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Short-term dietary restriction in old mice rejuvenates
the aging-induced structural imbalance of gut microbiota

Ting Zeng . Hui Cui . Duozhuang Tang . George B. Garside . Yiting Wang .

Jianying Wu . Zhendong Tao . Liu Zhang . Si Tao

Received: 10 June 2019 / Accepted: 6 August 2019 / Published online: 10 August 2019

� The Author(s) 2019

Abstract The world’s aging population is growing

rapidly. Incidences of multiple pathologies, such as

abdominal obesity, cardiovascular and cerebrovascu-

lar diseases, type 2 diabetes, and malignant neoplasms,

increase sharply with age. Aged individuals possess a

significantly shifted composition of gut microbiota,

which is suggested to play important roles in aging

associated pathologies. Whether the existing shifted

structural composition of microbiota in aged popula-

tions can be reverted non-pharmacologically has not

been studied so far. Here, we show an intestinal flora

imbalance in old C57BL/6J mice with a remarkable

dominant proportion of microbes promoting lipid

metabolism and inflammation. Intriguingly, short-

term (2 months) dietary restriction was enough to

significantly revert the imbalance of intestinal flora in

aged mice toward a more balanced structural compo-

sition as shown in young mice. Our study provides the

first evidence that short-term dietary restriction in old

mice can restore the already dysfunctional aged gut

microbiota. Our study provides the first evidence that

short-term dietary restriction in old mice can restore

the already dysfunctional aged gut microbiota, which

may help ameliorate aging-related disorders plaguing

the vast elderly population.
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Introduction

The trend towards an aging population is increasing,

with the 2017 United Nations World Population

Prospects report revealing that people over 60 years

old will make up more than 25% of a nation’s

population in the near future in many countries.

Biological aging involves molecular and physical

changes that increase the probability of developing

certain diseases such as osteoporosis, arthritis, type 2

diabetes, hypertension, heart disease, and cancer.

While the underlying mechanisms remain incom-

pletely understood, it is generally believed to involve a

progressive decline in organ functionality and tissue

homeostasis, which is suggested to be closely related

to microbiota shifts (Claesson et al. 2012; Liu and

Rando 2011; Zapata and Quagliarello 2015). The

number of bacteria in the body is estimated to be as

much as 10 trillion, with the vast majority of bacteria

residing in the colon. Imbalance of the intestinal

microbiota can lead to increased permeability of the

intestinal wall and dysfunction of the intestinal

mucosal barrier (Bischoff et al. 2014; Clark et al.

2015; Thevaranjan et al. 2017). Furthermore, the

intestinal microbiota can regulate lipid uptake and

storage by invading intestinal mucosal cells and

altering their circadian rhythm, contributing to the

development of metabolic diseases, such as obesity,

diabetes, and nonalcoholic fatty liver (Amar et al.

2011; Boursier et al. 2016; Wang et al. 2017).

It has been shown that the composition of the gut

microbiota shifts towards increasing proinflammatory

commensals and decreasing beneficial commensals

microbes with age in both humans and rodents (Biagi

et al. 2016; Biragyn and Ferrucci 2018; Hopkins et al.

2001; Jeffery et al. 2016), which is accompanied by an

impairment of the intestinal barrier (Clark et al. 2015).

Furthermore, gut dysbiosis contributes to a chronic

proinflammatory state and could serve as a potential

link between cancer risk in aging (Biragyn and

Ferrucci 2018). Interventions that shift the gut micro-

biota towards a younger state might therefore help

ameliorate aging associated pathologies. Recent stud-

ies have found that high sugar and high fat diet-

induced obesity leads to changes in the composition of

the intestinal microflora (Carmody et al. 2015; He

et al. 2018). Obesity in humans and mice has also been

found to be positively correlated with the ratio of

Firmicutes/Bacteroidetes (F/B) (He et al. 2018; Ley

et al. 2005, 2006; Turnbaugh et al. 2006, 2009).

Studies have shown that changes in the composition of

the gut microbiota in the elderly are not only related to

chronic diseases such as obesity and inflammation, but

also have a significant relationship with diet (Claesson

et al. 2012). Dietary intervention has a great impact on

the intestinal microbiota (Cotillard et al. 2013), a

wealth of evidence suggest that dietary restriction

(DR) has wide-ranging benefits in increasing the

body’s general health status and in providing a

nonspecific resistance to chronic diseases and meta-

bolic derangements (Colman et al. 2009; Fontana et al.

2004; Ribaric 2012; Roth et al. 2001; Walford et al.

2002). Previous studies have explored the role of life-

long DR on gut microbiota. Life-long DR, in combi-

nation with low-fat diet, maintained a structurally

balanced architecture of the gut microbiota and

improved colonic health (Kok et al. 2018; Zhang

et al. 2013). However, DR was already initiated from

young age when the gut microbiota was still healthy in

all the above-mentioned studies. Whether, the existing

imbalanced structural composition of microbiota in

aged populations can be reverted non-pharmacologi-

cally has yet to be studied. Exploring the possibilities

of how the established gut microbiota in aged organ-

isms might be reformed could benefit the health of the

growing elderly population.

In this study, we performed 16S rRNA gene

sequencing of bacterial DNA extracted from freshly

collected faecal samples to examine the effects of DR

on the microbiota of aging mice. In line with previous

studies, we found that the composition of the intestinal

flora in old mice (20–22 months old) mainly shifted

towards a proinflammatory state and promotion of

lipid metabolism. Intriguingly, short-term (2 months)

DR (dietary restriction) performed in aged mice

significantly reverted the intestinal flora imbalance

towards a more balanced structural composition as

shown in young mice. This structural imbalance

shown in old mice was rejuvenated by reducing the

dominance of Clostridia, Clostridiales, and Firmicutes

which have all been found to contribute to obesity and

inflammation. Our study provides the first evidence

that short-term DR in old organisms can rejuvenate the

imbalanced composition of gut microbiota. Therefore,

we identified a non-pharmacological and efficient way

to rejuvenate gut microbiota in aged mice, which may

benefit health in the elderly population.
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Results

Bacterial community shifts towards dominant

lipid-promoting and pro-inflammatory bacteria

in aging intestine

To study whether microbiota composition changes

upon aging, we collected fecal samples from young

(2 months old) and old (20–22 months old) female

mice. Hypervariable regions were sequenced by 16S

rRNA high-throughput sequencing platform Illumina

Hiseq 2500. 1,127,979 sequence reads were generated

from the 16S rRNA gene V4 amplicon, with an

average reading of 32,228 (± 2024 SEM) per subject.

b-diversity analysis via the principal coordinate

analysis (PCoA) analysis based on the Unweighted

Unifrac distance indicated a clear separation between

young intestinal flora and the old intestinal flora

(Fig. 1a), indicating that the bacterial community was

significantly changed upon aging. Analysis on the

phyla level showed that Bacteroidetes was the most

dominant phyla in young mice while it was signifi-

cantly reduced in old mice (Fig. 1b). Epsilonbacter-

aeota and Firmicutes were the second most dominant

phyla with an almost equal ratio in young mice, while

Firmicutes increased to be the most abundant phyla in

old mice (Fig. 1b). Bacterial taxa ranking at the top of

the list in young mice all fell from the top positions in

old mice; further analysis showed that families of

Christensenellaceae, Family_XIII, Prevotellaceae,

Lachnospiraceae, and Ruminococcaceae were all

enriched in the gut microbiota of aged mice, while

Bacteroidaceae and Muribaculaceae were enriched in

the microbiota of young mice (Fig. 1c). To identify the

most differently abundant taxa in aged mice, we used

the linear discriminant analysis (LDA) effect size

(LEfSe) method to assess the effect size of each taxon

(Fig. 1e, f). In young mice, the intestinal flora was

mainly enriched with Muribaculaceae, Bacteroidales,

Bacteroidetes, Bacteroidaceae and Bacteroides, with

all of these falling from the top-ranking positions in

old mice. Old mice were comparatively enriched with

Clostridia, Clostridiales and Firmicutes. The analysis

further proved a significantly altered composition of

gut microbiota in old mice compared to the young

ones.

The Firmicutes/Bacteroidetes (F/B) ratio has been

associated with obesity in humans and mice (He et al.

2018; Ley et al. 2005, 2006; Turnbaugh et al.

2006, 2009). Here we show that the proportion of

Firmicutes was 18 ± 6.0% in young mice versus

42 ± 2.5% in old mice (Fig. 2a). Conversely, the

proportion of Bacteroidetes decreased significantly

from 52 ± 4.9% in young mice to 31 ± 3.3% in old

mice (Fig. 2b). Therefore, the Firmicutes/Bacteroide-

tes ratio (F/B) in old mice was significantly higher than

young mice (1.5 ± 0.2 in old mice vs. 0.4 ± 0.1 in

young mice) (Fig. 2c). Interestingly, our study deter-

mined a significant increase of Ruminococcaceae and

Christensenellaceae, and a decrease of Lactobacillus

gasseri in old mice (Fig. 2d–f). These alterations in

the structural microbiota composition in aged mice

were reported to be positively related to fat accumu-

lation (Bauer et al. 2018; Qin et al. 2018). Prevotel-

laceae, Parabacteroides, Oscillibacter,

Lachnospiraceae, Ruminococcaceae-UCG-014 and

Erysipelatoclostridium have all been reported to be

increased in multiple inflammatory models, and whose

related bacterial taxa were also enriched in aged mice

(Fig. 2g–j) (Elinav et al. 2011; Peng et al. 2019; Qi

et al. 2019). Taken together, the results indicate that

aging leads to alterations in intestinal flora composi-

tion that have previously been positively correlated to

lipid accumulation and inflammation.

Short-term DR in old mice rejuvenates aging

induced structural imbalance of gut microbiota

In line with previous studies, the above data indicate a

clear aging phenotype involving compositional

change of the gut microbiota. To investigate whether

DR can rejuvenate the aged gut microbiota, we treated

20–22 months old female mice with 30% DR for

2 months and examined the composition of intestinal

flora compared to identically aged female mice fed

ad libitum (AL) as well as AL fed 2 months old mice.

We first performed a diversity analysis among the

three groups: young AL (2 months old mice fed with

ad libitum), old AL (22–24 months old mice fed with

ad libitum), and old DR (22–24 months old mice fed

with DR for 2 months before analysis). The b-

diversity analysis, PCoA analysis based on

Unweighted Unifrac distance showed that old AL

samples were clearly separated from the young AL

samples, while the old DR samples were not. This

finding demonstrates that the significantly altered

composition and structure of an aged biological
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community can be reverted via short-term DR

(Fig. 3a).

Further analysis on the phyla level showed that the

structure of the biological community of short-term

DR mice converged with that of young AL mice,

which was clearly different compared to old AL mice.

In detail, Firmicutes was the most abundant phyla in

the old AL mice, which was significantly decreased in

young AL and old DR mice. The most abundant phyla

in young AL and old DR mice was Bacteroidetes,

which was clearly reduced in the old AL mice

(Fig. 3b, c). At the family level, the composition and

structure of the intestinal flora was similar in young

AL and old DR mice, while it was distinct from the old

AL mice (Fig. 3d). The LEfSe method was used to

further assess the effect size of each taxon (Fig. 3e, f).

The analysis showed that old DR mice had more

Bacteroidales, Bacteroidia and Bacteroidia, with less

Firmicutes, Clostridia and Ruminococcaceae, which is

further evidence of microbiota rescue in aged indi-

viduals achieved by short-term DR (Fig. 3f).

We further determined the effect of DR on bacterial

taxa that were functionally relevant to obesity and

inflammation. Firmicutes was the most abundant

phyla in the old AL mice (56 ± 4.4%), while it was

significantly less in young AL (25 ± 4.2%) and old

DR mice (33 ± 5.3%) (Fig. 4a). The most abundant

phyla in young AL and old DR mice was Bacteroidetes

(62 ± 5.8% in young AL and 63 ± 5.5% in old DR),

while it was clearly reduced in the old AL mice

(26 ± 3.1%) (Fig. 4b). The F/B ratio in old AL mice

was 2.4 ± 0.3, which was significantly reduced in the

old DR mice to 0.6 ± 0.1, close to the level in the

young mice at 0.5 ± 0.1 (Fig. 4c). Of note, short-term

DR reverted almost all compositional changes of

bacterial taxa associated with obesity and inflamma-

tion and brought their level close to that of young

mice, including Bacteroidetes, Firmicutes, Chris-

tensenellaceae, Ruminococcaceae, and Ruminococ-

caceae_UCG_014 (Fig. 4a–f). Intriguingly, short-

term DR additionally resulted in changes in more

bacterial taxa that were reported to contribute to fat

accumulation and inflammation, such as Clostridi-

ales_vadinBB60_group, Lachnospiraceae_UCG-010,

[Eubacterium]coprostanoligenes_group (Fig. 4g–i).

These findings indicate that short-term DR was

enough to induce changes in the composition of the

commensal community towards a younger, healthier

state which in turn may associate with less fat

accumulation and decreased inflammation. We also

note that short-term DR expectedly reduces the body

weight and abdominal fat in old mice compared to old

ad libitum fed mice (Fig. 4j, k).

Discussion

While lifelong DR has been proven to be a robust

regimen to retard aging in many animal models, it is

unpractical in humans (Colman et al. 2009; Goto

2006; Goto et al. 2007; Mattison et al. 2012; Wein-

druch 1996). Therefore, a number of studies consid-

ered the effects of DR initiated in later life and showed

that late-onset DR could rejuvenate biological param-

eters that decline with age in rodents, such as

improved protein and lipid metabolism and chromatin

functions. These improvements in turn protect the

functionalities of different organs, including the brain,

skeletal muscle, and immune system (Goto 2006; Goto

et al. 2007; Radak et al. 2002; Singh et al. 2012, 2015;

Weindruch et al. 1982). However, the underlying

mechanisms remains to be further elucidated.

bFig. 1 Alterations in the fecal microbial community structure

of aging mice. Fecal samples of 2 months old (young) and

20–22 months old (old) mice were collected for analysis (n = 7

samples per group). a b-diversity analysis. The results of

unweighted UniFrac PCoA were shown. b Relative abundance

of bacteria at phylum level. The ratio of the average OTU for

each group was shown. c Heatmap based on the relative

abundance at family level. d Taxonomic cladogram from LEfSe

showing differences in fecal taxa. Dot size is proportional to the

abundance of the taxon. Letters correspond to the following

taxa: a: Bacteroides, b: Bacteroidaceae, c: CAG_873, d:

Muribaculaceae, e: Prevotella_9, f: Prevotellaceae_UCG_001,

g: Prevotellaceae, h: Alistipes, i: Rikenellaceae, j: Parabac-

teroides, k: Tannerellaceae, l: Bacteroidales, m: _Eubac-

terium_nodatum_group, n: Family_XIII, o: A2, p: ASF356,

q:Blautia, r: GCA_900066575, s: Lach-

nospiraceae_NK4A136_group, t: Lachnospiraceae_UCG_010,

u: Roseburia, v: Lachnospiraceae, w: Peptococcus, x: Pepto-

coccaceae, y: Anaerotruncus, z: Angelakisella, a0: Butyricic-

occus, a1: GCA_900066225, a2: Harryflintia, a3:

Ruminiclostridium, a4: Ruminococcaceae_UCG_014, a5:

Ruminococcaceae, a6: Clostridiales, a7: Bilophila, a8: Akker-

mansia, a9: Akkermansiaceae, b0: Verrucomicrobiales. e LDA

scores computed for differentially-abundant taxa in the fecal

microbiomes of young and old mice. Length indicates effect size

associated with a taxon. p = 0.05 for the Kruskal–Wallis test;

LDA score[ 2
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The gut microbiota has been shown to play essential

roles in multiple biological processes as well as

pathologies. The current study described a significant

structural rearrangement of gut microbiota in old mice

(20–22 months old). The skewed intestinal flora has

potential in promoting lipid accumulation and
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Fig. 2 Lipid-promoting and pro-inflammatory bacteria are

enriched in aging mice. Fecal samples of 2 months old (young)

and 20–22 months old (old) mice were collected for analysis

(n = 7 samples per group). a, b, d–j Relative abundance based

on OTUs of intestinal bacteria taxa which are significantly

changed in old mice. Note that these taxa were all lipid-

promoting or pro-inflammatory bacteria. c Ratio of Firmicutes/

Bacteroidetes based on relative abundance of OTUs. Note a

significant increase in the old mice compared to the young ones.

Results were displayed as mean ± SEM. *p\ 0.05;

**p\ 0.01; ***p\ 0.001; ****p\ 0.0001 by unpaired two-

tailed Student’s t test
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inflammation; therefore, it could be highly relevant to

associated pathologies in aging. Whether and how the

already aged microbiota could be rejuvenated has

never been studied so far. Here, we provide the first

experimental evidence that short-term (2 months) DR

in old mice was enough to revert the already skewed

gut microbiota. The equivalent change in humans

would roughly be a 66–72 year old’s intestinal flora

reverting back to a similar state to when they were

around 23 years’ old (Dutta and Sengupta 2016). Our

study showed that old mice receiving short-term DR

exhibit a younger-shaped intestinal flora along with

reduced body weight and abdominal fat. Assessing

any potential contribution of a more balanced micro-

biome in old mice to weight loss will be an important

topic of further research, especially given recent

evidence demonstrating the rescue of DR-induced

weight loss by fecal transplantation from AL mice

(Wang et al. 2018).

Recent studies have found that obesity in humans

and mice is primarily associated with changes in the

relative abundance of Bacteroidetes and Firmicutes,
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Fig. 3 Short-term DR in old mice rejuvenates aging induced

structural rearrangement of gut microbiota. 20–22 months old

mice were treated with DR or AL diet for 2 months. Fecal

samples of the following groups were collected for analysis:

YAL (2 months old mice fed with ad libitum), OAL

(22–24 months old mice fed with ad libitum), and ODR

(22–24 months old mice pre-treated with DR for 2 months

before sample collection) (n = 7 samples per group). a b-

diversity analysis. The results of unweighted UniFrac PCoA of

indicated groups were shown. b Relative abundance of bacteria

at phylum level of individual sample based on OTUs. c The ratio

of relative abundance at phylum level based on the average

OTUs in each group. d Heatmap showing clustering of each

sample at family level based on the relative abundance of OTUs.

Note that hierarchical clustering shown that samples of ODR

and YAL tend to cluster together. e Taxonomic cladogram from

LEfSe showing differences in fecal taxa. Dot size is proportional

to the abundance of the taxon. Letters correspond to the

following taxa: a: Muribaculaceae, b: Prevotel-

laceae_UCG_001, c: Bacteroidales, d: Helicobacter, e: Heli-

cobacteraceae, f: Campylobacterales, g: Guggenheimella, h:

Ruminococcaceae_UCG_014, i: Ruminococcaceae, j: Clostridi-

ales, k: Dubosiella, l: Erysipelotrichaceae, m: Erysipelotri-

chales, n: Selenomonadales, o: Akkermansia, p:

Akkermansiaceae, q: Verrucomicrobiales. f LDA scores com-

puted for differentially-abundant taxa in the fecal microbiomes

of young (blue) old DR (green) and old AL (red). Length

indicates effect size associated with a taxon. p = 0.05 for the

Kruskal–Wallis test; LDA score[ 2
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and is positively correlated with the ratio of Firmi-

cutes/Bacteroidetes (F/B) (He et al. 2018; Ley et al.

2005, 2006; Turnbaugh et al. 2006, 2009).Therefore,

the elevated F/B ratio we observed in aged mice might

serve as an underlying mechanism why fat accumu-

lates with age in general. In line with previous studies,

our study uncovered aging-associated changes of the

gut microbiota, including increases of Firmicutes,
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Ruminococcaceae and Christensenellaceae, and

decreases of Bacteroidetes and Lactobacillus gasseri.

Interestingly, it was previously shown that

Ruminococcaceae and Christensenellaceae are

enriched in obese mice (Qin et al. 2018), and that

Lactobacillus gasseri levels were reduced in high-fat

diet mice (Bauer et al. 2018). Our study shows that

short-term DR can reverse the imbalanced microbial

community structure of aged mice and restore the

proinflammatory and lipid metabolism promoting

intestinal flora to a young level, which may reduce

the incidence of age-related diseases.

Previous studies have shown that androgens influ-

ence gut microbiota which differs between males and

females (Haro et al. 2016; Markle et al. 2013;

Yurkovetskiy et al. 2013). While this study was

performed on female mice for the benefit of co-

housing before the dietary intervention, we would

expect to observe the same rejuvenation effect of DR

in old male mice. A recent assessment of calorie

restriction (CR) noted that while its effect was

invariably positive, the effect size could vary between

mouse substrain, sex, and the extent of CR (Mitchell

et al. 2016).

In this study we conclude that the existing proin-

flammatory and lipid-promoting microbiota in aged

mice can be reverted non-pharmacologically to a

young state using DR. This microbiota in old DR mice

possesses a more balanced structural composition

similar to that of young mice; the permanence and

generalizability of this finding remains to be studied

further.

Materials and methods

Animals and dietary intervention

C57BL/6 J female mice were obtained from Hunan

SJA Laboratory Animal Co., Ltd. (Hunan, China) and

maintained in the animal facilities of Nanchang Royo

Biotech under pathogen-free conditions on a 12-h

light/12-h dark cycle. 2 month old mice were used as a

young cohort, and 20–22 month old mice used as an

old cohort. Dietary interventions were performed

according to a protocol from our previous publication

(Tang et al. 2016). Briefly, bodyweight and age

matched mice were randomly divided into either the

AL-fed or DR-fed group. One week before the dietary

intervention, mice were housed individually and daily

food consumption was measured for every mouse to

determine their AL-feeding rate. The average amount

of food was determined after the 1-week measurement

for every mouse. When initiating the feeding protocol,

the AL mice were fed with unlimited access of food,

while DR mice were fed with 70% the average amount

of food according to the previous calculation. The

calculated 70% food pellet was added to each cage

daily at the same time, and was constant over the

whole DR period. All mouse experiments were

approved by the Animal Experimental Ethical Inspec-

tion of Nanchang Royo Biotech Co. Ltd

(RYEI20170430-1).

Sample collection

Fecal pellets were directly collected from each mouse

in 1.5 ml microtubes by positioning the microtube in

the proximity of the anus of the mouse and collecting

the pellets that were excreted. All samples stored

at - 80 �C until DNA isolation.

Microbial DNA extraction, PCR amplification

and Illumina Hiseq sequencing

DNA was extracted using DNA extraction kit (Mink-

agene Stool DNA kit) for the corresponding sample.

The concentration and purity were measured using the

NanoDrop One (Thermo Fisher Scientific, MA, USA).

16S rRNA genes of distinct region (V4) were ampli-

fied using specific primers (515F and 806R) with

12 bp barcodes. Primers were synthesized by Invitro-

gen (Carlsbad, CA, USA). PCR reactions, containing

bFig. 4 Short-term DR reverted compositional alterations of

bacterial taxa associated with obesity and inflammation in aging

mice. 20–22 months old mice were treated with DR or AL diet

for 2 months. Fecal samples of the following groups were

collected for analysis: YAL (2 months old mice fed with

ad libitum), OAL (22–24 months old mice fed with ad libitum),

and ODR (22–24 months old mice pre-treated with DR for

2 months before sample collection) (n = 7 samples per group).

a, b, d–i Relative abundance based on OTUs of intestinal

bacteria taxa. c Ratio of Firmicutes/Bacteroidetes based on

relative abundance of OTUs. Note that DR significantly

rejuvenated all alterations of indicated taxa in aging mice. j,
k Body and belly fat weight of indicated groups. Note a

significant reduction upon DR. Results were displayed as

mean ± SEM. *p\ 0.05; **p\ 0.01; ***p\ 0.001;

****p\ 0.0001 by unpaired two-tailed Student’s t test
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25 ll 2 9 Premix Taq (Takara Biotechnology, Dalian

Co. Ltd., China), the PCR instrument was BioRad

S1000 (Bio-Rad Laboratory, CA). The length and

concentration of the PCR product were detected by 1%

agarose gel electrophoresis. PCR products were mixed

in equimolar ratios according to the GeneTools

Analysis Software (Version4.03.05.0, SynGene).

Then, the PCR mixture was purified with EZNA Gel

Extraction Kit (Omega, USA). Then, sequencing

libraries were generated using NEBNext� UltraTM

DNA Library Prep Kit for Illumina� (New England

Biolabs, USA) following the manufacturer’s recom-

mendations and index codes were added. The library

quality was assessed on the Qubit 2.0 Fluorometer

(Thermo Scientific) and Agilent Bioanalyzer 2100

system. Lastly, the library was sequenced on an

Illumina Hiseq 2500 platform and 250 bp paired-end

reads were generated.

Bioinformatics and sequencing data analysis

Quality filtering on the paired-end raw reads were

performed under specific filtering conditions to obtain

the high-quality clean reads according to the Trim-

momatic (V0.33, http://www.usadellab.org/cms/

?page=trimmomatic) quality controlled process. At

the same time, sequences were assigned to each

sample based on their unique barcode and primer, after

which the barcodes and primers were removed to get

the paired-end clean reads. Paired-end clean reads

were merged using FLASH (V1.2.11, https://ccb.jhu.

edu/software/FLASH/) according to the relationship

of the overlap between the paired-end reads, when at

least 10 of the reads overlap the read generated from

the opposite end of the same DNA fragment, the

maximum allowable error ratio of the overlap region

of 0.2, and the spliced sequences were called raw tags.

Assigned Sequences to each sample based on their

unique barcode and primer using Mothur software

(V1.35.1, http://www.mothur.org), after which the

barcodes and primers were removed to get the effec-

tive Clean Tags. Sequences analysis were performed

by usearch software (V10, http://www.drive5.com/

usearch/). Sequences with C 97% similarity were

assigned to the same OTU (Operational Taxonomic

Units). An OTU is thought to possibly represent a

species. The most frequently occurring sequence was

extracted as representative sequence for each OTU

and was screened for further annotation. For each

representative sequence, the silva (for 16S, https://

www.arb-silva.de/), database was used to annotate

taxonomic information (set the confidence threshold

to default to C 0.5). The total number of otu sequen-

ces (No. of final seqs) and otu type (No. of OTUs) in

otu_table were counted respectively. Based on the

otu_table_subsampled, the annotation ratio on each

classification level was calculated to obtain the

sequence composition of each sample at each classi-

fication level. Based on the relative abundance of

species at each classification level in otu_table, R

software was used to draw the histogram, heat map and

ternary phase diagram. Beta diversity analysis was

used to evaluate differences of samples in species

complexity. Beta diversity was determined using

QIIME (Quantitative Insights Into Microbial Ecology)

software. LDA Effect Size (LEfSe) analysis was used

to find the biomarker of each group.

Statistics

All statistical analyses were performed using GraphPad

Prism 7.0 software. The unpaired two-tailed Student’s

t test and One-way ANOVA were used to calculate p

values. Data are expressed as mean ± SEM.
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