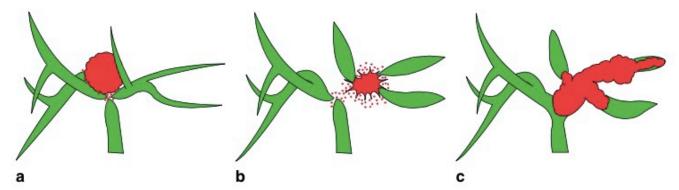

Cholangiocarcinome périhilaire

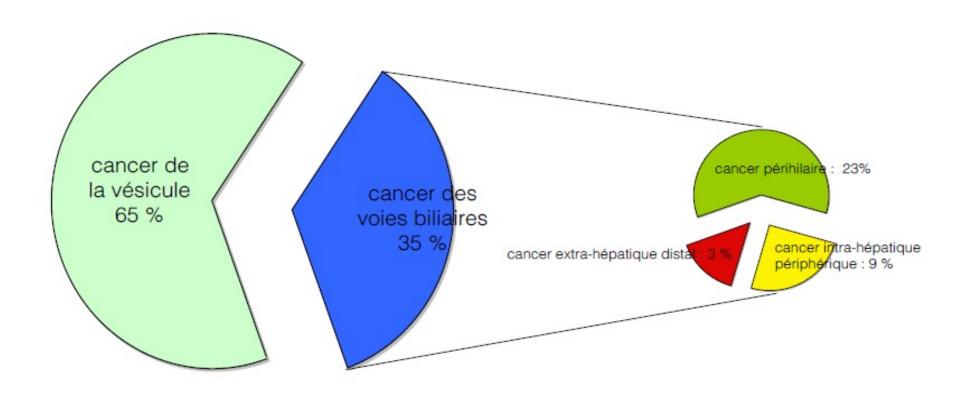
Dr Rami RHAIEM CHU Robert Debré, Reims, France

DIU chirurgie hépatobiliaire et pancréatique

Cancer des voies biliaires



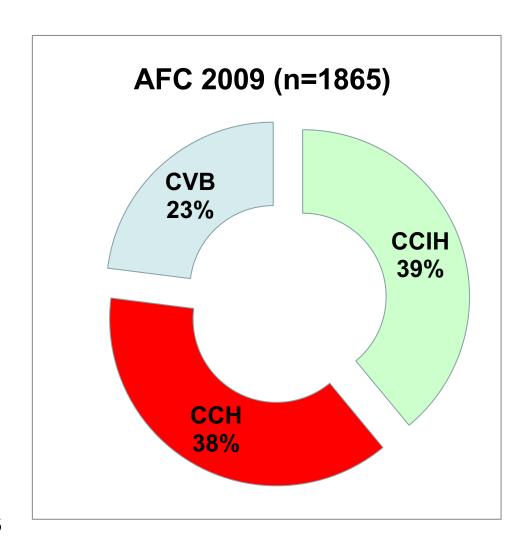
Cholangiocarcinomes: classification


3 localisations pour les cholangiocarcinomes:

- intra-hépatique
- péri-hilaire : cholangiocarcinomes envahissant ou nécessitant une résection de la convergence biliaire
- extra-hépatique

Epidémiologie

Rapport de l'AFC


Taille	< 2cm
	< ZCII)

• Survie sp. à 2 ans 15%

• Survie après chir. 5 ans 45%

• Mortalité chirurgie: 10%

• Morbidité: 50%

^{*}CVB 5ème rang cancers digestifs

C.H.U. Reims

Définitions

- Les cholangiocarcinomes qui se développent à partir des canaux biliaires droit ou gauche, ou à proximité de leur jonction, sont appelés cholangiocarcinomes hilaires et sont considérés comme des cholangiocarcinomes extrahépatiques
- N'inclut pas les K vésiculaires ou CCIH ou MH avec envahissement hilaires et périhilaires

Macroscopiquement

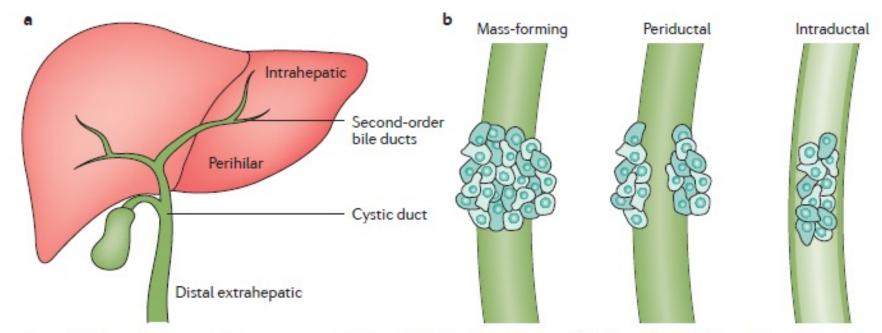
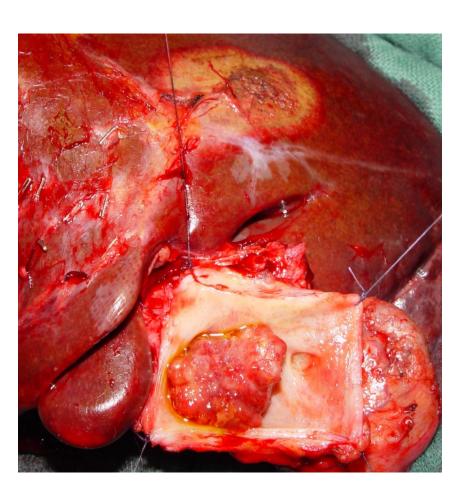
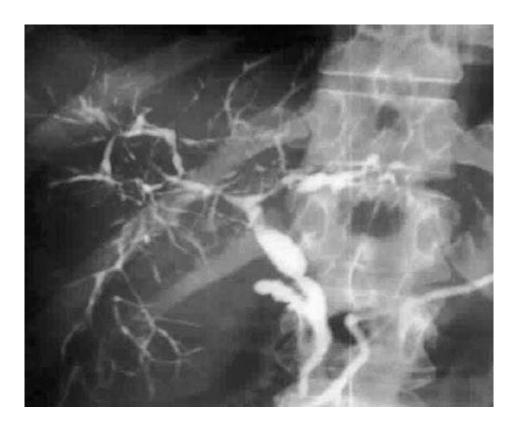
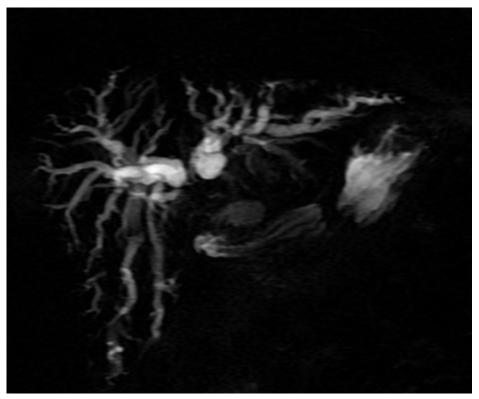



Figure 2 | Classifications and appearance of CCAs. a | Cholangiocarcinomas (CCAs) are classified according to the anatomical location into intrahepatic (iCCA), perihilar (pCCA) and distal (dCCA). b | Concerning the gross appearance, the iCCA can present three different patterns of growth: mass-forming; periductal infiltrating; and intraductal growth.

Macroscopiquement

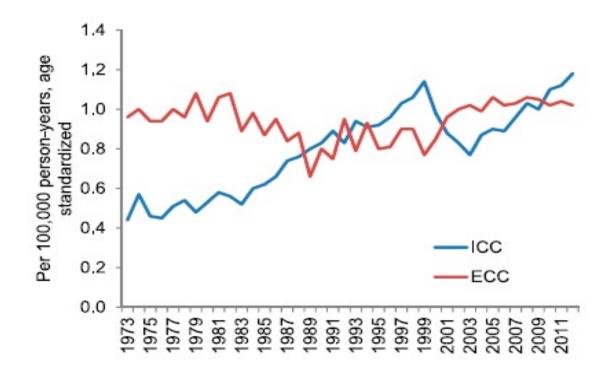




Nodulaire: 5% Infiltrant: 90%

CCH: Facteurs de risque

PSC 10% De Novo 90%

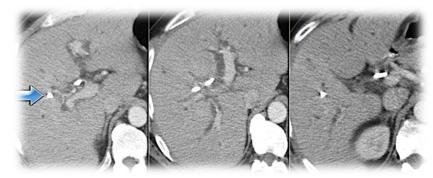

Incidence en augmentation

Hepatobiliary

Forty-Year Trends in Cholangiocarcinoma Incidence in the U.S.: Intrahepatic Disease on the Rise

SUPRIYA K. SAHA, ANDREW X. ZHU, CHARLES S. FUCHS, GABRIEL A. BROOKS

CCH: Clinique


• Symptômes:

- Ictère rétentionnel (200 μM)
- amaigrissement-prurit
- angiocholite
- cholestase biologique

70%

40%

10%

Données AFC 2011

constante

CCH: Clinique

Symptômes:

– Ictère rétentionnel (200 μM) 70%

- amaigrissement-prurit 40%

angiocholite

cholestase biologique

Données AFC 2011

constante

10%

• Bilan radiologique: Sténose hilaire

- Echographie abdominale
- TDM abdominale
- Cholangio-IRM

CCH: Dg positif du cancer

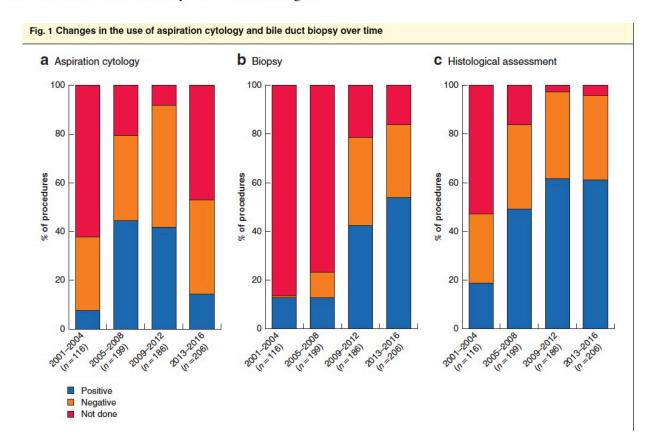
- Marqueurs tumoraux: CA19-9 mais augmentation si cholestase
- Imagerie: Masse tumorale
- Cytologie de la bile ou brossage des voies biliaires (Faux +/-)
- Biopsie:
 - Percutanée: nécessité d'une masse / voies biliaires dilatées (risque ++)
 - Cholangioscopie percutanée: dissémination
 - Endoscopie par voie rétrograde: difficile / Spyglass

En fait, le plus souvent le diagnostic est « probable » et repose sur la clinique

Mais: Klatskin-like lesions?

Syndrome de Mariania Incidence of Klatskin-like lesions.

 Cholangite s Author (year) on unique Incidence (%) Region Myburgh (1995) [5] South Africa Biliopathies Verbeek (1992) [7] Netherlands 13 Gerhards (2001) [8] 15 Netherlands • Métastases ε_{Knoefel (2003) [9]} 18 Germany Pancréatite 1 Koea (2004) [10] 24 New Zealand iolangite California


- taux sérique d'IgG4 > 100 mg/ml!

Mais: Klatskin-like lesions?

Benign hilar bile duct strictures resected as perihilar cholangiocarcinoma

S. Otsuka^{1,2}, T. Ebata¹, Y. Yokoyama¹, T. Igami¹, T. Mizuno¹, J. Yamaguchi¹, S. Onoe¹, N. Watanabe¹, Y. Shimoyama² and M. Nagino¹

- 2001-2016
- 707 résections
- Pas de Spyglass
- 22 (3.1%) lésions bénignes

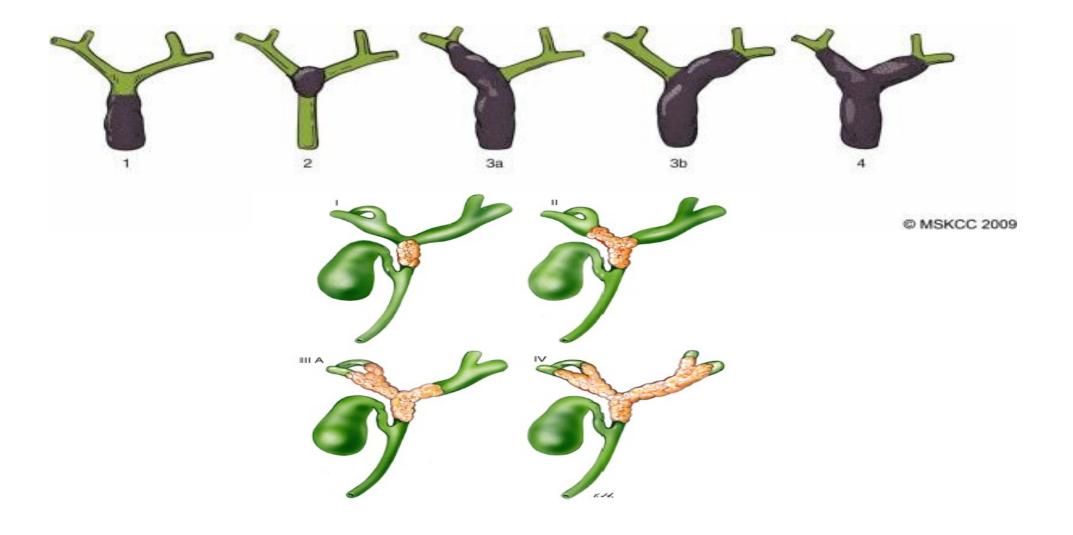
Mais: Klatskin-like lesions?

ORIGINAL ARTICLE

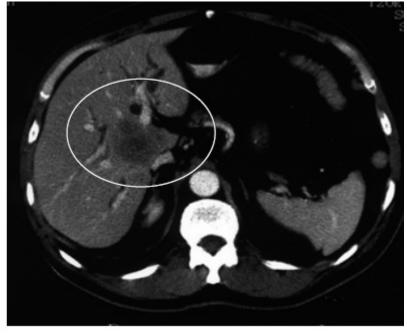
Impact of peroral cholangioscopy on the management of indeterminate biliary conditions: a multicentre prospective trial

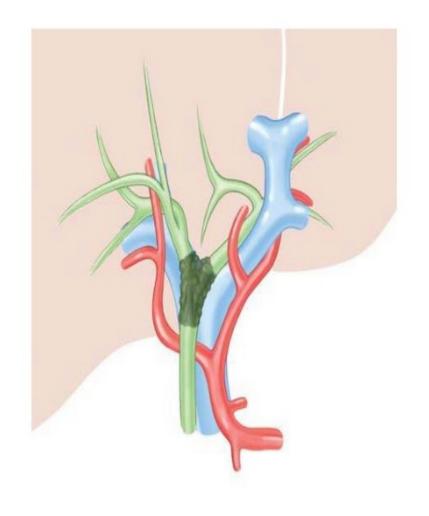
	Overall		Indeterminate biliary strictures		Primary sclerosing cholangitis	
	N	%	N	%	N	%
Benign	43	70.5	32	66.7	11	84,6
Malignant	18	29.5	16	33.3	2	15,4
Total	61	100	48	100	13	100

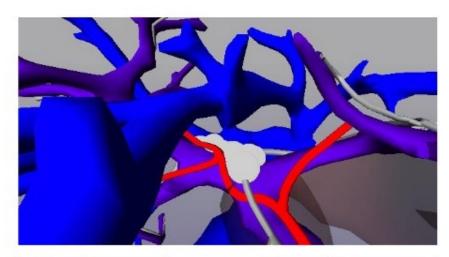
(a) Overall	After SOC (%)			
(p<10 ⁻⁵)	Inadequate	Adequate		
Before SOC (%)		10 10 2% a 10		
Inadequate	6	32	38 (62.3)	
Adequate	5	18	23 (37.7)	
	11 (18.0)	50 (82.0)	61 (100)	
(b) IDBS	After SOC (%	o)		
(p<0.001)	Inadequate	Adequate		
Before SOC (%)				
Inadequate	3	24	27 (43.8)	
Adequate	4	17	21 (56.2)	
	7 (14.6)	41 (85.4)	48 (100)	

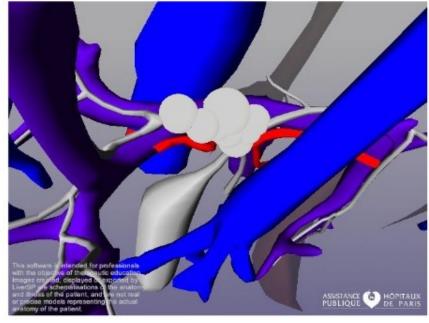

CCH: Particularités

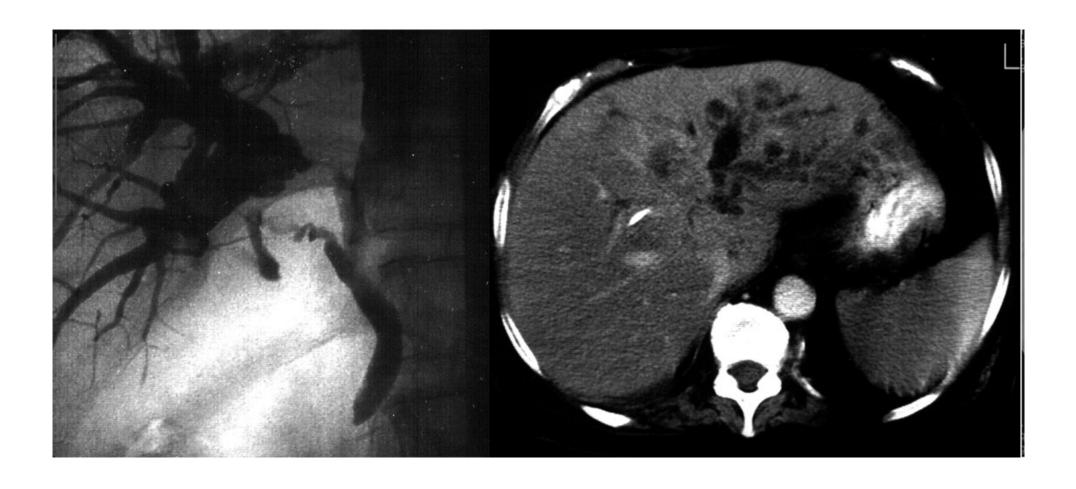
- Extension biliaire
- Envahissement vasculaire
- Engainement périnerveux
- Extension ganglionnaire



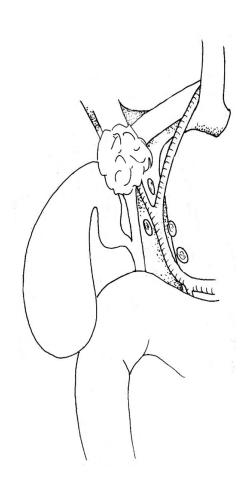

2ème: Envahissement Vx







Envahissement artériel



Envahissement portal

3ème: Filets nerveux

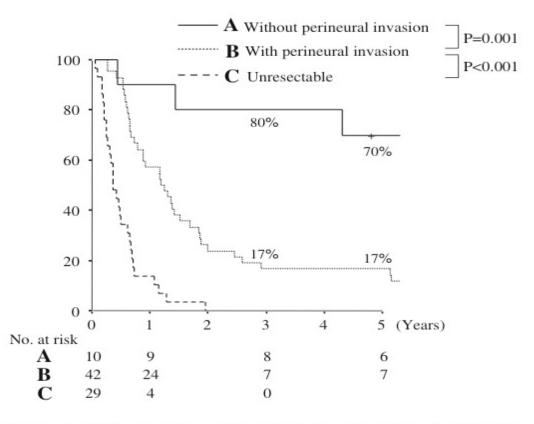
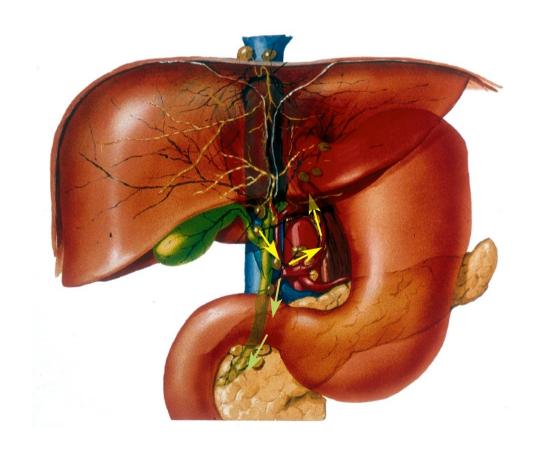
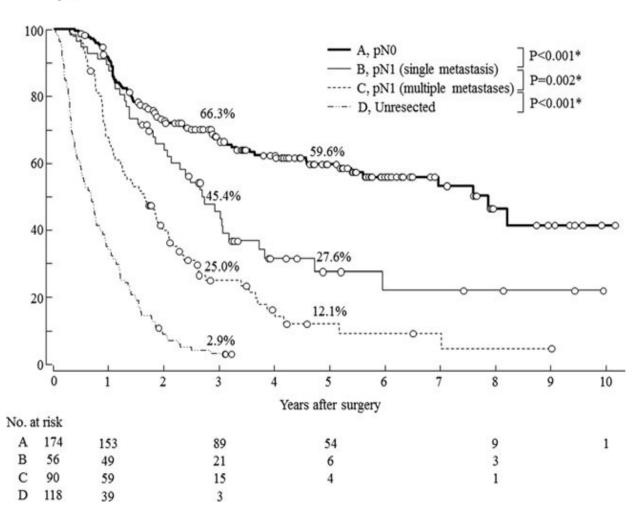



Fig. 3 Survival according to the presence or absence of perineural invasion. Survival curves are calculated by the Kaplan-Meier method

- PH
- AHC
- TC (M+)
- Interaortico-cave (M+)


4ème: Envahissement Gg

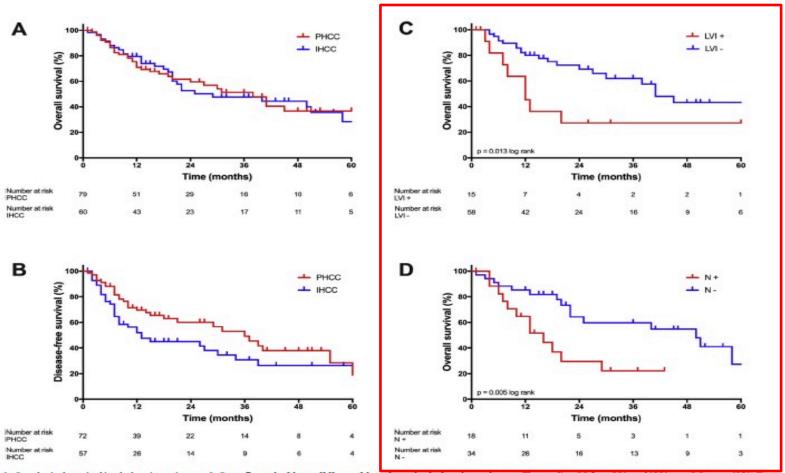
Ann Surg 2013;257: 718-725

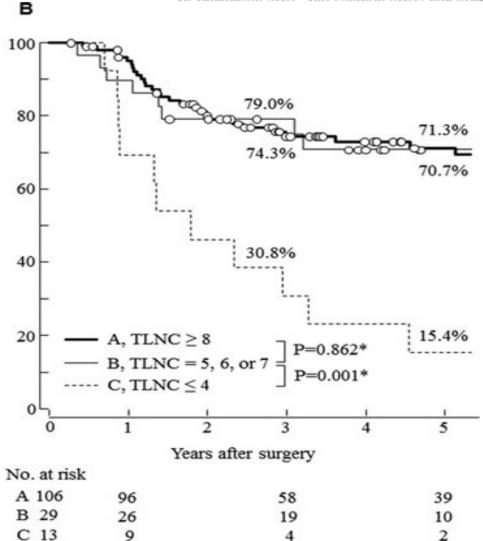
Assessment of Nodal Status for Perihilar Cholangiocarcinoma

Location, Number, or Ratio of Involved Nodes

Taro Aoba, MD,* Tomoki Ebata, MD,* Yukihiro Yokoyama, MD,* Tsuyoshi Igami, MD,* Gen Sugawara, MD,* Yu Takahashi. MD.* Yuii Nimura. MD.† and Masato Nagino, MD*

Et l'ouest?




Fig. 1. Oncological survival in cholangiocarcinoma. A: Overall survival in perihilar and intrahepatic cholangiocarcinoma. The median OS for pCCA and iCCA was 3.2 years (95% CI: 2.2–4.2) and 2.1 years (95% CI: 0.3–3.8), respectively. B: Disease-free survival in perihilar and intrahepatic cholangiocarcinoma. The median DFS for pCCA and iCCA was 3.0 years (95% CI: 2.1–3.9) and 1.1 years (95% CI: 0.5–1.7), respectively. C: Overall survival in perihilar cholangiocarcinoma stratified by lymph-vascular invasion. The Kaplan-Meier analysis with respect to LVI showed a median OS of 3.4 years (95% CI: 2.7–4.2) in patients without LVI compared to 1.0 years (95% CI: 0.6–1.4) in patients with LVI (p = 0.013 log rank). D: Overall survival in intrahepatic cholangiocarcinoma stratified by pN-category. The Kaplan-Meier analysis with respect to pN-category showed a median OS of 4.2 years (95% CI: 1.7–6.7) in patients without lymph node metastases compared to 1.1 years (95% CI: 0.5–1.7) in patients with lymph node metastases (p = 0.005 log rank). CI, confidence interval; DFS, disease-free survival; iCCA, intrahepatic cholangiocarcinoma; LVI, lympho-vascular invasion; OS, overall survival; pCCA, perihilar cholangiocarcinoma.

U. Reims

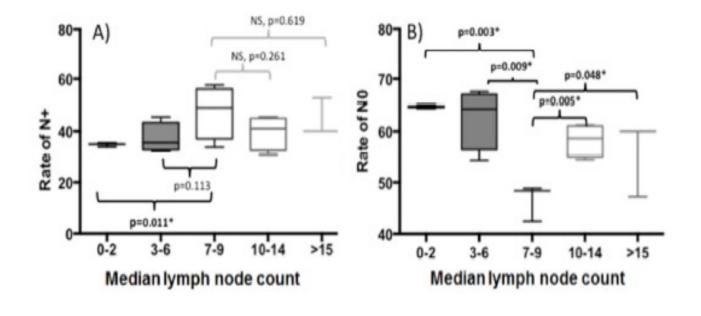
Assessment of Nodal Status for Perihilar Cholangiocarcinoma

Location, Number, or Ratio of Involved Nodes

Taro Aoba, MD,* Tomoki Ebata, MD,* Yukihiro Yokoyama, MD,* Tsuyoshi Igami, MD,* Gen Sugawara, MD,* Yu Takahashi. MD.* Yuii Nimura. MD.† and Masato Nagino, MD*

≥ 5 ganglions sur la pièce

Bismuth Type	Lymph Node Incidence
Type I (n=19)	21%
Type II (n=22)	27%
Type III (n=135)	41%
Type IV (n=144)	55%

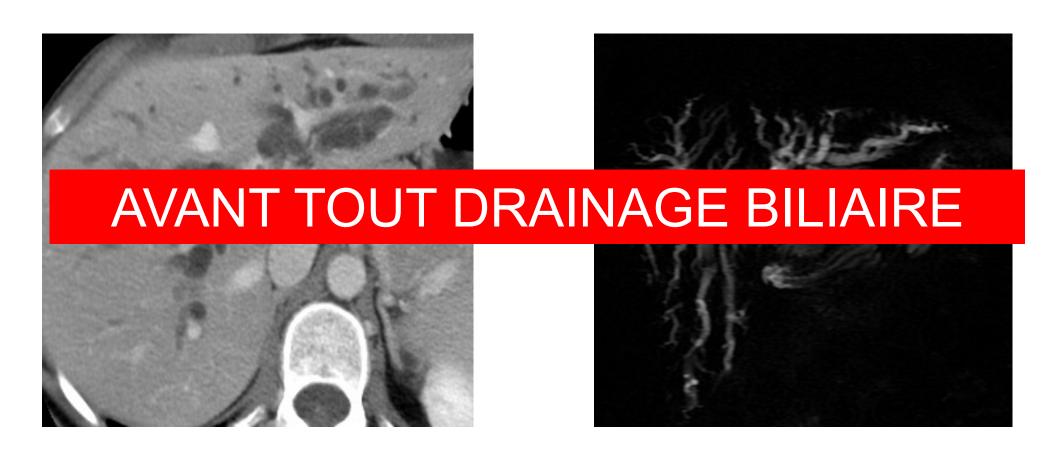


P. Kambakamba, MD, M. Linecker, MD, K. Slankamenac, MD, PhD, M.L. DeOliveira, MD, FACS

≥ 7 Gg nombre optimal pour le staging

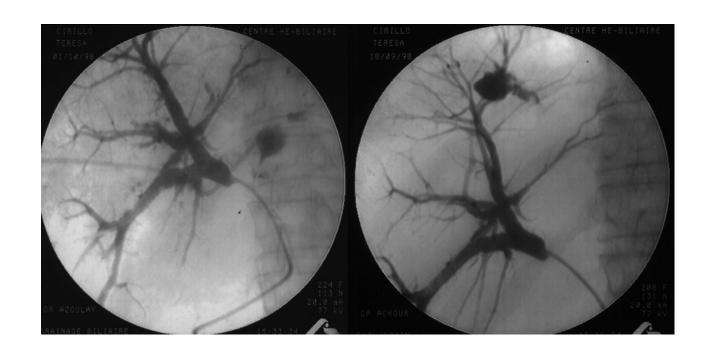
Staging: Questions?

• Envahissement biliaire?


• Envahissement vasculaire ?

• Atrophie d'un lobe hépatique (branche portale) ?

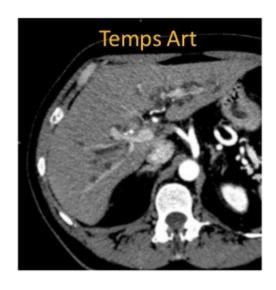
• Métastases à distance ?

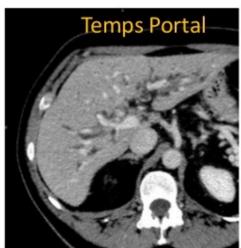


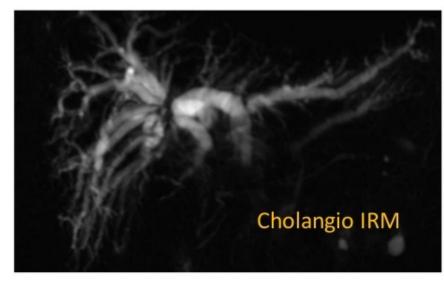
Scanner triphasique – Reconstruction vasculaire

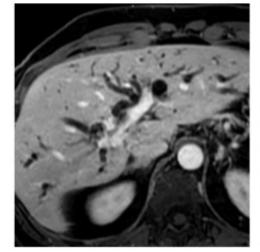
Cholangio-IRM

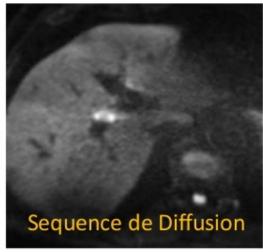
CCH: Dg positif du cancer

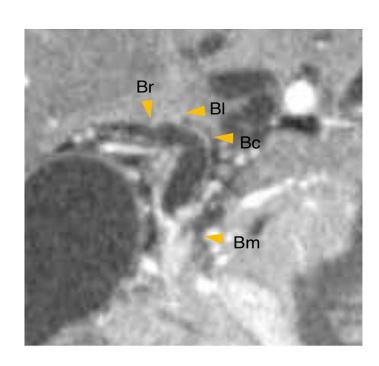


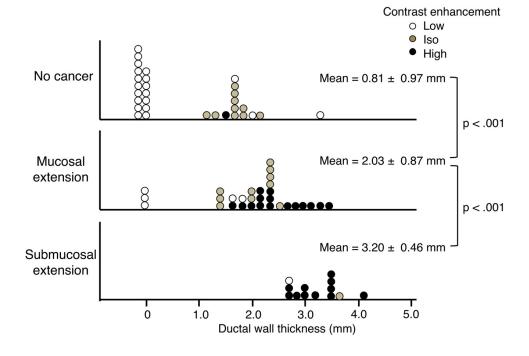

Tout canal biliaire infecté et non drainé ne guérira jamais de l'infection et entraînera de nouvelles crises d'angiocholite




Un TDM


Une IRM





Envahissement sous muqueux

the two modalities showed highest accuracy (83.8%). The depth of tumor invasion could be predicted by combination of the ductal wall thickness and contrast enhancement on MDCT, that is, at 11 of 13 sites (84.6%) with submucosal invasion, ductal wall thickness was > 2.5 mm with high contrast enhancement.

Engainement périnerveux

Body Imaging

Preliminary study of perineural invasion in patients with hilar cholangiocarcinoma by computed tomography imaging

Jie Li^a, Lixue Wang^a, Li Li^b, Jian Qiao^a, Zhuozhao Zheng^{a,*}

b Department of Pathology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Li Tang Road, Changping District, 102218 Beijing, China

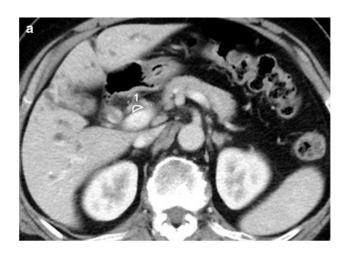
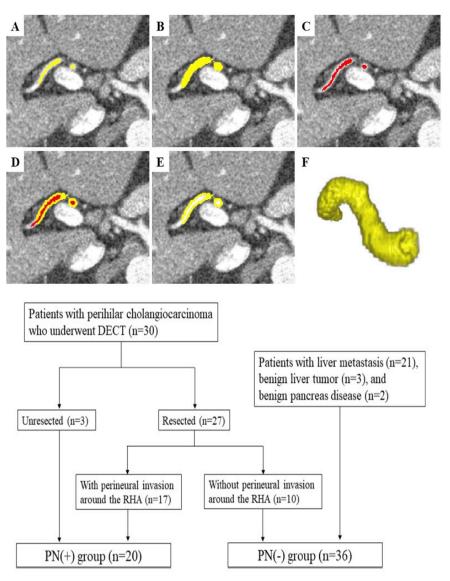
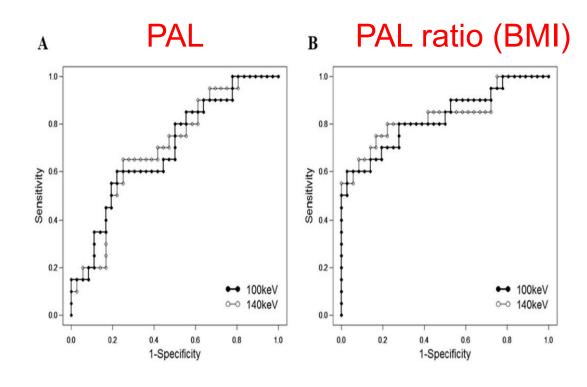
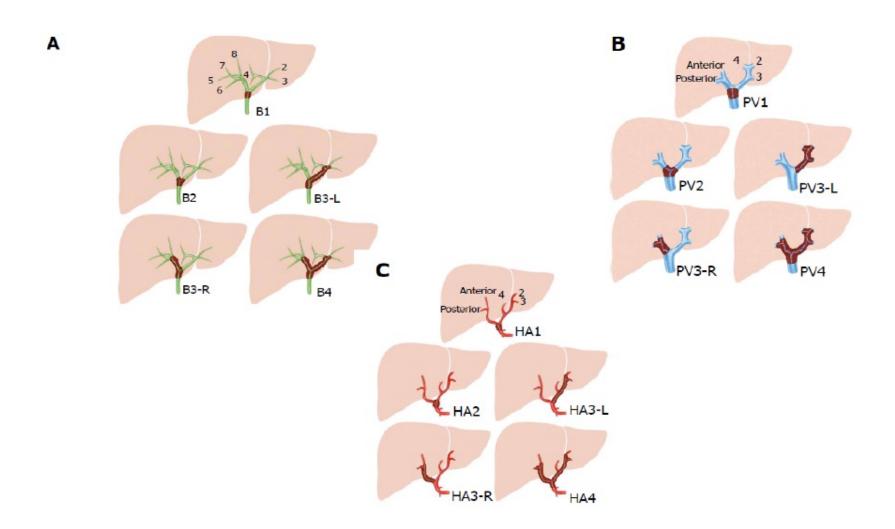


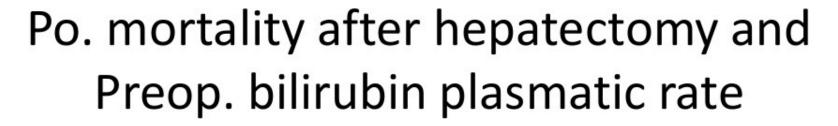
Table 3
Evaluation efficiency of CT value measurements.

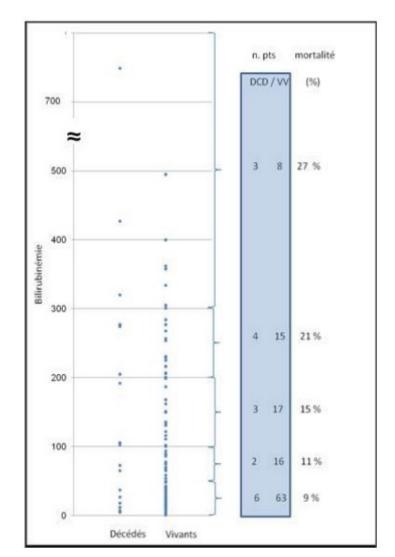

	AUC (95% CI)	Sensitivity (%)	Specificity (%)	P	Optimal threshold (Hu)
Region 1	0.734 (0.528,0.939)	90.9	60.0	0.019	-18.9
Region 2	0.730 (0.498, 0.962)	83.6	70.0	0.021	-10.9
Region 3	0.709 (0.533, 0.885)	65.5	70.0	0.037	-17.4
Right celiac ganglia	0.770 (0.581, 0.959)	78.0	80.0	0.007	56.1


AUC = area under curve; CI = confidence interval.

^a Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Li Tang Road, Changping District, 102218 Beijing, China


Engainenement périnerveux





CCH: Classification

Series of French Association of Surgery (1998 – 2008)

Mortality after right hepatectomy for hilar cholangiocarcinoma (n=137 patients)

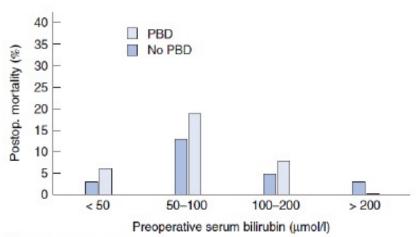
Clear correlation with mortality 9% for preop. Bilirubin < 50 μmol/L 27% for preop. Bilirubin > 300 μmol/L

Drainage biliaire préopératoire

Multicentre European study of preoperative biliary drainage for hilar cholangiocarcinoma

O. Farges¹, J. M. Regimbeau⁷, D. Fuks⁷, Y. P. Le Treut², D. Cherqui³, P. Bachellier⁴, J. Y. Mabrut⁵, M. Adham⁵, F. R. Pruvot⁶ and J. F. Gigot⁸*

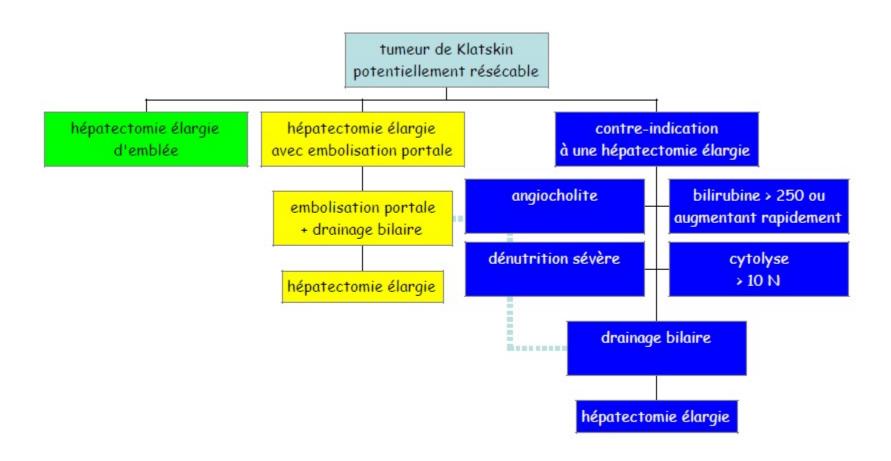
British Journal of Surgery 2013; 100: 274-283


	Univariable analysis		Multivariable analysis		
	Odds ratio	P*	Adjusted odds ratio	P†	
All hepatectomies	Association (Albori	2,30382	121 N N CONT. (2017)	7.5.5	
Hypertension	2.21 (1.04, 4.63)	0.033	2.00 (0.96, 4.21)	0.071	
Diabetes	1.62 (0.51, 4.31)	0-282	1.08 (0.39, 3.03)	0.874	
Serum bilirubin > 50 μmol/l					
At referral	2.57 (1.07, 7.13)	0.031	0.87 (0.26, 2.94)	0.823	
Before surgery	3.55 (1.58, 8.78)	0.001	4.83 (1.58, 14.71)	0.002	
Right hepatectomies	2.43 (1.14, 5.45)	0-01/	3-16 (1-50, 6-65)	0.00	
Right-sided hepatectomies	7				
Hypertension	2.88 (1.14, 7.29)	0.018	2.79 (1.11, 7.05)	0.029	
PBD	0-35 (0-13, 0-89)	0.026	0.29 (0.11, 0.77)	0.01	
Serum bilirubin > 50 μmol/l					
At referral	2-86 (0-98, 10-10)	0.051	0.88 (0.19, 4.08)	0.874	
Before surgery	6.24 (2.27, 20.10)	< 0.001	7.02 (1.73, 28.52)	0.002	
No. of biliary anastomoses	1.76 (0.57, 4.90)	0.283	3.26 (1.02, 10.35)	0.04	
Left-sided hepatectomies		4 C 9 C 9 D F F F		0.750.050	
PBD	3-69 (0-85, 22-30)	0-060	4.06 (1.01, 16.30)	0.03	
Serum bilirubin > 50 μmol/l					
At referral	2.45 (0.49, 23.70)	0.345	0.33 (0.01, 19.10)	0.58	
Before surgery	1.99 (0.47, 11.80)	0.372	7.15 (0.12, 399.20)	0.26	

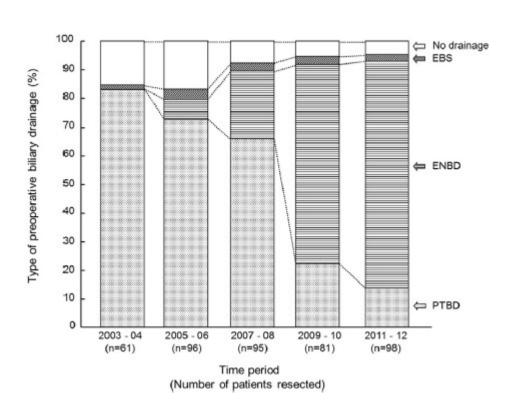
Multicentre European study of preoperative biliary drainage for hilar cholangiocarcinoma

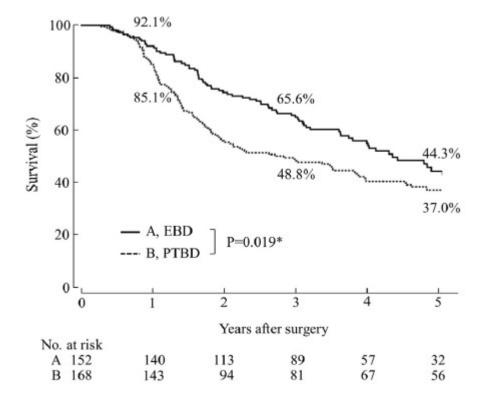
O. Farges¹, J. M. Regimbeau⁷, D. Fuks⁷, Y. P. Le Treut², D. Cherqui³, P. Bachellier⁴, J. Y. Mabrut⁵, M. Adham⁵, F. R. Pruvot⁶ and J. F. Gigot⁸*

British Journal of Surgery 2013; 100: 274-283

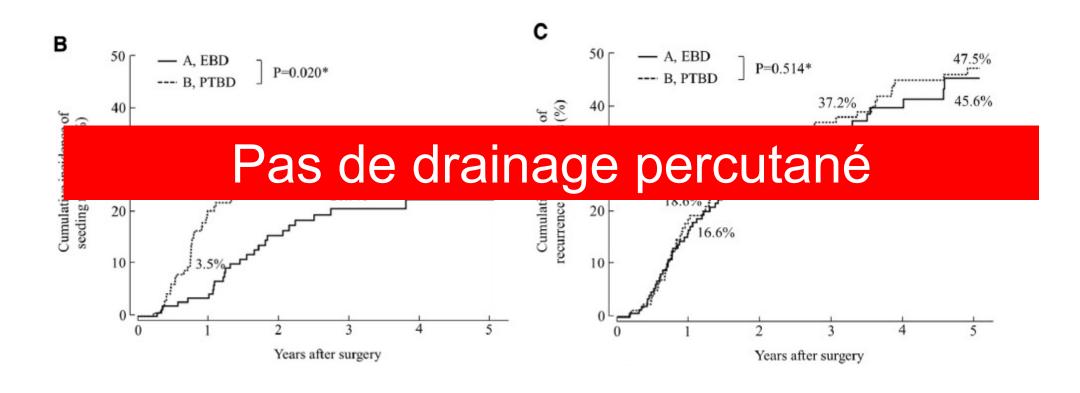


a Left hepatectomy




b Right hepatectomy

Drainage biliaire préop: Indications C.H.U. Reims



Pleural dissemination of cholangiocarcinoma caused by percutaneous transhepatic biliary drainage during the management of resectable cholangiocarcinoma

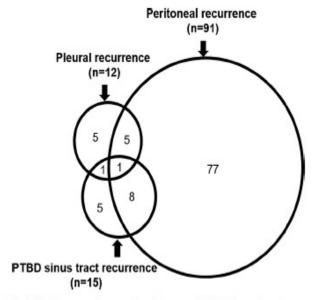
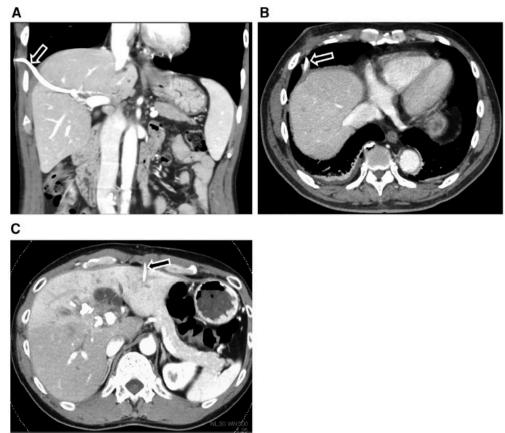
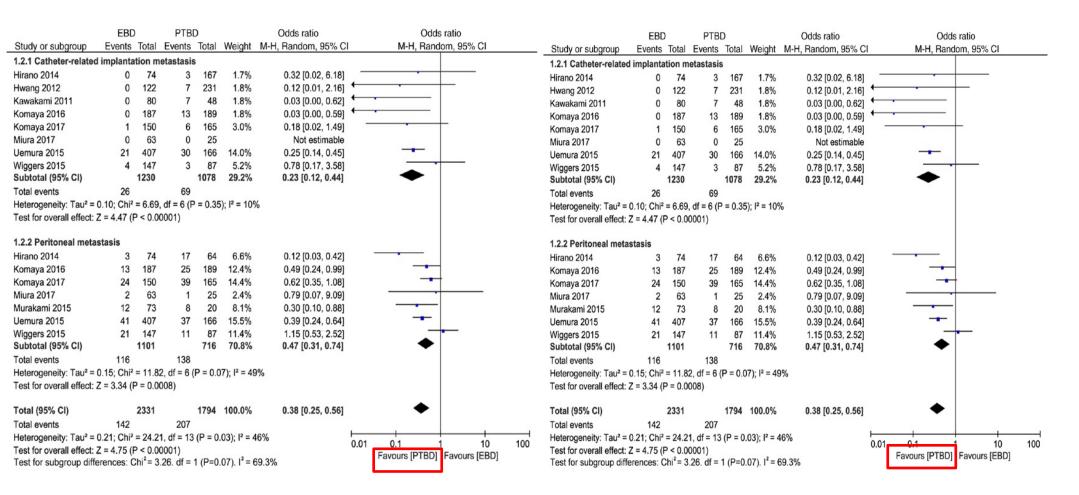



Fig. 3. Relation among 3 types of seeding metastasis, including peritoneal recurrence, pleural recurrence, and percutaneous transhepatic biliary drainage (PTBD) sinus tract recurrence.

Endoscopic versus percutaneous biliary drainage in patients

\[
\begin{align*}
\ with resectable perihilar cholangiocarcinoma: a multicentre, randomised controlled trial


Robert J.S. Coelen*, Eva Roos*, Jimme K. Wiggers, Marc G. Besselink, Carlijn I Buis, Olivier R.C. Busch, Cornelis H.C. Dejong, Otto M. van Delden, Casper H J van Eijck, Paul Fockens, Dirk J Gourna, Bas Groot Koerkamp, Michiel W de Haan, Jeanin E van Hooft, Jan N M IJzermans, G Matthijs Kater, Jan J Koornstra, Krijn P van Lienden, Adriaan Moelker, Steven W M Olde Damink, Jan-Werner Poley, Robert J Porte, Rogier J de Ridder, Joanne Verheij, Victor van Woerden, Erik A.J. Rauws, Marcel GW Dijkgraaf, Thomas M van Gulikt

Lancet Gastroenterol Hepatol 2018

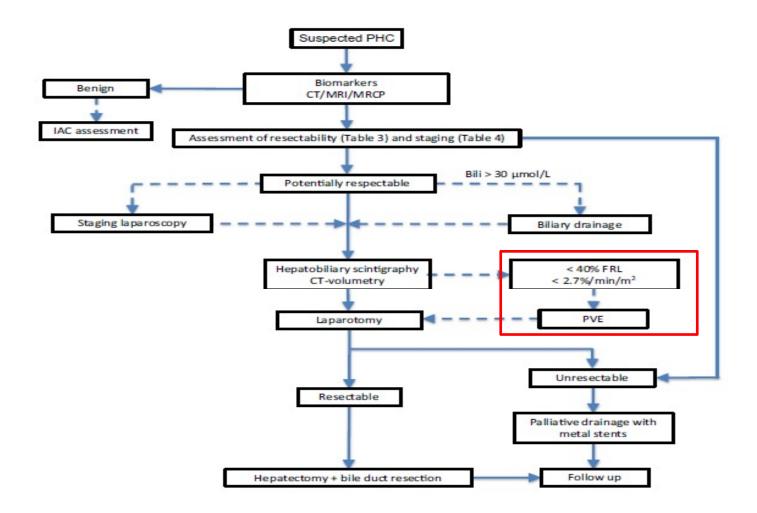
	Endoscopic biliary drainage (n=27)	Percutaneous transhepat drainage (n=27)	ic biliary p value		Endoscopic biliary drainage (n=22)	Percutaneous transhepatic biliary drainage (n=20)	p value
pecific Chola	Р	as de	drain	age pe	rcuta	ané	
Cholecysuus	1(4%)	1 (4%)	1-00	Wound Infection	1 (5%)	1 (5%)	1.00
Pancreatitis	5 (19%)	1 (4%)	0-19	Pneumonia	0	1 (5%)	0-48
Наетопнаде	1 (4%)	2 (7%)	1-00	Haemorrhage	1 (5%)	2 (10%)	0-60
Perforation	1 (4%)	0	1-00	Portal vein thrombosis	0	1(5%)	0-48
Portal vein thrombosis	1 (4%)	0	1-00	Biliary leakage	4 (18%)	2 (10%)	0-67
Stent or drain dysfunction	5 (19%)	6 (22%)	0-74	Liver fallure	2 (9%)	5 (25%)	0-23
Stent or drain dislocation	1 (4%)	5 (19%)	0-19				
Death	0	3 (11%)	0-24	Relaparotomy	3 (14%)	5 (25%)	0-45
imber of complications	-	-	0-88†	Death within 90 days			
0	9 (33%)	10 (37%)		With or without resection	3 (14%)	8 (40%)	0-08†
1	11 (41%)	8 (30%)	-	After resection	2 (17%; n=12)	5 (45%; n=11)	0-19
≥2	7 (26%)	9 (33%)	-	Data are n (%), or n (%: n), *Relat	ive risk 1-19, 95% CI 0-73-1	96; absolute risk difference 10-4%. †Relative	risk 2-03.
ta are n (%). *Relative risk 0-94	4, 95% CI 0-64-1-40; abso	lute risk difference 3-7%. †Jonckheer	e-Terpstra test.	95% CI 0-91-9-55; absolute risk d		- 3-1	
ble 3: Severe complications	between randomisation	on and surgery		Table 4: Severe complications	within 90 days after su	rgery	

Effects of different preoperative biliary drainage methods for resected malignant obstruction jaundice on the incidence rate of implantation metastasis: A meta-analysis

Site of Metastasis

Site of tumor

Preoperative course of patients undergoing endoscopic nasobiliary drainage during the management of resectable perihilar cholangiocarcinoma


Takashi Maeda · Tomoki Ebata · Yukihiro Yokoyama · Takashi Mizuno · Junpei Yamaguchi · Shunsuke Onoe · Nobuyuki Watanabe · Hiroki Kawashima · Masato Nagino J Hepatobiliary Pancreat Sci (2019) **: ** **

- 191 patients réséqués
- Angiocholites préop:
 - 0: 120 patients
 - 1: 59 patients
 - 2: 12 patients

Survey of preoperative management protocol for perihilar cholangiocarcinoma at 10 Japanese high-volume centers with a combined experience of 2,778 cases

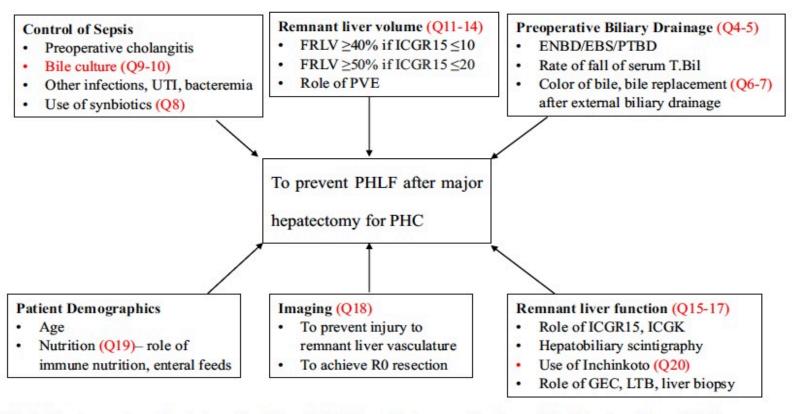
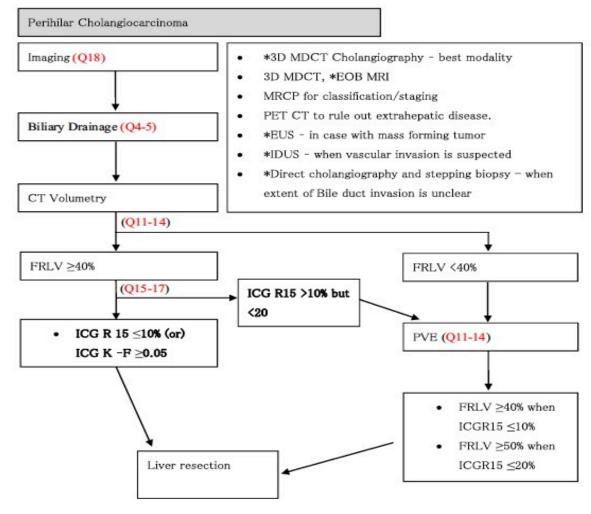
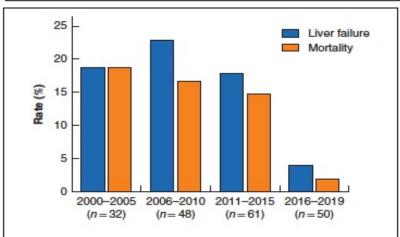
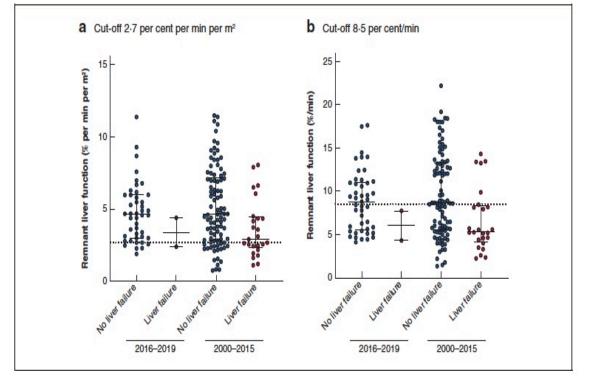



Fig. 1 How to prevent post-hepatectomy liver failure (PHLF) after major liver resections for perihilar cholangiocarcinoma (PHC)?

Survey of preoperative management protocol for perihilar cholangiocarcinoma at 10 Japanese high-volume centers with a combined experience of 2,778 cases




Effect of structured use of preoperative portal vein embolization on outcomes after liver resection of perihilar cholangiocarcinoma

L. C. Franken¹, F. Rassam¹, K. P. van Lienden², R. J. Bennink², M. G. Besselink¹, O. R. Busch¹,

J. I. Erdmann¹, T. M. van Gulik¹ and P. B. Olthof^{1,3}

Table 2 Postoperative outcomes after liver resection						
	2016-2019 (n = 50)	2000-2015 (n = 141)	P *			
Major morbidity (Clavien-Dindo grade ≥ IIIA)	26 (52)	82 (58-2)	0-451			
Liver failure (grade B/C)	2 (4)	28 (19-9)	0.008			
Biliary leakage (grade B/C)	16 (32)	45 (31.9)	0.991			
Bleeding (grade B/C)	2 (4)	12 (8-5)	0.293			
Drainage of intra-abdominal abscess	17 (35)	56 (39-7)	0.534			
90-day mortality	1 (2)	23 (16-3)	0.009			

https://doi.org/10.1007/s00270-018-2075-0

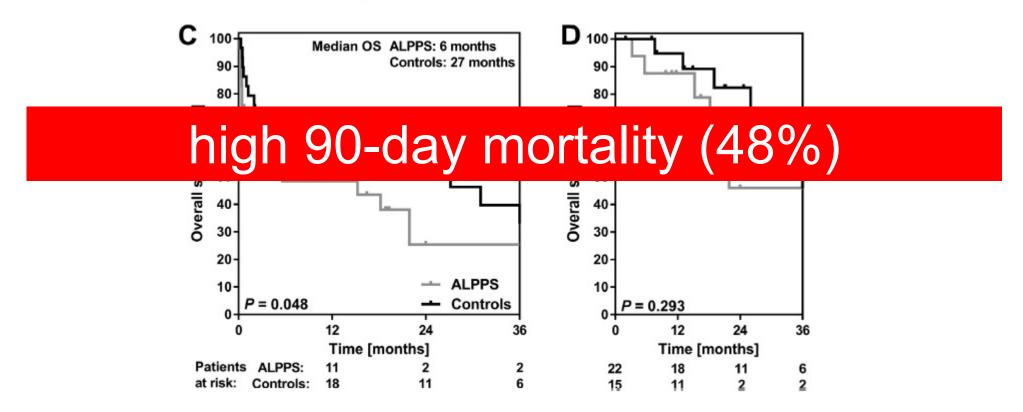
CLINICAL INVESTIGATION

INTERVENTIONAL ONCOLOGY

Preoperative Portal Vein Embolization Alone with Biliary Drainage Compared to a Combination of Simultaneous Portal Vein, Right Hepatic Vein Embolization and Biliary Drainage in Klatskin Tumor

Arnaud Hocquelet1 · Charalampos Sotiriadis1 · Rafael Duran1 · Boris Guiu2 · Takamune Yamaguchi3 · Nermin Halkic3 · Emmanuel Melloul3 · Nicolas Demartines3 ·

	PVE + BD	LVD + BD	p value
Age (years)	62 (54–68)	60 (54–71)	0.809
Bilirubin level (umol/l)			
Before embolization	243 (189-300)	197 (114-287)	0.522
3 weeks	18 (15-21)	20 (17-47)	0.410
Day 5 post-surgery	27 (18-60)	48 (28-60)	0.806
Prothrombin time (%)			
Before embolization	87 (77-100)	80 (65-100)	0.624
3 weeks	85 (75-100)	85 (70-100)	0.915
Day 5 post-surgery	65 (60-75)	77 (71–95)	0.216
FRL before (cc)	429(391-560)	517(310-828)	0.631
FRL ratio before (%)	31 (24-33)	30.5 (23-35.5)	0.998
FRL after (cc)	531 cc (500-626)	845(693-960)	0.016
FRL ratio after (%)	39 (36-42)	42.3 (34-47)	0.521
eFRL after (%)	37 (30-44)	58 (54-71)	0.017
%FRL hypertrophy	31.3 (12-40)	67 (29-123)	0.078
Hospital stay after surgery (days)	44 (43–55)	14 (8–37)	0.114
3-month postoperative mortality	2	0	0.429



ALPPS: NO

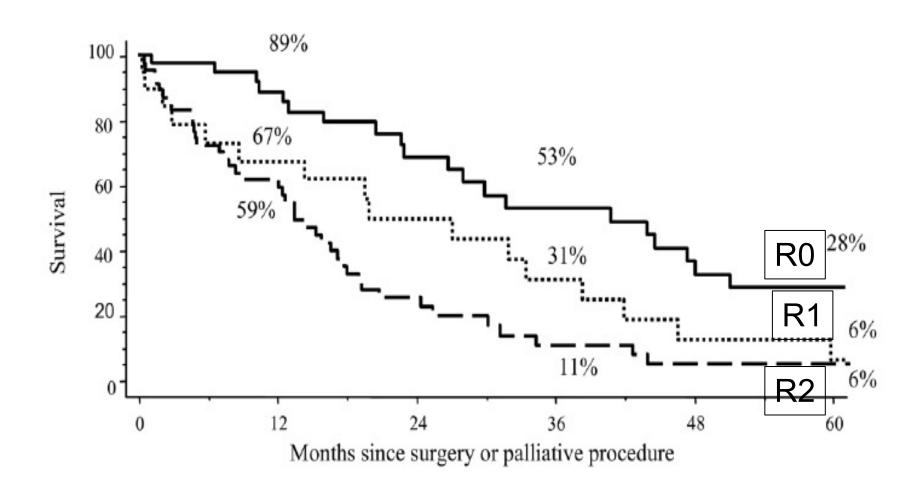
ORIGINAL ARTICLE

High mortality after ALPPS for perihilar cholangiocarcinoma: case-control analysis including the first series from the international ALPPS registry

Pim B. Olthof¹, Robert J.S. Coelen¹, Jimme K. Wiggers¹, Bas Groot Koerkamp², Massimo Malago³, Roberto Hernandez-Alejandro^{4,5}, Stefan A. Topp⁶, Marco Vivarelli⁷, Luca A. Aldrighetti⁸, Ricardo Robles Campos⁹, Karl J. Oldhafer¹⁰, William R. Jarnagin¹¹ & Thomas M. van Gulik¹

CCH: Contre-indications à la chir

- 1. Métastases (péritoine, poumon ...)
- 2. Métastase ganglionnaire régionale à distance (TC)
- 3. Envahissement controlatéral de l'artère et ou artério-porte
- 4. Atrophie d'un foie avec envahissement controlatéral de la branche portale


CCH: Chirurgie = Résection R0

Résection complète avec une marge de résection saine (R0):

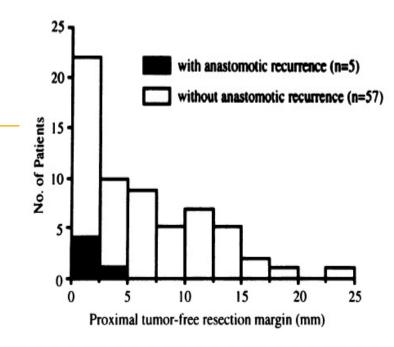
Rationnel?

Résection R0: Rationnel

CCH: Chirurgie = Résection R0

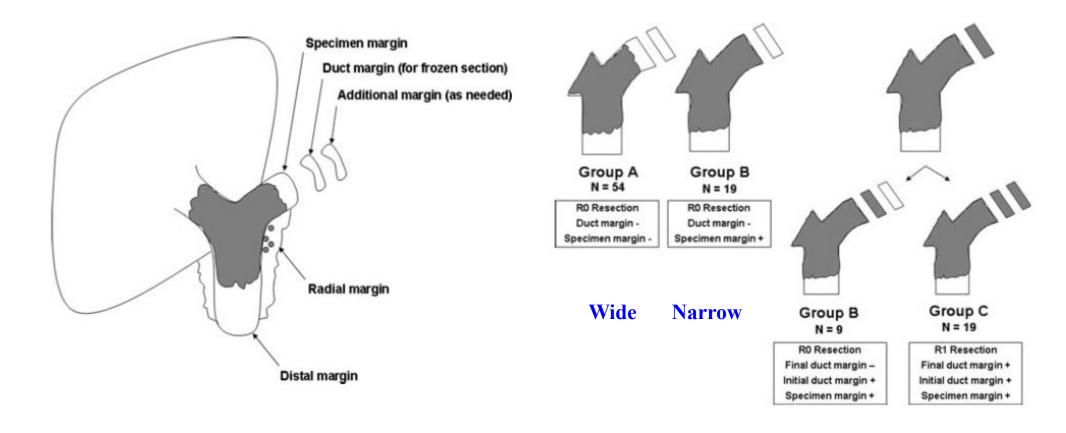
Résection complète avec une marge de résection saine (R0):

Etendue de cette marge?

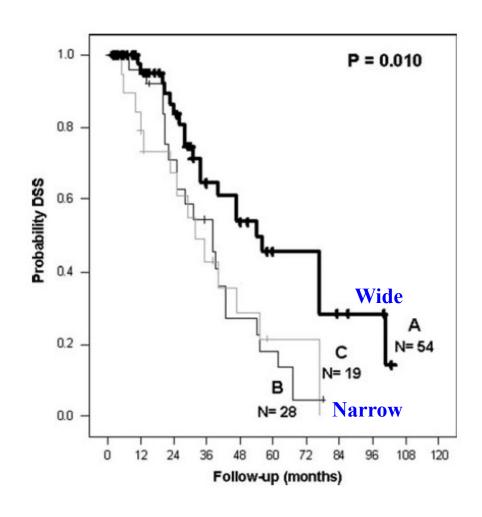

Résection R0: Etendue de la marge

The Pattern of Infiltration at the Proximal Border of Hilar Bile Duct Carcinoma

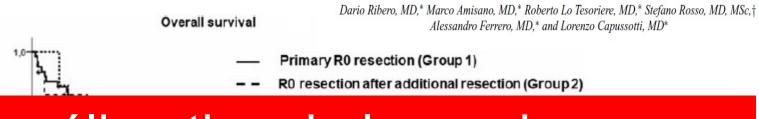
A Histologic Analysis of 62 Resected Cases

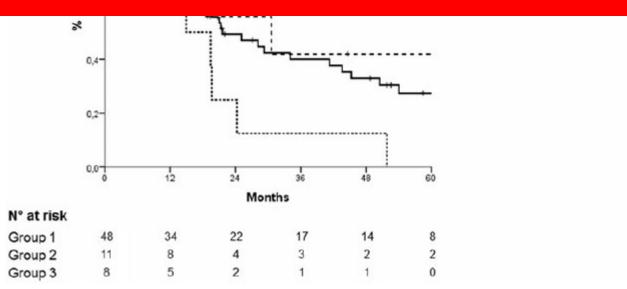

Eiji Sakamoto, MD, Yuji Nimura, MD, Naokazu Hayakawa, MD, Junichi Kamiya, MD, Satoshi Kondo, MD, Masato Nagino, MD, Michio Kanai, MD, Masahiko Miyachi, MD, and Katsuhiko Uesaka, MD

length of free resection margin	% of anastomotic reccurrence
< 2,5 mm	18 %
2,5 - 5 mm	10 %
> 5 mm	0 %



Résection R0: Marges

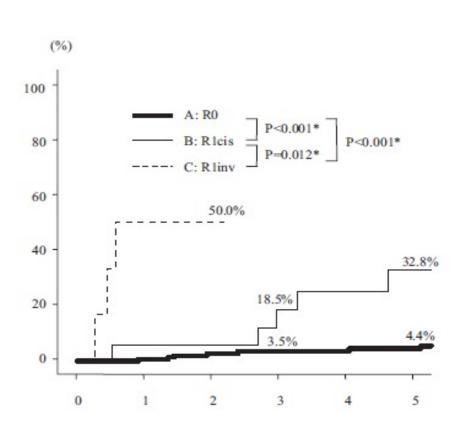

Résection R0: Marges

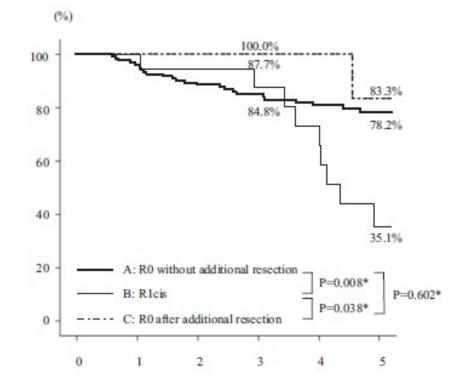


Résection R0: Recoupe?

Additional Resection of an Intraoperative Margin-Positive Proximal Bile Duct Improves Survival in Patients With Hilar Cholangiocarcinoma

Amélioration de la survie



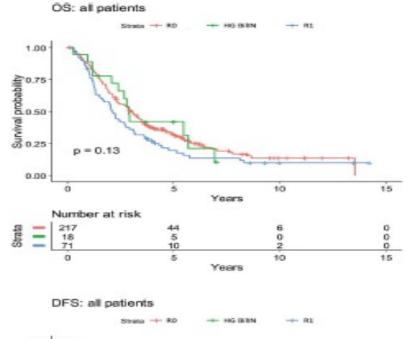

Résection R0: Recoupe?

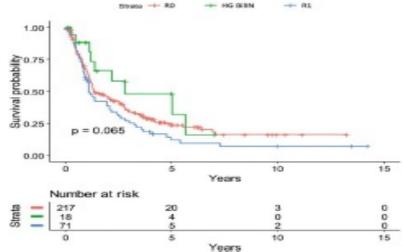
Residual Carcinoma In Situ at the Ductal Stump has a Negative Survival Effect

An Analysis of Early-stage Cholangiocarcinomas

Tetsuo Tsukahara, MD,* † Tomoki Ebata, MD,* Yoshie Shimoyama, MD,† Yukihiro Yokoyama, MD,* Tsuyoshi Igami, MD,* Gen Sugawara, MD,* Takashi Mizuno, MD,* and Masato Nagino, MD*

Recoupe: BilIN (HG)


ORIGINAL ARTICLE

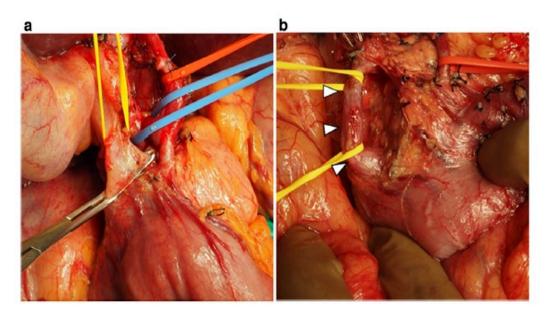

Prognostic implication of high grade biliary intraepithelial neoplasia in bile duct resection margins in patients with resected perihilar cholangiocarcinoma

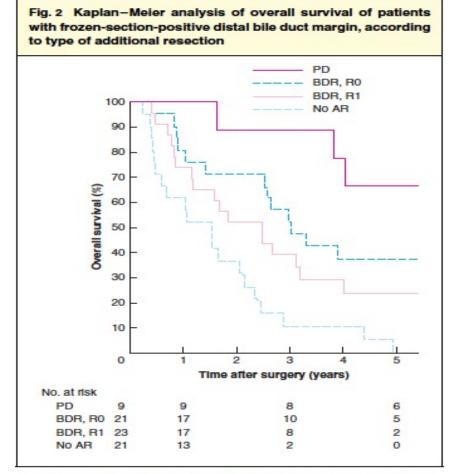
	R0 group (n = 217)	HG BilIN group (n = 18)	R1 group (n = 71)	P- value
Adjuvant chemotherapy (%)	38 (17.5)	8 (44.4)	24 (33.8)	.001
Adjuvant radiotherapy (%)	9 (4.1)	8 (44.4)	19 (26.7)	<.001
Recurrence (%)	149 (68.7)	9 (50.0)	56 (78.9)	.044
Site of recurrence				
Locoregional (%)	49 (32.9)	4 (44.4)	18 (32.1)	.76
Systemic (%)	100 (68.7)	5 (55.6)	38 (67.9)	
Time of recurrence ^a				
Early recurrence (%)	69 (46.3)	3 (33.3)	27 (48.2)	.339
Late recurrence (%)	80 (53.7)	6 (66.7)	29 (51.8)	

Abbreviations: HG BillN, high grade biliary intraepithelial neoplasia; R0, no tumor at margin; R1 microscopic tumor at margin.

*Cutoff: 1 y.

Shin et al. J Hepatobil Pancre Sc 2020


Résection R0: Marge distale


Original article

Clinical value of additional resection of a margin-positive distal bile duct in perihilar cholangiocarcinoma

S. Otsuka^{1,2}, T. Ebata¹, Y. Yokoyama¹, T. Mizuno¹, T. Tsukahara^{1,2}, Y. Shimoyama², M. Ando³ and M. Nagino¹

¹Division of Surgical Oncology, Department of Surgery, and ²Department of Pathology and Clinical Laboratories, Nagoya University Graduate School of Medicine, and ³Data Coordinating Centre, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan Correspondence to: Professor M. Nagino, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan (c-mail: nagino@med.nagoya-u.ac.ip)

P=0.025 (pancreatoduodenectomy (PD) versus bile duct resection (BDR), R0), P=0.254 (BDR, R0 versus BDR, R1), P=0.019 (BDR, R1 versus no additional resection (AR)) (log rank test).

Marge radiaire

ORIGINAL ARTICLE

A Study on Radial Margin Status in Resected Perihilar Cholangiocarcinoma

Kentaro Shinohara, MD,* Tomoki Ebata, MD,* Yoshie Shimoyama, MD,† Takashi Mizuno, MD,* Yukihiro Yokoyama, MD,* Junpei Yamaguchi, MD,* Shunsuke Onoe, MD,* Nobuyuki Watanabe, MD,* and Masato Nagino, MD*

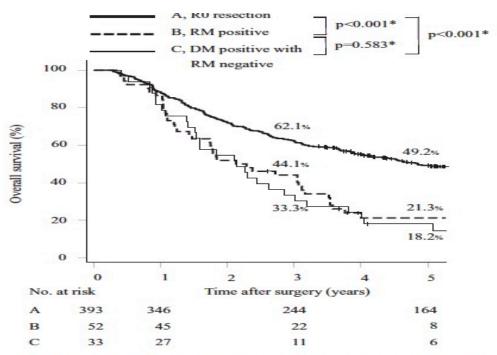


FIGURE 3. Overall survival according to surgical margin status. RM indicates radial margin; DM, ductal margin. *Log-rank test.

CCH: Principes de la chirurgie

- Dans tous les cas:
 - Résection de la VBP et la convergence biliaire
 - Curage Gg
 - Résection hépatique
 - Reconstruction biliaire
- En fonction de l'extension locorégionale:
 - Résection et reconstruction vasculaires
 - DPC (ou résection de la VBP intrapancréatique!)

Oncologic Resection for Malignant Tumors of the Liver

Shefali Agrawal, MD*, and Jacques Belghiti, MD†

(Ann Surg 2011;253:656-665)

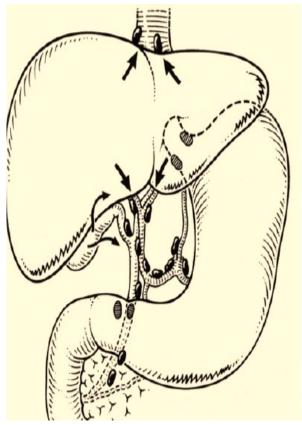
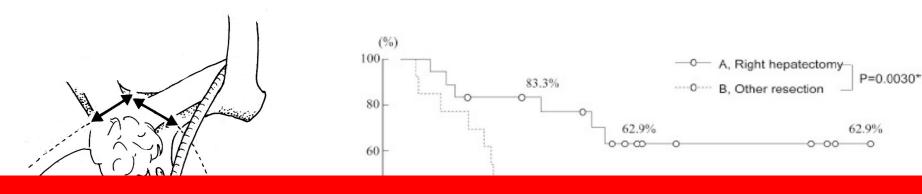
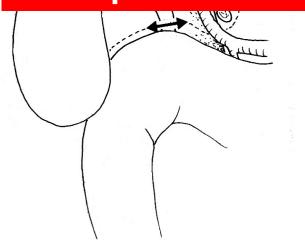
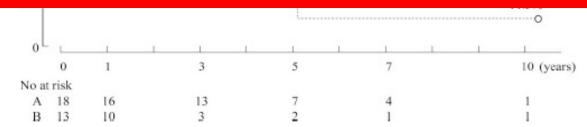



TABLE 4. Summary of Recommendations for Oncologic Resection of Malignant Tumors of the Liver

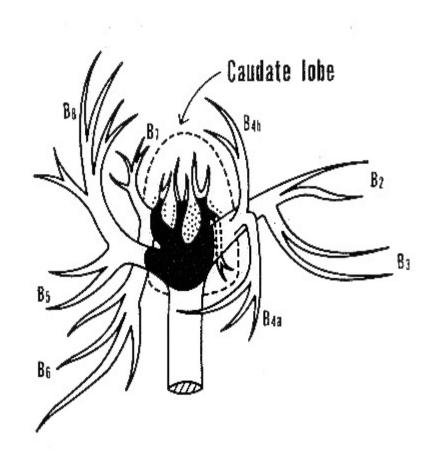

Operative Procedure	НСС	Intrahepatic Cholangio- Carcinoma	Hilar Cholangio- Carcinoma	CLM	Non-CLM
Anatomic resection	+		+		
Width of resection margin					
<1 cm		+	+		+
1 cm				+	
2 cm	+				
Major vascular resection	+	+	+	+	+
Regional lymph node dissection	+	+	+ >5	+	+

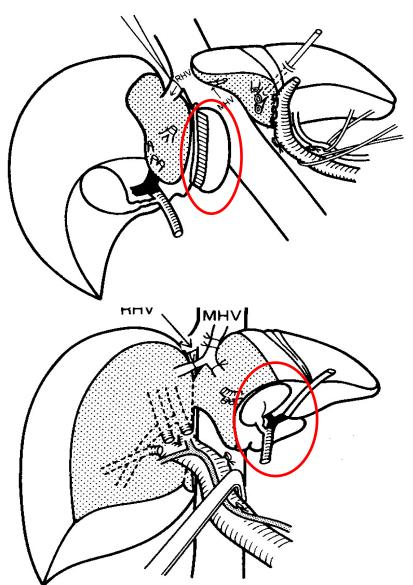


Type 1

Hépatectomie droite > Résection VBP

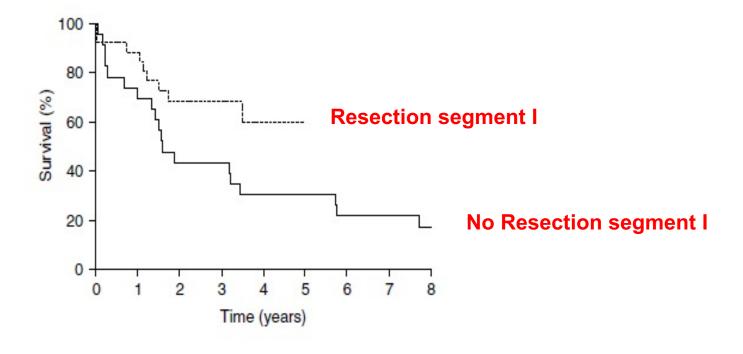
FIGURE 5. Survival according to surgical procedure in patients with nodular or infiltrating hilar cholangiocarcinoma who tolerated surgery and did not have pM1 disease. *By log rank test.




Envahissement artériel hépatique : 5%

Distance tumeur-adventice < 1mm: 74%

Type 2 ou 3


Nimura et al. World J Surg 1990

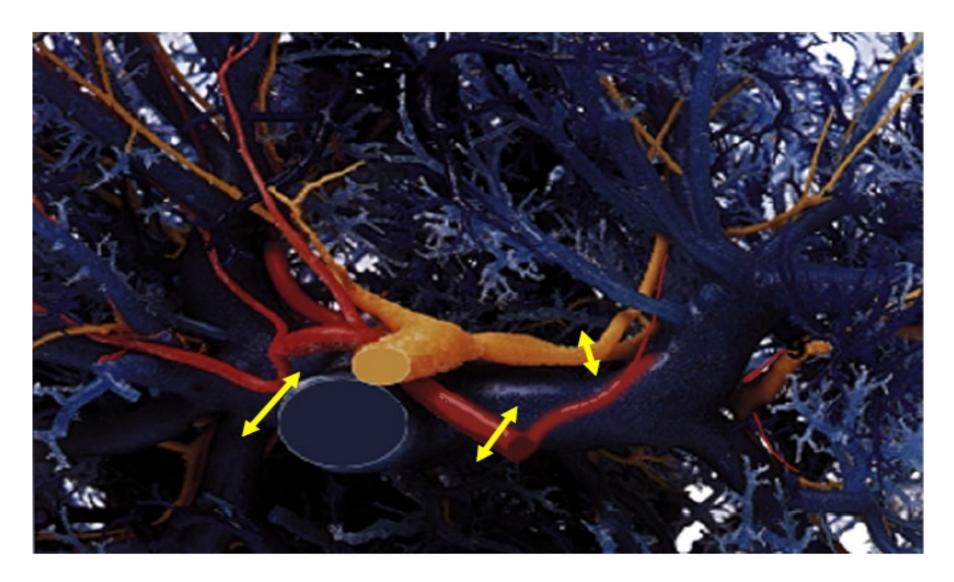
The importance of complete excision of the caudate lobe in resection of hilar cholangiocarcinoma

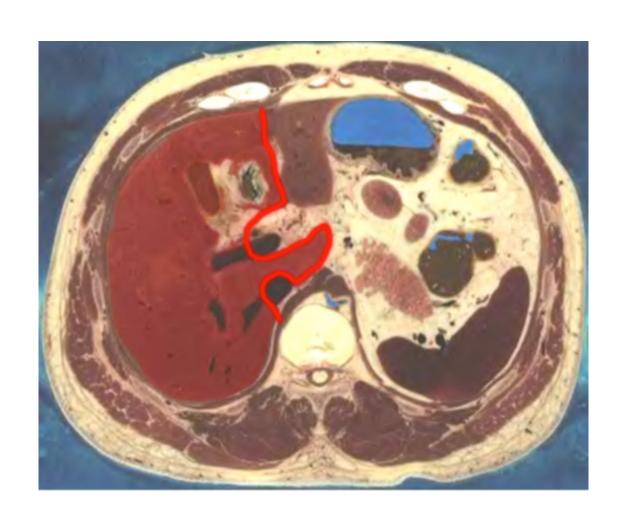
SANDER DINANT¹, MICHAEL F. GERHARDS², OLIVIER R. C. BUSCH¹, HUGO OBERTOP¹, DIRK J. GOUMA¹ & THOMAS M. VAN GULIK¹

Number at risk					
1993-1998	100 000	-	2 50 1	_	
1998-2003	_	2	8	15	17

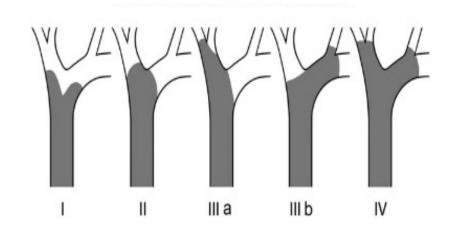


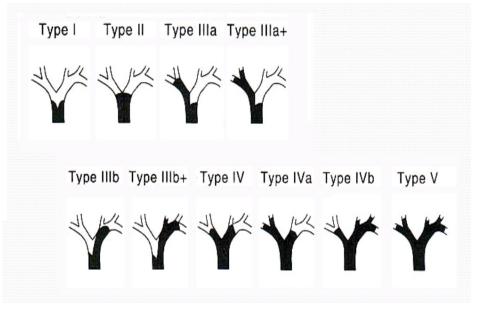
Type II ou III gauche



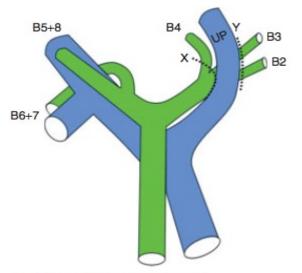


Type III droit



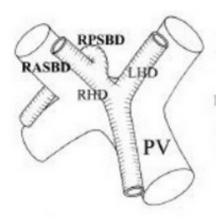

Type III droit

Type IV



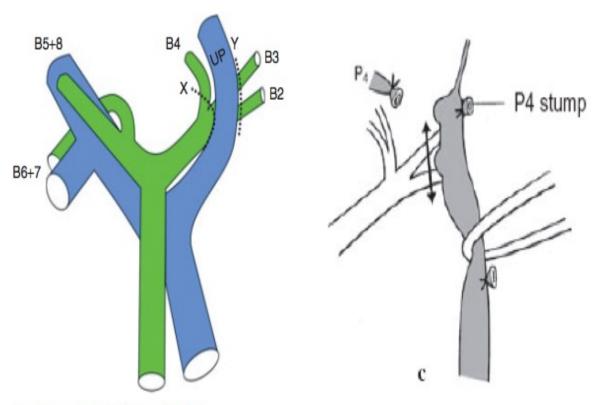
Bismuth-Corlette

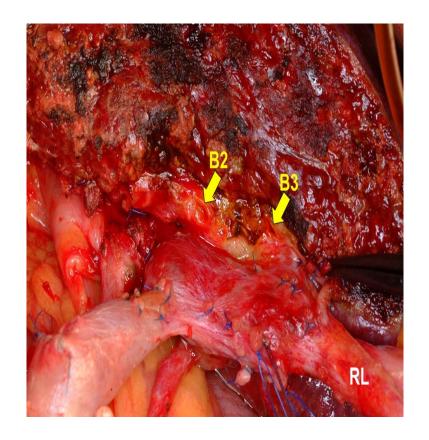
Classification Japonaise



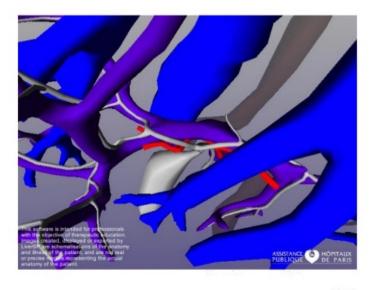
a Schematic of RH and A-RT

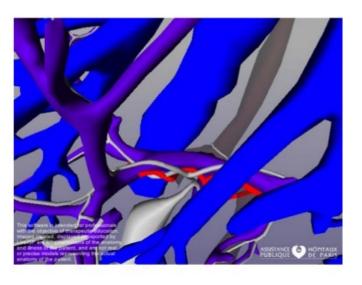
Supraportal type

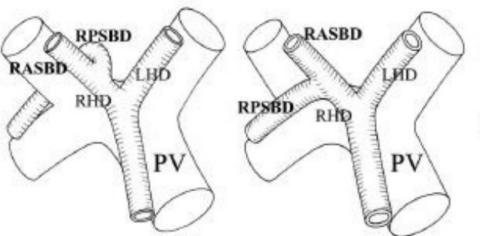



Infraportal type

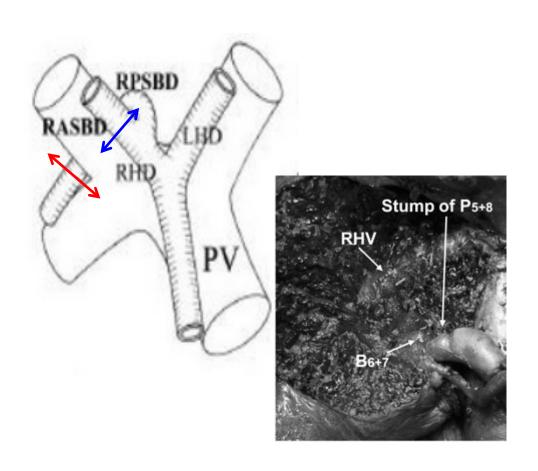
Type IVa

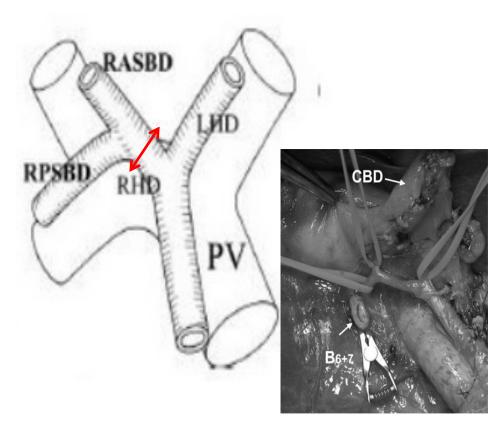





a Schematic of RH and A-RT

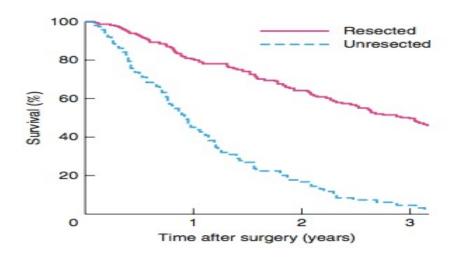
Supraportale (85% des cas)


Infraportale (15% des cas)



Supraportal type

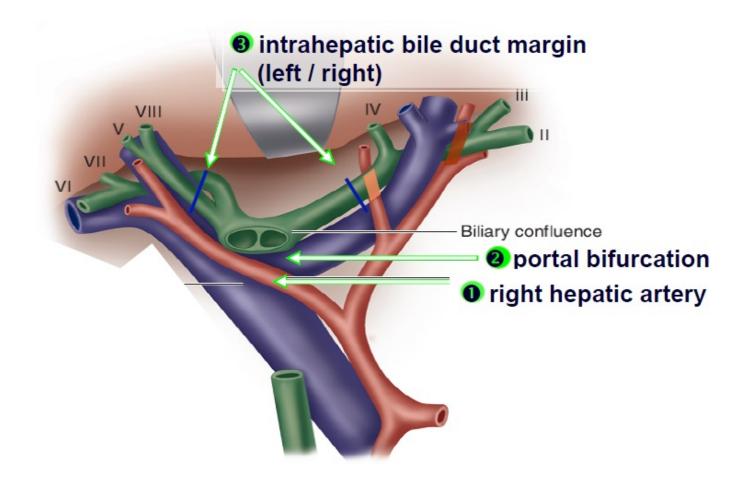
Infraportal type



Type IV

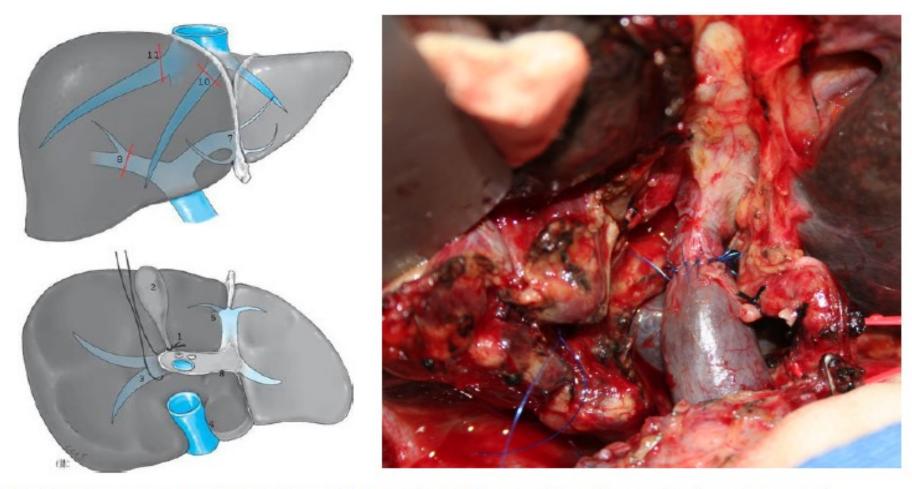
Surgical resection for Bismuth IV perihilar cholangiocarcinoma

Patient (n)	Stade IVB	Stade IVA	Résection Majeur	Résection vasculaire	RO résection	R1 résection	*Lnf+
216 (332)	33 (15%)	183 (85%)	153 (71%)	131 (60%)	156 (72%)	52 (24%)	127 (59%)

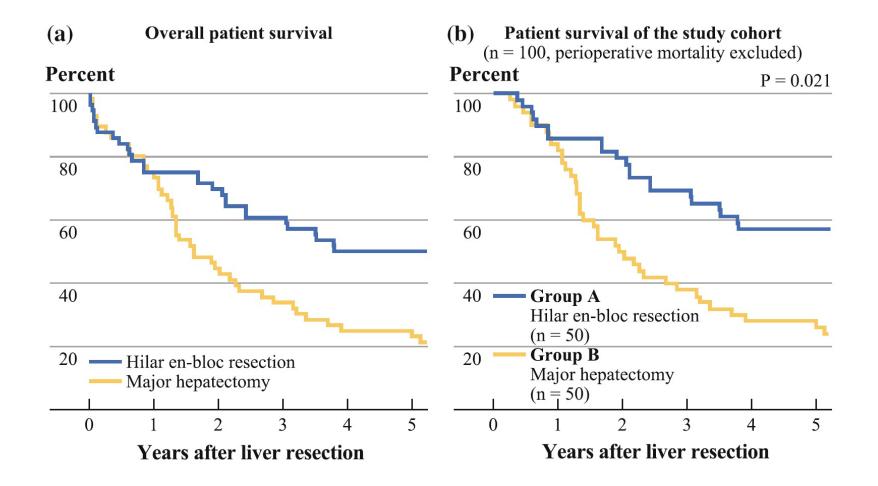

R0-resection in hilar cholangiocarcinoma

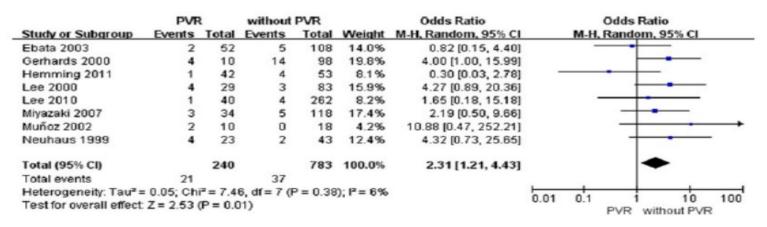
Reference	Period	Volume, resected /y	R0 resection,	pN1, %
Jarnagin ⁵	1991-2000	8.0	78	24
Capussotti ⁶	1988-2001	2.6	89	39
Kawarada ⁷	1976-2000	3.5	64	-
Seyama ⁸	1989-2001	4.5	64	52
Kawasaki ⁹	1990-2001	6.6	68	44
Kondo ¹⁰	1999-2002	10.0	95	38
IJitsma ¹¹	1986-2001	2.6	64	38
Hemming ¹²	1997-2004	6.6	80	21
Sano ¹³	2000-2004	20.4	61	_
DeOliveira ¹⁴	1973-2004	5.4	19	28?
Miyazaki ¹⁵	1981-2004	6.7	63	48
Lee ¹⁶	2001-2008	37.8	71	24
Gulik ¹⁷	1988-2003	6.2	31	_
Young ¹⁸	1994-2008	5.5	46	57
Saxena ¹⁹	1992-2009	2.3	64	29
Cannon ²⁰	1992-2010	3.1	63	15

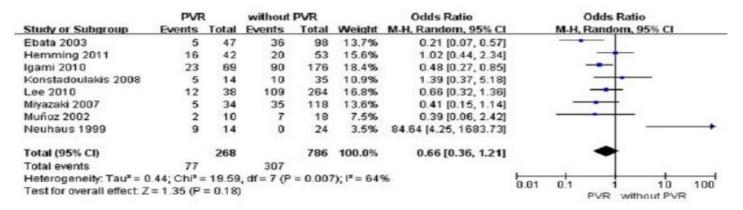
~ 20 - 40 % R1-resections!



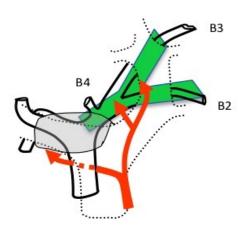
R1: Facteurs limitants


Augmenter le taux de R0 (1): Berlin concept


No touch : aucune dissection hilaire, résection systématique de la veine porte

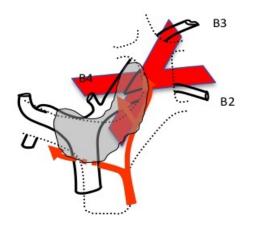


No touch mais...


Augmente significativement la mortalité...

Pas d'impact évident sur la survie à 5 ans...

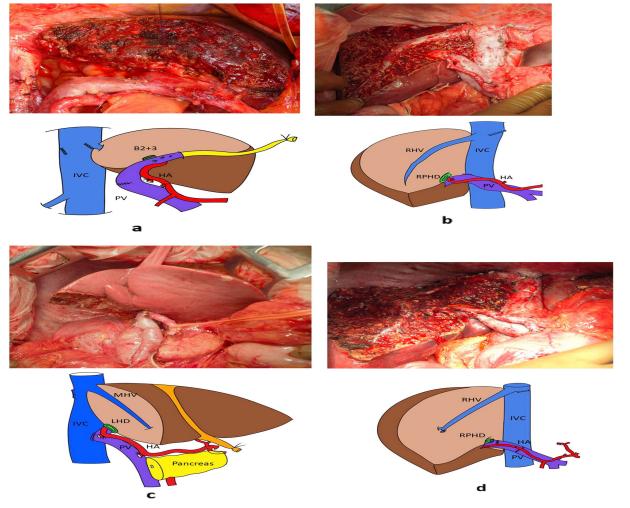
Augmenter le taux de R0 (2): Nagoya Concept



Right sided Bismuth II, IIIb et IV

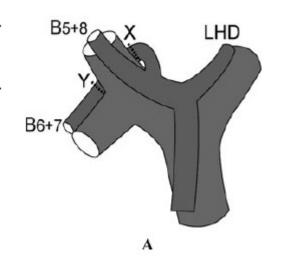
AHG jamais infiltrée

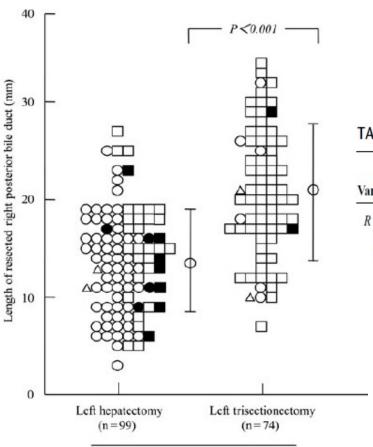
Hépatectomie D élargie au S1 + S4b Reconstructions Artérielle peu fréquentes


Left sided Bismuth IIIa, IV

AHD infiltrée

Hépatectomie G élargie au SAD Reconstructions Artérielles fréquentes

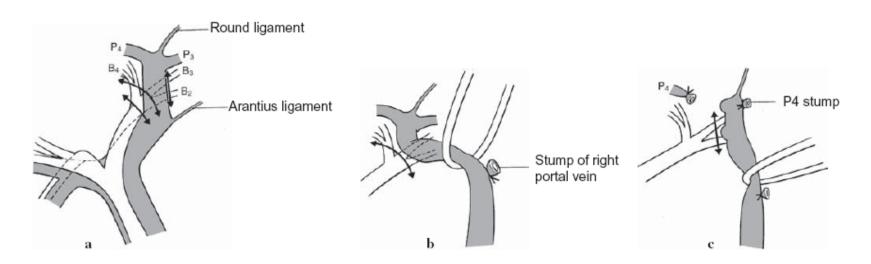



Clinical Significance of Left Trisectionectomy for Perihilar Cholangiocarcinoma

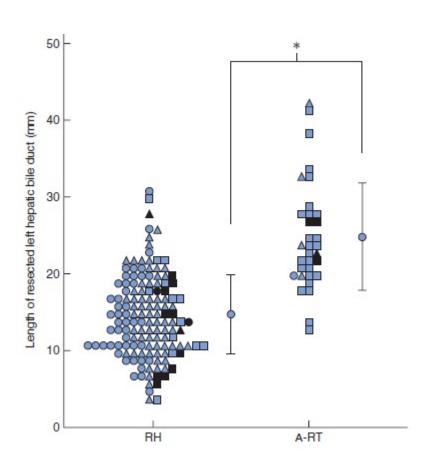
An Appraisal and Comparison With Left Hepatectomy

	Left Hepatectomy (n = 115)	Left Trisectionectomy (n = 86)	P
Stage			< 0.001
I/II	26 (22.6)	4 (4.7)	
IIIA/IIIB	23 (20.0)	2(2.3)	
IVA	46 (40.0)	73 (84.8)	
IVB	20 (17.4)	7 (8.1)	

Supraportal type

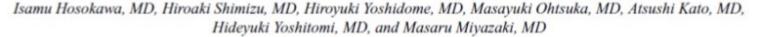

TABLE 3. Survival Analysis

		Surviv	al (%)	Univariate	Multivariate	-
Variable	n	3-year	5-year	P	Relative Risk (95% CI)	P
R						
0	154	50.5	42.3	0.002	1.00	0.049
1 or 2	45	25.4	7.9.		1.57 (1.01–2.47)	

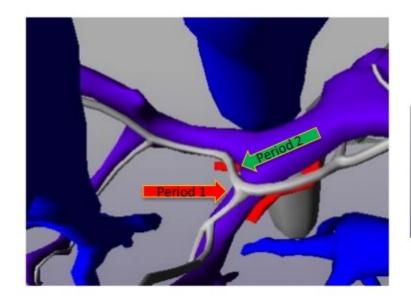


Role of anatomical right hepatic trisectionectomy for perihilar cholangiocarcinoma

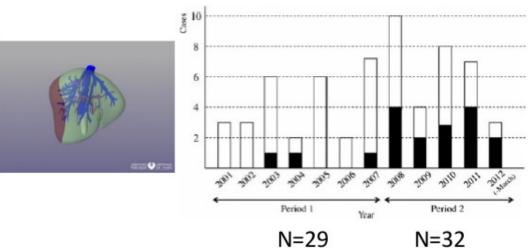
N. Matsumoto¹, T. Ebata¹, Y. Yokoyama¹, T. Igami¹, G. Sugawara¹, Y. Shimoyama² and M. Nagino¹



who had A-RT was 84, 42 and 27 per cent. These survival rates were no different between the two groups (P = 0.187), despite the presence of more advanced disease in the A-RT group (*Table 1*).


Surgical Strategy for Hilar Cholangiocarcinoma of the Left-Side Predominance

Current Role of Left Trisectionectomy



Annals of Surgery . Volume 259, Number 6, June 2014

2001 - 20012 : 61 patients

Period 1 : 3/29 (10%) d'hépatectomie gauche étendue 5/8/1 Period 2 : 15/32 (46%) d'hépatectomie gauche étendue 5/8/1

TABLE 5. Length of Tumor Free-Margin for Bile Ducts

		od 1 7, n = 29)	Period 2 (2008–2012, n = 32)		
	LH $(n = 26)$	LTS $(n = 3)$	LH (n = 17)	LTS (n = 15)	
Proximal side					
Negative ductal margin	17	2	15	13	
Wide ductal margin (≥5 mm)*	4 26	5% 1	10 7	5% 11	
Narrow ductal margin (<5 mm)	13	1	5	2	
Distal side					
Negative ductal margin	23	2	16	14	
Wide ductal margin (≥5 mm)	20	2	14	14	
Narrow ductal margin (<5 mm)	3	0	2	0	

^{*}The wide proximal ductal margin ratio was significantly higher in period 2 (21/28, 75.0%), as compared with that in period 1 (5/19, 26.3%) (P < 0.05).

TABLE 7. Surgical Morbidity and Mortality

	Peri (2001–200	od 1 (7, n = 29)	Period 2 (2008–2012, n = 32)		
	LH (n = 26)	LTS(n=3)	LH (n = 17)	LTS (n = 15)	
Morbidity	13 (50.0%)	2 (66.7%)	8 (47.1%)	8 (53.3%)	
Hyperbilirubinemia	2	0	0	1	
Bile leak from liver stump	2	0	4	4	
Intra-abdominal abscess	4	0	2	1	
Bilioenteric anastomosis leakage	5	1	4	1	
Wound infection	4	1	3	0	
Pleural effusion	5	1	3	2	
Sepsis	3	0	2	1	
Pneumonia	3	0	1	0	
Rupture of pseudoaneurysm	1	0	0	0	
Mortality	2 (7.7%)	0(0)	0(0)	0(0)	

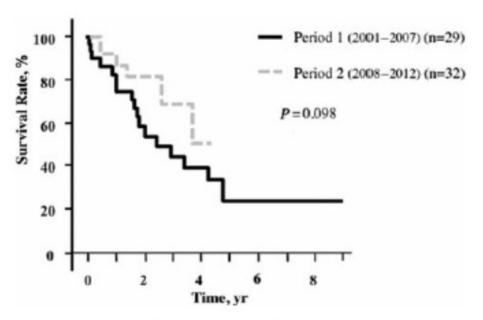
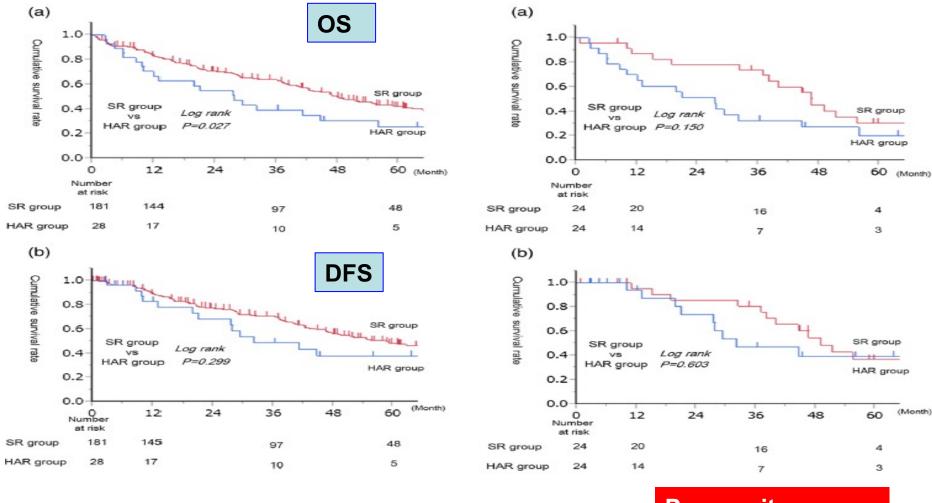



FIGURE 5. Survival after left-sided hepatectomy for hilar cholangiocarcinoma according to the operative period.

CONCLUSIONS

Our recent strategy for HC of left-side predominance improved proximal ductal margin status, without affecting postoperative mortality, probably leading to better survival after surgery. Therefore, LTS should be aggressively performed in patients with good hepatic functional reserve, even if the tumors are possibly resectable by LH.

Propensity score

Résection simultanée artérielle et portale

Without complication	23	(46.0%)
With complications	27	(54.0%)
Intra-abdominal abscess	13	
Wound infection	9	
Bile leakage from liver stump	9	
Liver failure	7	
Bacteremia	3	
Leakage of hepaticojejunostomy	3	
Intra-abdominal bleeding	2	
Leakage of pancreatojejunostomy	1	
Portal thrombus	1	
Relaparotomy	5	(10.0%)
Mortality	1	(2.0%)

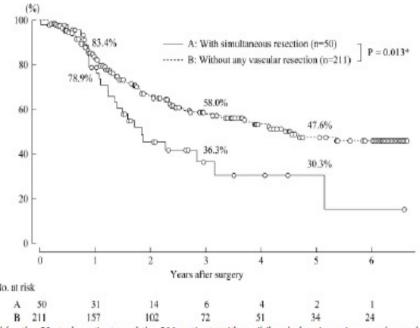
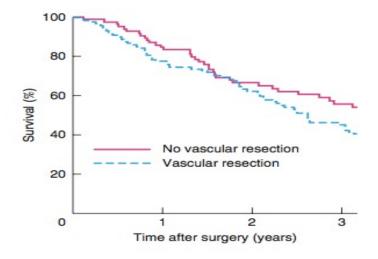



FIGURE 6. Survival for the 50 study patients and the 211 patients with perihilar cholangiocarcinoma who underwent resection without vascular resection at the same period. *A log-rank test.

Surgical resection for Bismuth IV perihilar cholangiocarcinoma

Patient (n)	Stade IVB	Stade IVA	Résection Majeur	Résection vasculaire	RO résection	R1 résection	*Lnf+
216 (332)	33 (15%)	183 (85%)	153 (71%)	131 (60%)	156 (72%)	52 (24%)	127 (59%)

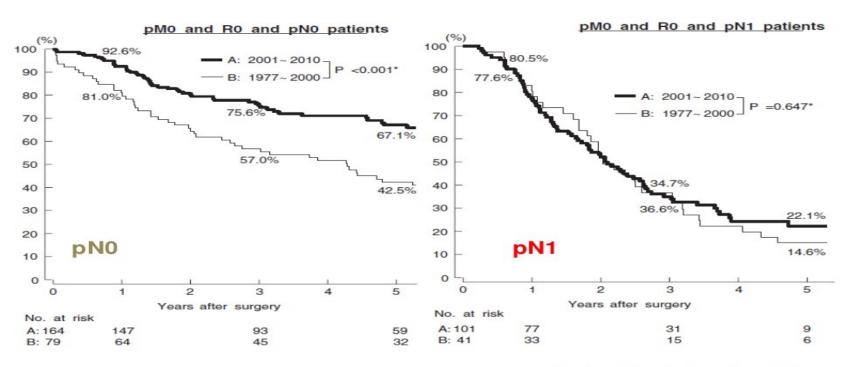
Evolution of Surgical Treatment for Perihilar Cholangiocarcinoma

A Single-Center 34-Year Review of 574 Consecutive Resections

Masato Nagino, MD, PhD,* Tomoki Ebata, MD, PhD,* Yukihiro Yokoyama, MD, PhD,* Tsuyoshi Igami, MD, PhD,* Gen Sugawara, MD, PhD,* Yu Takahashi, MD, PhD,* and Yuji Nimura, MD, PhD†

				Multivariate	
Variables	No. Patients	Mortality (%)	Univariate, P	Risk Ratio (95% Confidence Interval)	P
Age, y			0.658		
<65	279	12 (4.3)			
>65	295	15 (5.1)			
Sex		()	0.532		
Female	193	7 (3.6)			
Male	381	20 (5.2)			
Jaundice on admission			0.281		
Absent	165	5 (3.0)			
Present	409	22 (5.4)			
Preoperative cholangitis			< 0.001		0.031
Absent	464	15 (3.2)		1	
Present	110	12 (10.9)		2.53 (1.09-5.90)	
Liver function (ICGK)*			< 0.001		0.003
≥0.140	390	9 (2.3)		1	
< 0.140	168	18 (10.7)		3.68 (1.56-8.67)	
Extent of liver resection			0.428		
<50%	239	9 (3.8)			
>50%	335	18 (5.4)			
Combined PD			0.142		
Absent	500	21 (4.2)			
Present	74	6 (8.1)			
Combined PV and/or HA		1150x 51	0.201		
Absent	344	13 (3.8)			
Present	230	14 (6.1)			
Operative time, h		8. 85	0.002		
<10	224	3 (1.3)			
≥10	350	24 (6.9)			
Blood loss, mL			< 0.001		0.043
<2500	386	9 (2.3)		1	
≥2500	188	18 (9.6)		2.62 (1.03-6.66)	

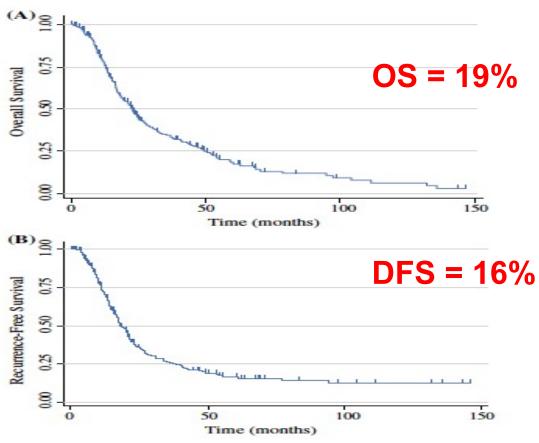
			Volume,	Su	rgical Pr	ocedure,	%	Bismuth Type IV,		R0 resection,		5-Year Sur	vival, %
Reference	Period	Resected, N	resected /y	Hx	PV	HA	PD	%	pN1, %	%	Mortality, %	All	R0
Jamagin ⁵	1991-2000	80	8.0	78	11	0	3	_	24	78	10.0	27	
Capussotti ⁶	1988-2001	36	2.6	89	14	3	0	0	39	89	2.8	27	29
Kawarada ⁷	1976-2000	87	3.5	75	8	0	3	_	_	64	2.3‡	26	_
Seyama ⁸	1989-2001	58	4.5	100	16	0	16	28	52	64	0	40	46
Kawasaki ⁹	1990-2001	79	6.6	96	6	3	16	47	44	68	1.3	_	40
Kondo 10	1999-2002	40	10.0	78	20	20	18	15	38	95	0	_	_
IJitsma ¹¹	1986-2001	42	2.6	100	17	9	0	_	38	64	11.9	22	_
Hemming ¹²	1997-2004	53	6.6	98	43	6	8	5	21	80	9.4	35	45
Sano ¹³	2000-2004	102	20.4	100	22	5	7	_	_	61	0	44	_
DeOliveira 14	1973-2004	173	5.4	20	0	0	0	_	28 ?	19	5.4	10	30
Miyazaki ¹⁵ Lee ¹⁶	1981-2004	161	6.7	88	25	6	4	_	48	63	6.8	_	36
Lee ¹⁶	2001-2008	302	37.8	89	13	2	2	17	24	71	1.7	33	47
Gulik ¹⁷	1988-2003	99	6.2	38	18	0	0	_	_	31	10	20,* 33†	_
Young ¹⁸	1994-2008	83	5.5	93	39	10	2	_	57	46	7.2	20	33
Saxena ¹⁹	1992-2009	42	2.3	100	26	0	0	2	29	64	2.4	24	_
Cannon ²⁰	1992-2010	59	3.1	83	_	_	_	_	15	63	5.1‡	< 20	_
This study	1977-2000	188	7.8	93	31	3	12	41	50	75	10.1	23	30
a supplied to	2001-2005	168	33.6	98	35	15	12	75.5	1/8/10/20	10.79	3.0	PG839950 17	8.3983
	2006–2010	218	43.6	99	41	21	15	J 48	J 48]78	1.4]38]45


Evolution of Surgical Treatment for Perihilar Cholangiocarcinoma

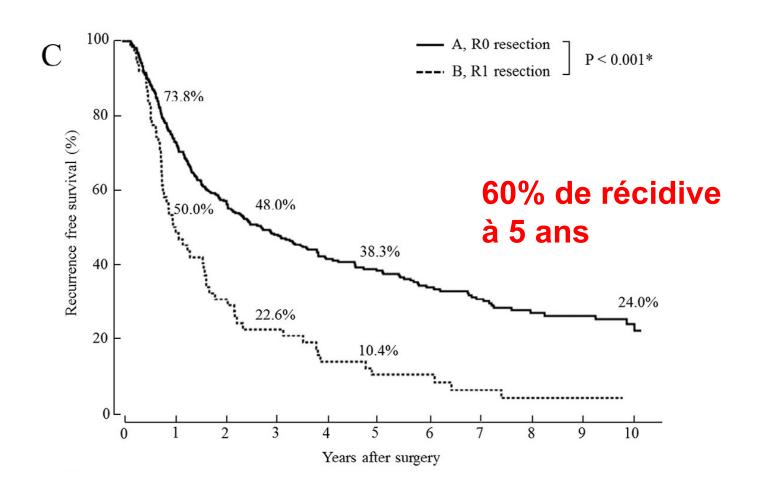
A Single-Center 34-Year Review of 574 Consecutive Resections

Masato Nagino, MD, PhD,* Tomoki Ebata, MD, PhD,* Yukihiro Yokoyama, MD, PhD,* Tsuyoshi Igami, MD, PhD,* Gen Sugawara, MD, PhD,* Yu Takahashi, MD, PhD,* and Yuji Nimura, MD, PhD†

Des marges R0 chez des patients N0



Survie à 5 ans

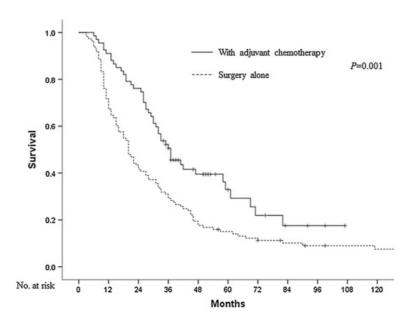

Actual 5-Year Survivors After Surgical Resection of Hilar Cholangiocarcinoma

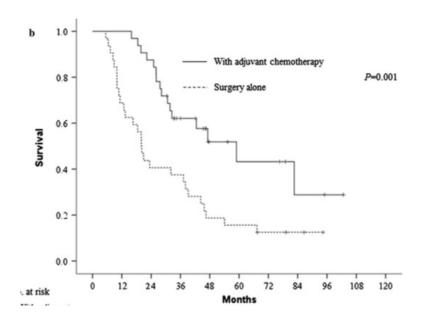
Thuy B. Tran, MD¹, Cecilia G. Ethun, MD², Timothy M. Pawlik, MD, MPH, PhD³, Carl Schmidt, MD⁴, Eliza W. Beal, MD⁴, Ryan C. Fields, MD⁵, Bradley Krasnick, MD⁵, Sharon M. Weber, MD⁶, Ahmed Salem, MD⁶, Robert C. G. Martin, MD², Charles R. Scoggins, MD², Perry Shen, MD³, Harveshp D. Mogal, MD³, Kamran Idrees, MD², Chelsea A. Isom, MD², Ioannis Hatzaras, MD¹⁰, Rivíka Shenoy, MD¹⁰, Shishir K. Maithel, MD², and George A. Poultsides, MD, MS, FACS¹

Récidive après chirurgie R0

Récidive après chirurgie R0

Univariable and multivariable analyses of recurrence-free survival in R0 resection patients (N = 340).

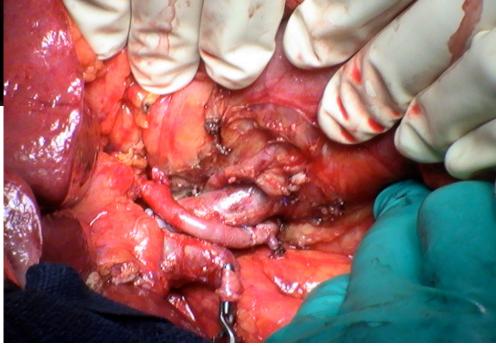

Variables	Patients, n	Recurrence-free	survival	Univariable P-value	Multivariable	
		Median (y)	5 y. %		HR (95% CI)	P-value
Combined vascular resection	2000 mm			< 0.001		
Absent	213	4.0	44.6	100000		
Present	127	1.6	28.3			
Perioperative homologous blood transfusion	11120		144.44	.005		
Absent	234	3.5	43.1			
Present	106	1.7	27.9			
Histopathologic classification				.017		
Papillary/Well	104	4.7	48.1			
Moderately/Poorly	236	2.1	34.2			
Microscopic lymphatic invasion				<.001		
Absent	108	5.5	51.9	4.0700.000		
Present	232	2.1	32.1			
Microscopic venous invasion				<.001		.001
Absent	209	4.7	48.9	2000	1.00 (reference)	
Present	131	1.5	21.3		1.57 (1.19-2.07)	
Microscopic perineural invasion				.007		
Absent	54	6.9	59.6			
Present	286	2.2	34.4			
Lymph node metastasis				<.001		<.001
Absent	207	5.7	53.6		1.00 (reference)	
Present	133	1.3	15.1		2.49 (1.89-3.28)	
Adjuvant chemotherapy				0.118		
Absent	265	3.0	41.4			
Present	75	2.2	27.0			



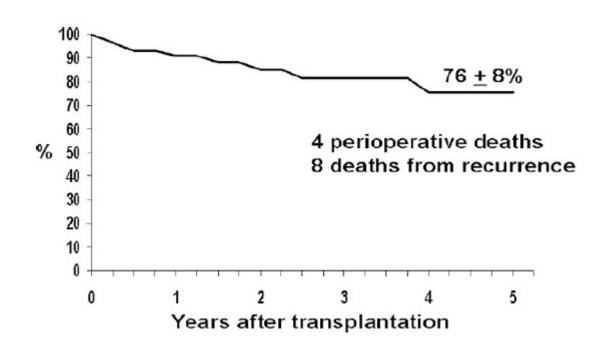
Chimiothérapie adjuvante

Adjuvant gemcitabine monotherapy for resectable perihilar cholangiocarcinoma with lymph node involvement: a propensity score matching analysis

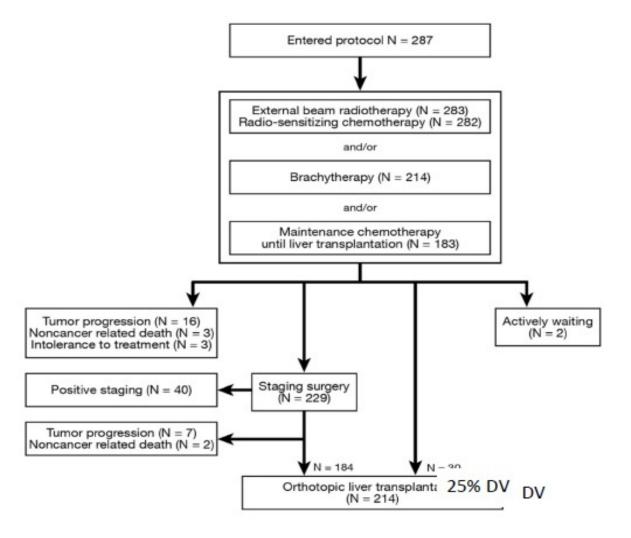
Takashi Mizuno¹ · Tomoki Ebata¹ · Yukihiro Yokoyama¹ · Tsuyoshi Igami¹ · Gen Sugawara¹ · Junpei Yamaguchi¹ · Masato Nagino¹



Transplantation hépatique



Age < 50 ans Cholangite sclérosante CA19-9 < NIe Pas de masse tumorale Stérilisation tumorale N0M0



25% Drop out

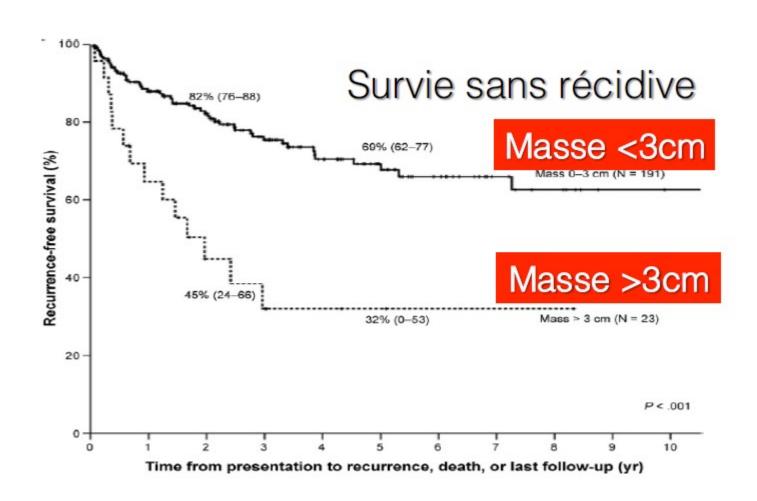
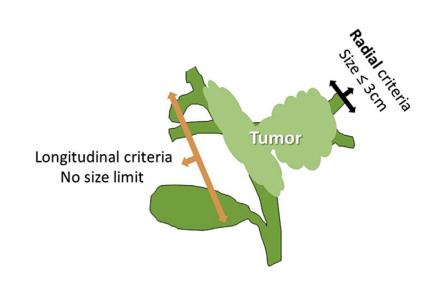
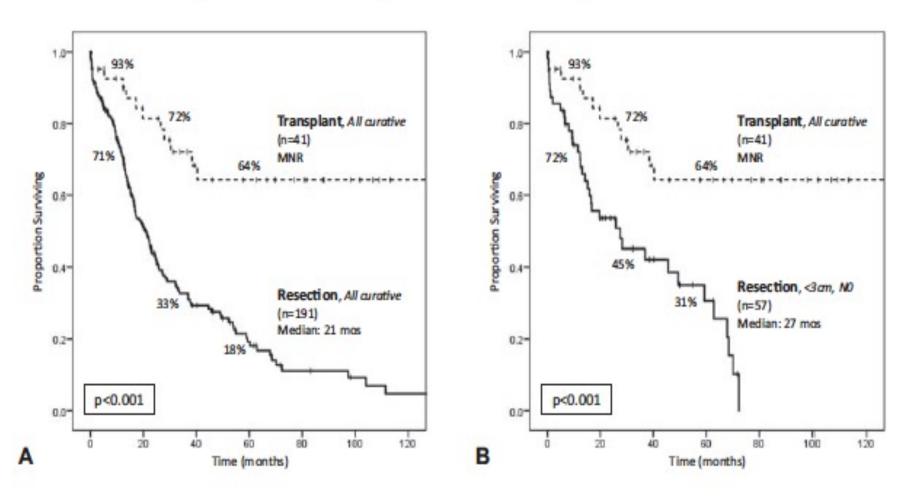
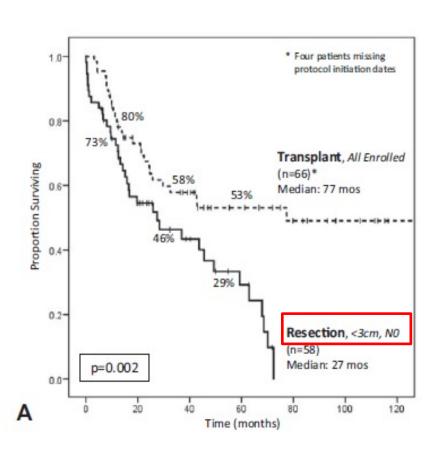
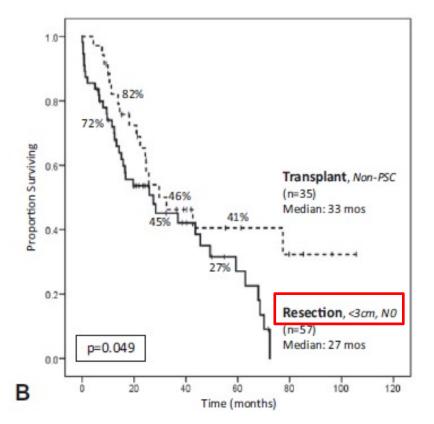



Table 1. Mayo clinic criteria for inclusion in the transplantation protocol for hilar cholangiocarcinoma [15–17].


Diagnosis	Pathologically confirmed hilar cholangiocarcinoma or CA19-9 > 100 ng/ml in the presence of a radiographically malignant stricture
Tumor	Tumor size < 3 cm
Distant metastases	Absence of distant metastases on CT (and/or MRI) and isotope bone scan
Lymph node metastases	Negative EUS-FNA of regional lymph nodes and negative staging laparotomy/ hand-assisted-laparoscopy with biopsy of regional lymph nodes

Transplantation Versus Resection for Hilar Cholangiocarcinoma


An Argument for Shifting Treatment Paradigms for Resectable Disease



Transplantation Versus Resection for Hilar Cholangiocarcinoma

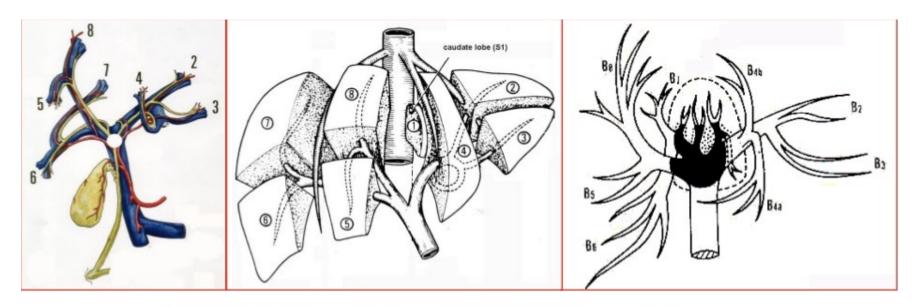
An Argument for Shifting Treatment Paradigms for Resectable Disease

Pas de CSP

TH oui mais?

Surgical Treatment of Perihilar Cholangiocarcinoma

Resection or Transplant?


Masato Nagino, MD

- -Mortalité 90 jours dans le bras chirurgie 12%
 - -Pas de résection Vx
 - -Pas de DPC associée
- -Résection R0: 191 patients (N0++)
 - -Survie à 5 ans: 18% (vs 67% au Japan ≈ TH non CSP)
- T< 3cm, No et non résécable !!!

- Orienter l'hépatectomie en fonction des chances d'être R0 en espérant que le malade soit N0
- Tjs avec segmentectomie 1

NIMURA (1990): 98 %; OGURA (1993): 36 % TASHIRO (1993): 31 %; SUGIURA (1994): 32 %