

Comment implanter le type dict de Python?

```
1 >>> NbPattes = {} # Dict vide

2 >>> NbPattes['Humain'] = 2 # Ajout

3 >>> NbPattes['Mille_Pattes'] = 999

4 >>> NbPattes['Araignee'] = 8

5 >>> NbPattes['Mille_Pattes'] = 1000 # Modification

6 >>> 'Coccinelle' in NbPattes # Recherche

7 False

8 >>> NbPattes['Mille_Pattes']

9 1000
```

La structure de données dictionnaire

Définition d'un dictionnaire

- ► Ensemble de couples (clef, valeur)
- Opérations disponibles :
 - Création d'un dictionnaire vide
 - ► Insertion d'un couple
 - ► Modification d'une valeur → Ré-Insertion
 - ▶ Recherche d'une clef → renvoie la valeur ou une erreur

Objectif

Les opérations RECHERCHE et INSERTION doivent être rapides

La structure de données dictionnaire

Définition d'un dictionnaire

- Ensemble de couples (clef, valeur)
- Opérations disponibles :
 - Création d'un dictionnaire vide
 - ► Insertion d'un couple
 - ► Modification d'une valeur → Ré-Insertion
 - ► Recherche d'une clef → renvoie la valeur ou une erreur

Objectif

Les opérations RECHERCHE et INSERTION doivent être rapides

Hypothèse simplificatrice

- Les clefs sont des entiers
- ► Théorie : toute donnée est codée en binaire → interprétation comme un entier
- ▶ Pratique : codage ASCII, Unicode ou transformation quelconque...

Dictionnaire de n éléments, clef entre 0 et $N-1^*$

Tableau

► Taille : *N*

► Création : O(N) 🗶

► Insertion : O(1) ✓

▶ RECHERCHE : O(1) ✓

^{. *} Dans l'exemple de départ : mots de 20 lettres sur un alphabet de taille 128 ~

Dictionnaire de *n* éléments, clef entre 0 et $N-1^*$

Tableau

- ► Taille : N
- ► CRÉATION : O(N) 🗶
- ► Insertion : O(1) ✓
- ► RECHERCHE : O(1) ✓

Liste chaînée

- ► Taille : *n*
- ► Création : O(1) ✓
- ► Insertion : O(n) ×
- ► RECHERCHE : O(n) 🗶

^{. *} Dans l'exemple de départ : mots de 20 lettres sur un alphabet de taille 128 -->

Dictionnaire de n éléments, clef entre 0 et $N-1^*$

Tableau

- ► Taille : *N*
- ► CRÉATION : O(N) 🗶
- ► INSERTION : O(1) ✓
- ▶ RECHERCHE : O(1) ✓

Arbre binaire de recherche

- ► Taille : *n*
- ightharpoonup Création : O(1)
- ► INSERTION : $O(h) \rightsquigarrow O(\log n)$ si équilibré
- ► RECHERCHE : $O(h) \rightsquigarrow O(\log n)$ si équilibré \bigcirc

Liste chaînée

- ► Taille : n
- ightharpoonup Création : O(1) \checkmark
- ► INSERTION : O(n) ×
- ▶ RECHERCHE : O(n) ×

^{. *} Dans l'exemple de départ : mots de 20 lettres sur un alphabet de taille 128 \rightsquigarrow $N=128^{20}=2^{140}\sim1.4\times10^{42}...$

Dictionnaire de *n* éléments, clef entre 0 et $N-1^*$

Tableau

- ► Taille : N
- ► CRÉATION : O(N) 🗶
- ► Insertion : O(1) ✓
- ► RECHERCHE : O(1) ✓

Arbre binaire de recherche

- ► Taille: n
- ► CRÉATION : *O*(1)
- ► INSERTION : $O(h) \rightsquigarrow O(\log n)$ si équilibré
- RECHERCHE : O(h) → O(log n) si équilibré ☺

Liste chaînée

- ► Taille : *n*
- ► Création : *O*(1)
- ► INSERTION : O(n) ×
- ► RECHERCHE : O(n) 🗶

Tas

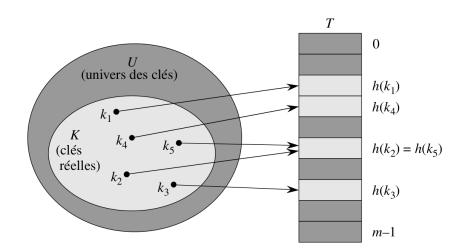
- ► Taille : n
- ► CRÉATION : *O*(1)
- ▶ INSERTION : $O(\log n)$
- ightharpoonup Recherche: $O(\log n)$

^{. ★} Dans l'exemple de départ : mots de 20 lettres sur un alphabet de taille 128 ↔ 4日 → 4周 → 4 目 → 4 目 → 9 Q P

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

- 2. Résolution des collisions
- 2.1 Problématique
- 2.2 Résolution par chaînage
- 2.3 Adressage ouvert

Tables de hachage



[.] Source : T. H. Cormen, C. Leiserson, R. Riverst, et C. Stein, Introduction à l'algorithmique. $2^{\grave{e}me}$ éd. Dunod, 2004.

Formalisation

Table de hachage

- Clefs
 - ▶ Univers *U* des clefs possibles : $U = \{0, ..., N-1\}$
 - ▶ Clefs utilisées : $K \subset U$, de taille n
- ► Table T de taille m
 - ▶ Indices entre 0 et m-1
 - ▶ Une case peut être vide ou contenir une valeur, voire plusieurs
- ► Fonction de hachage
 - ▶ Fonction $h: U \rightarrow \{0, ..., m-1\}$

Insertion

Insertion du couple (k, v) dans la case $T_{[h(k)]}$

Utilisées de partout :

- ► En machine : cache, compilateur (variables), disque (table des inodes)
- Pour gérer des bases de données
- ► En cryptographie, pour la vérification d'intégrité d'un fichier (par exemple, la fonction MD5), pour la vérification de mots de passe...

Questions à résoudre

Caractéristiques

- ▶ Taille : $m \rightsquigarrow$ comment choisir m par rapport à n et N?
- CRÉATION: on veut O(m)
 On ne peut pas explicitement fixer une valeur h(k) pour chaque clef k de U (il y en a trop...), il va falloir une formule ou un algorithme pour calculer h(k)!
- ► INSERTION : calcul de h(k) puis insertion en case $h(k) \rightsquigarrow$ quelle complexité?
- ► RECHERCHE : calcul de h(k) puis recherche dans la case $h(k) \rightsquigarrow$ quelle complexité?

Questions à résoudre

Caractéristiques

- Taille : m → comment choisir m par rapport à n et N?
- CRÉATION: on veut O(m)
 On ne peut pas explicitement fixer une valeur h(k) pour chaque clef k de U (il y en a trop...), il va falloir une formule ou un algorithme pour calculer h(k)!
- ► INSERTION : calcul de h(k) puis insertion en case $h(k) \rightsquigarrow$ quelle complexité?
- ► RECHERCHE : calcul de h(k) puis recherche dans la case $h(k) \rightsquigarrow$ quelle complexité?

Collisions

- Que fait-on si $h(k_1) = h(k_2)$?
 - Plusieurs valeurs dans une case (liste chaînée, etc.)
 - Utiliser une autre case?
- ▶ Est-ce que $h(k_1) = h(k_2)$ arrive souvent?
 - Comment choisir h?

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

- 2. Résolution des collisions
- 2.1 Problématique
- 2.2 Résolution par chaînage
- 2.3 Adressage ouvert

Problématique des fonctions de hachage

Contexte

- ► Choix d'une fonction $h: U = \{0, ..., N-1\} \rightarrow \{0, ..., m-1\}$
- ▶ Fonction utilisée pour un ensemble de clefs K de taille $n \ll N$

Quelques exemples (qui ne marchent pas forcément bien...)

Collisions évitables?

- Avec $N \gg m$, on aura forcément des collisions $(h(k_1) = h(k_2))$
- ▶ Mais on stocke n clefs avec $n \le m$.
 - Pour un ensemble de clefs, possible de trouver h sans collision
 - Mais... on ne connaît pas les clefs à l'avance

Problématique des fonctions de hachage

Contexte

- ► Choix d'une fonction $h: U = \{0, ..., N-1\} \rightarrow \{0, ..., m-1\}$
- ▶ Fonction utilisée pour un ensemble de clefs K de taille $n \ll N$

Quelques exemples (qui ne marchent pas forcément bien...)

Problématique

- ▶ On veut choisir *h* avant de connaître les clefs
- ▶ On voudrait éviter les collisions entre clefs... sans les connaître
- Pas le choix : une fonction de hachage doit être choisie aléatoirement

Modèles aléatoires des fonctions de hachage

Tentative de choix de fonctions de hachage

On tire h uniformément parmi les fonctions de $\textit{U} = \{0, \dots, \textit{N}-1\}$ dans $\{0, \dots, \textit{m}-1\}$

Représentation de h

- ▶ Pour chaque $k \in U$, une valeur $h(k) \rightsquigarrow$ tableau H de taille N
- ▶ Tirage de $h \rightsquigarrow$ tirage uniforme et indépendant de chaque h(k) dans $\{0, \ldots, m-1\}$

Avantage et inconvénient

- ▶ Avantage : on a bien pour tout $k_1 \neq k_2$, $\Pr[h(k_1) = h(k_2)] = 1/m$
- ► Inconvénient : totalement irréaliste ~> tableau de taille N!!!

Modèles aléatoires des fonctions de hachage

Tentative de choix de fonctions de hachage

On tire h uniformément parmi les fonctions de $\textit{U} = \{0, \dots, \textit{N}-1\}$ dans $\{0, \dots, \textit{m}-1\}$

Représentation de h

- ▶ Pour chaque $k \in U$, une valeur $h(k) \rightsquigarrow$ tableau H de taille N
- ▶ Tirage de $h \rightsquigarrow$ tirage uniforme et indépendant de chaque h(k) dans $\{0, \ldots, m-1\}$

Avantage et inconvénient

- ▶ Avantage : on a bien pour tout $k_1 \neq k_2$, $\Pr[h(k_1) = h(k_2)] = 1/m$
- ► Inconvénient : totalement irréaliste ~ tableau de taille N!!!

Nécessité d'un autre modèle

- Avec les mêmes (bonnes) propriétés probabilistes
- Mais, avec qui soit implémentable en temps raisonnable

Modèle universel des fonctions de hachage

Tentative 2 de choix de fonctions de hachage

On fixe un ensemble \mathcal{H} de fonctions de hachage et on tire h uniformément dans \mathcal{H} .

Définition

Un ensemble \mathcal{H} de fonctions de $U = \{0, \dots, N-1\}$ dans $\{0, \dots, m-1\}$ est **universel** si pour tout $k_1 \neq k_2 \in U$, lorsqu'on tire uniformément h dans \mathcal{H} on a $\Pr[h(k_1) = h(k_2)] \leq 1/m$.

Remarques

- ▶ Probabilité de collision ≤ probabilité dans le modèle aléatoire
- ▶ On *connait* des ensembles *H* universels réalistes (cf Partie 3...)

Ensemble universel intéressant

- ▶ Ensemble \mathcal{H} pas trop gros \rightsquigarrow représentation de h assez petite
- ▶ Tirer uniformément $h \in \mathcal{H}$ doit être efficace
- ightharpoonup Calculer h(k) doit être rapide

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

- 2. Résolution des collisions
- 2.1 Problématique
- 2.2 Résolution par chaînage
- 2.3 Adressage ouvert

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

2. Résolution des collisions

- 2.1 Problématique
- 2.2 Résolution par chaînage
- 2.3 Adressage ouvert

Collisions

Contexte

- ▶ Table T avec fonction de hachage $h: U = \{0, \dots, N-1\} \rightarrow \{0, \dots, m-1\}$ choisie dans un ensemble universel
- ▶ Ensemble de clefs $K \subseteq U$
- ▶ If y a **collision** entre les clefs k_1 et k_2 si $h(k_1) = h(k_2)$

Remarque

- Si la table est suffisamment grande, avec bonne probabilité, il n'y aura pas de collision.
- Mais on ne peut pas être complétement sûr de les éviter...

Collisions

Contexte

- ▶ Table T avec fonction de hachage $h: U = \{0, \dots, N-1\} \rightarrow \{0, \dots, m-1\}$ choisie dans un ensemble universel
- ▶ Ensemble de clefs $K \subseteq U$
- ▶ If y a **collision** entre les clefs k_1 et k_2 si $h(k_1) = h(k_2)$

Remarque

- Si la table est suffisamment grande, avec bonne probabilité, il n'y aura pas de collision.
- Mais on ne peut pas être complétement sûr de les éviter...

Lemme

Si $m=n^2$, et h est tirée uniformément dans un ensemble universel \mathcal{H} , alors la probabilité qu'il existe deux clefs $k_1 \neq k_2$ telles que $h(k_1) = h(k_2)$ est $\leq \frac{1}{2}$.

Collisions

Contexte

- ▶ Table T avec fonction de hachage $h: U = \{0, \dots, N-1\} \rightarrow \{0, \dots, m-1\}$ choisie dans un ensemble universel
- ▶ Ensemble de clefs $K \subseteq U$
- ▶ If y a **collision** entre les clefs k_1 et k_2 si $h(k_1) = h(k_2)$

Remarque

- Si la table est suffisamment grande, avec bonne probabilité, il n'y aura pas de collision.
- Mais on ne peut pas être complétement sûr de les éviter...

Deux exemples de (familles de) solutions

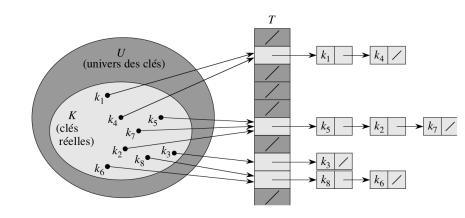
- Plusieurs éléments dans une même case : résolution par chaînage
- ► Trouver une autre case libre : adressage ouvert

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

2. Résolution des collisions

- 2.1 Problématique
- 2.2 Résolution par chaînage
- 2.3 Adressage ouvert

Résolution par chaînage : principe



[.] Source : T. H. Cormen, C. Leiserson, R. Riverst, et C. Stein, Introduction à l'algorithmique. $2^{\grave{e}me}$ éd. Dunod, 2004.

Résolution par chaînage

Chaque case de T contient une liste chaînée

Algorithmes

- ightharpoonup Recherche de k:
 - ► Calcul de h(k)
 - Parcours de la liste contenue dans $T_{[h(k)]}$, retour de (k, v) ou NULL si k n'apparaît pas dans la liste.
 - ▶ Complexité : $O(\ell(k))$ où $\ell(k)$ est la taille de la liste $T_{[h(k)]}$
- ▶ INSERTION de (k, v):
 - Si k apparaît déjà dans la liste contenue dans $T_{[h(k)]}$, on remplace sa valeur par v
 - ▶ Sinon, on ajoute (k, v) à la liste $T_{[h(k)]}$
 - ▶ Complexité : $O(\ell(k))$ où $\ell(k)$ est la taille de la liste $T_{[h(k)]}$

Quelle efficacité?

▶ Une opération coûte O(L), où $L = \max_{k \in K} \ell(k) \rightsquigarrow$ quelle taille maximale en moyenne?

Efficacité de la résolution par chaînage

Théorème

Soit T une table de hachage de taille m, avec h tirée uniformément dans un ensemble $\mathcal H$ universel. Si T contient n éléments et que les collisions sont résolues par chaînage, l'espérance de la complexité de RECHERCHE et de INSERTION est en O(n/m).

Complexité

- ▶ Complexité espérée : $O(\alpha)$ où $\alpha = \frac{n}{m}$ est le *taux de remplissage*
- ▶ Si le taux est autour de 1 : O(1) en moyenne
- La résolution par chaînage marche bien en moyenne, mais certaines opérations peuvent être coûteuses (si on a une grande liste...)

Pourquoi des listes chaînées?

- Arbres binaires de recherche ou tas dans chaque case
 - ightharpoonup Complexité moyenne en $O(\log \alpha)$
 - ▶ Complexité pire cas en $\max_k \log \ell(k)$
- ► Et pourquoi pas des tables de hachage?

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

2. Résolution des collisions

- 2.1 Problématique
- 2.2 Résolution par chaînage
- 2.3 Adressage ouvert

Principe

Idée

Si la case pour insérer (k, v) est occupée, trouver une autre case

Formellement

- ightharpoonup m fonctions de hachage h_1, \ldots, h_m
 - ▶ 1^{er} essai : INSERTION en case $h_1(k)$
 - ▶ $2^{\text{ème}}$ essai : INSERTION en case $h_2(k)$
 - **.**..
 - $ightharpoonup m^{\text{ème}}$ essai : INSERTION en case $h_m(k)$
- Condition : pour tout k, $\{h_1(k), \ldots, h_m(k)\}$ est une **permutation** de $\{0, \ldots, m-1\}$

Algorithmes

- ▶ RECHERCHE : explorer $T_{[h_1(k)]}$, $T_{[h_2(k)]}$, . . .
 - ▶ si on trouve $k \rightsquigarrow \text{gagn\'e}$
 - si on trouve une case vide

 k n'est pas dans T
- INSERTION : explorer jusqu'à trouver une case vide

Adressage ouvert : constructions et performance

Construire les m fonctions à partir d'une (ou deux) fonctions de hachage.

Quelques possibilités pratiques

- **Sondage linéaire** : $h_i(k) = (h(k) + i) \mod m$
- ► Sondage quadratique : $h_i(k) = (h(k) + ai^2 + bi) \mod m$ (a et b à choisir)
- ► Sondage binaire : $h_i(k) = h(k) \oplus i$ (si $m = 2^{\ell}$)
- **Double hachage** : $h_i(k) = (h^{(1)}(k) + ih^{(2)}(k)) \mod m$ ($h^{(1)}$ et $h^{(2)}$ à choisir)
- **>** ...

Hypothèse (théorique...)

Pour tout k, $\{h_1(k), \ldots, h_m(k)\}$ est une permutation aléatoire

Théorème

Sous l'hypothèse précédente, si le facteur de remplissage est $\alpha=n/m<1$, l'espérance du nombre de cases visitées pour une RECHERCHE infructueuse ou une INSERTION est $\leq \frac{1}{1-\alpha}$.

Bilan sur l'adressage ouvert

Principe de base

- ▶ Une seule table principale, un seul élément par case
- ▶ Si une case est occupée, aller ailleurs, plusieurs possibilités pour ça...

Complexité espérée (modèle aléatoire)	$\alpha = \frac{1}{2}$	$\alpha = \frac{9}{10}$
▶ Insertion ou Recherche infructueuse : $\frac{1}{1-\alpha}$	2	10
► RECHERCHE réussie : $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$ (admis)	$\leq 1,387$	$\leq 2,559$

Bilan sur l'adressage ouvert

Principe de base

- ▶ Une seule table principale, un seul élément par case
- ▶ Si une case est occupée, aller ailleurs, plusieurs possibilités pour ça...

Complexité espérée (modèle aléatoire)

$$\alpha = \frac{1}{2}$$
 $\alpha = \frac{9}{10}$

- ► Insertion on Recherche infructueuse : $\frac{1}{1-\alpha}$ 2 10
- ▶ RECHERCHE réussie : $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$ (admis) $\leq 1,387 \leq 2,559$

Un exemple supplémentaire : hachage du coucou

- ▶ Deux fonctions de hachage $h^{(1)}$ et $h^{(2)}$ deux emplacements possibles par clef
- ▶ INSERTION de (k, v):
 - ▶ Insertion en case $h^{(1)}(k)$
 - ▶ Si la case contenait (k', v'), on déplace (k', v') dans la case $h^2(k')$
 - ► Et récursivement...
- ► Et ça marche!

Conclusion sur la résolution des collisions

Les collisions sont inévitables

Deux familles de résolutions vues ici

- Chaînage :
 - ► Gérer les collisions en mettant plusieurs éléments par case
 - Complexité liée au nombre maximal d'éléments par case et à la structure de données
- Adressage ouvert :
 - ► Gérer les collisions en cherchant une autre case libre
 - Complexité liée au nombre de cases à inspecter
- → Dans les deux cas : complexité liée au nombre de collisions

Conclusion sur la résolution des collisions

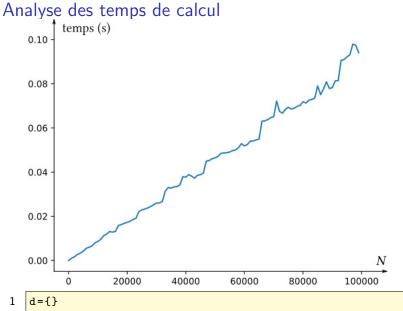
Les collisions sont inévitables

Deux familles de résolutions vues ici

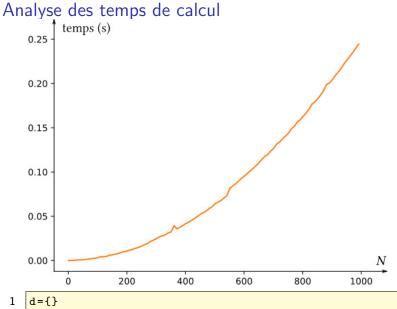
- Chaînage :
 - ► Gérer les collisions en mettant plusieurs éléments par case
 - Complexité liée au nombre maximal d'éléments par case et à la structure de données
- Adressage ouvert :
 - ▶ Gérer les collisions en cherchant une autre case libre
 - Complexité liée au nombre de cases à inspecter
- → Dans les deux cas : complexité liée au nombre de collisions

Cas des dictionnaires Python

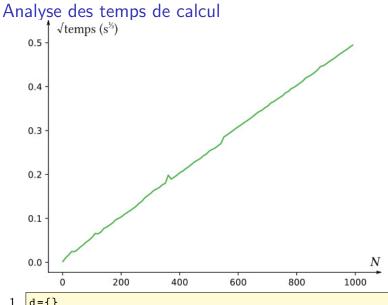
- ► Fonction de hachage pas aléatoire $\rightsquigarrow h(i) = i \mod (2^{61} 1)$
- ► Résolution des collisions par adressage ouvert
 - Ordre de parcours des cases un peu complexe
- Solution théoriquement faible, à peu près correcte en pratique



1 d={}
2 for i in range(N):
 d[randrange(2**61*N**2)]=i



for i in range(N):
 d[(2**61-1)*randrange(N**2)]=i



```
1 d={}
2 for i in range(N):
    d[(2**61-1)*randrange(N**2)]=i
```

1. Introduction

- 1.1 Structure de données dictionnaire
- 1.2 Tables de hachage
- 1.3 Fonctions de hachage

2. Résolution des collisions

- 2.1 Problématique
- 2.2 Résolution par chaînage
- 2.3 Adressage ouvert

3. Une famille universelle de fonctions de hachage

Objectif

Rappel de la définition

Un ensemble \mathcal{H} de fonctions de $\{0,\ldots,N-1\}$ dans $\{0,\ldots,m-1\}$ est **universel** si pour tout $k_1\neq k_2$ fixés, $\Pr[h(k_1)=h(k_2)]\leq 1/m$.

Contraintes sur \mathcal{H}

- Suffisamment grand pour avoir une probabilité $\leq 1/m$
- Suffisamment petit pour savoir représenter $h \in \mathcal{H}$ avec une place raisonnable
- ▶ Suffisamment *simple* pour savoir tirer $h \in \mathcal{H}$ en temps raisonnable

On veut ${\mathcal H}$ de taille polynomiale en ${\mathcal N}$

- Nombre de couples de clefs possibles $\binom{N}{2} \leadsto$ on demande au moins autant de fonctions h, donc **on veut** $|\mathcal{H}| \ge \binom{N}{2}$
- Représentation d'une fonction h en O(log N) bits → similaire à une clef
- ▶ Tirage aléatoire en $O(\log N) \rightsquigarrow$ équivalent au calcul de h(k)

Hachage multiplicatif

Définition

Soit $\mathcal{H}_p^{N,m} = \{h_{a,b}: 0 < a < p, 0 \le b < p\}$ la famille de fonctions définies par

$$h_{a,b}: \left| \begin{array}{ccc} \{0,\ldots,N-1\} & \rightarrow & \{0,\ldots,m-1\} \\ k & \rightarrow & ((ak+b) \bmod p) \bmod m \end{array} \right.$$

où p est un nombre premier > N

Représentation et tirage aléatoire

- ▶ Tirage aléatoire de $h_{a,b}$: tirage de $a \in \{1,\ldots,p-1\}$ et $b \in \{0,\ldots,p-1\}$
- ▶ Représentation de $h_{a,b}$: (a, b, p)
- ► Taille : $|\mathcal{H}_{p}^{N,m}| = p(p-1) > N^2$

Hachage multiplicatif

Définition

Soit $\mathcal{H}_p^{N,m} = \{h_{a,b}: 0 < a < p, 0 \le b < p\}$ la famille de fonctions définies par

$$h_{a,b}: \left| \begin{array}{ccc} \{0,\ldots,N-1\} & \rightarrow & \{0,\ldots,m-1\} \\ k & \rightarrow & ((ak+b) \bmod p) \bmod m \end{array} \right.$$

où p est un nombre premier > N

Représentation et tirage aléatoire

- ▶ Tirage aléatoire de $h_{a,b}$: tirage de $a \in \{1, ..., p-1\}$ et $b \in \{0, ..., p-1\}$
- ▶ Représentation de $h_{a,b}$: (a, b, p)
- ▶ Taille : $|\mathcal{H}_p^{N,m}| = p(p-1) > N^2$

Théorème

La famille $\mathcal{H}_p^{N,m}$ est universelle (pour tout N, m et $p \geq N$)

Preuve du théorème

Rappel de la définition de $h_{a,b}$

Soit $\mathcal{H}_p^{N,m} = \{h_{a,b}: 0 < a < p, 0 \le b < p\}$ la famille de fonctions définies par

$$h_{a,b}: \left| \begin{array}{ccc} \{0,\ldots,N-1\} & \rightarrow & \{0,\ldots,m-1\} \\ k & \rightarrow & ((ak+b) \bmod p) \bmod m \end{array} \right.$$

où p est un nombre premier > N

Lemme : système linéaire modulo p

Soit $k_1 \neq k_2$ et $u \neq v$ dans $\mathbb{Z}/p\mathbb{Z}$, alors il existe un unique couple a, $b \in \mathbb{Z}/p\mathbb{Z}$ tel que $u = ak_1 + b$ et $v = ak_2 + b$.

Preuve du théorème

Rappel de la définition de $h_{a,b}$

Soit $\mathcal{H}_p^{N,m} = \{h_{a,b}: 0 < a < p, 0 \le b < p\}$ la famille de fonctions définies par

$$h_{a,b}: \left| \begin{array}{ccc} \{0,\ldots,N-1\} & \rightarrow & \{0,\ldots,m-1\} \\ k & \rightarrow & ((ak+b) \bmod p) \bmod m \end{array} \right.$$

où p est un nombre premier > N

Lemme : système linéaire modulo p

Soit $k_1 \neq k_2$ et $u \neq v$ dans $\mathbb{Z}/p\mathbb{Z}$, alors il existe un unique couple a, $b \in \mathbb{Z}/p\mathbb{Z}$ tel que $u = ak_1 + b$ et $v = ak_2 + b$.

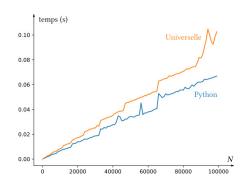
Théorème (réécrit)

Pour tout $k_1 \neq k_2$, $\Pr[h_{a,b}(k_1) = h_{a,b}(k_2)] \leq 1/m$

Bilan sur la famille universelle

Utilisation de la famille

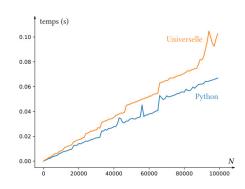
- ► CRÉATION du dictionnaire : tirage aléatoire de *a* et *b*
- Complexité du calcul de $h_{a,b}(k) = ((ak+b) \mod p) \mod m$
 - Additions, multiplications, divisions d'entiers $\leq p^2$: $O(\log^2 p) = O(\log^2 N)$
 - Taille d'une clef → O(log N)



Bilan sur la famille universelle

Utilisation de la famille

- CRÉATION du dictionnaire : tirage aléatoire de a et b
- Complexité du calcul de $h_{a,b}(k) = ((ak+b) \mod p) \mod m$
 - Additions, multiplications, divisions d'entiers $\leq p^2$: $O(\log^2 p) = O(\log^2 N)$
 - ► Taille d'une clef \sim $O(\log N)$



Autres familles universelles

- $h_a(k) = (ak \mod 2^w) \operatorname{div} 2^{w-\ell}$
- $ightharpoonup h_{\vec{c}}(k) = ((\sum_i c_i k^i) \bmod p) \bmod m$

quasi-universelle (cf TD) fortement universelle

Conclusion sur les tables de hachage

Tables de hachage

- Structure de données très efficace, et très répandue
- Autres structures dérivées (ex : filtres de Bloom)
- ► Constructions pratiques inspirées de la théorie

Gestion des collisions

- ▶ Chaînage \rightsquigarrow complexité amortie O(1) dans le modèle universel
- Adressage ouvert \leadsto complexité amortie O(1) dans le modèle aléatoire
- D'autres méthodes existent. Ex. le hachage parfait → complexité pire cas O(1) dans le modèle universel

Construction de familles universelles

- $h_{a,b}(k) = (((ak + b) \mod p) \mod m)$ fournit une famille universelle
- D'autres familles existent...

Dans les langages de programmation

- ► Tables de hachages souvent proposées (dictionnaires), non aléatoires
- ▶ Souvent bon en pratique, mais mauvaises surprises possibles

