Common disorders (multifactorial)

Individual variations (polymorphisms) in some genes can predispose (or protect) for a disease, in interaction with environmental factors (food, smoking, infection, stress...)

Metabolic diseases	type 1 diabetes	T1DM
	type 2 diabetes	T2DM
Neurodegenerative dis.	Multiple sclerosis	MS
-	Parkinson disease	PD
	Alzheimer disease	AD
Psychiatric diseases	<u>Schizophrenia</u>	
Vascular disease	Arterial hypertension	
Joint diseases	Rheumatoïd arthritis	RA
Infectious diseases !	Predisposition to leprosy	

Environmental and inherited factors

Principes de génétique humaine Josué Feingold, Marc Fellous, Michel Solignac Hermann éditeurs

Risk variation acording to genotype

Familial recurrence in some common disorders

Maladie du proposant	Pourcentage dans la population générale (ou chez les apparentés des témoins)	Pourcentage chez les apparentés du propositus au premier degré	Risque relatif
Diabète insulinodépendant	0,3 à 0,4	3à8	10 à 20
Diabète non insulinodépendant	2 à 4	10 à 15	4
Asthme	3,8	9,2	2,5
Sclérose en plaques (MS)	0,02 à 0,06	0,5 à 1	19
Fente labiale (bec-de-lièvre)	0,1	2 à 5	35
Schizophrénie	1	4 à 10	7
Hypertension artérielle	10	20 à 30	3

Relative Risk (RR) = Odds Ratio (OD) = λ s

How to identify genes and alleles causing this increase of Relative Risk?

1. Family studies (linkage analysis)

- Large« monogenic » families : parametric methods
- Small families : non-parametric methods : Sib-pair studies

2. Association studies

- Case-control studies : comparison of <u>allelic frequencies</u> or <u>genotype frequencies</u> (aa/aA/AA) (testing for recessive, dominant or additive effect)
- In the general population or in « isolates » (Iceland, Finland, Ashkenazy Jews, remote villages [mountains]...) with possible founder effects

1. Sib-pair method

a priori likelihood (for informative parents = IBD)2 shared alleles (1 2)0.251 shared allele (1 4 ou 2 3)0.500 shared allele(3 4)0.25

IBD: Identity by descent;IBS: Identity by state (if parents not genotyped or non informative)

Sib-pair method

	Allèles partagés		İs	Excès de	γ2,	χ^2_{α} : D		
	0	1	2	concordance	100 paires	200 paires		
Expected	25 %	50 %	25 %					
Observé	20 %	50 %	30 %	10 %	1.0 ; p = 0.60	2.0: p = 0.36		
	15 %	55 %	30 %	15 %	3,2 ; p = 0,20	6.4 : p = 0.04		
	10 %	60 %	30 %	20 %	7,8 ; p = 0,02	15,6 ; p = 0,0004		

$$\chi^2 = \Sigma \frac{(O - E)^2}{E}$$

Determine the p value from χ^2 distribution

Susceptibility locus to leprosy

« Genome Wide » study

Mira et al. Nature Genetics, 2003

86 families 205 patients (90 paucibacillary, 115 multibacillary)

			Two	o-point	Mu	Multipoint	
Cytogenetic location	Microsatellite name	Map position	lod score	Info content	lod score	Info content	
1p32	D1S200	82.41	1.20	0.69	1.18	0.86	
1q42.3	D1S235	254.64	2.62	0.31	2.13	0.61	
2q36.3	D2S1363	227	1.01	0.55	1.00	0.76	
3p21	D3S2409	70.61	1.31	0.37	1.55	0.64	
	D3S1766	78.64	0.63	0.55	1.67	0.71	
5p14	D5S807	19.02	1.04	0.65	1.35	0.86	
	D5S817	22.88	0.70	0.49	1.44	0.79	
5q11.2	D5S2500	69.23	1.91	0.70	1.27	0.83	
6p21	D6S1051	51	2.43	0.66	2.39	0.77	
	D6S1017	63.28	0.61	0.57	1.25	0.77	
6q25–q27	D6S305	166	3.27	0.75	3.88	0.84	
	D6S1277	173.31	2.82	0.66	2.66	0.85	
	D6S503	184.51	1.41	0.57	2.33	0.86	
	D6S1027	187.23	1.32	0.65	2.23	0.84	
7p15	D7S1802	33.09	1.66	0.60	1.15	0.81	
10p13	D105674	41.79	0.21	0.64	0.08	0.77	
	D10S1423	46.23	0.09	0.68	0.22	0.86	
13q22.1	D135788	45.55	0.21	0.56	1.68	0.68	
	D135800	55.31	1.19	0.70	1.18	0.85	
20p12.3	D205473	9.53	0.67	0.44	1.13	0.59	

Linkage of microsatellites on 11 cytogenetic locations with multipoint MLB lod score >1 and of markers on chromosome 10p13 with leprosy *per se*. Map positions are according to the Marshfield map.

Susceptibility locus in leprosy 20 microsatellites in the 6q25-27 region

Mira et al. Nature Genetics, 2003

2. Association studies

- Case-control studies
- Comparison of <u>allelic frequencies</u> or <u>genotype</u> <u>frequencies</u> (aa/aA/AA) (testing for recessive, dominant or additive effect)
- Hypothesis of a founder effect

Relative risk and attributable risk :

- Risk = p(m)
- Relative risk RR = p(m)f+/p(m)f- (f+; f-: present or absent risk factor)
- Attributable risk defines, at the population level, the proportion of cases imputable to the risk factor AR = f(RR-1)/1 + f(RR-1) f=frequency of carriers

Association studies

- Candidate at-risk allele
- Candidate gene(s)
- Candidate region
- Whole Genome Association Studies (GWAS) : possible since 2005...

• Candidate allele :

(the allele is directly predisposing to the disease)

Alzheimer disease (multifactorial form)

Predisposing gene : ApoE Allèles :

Amyloïde plaques

Apo ε4	arg	arg	17 %
Αρο ε3	cys	arg	73 %
Αρο ε2	cys	cys	10 %
Genotype frequ	iencies		

Genotype frequencies $\epsilon 4$ homozygote (aa) : $\epsilon 4$ heterozygote (aA) : $\epsilon 2$ or $\epsilon 3$ (no $\epsilon 4$) (AA) :

- 0,17 x 0,17
 - 2 x 0,17 x 0,83
 - 0,83 x 0,83

≈ 0,03 (3 %)≈ 0,28 (28 %)

≈ 0,69 (69 %)

Relative risk of ϵ 4 allele for Alzheimer disease

genotype	patients %	controls %	Relative Risk RR	Attributable Risk AR (%)
ε4 ε4 or ε3 ε4	58	31	x 3.1	39
ε4 ε4	14	3	x 7.7	
ε3 ε4	44	28	x 2.6	
ε2 or ε3 (no ε4)	42	69		

Incidence of the disease at 85 years $\approx 10\%$

$$RR_{homoz} = \underbrace{\begin{array}{c} 0.1 \times 0.14 \\ 0.03 \\ 0.1 \times 0.42 \\ 0.69 \end{array}}_{0.69} = 7.7 \qquad RR_{heteroz} = \underbrace{\begin{array}{c} 0.1 \times 0.44 \\ 0.28 \\ 0.28 \\ 0.1 \times 0.42 \\ 0.69 \end{array}}_{0.69} = 2.6$$

Relative risk of $\varepsilon 4$ allele for Alzheimer disease:

genotypes	(freq.)	RR	risk at 85 years
ε4 ε4	(3 %)	7.7 x	46 %
ε3 ε4	(28 %)	2.6 x	16 %
ε2 ou ε3	(69 %)	1 x	6 %

• Candidate gene but no candidate allele

Predisposing allele is in linkage disequilibrium with flanking polymorphic markers

Requires the sequencing of the entire at-risk haplotype, possibly also in different populations

Linkage disequilibrium and haplotype

Evolution of the length of the shared region in patients, around a mutation or a risk variant

• Candidate region (based on linkage)

Association between leprosy and 81 SNPs in the candidate region (2 Mb)

Mira et al, Nature, 2004

Table 1 Association with leprosy of genotypes defined from the three PARK2_e01(-2599)-rs1040079 haplotypes								
PARK2(-2599)- rs1040079 genotypes		Frequency	Oddsratio	95% confidence interval	Ρ			
C-T	C-T	0.11	1.00					
T–T	C-T	0.32	3.15	1.29-7.71	0.012			
T–T	T–T	0.26	3.68	1.41-9.62	0.008			
T–C	C-T	0.10	5.35	1.92-14.89	0.001			
T-C	T–T	0.17	5.72	2.10-15.59	0.0007			
T-C	T-C	0.04	4.75	1.32-17.18	0.017			
Accou	nting for dominanc	e effect						
C-T	C-T	0.11	1.00					
T–T	C-T/T-T	0.58	3.23	1.34-7.82	0.009			
T–C	T-C/T-T/C-T	0.31	5.28	2.06-13.55	0.0005			

Frequencies have been estimated from non-transmitted parental haplotypes. Odds ratios were computed by means of conditional logistic regression. The overall comparison showed a significant association with leprosy, accounting (P = 0.0002) or not (P = 0.006) for dominance effect. Likelihood ratio tests showed that the genotypic model including three risk levels denoted as 'accounting for dominance effect' (that is, T–T haplotype is dominant over C–T, and T–C haplotype is dominant over both T–T and C–T) was not rejected against the full genotypic model with six risk levels ($\chi^2 = 0.54$, 3 degrees of freedom, not significant), whereas the genotypic model with only two risk levels (T–T and T–C haplotypes have the same dominant effect over C–T) is rejected against the genotypic model with three risk levels ($\chi^2 = 4.21, 1$ degree of freedom, P = 0.04). This indicates that the best-fitting genotypic model was the one denoted in the table as 'accounting for dominance effect'.

Mira et al, Nature, 2004

Is there additional genes and alleles causing increased relative risk for Alzheimer disease?

Whole genome association study (GWAS)

Polymorphisms in linkage disequilibrium with a nearby allele directly causing the increased susceptibility

GWAS 2009

Alzheimer Disease, Harold et al Nat. Genet. 2009

GWAS 2009

Alzheimer disease, Harold et al Nat. Genet. 2009 SNPs showing genome-wide significant association with AD in stage 1 of GWAS

SNP	Chr	Closest RefSeq Gene	Location Relative to Gene	MAF	GWAS: 3941 cases 7848 controls	GWAS OR (95% CI)	Extension: 2023 cases 2340 controls	Extension OR (95% CI)	Combined: 5964 cases 10188 controls	Combined OR (95% CI)
					P-value		P-value		P-value	
					(two-tailed)		(one-tailed)		(two-tailed)	
rs2075650 [*]	19	TOMM40	Intron	0.15	1.8×10 ⁻¹⁵⁷	2.53 (2.37-2.71)				
rs157580	19	TOMM40	Intron	0.39	9.6×10 ⁻⁵⁴	0.63 (0.59-0.66)				
rs6859	19	PVRL2	3' UTR	0.43	6.9×10 ⁻⁴¹	1.46 (1.38-1.54)				
rs8106922	19	TOMM40	Intron	0.40	5.4×10 ⁻³⁹	0.68 (0.64-0.72)				
rs405509	19	APOE	5'	0.52	4.9×10 ⁻³⁷	0.70 (0.66-0.74)				
rs11136000	8	CLU	Intron	0.40	1.4×10 ⁻⁹	0.84 (0.79-0.89)	0.017	0.91	8.5×10 ⁻¹⁰	0.86
								(0.83-0.99)	l.	(0.82-0.90)
rs3851179	11	PICALM	5′	0.37	1.9×10 ⁻⁸	0.85 (0.80-0.90)	0.014	0.90 (0.82-0.99)	1.3-10 ⁻⁹	0.86 (0.82-0.90)

Association studies: interpretation of statistically significant results)

• False positive (type 1 error) (significance of the p≤ 0,01...), major problem of <u>multiple testing</u> (needs Bonferroni correction or other tests) and publication bias of positive results : requires <u>replication</u> studies

Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease

Kirk E. Lohmueller^{1,2}, Celeste L. Pearce³, Malcolm Pike³, Eric S. Lander^{1,4} & Joel N. Hirschhorn^{1,5,6}

		Number of	
Associated gene,	Number of	studies removed to	Fixed effects
ohenotype	studies	achieve homogeneity	OR (95% c.i.)
	A	ssociations for which meta-a	nalysis replicates original report
ABCC8 exon 22, type 2 diabetes ^a	4	1	2.28 (1.27-4.10)
OL1A1, osteoporotic fracture ^a	12	0	1.59 (1.36–1.86)
T/ A4, type 1 diabetes ^a	20	6	1.27 (1.17–1.37)
ORD3, schizophrenia ^a	48	2	1.12 (1.02–1.23)
STM1 head/neck cancer ^a	25	1	1.20 (1.09–1.33)
HTR2A schizophreniaª	28	0	1.07 (1.01–1.14)
PPARG type 2 diabetes ^a	14	1	1.22 (1.08–1.37)
SLC2A1, type 2 diabetes ^a	3	1	1.76 (1.35–2.31)
	Associations	for which meta-analysis doe	s not provide replication for original report
ARCCR intron 24 type 2 diabetes	9	2	1.02 (0.92–1.14)
DO1 hypertension	18	5	1.09 (0.98-1.20)
ADDT, hypertension	12	0	1.0 (0.85-1.18)
RIMH Alzheimer disease	5	0	0.92 (0.67-1.26)
COMT bipolar disorder	12	õ	1.08 (0.95-1.23)
COMT schizonbrenia	9	0	0.99 (0.87-1.12)
ORD2 schizophrenia	8	1	0.84 (0.70-1.01)
SIC2A2 type 2 diabetes	3	0	0.96 (0.63-1.45)
GSTM1 breast cancer	15	0	1.07 (0.98-1.18)
GVS1 type 2 diabetes ^b	3	0	0.56 (0.35-0.90)
INSR RELP type 2 diabetes	4	0	1.32 (0.90-1.94)
INSR Met985 type 2 diabetes	4	Ō	0.89 (0.49-1.64)
KCN/11 type 2 diabetes	6	0	1.09 (0.95-1.24)
NTF3 schizophrenia	7	0	1.01 (0.80-1.29)
PONI CAD	14	3	1.06 (0.98-1.14)
SERPINE1 MI	13	0	1.04 (0.95-1.15)
TPH bipolar disorder	5	0	1.12 (0.98-1.28)

*Statistically significant in fixed and random effects models. ^bStatistically significant in fixed effects model only; opposite direction from original report. OR, estimated pooled odds ratio; CAD, coronary artery disease; MI, myocardial infarction.

Rares variants, common polymorphisms

- « Whole genome association »strategies are based on one hypothesis: common disease, frequent genetic risk factor in the population (common disease/common variant); in these cases, RR is seldom above 2. But monogenic disease studies suggests that individually rare variants can have high effect on the disease risk.
- Variant fr 1/10, RR2: attributable risk = 9%
- Variant fr 1/1000, RR10: AR = 1%
- In the 2nd case: the variant is important for the individual, but little contributive for the population

Genetic variants and et common and rare diseases

and strength of genetic effect (odds ratio). Most emphasis and interest lies in identifying associations with characteristics shown within diagonal dotted lines. Adapted from ref. 42.

Rare variants, common diseases

- An emerging concept
- Parkinson disease multifactorial form
- glucocerebrosidase (GBA)

(homozygous mutations —> Gaucher disease)

Levy bodies in substantia nigra

Gan-Or et al. Neurology 2008 : moderate (N370S, R496H) and severe mutations (84insGG, IVS2+1, V394L, D409H, L444P, RecTL) loss of function mutations.

• Relative risk heterozygous GBA mutations

genotype	patients %	controls %	Relative risk RR	Attributable risk RA (%)	RR _{heteroz} =	<u>0.03 x 0.179</u> 0.063
Heterozygous mutations	17.9	6.3	x 3.2	12%		<u>0.03 x 0.821</u> 0.937
No mutation	82.1	93.7			=	3.2

Confirmed in Neumann et al. Brain 2009

CONCLUSIONS :

Identifications of rare variants in common diseases —> next generation sequencing requires human genome sequence for 1 000 \$...

Figure 1 | Feasibility of identifying genetic variants by risk allele frequency and strength of genetic effect (odds ratio). Most emphasis and interest lies in identifying associations with characteristics shown within diagonal dotted lines. Adapted from ref. 42.

Progress in interpretation, and in diagnostic applications will be much more slow, due to the complexity of the risk factors