Identification of disease genes Mutational analyses
 Monogenic diseases

Objectives : identify the disease causing mutation among millions of polymorphisms.

Contents :

- Copy number variations (CNV)
- Next Generation Sequencing/exome/dbSNP/EVS
- Loss of function, pathogenicity
- Strategies inherited diseases
- Dominant mutations
- Recessive mutations
- (Neomutations)

Copy Number Variations (CNV)

- Deletions or duplications
- Array CGH
(Comparative Genomic Hybridisation) :

Slides covered with millions of ordered

Detection

 oligonucleotides covering the entire human genomeArray CGH

CNV

The resolution of the DNA arrays depends on the density of oligonucleotides

Mechanisms causing CNVs

- Random breaks (DNA double strand break repair, DSBR)
- NHEJ : non homologous end joining

Due to micro-homologies (2 to 15 nt)
\rightarrow insertion of a few nucleotides during repair

- Homologous recombination
- NAHR : non allelic homologous recombination

Segmental duplications, repeated sequences

Repeated sequences : account for 60% of the human genome 45% interspersed sequences : example Alu sequences
2 to (5?) \% segmental duplications
10% others

Segmental duplications :

- 10 to 300 kb duplicated elements
- On a same chromosome or on different chromosomes
- In the same orientation (head to tail) or in opposite orientations

NAHR non allelic homologous recombination :

- interspersed repeated sequences (ex Alu sequences)
- segmental duplications $: \longrightarrow$ recurrent deletions
(micro-deletional syndromes: Williams, Di-Georges ...)

or deletion

Interpretation of CNVs

- Polymorphic CNVs : Database of Genomic Variants
- Pathologic CNVs : DECIPHER database

Segmental duplications are causing recurrent rearrangements (often de novo rearrangements for CNVs dominants diseases)

Demonstration a new CNV is disease causing :

- Need to have several patients with identical or overlapping CNVs and having a share clinical picture
- or Confirmation with a patient having the same clinical picture and a point mutation in one of the genes included in the CNV

Analysis of small mutations Next generation sequencing

Nucleotide substitutions
Small insertions or deletions of 1, 2 or several nucleotides

Sanger sequencing

Next generation sequencing (NGS or MPS)
Limitation of the size of the detectable insertions/deletions
due to the length of sequencing reads
Reads of $100 \mathrm{nt} \longrightarrow$ detection of max 50 nt insertion/deletion

Next generation sequencing

Illumina (Solexa) technology

Genome Analyzer IIx

HiSeq 2000: Up to 600 Gb per run, in 11 days
$2 \times 100 \mathrm{nt}$ read length, two billion paired-end reads/run.
In a single run, sequence two human genomes at $\sim 30 \mathrm{x}$ coverage (read depth) for \$3-5,000 (USD) per genome.

Next generation sequencing

Illumina (Solexa) technology
Sequencing by elongation with fluorescent terminators
a 3^{\prime}-blocked reversible terminators

- Illumina (Solexa) technology

Clonal amplification on a slide
\longrightarrow molecular clones
Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.
4. FRAGMENTS BECOME DOUBLE
2. ATTACH DNA TO SURFACE

Bind single-stranded fragments randomly to the inside surface of the flow cell channels.
5. DENATURE THE DOUBLE-STRANDED MOLECULES

Denaturation leaves single-stranded

The enzyme incorporates nudeotides to build double-stranded bridges on the solidphase substrate. STRANDED

3. BRIDGE AMPUFICATION

Add uniabeled nudeotides and enzyme to initiate solid-phase bridge amplification
6. COMPLETE AMPLIFCATION

Several million dense custers of doublestranded DNA are generated in each channel of the flow cell.

Cycle sequencing, nucleotide by nucleotide

Picture scanning of the

 slide after each cycle (CCD camera)-> .fastq files

First chemistry cyde: to initiate the first sequending gode, add all four labeled revers ble terminators, primers and DNAA polymerase eniyme to the flow cell.
10. IMAGE SECOND CHEMISTRY CYCLE

After laser excitation, collect the image data as before. Record the identity of the second base for each duster.
8. IMAGE FIRST BASE

After laser excitation, capture the image of emitted fluorescence from each duster on the
flow cell. Record the identity of the first base for each duster.
11. SEQUENCE READS OVER MULTIPLE CHEMISTRY CYCLES

Repeat cycles of sequending to determine the sequence of bases in a given fragment a single base at time.

Second chemistry cyde: to initiate the next sequending cyde, add all four labeled reversble terminators and ennyme to the flow cell.
12. ALIGN DATA

Alignment of the reads with respect to the human genome reference :

-> .bam files

Targeting coding sequences

- Limited interest for introns and intergenic sequences, most interest for coding sequences and flanking splicing sequences
-

2% of the human genome

- The solution : enrichment of the sequences of interest by targeted capture of all exons of the genome (exome)
\longrightarrow reduces the cost per sample
\rightarrow better coverage (read depth)

Enrichment by exome capture

CENDHESARFLE

0000000000 000000000 $\downarrow^{\text {mss } \mathrm{kn}}$

SureSelect
Target Enrichment System Capture Process

1 million of oligos of 120 nt covering the exons of the 21000 human genes

Up to 50 mega-nt covered
 $90060000000000+\% . \%$ $00000 \quad 00000$

Enrichment by capture (exome)(2)

Exonic enrichment and sequencing is reproducible!

IGV Analysis (Integrative Genomics Viewer) with .bam files

p13.3

p13.2	$\frac{1}{p 13.13}$	p13.11	p12	p1

43680 kb
25 kb

IGV Analysis (Integrative Genomics Viewer)

chr 19

$\square|l| l|l| l|l| l|l| l|l|+\square$

(0.67

Bio-informatics analysis -> .vcf files

 About 70000 SNPs et 2000 indels per exome- Elimination of artifacts related to technology
- Elimination of common polymorphisms :

> usually all SNPs > 1\%

- dbSNP138 (includes data from 1000 genome, 1KG)
- Exome Variant Server (EVS) :
- 4,300 European American individuals
- 2,200 African American individuals
- ExAC (Exome Aggregation Consortium) 60,706 unrelated individuals

Bio-informatics analysis Loss of function, pathogenicity (1)

Gain of function are not predictable.
Partial loss of function are sometimes difficult to predict.

Donor site		Acceptor site
$\mathrm{AG} / \underline{\mathbf{G T}_{\mathbf{A}}^{\mathbf{G}}} \underset{\mathbf{A G T}}{ } \underline{\mathbf{T}}$	A	$\left(\begin{array}{l} \mathrm{C} \\)_{11} \end{array} N_{T}^{C}\right.$
+1+2		-1-2

Pre-messenger RNA

- The non-sense, indel and $-1,-2,+1,+2$ splice mutations are generally deleterious.

Exceptions : some indels which maintain the reading-frame

- For the other splice mutations, need to use prediction programs based on splice site consensus matrices. (Spliceport, Human Splicing Finder, NNSPLICE, MaxEntScan, HSF ...)
Need to confirm splice site alteration by RT-PCR studies on patient cells.

Loss of function, pathogenicity (2)

- Silent variations (synonymous) are in general non deleterious \rightarrow excluded
- Missense mutations : 9000 missense variations per exome
- Grantham score (degree of physico-chemical change)
- Conservation scores : PolyPhen-2 et SIFT programs .

These programs use databases of conserved protein sequences
--RCNKLILVGDPKQLPPTVISMKAQEYGYDQSMMARFCRLLEENVEHNMISRLPILQLTVQYRMHPDICLFPSNYVYNRNLKTNRQTEAI hS
--RCNKLILVGDPKQLPPTVISVKAQEYGYDQSMMARLYKHLEEQVKQNVISRSPVLQLTVQYRMHPDICLFPSSYIYNRTLKTNRLTEES mm
--RCNKLVLVGDPRQLPPTIKSIKAQEYGYGQSLMARLQRHLEEQVQNNLLRRLPVVQLTVQYRMHPDICLFPSSYIYDKTLKTDKATEEN Gg
--RCSKLVLVGDPEQLPPTVISMKAEELGYGQSLMSRMCSFLDS---TGTKS--PVLHLTVQYRMHPDICLFPSHYFYKRMLKTDRATEEV Xt
--RCPSVILVGDPNQLPPTVVSQKAKEFGFDQSLMARLCKSLHP--SNSKLP--PILLLSMQYRMHPDICEFPSKYIYNSALKNDCETAQK dr
--GMSKLILVGDPEQLPATVLSKKAQDLNFRQSLFERLYRVFKP---RPDN---PVLMLDTQYRMHPAICGFPSYNFYSGKLRTDKDVAED bf
--GAKKCILVGDPNQLPPTVLSKKAASLNYSQSLFVRIQKNFSN----------QMCLLSIQYRMHPDISHFPSKKFYDSRLEDGDNMAEK Sp1
--GCESCVMVGDPNQLPPTVLSKTSAKFGYSQSLYVRMFKQHNE----------SACLLSIQYRMNPEISRFPSKFFYNSKLLDGPNMSAV sp2
--GCSKCILVGDPKQLPPTVLSQSAARYGYDQSLFVRMQKNHEK----------DVHLLDTQYRMHPEISSFPRAAFYEGLIQDGDDMAKS nC
--GGKRCIMVGDPNQLPPTVLSGAASNFKYNQSLFVRMEKNS------------SPYLLDVQYRMHPSISKFPSSEFYQGRLKDGPGMDIL SC
--GCKKCIMVGDPNQLPPTVLSQAAASFNYEQSLFVRMQKMYPE----------SVYLLDVQYRMHPAISKFPSSEFYFSRLHDGEGMAAK dh
--GCKQCIMVGDPNQLPPTVISQEAEKLGYSQSLFVRMFERSPQ----------AVHLLSIQYRMHPEISVFPSKAFYDSKLQDGPNMAQL UM
--GAARCVLVGDPQQLPATVISKAAGTLMYSRSLFERFQLSGC-----------PTILLSVQYRMHPQIREFPSRHFYQGRLTDSESVVKL OS2 KSKGTKCIMVGDPKQLPATVMSGLASKFLYECSMFERLQRAGY-----------PVIMLTKQYRMHPEISRFPSLHFYENKLLDGAQAADK OS1 GGNHGRCVLVGDPKQLPATVLSQAASSVCYERSMFERFQKNGY-----------PVTMLSTQYRMHPDIRKFPSSYFYNNQLVDGASVLGD sm

```
motif helicase II { motif helicase III
```

hs homo sapiens, mm mus musculus, gg gallus gallus, xt xenope tropicalis, dr danio rerio, bf branchiostoma floridae, sp schizosaccharomyces pombe, nc neurospora crassa, sc saccharomyces cerevisiae, dh debaryomyces hansenii, um ustilago maydis, os oriza sativa, sm selaginella moellendorffii

Strategies for inherited diseases

- Dominant mutations

Several independent individuals with different mutations (in this case, mutations are often clustered in a same domain \longrightarrow gain of function), or with the same mutation (founder effect), are needed.
If large families with a high LOD, two families (mutations) may be sufficient.

- Recessive mutations

Two independent non-consanguineous individuals $\longrightarrow 4$ mutations in the same gene If large consanguineous families with high LOD score, two families (mutations) may be sufficient.

If only ONE large consanguineous family with high LOD score, there is a need to demonstrate that the mutation causes a loss of function (easier for non-sense, truncating (frame shift) or splice mutations; functional studies for missense mutations)

- Neo-mutations (next lecture/Dr Jean-Baptiste Rivière)

$1^{\text {st }}$ success of WES (Whole Exome Sequencing)

Miller syndrome (Ng et al. Nature Genetics 2010)
Syndromic dysmorphic disease
Exome sequencing of 4 patients from 3 families $\longrightarrow D H O D H$ gene

Other examples : 1. Mallaret et al. Brain 2014

Ataxia - epilepsy - mental retardation, linkage to 16q21-23 (2007)

D1653138

Nb of sequenced bases 101.323 .813

Total SNP 68497 13616
Novel SNP807

Novel homozygous SNP10

Novel homozygous SNP in linkage region
Novel homozygous SNP in linkage region, affecting coding or splice sequence
c.139C>A, p.Pro47Thr in WWOX gene

Confirmation : exome on $2^{\text {nd }}$ family Consanguinity, 2 affected
c.1114G>C, p.Gly372Arg in WWOX gene

Homo s.
Mus m.
Gallus g. Xenopus l. Danio r. Drosophila m. Acromyrmex e. Nematostella v. Trichoplax a.

DSEDELPPGWEERTTKDGWVYYANHTEEKTQWEHPKTGKRK DSEDELPPGWEERTTKDGWVYYANHTEEKTQWEHPKTGKRK DSEEELPPGWEERTTKDGWVYYANHLEEKTQWEHPKSGKRK DSEDELPPGWEERSTKDGWVYYANHFDEKTQWEHPKTGKRK DSEDELPPGWEERSTKDGWVYYANHEEMKTQWEHPKTGKKK DSEDELPPGWEERATDDGTVCYVNQQGKTSQWTHPRTGRSK DSEDELPPGWEERTTLDGNVYYVNHYTKGTQWTHPRTGRKK DSDEELPVEWEVRTTDTGRVYYANHLTKTTQWQHPKTGKIR DSDPELLPGWEKSKTSTGRTFYVDHNTQTTQWEHPQRSHKK
p. Pro47Thr homozygous missense mutation
in the WWOX gene(WW domain/oxido-reductase)
(Mallaret et al. Brain 2014)

Ataxia/epilepsy syndrome (SCAR12) (Mallaret et al. Brain 2014, 137: 411-9)
Mutation in the tumor-suppressor gene WWOX: WW domain oxido-reductase p.Pro47Thr in family 1 (Saudi Arabia)
p.Gly372Arg in family 2 (Israeli Palestinians, ataxia/epilepsy + spastic paraplegia)
(Exome NGS)

Pull-down: WBP1

J. Lee \& C. M. Aldaz

Interaction with PPXY Motifs

Small dehydrogenase/ reductase domain

Complete loss of function of WWOX causes a lethal-dwarfism syndrome

Ide (lethal dwarfism-epilepsy) rat spontaneous mutation, death at 3-12 weeks:
deletion of 13 nt in exon $9 \rightarrow>$ truncation
Suzuki et al. Comp Med. 2007; 57: 360-9.
Suzuki et al. Genes Brain Behav. 2009; 8: 650-60.
Mice knock out : lethal dwarfism-epilepsy, death at 3-4 weeks :
Mallaret et al. Brain 2014; 137: 411-9.

Early lethal microcephaly syndrome with epilepsy, growth retardation and retinal degeneration, death at 4-16 month :
homozygous non-sense mutation p.Arg54* Abdel-Salam et al. Orphanet J. of Rare Dis. 2014; 9:12.

2. Lichtenstein-Knorr syndrome

Family CA

- Turkish origin, 3 affected, $\operatorname{Pr} \mathrm{B}$. Leheup, Nancy
- $1^{\text {st }}$ degree consanguinity
- Delayed walking at ages ranging from 18 months to 5 years
- Cerebellar and posterior column ataxia
- Cerebral MRI revealed very mild anterior vermis atrophy (youngest sister)
- Deafness (profound in the sisters, moderate in the younger brother)
- Language: none
- Growth retardation and microcephaly (brother only)

Two regions of shared homozygosity:

Chr. 1	20 Mb	248 SNP
Chr. 7	3.5 Mb	37 SNP

chr. 7

SLC9A1

SLC9A1 encodes for NHE1 ($\mathrm{Na}+/ \mathrm{H}+$ exchanger family member 1), a 815 amino acid protein with 12 transmembrane helices

- ubiquitous at the surface of mammalian cells
- regulates the pH in inner ear

Segregation and in silico predictions

> p.Gly305Arg

$$
\downarrow
$$

Homo sapiens NHE1
Homo sapiens NHE2
Homo sapiens NHE3
Gallus gallus
Alligator sinensis
Xenopus tropicalis
Lepisosteus oculatus
Bombyx mori
Pediculus humanus corporis
Necator americanus
Nematostella vectensis
Trichoplax adherans

Predicted

 deleterious by SIFT (score=0.02)

Mouse models

Cell, Vol. 91, 139-148, October 3, 1997, Copyright ©1997 by Cell Press
 Sodium/Hydrogen Exchanger Gene Defect in Slow-Wave Epilepsy Mutant Mice

Gregory A. Cox,* Cathleen M. Lutz,* Chao-Ling Yang, ${ }^{\dagger}$ Daniel Biemesderfer, \dagger Roderick T. Bronson, \ddagger Audrey Fu,*
Peter S. Aronson, ${ }^{\dagger}$ Jeffrey L. Noebels, \S
and Wayne N. Frankel* ${ }^{*}$
*The Jackson Laboratory

Discussion

Here we describe the phenotype, genetic mapping, and identification of the defective gene in the swe mutant mouse. The disease appears to be restricted to the CNS, where swe mice are severely ataxic and display a unique pattern of neurodegeneration in cerebellar, vestibular, and cochlear nuclei. In addition, swe mice are the first to model essential elements of human generalized absence epilepsy, including a combination of $3-\mathrm{Hz}$ spike-wave and tonic-clonic seizures. The ubiquitously expressed Nhe1 gene was identified as a positional candidate. A single base A-to-T transversion was found that generates a premature stop codon severely reducing mRNA and protein expression and abolishing NHE1 activity in cultured fibroblasts from mutants. This functional null allele of Nhe1 is the first disease-causing mutation iden-

Progressive Neurodegeneration in Deep Cerebellar Nuclei —

Am J Physiol. 1999 Apr;276(4 Pt 1):C788-95.
Targeted disruption of the murine Nhe1 locus induces ataxia, growth retardation, and seizures.
Bell SM ${ }^{1}$, Schreiner CM, Schultheis PJ, Miller ML, Evans RL, Vorhees CV, Shull GE, Scott WJ.

FUNCTIONAL STUDY RESULTS

Collaboration with NHE1 specialists: Larry Fliegel and Xiuju Li

Stably transfected AP-1 cells WT or mutant cDNA

Mutant protein:

- de-glycosylated
- almost completely absent from the cell surface ($>90 \%$ miss-targeted)
- Very low residual activity (2\%) intracellular pH measurement (cell-permeant dye with pH dependent emissiono,

Conclusion \rightarrow almost complete loss of function

CGH arrays and next generation sequencing are not suited for identification of trinucleotide expansions

\longrightarrow need for genetic linkage studies

Hexanucleotide Repeat Expansion in C9ORF72
As the Cause of familial ALS-FTD,
Renton et al Neuron 2011

Future

- exome or whole genome (WES versus WGS)
- third generation sequencing : single DNA molecule sequencing

Pacific Biosciences - Real-time sequencing

LOD score

