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A B S T R A C T

The concept of High Nature Value Farmland (HNVF) was introduced in the early 1990s to highlight the crucial
role of low intensity farming systems for the conservation of biodiversity in Europe. HNVF is a biodiversity
indicator and the maintenance or the enhancement of HNVF is a goal of the EU’s rural development policy.
Several different approaches currently exist for identifying such areas, and a number of studies have shown that
outcomes have often been unsatisfactory, at least as concerns biodiversity conservation. In this study, we use
birds as indicators to assess the correlation between HNVF types identified according to the land cover approach
and farmland areas important for biodiversity in Apulia, a southern Italian region that is among the most im-
portant in the Mediterranean area for farmland biodiversity. Our results suggest that unless the current land
cover approach – which is mainly based on criteria relating to vegetation types and landscape structure – is
accompanied by an objective analysis of local biodiversity levels, it risks excluding from HNVF some of the most
important areas for biodiversity, thus reducing indicator effectiveness because of the lack of a proper assessment
of HNVF extent and quality. Thus, our study shows a possible method to better identify HNVF type 3, thus
increasing the effectiveness of the HNVF indicator.

1. Introduction

The concept of High Nature Value Farmland (HNVF) was introduced
in the early 1990s to highlight the crucial role of low intensity agri-
culture for the conservation of biodiversity in Europe (Baldock,
Beaufoy, Bennet, & Clark, 1993; Beaufoy, Baldock, & Clark, 1994).
Andersen et al. (2003) identified three types of HNVF: (1) farmland
with a high proportion of semi-natural vegetation (e.g. natural grazing
land); (2) farmland with a mosaic of low intensity agriculture and
natural and structural elements (e.g. hedgerows, dry stone walls,
woodlots, rows of trees, small watercourses, etc.); and, (3) farmland
supporting rare species or a high proportion of European or global
populations. HNVF acquired particular importance in 2005 when it was
adopted as an indicator by the Common Monitoring and Evaluation
Framework of the Rural Development Programmes (European Council,
2006). Although the European Commission has drafted guidelines for
its identification (European Communities, 2009), it did not provide a

common method for identifying HNVF (Lomba, Alves, Jongman, &
McCracken, 2015; Lomba et al., 2014; van Doorn & Elbersen, 2012)
thus opting for a flexible system allowing Member States to assess
HNVF types (common parameters) using data and methodology ap-
propriate to their specific situation.

One of the main issues in the whole assessment process is the in-
tegration of criteria referring to distinct conceptual and methodological
problems: on one hand HNVF types 1 and 2 address the need to select
areas with the prevalence of low-intensity farming systems, supposed to
support high levels of biodiversity; on the other hand, HNVF type 3
directly refers to areas supporting high levels of biodiversity regardless
of land use types. This is probably one of the causes that hinder the
ability to reach a common HNVF assessment.

Indeed, a great degree of diversity can be found between the various
methods used by European Countries for assessing HNV farming
(Pepiette, 2011; Lomba et al., 2014), due to the extreme variability both
in the availability of data and in the characteristics of the Countries.
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According to Pepiette (2011), out of the 24 assessments carried out at
national or regional level, 13 were based on maps of land cover which
were combined, almost in all cases, with other sources of information,
mainly regarding the farming systems; in 12 cases data on biodiversity
were used, in terms of designated sites at European and/or national
level or habitat type. In only one case (Germany) the method was based
on a sample-survey approach. On the types of HNV farmland, identified
according to Andersen et al. (2003), the greatest difficulties emerged
for type 2, which was detected in less than 20% of cases, even though in
more than half the cases, some description of it was provided. Type 1
was detected in almost all cases (18) and type 3 in more than 50% of
cases. Although the methods are based on some rather divergent ap-
proaches, especially concerning the type of data used and how they
were processed (Acebes, Pereira, & Oñate, 2016; Almeida, Guerra, &
Pinto-Correia, 2013; Brunbjerg et al., 2016), the main difference lies in
the use – or lack thereof – of indicators related to biodiversity, espe-
cially the presence of animal or plant species of conservation interest.
The type of indicator used significantly influences the HNVF identifi-
cation process, and the use of different methods can lead to widely
divergent results.

According to case studies carried out at regional scale in Italy
(Forconi et al., 2010), specifically in Tuscany and Sicily - two areas of
great importance for farmland biodiversity (ARPA Sicilia, 2008) – the
lack of use of biodiversity indicators resulted in the non-designation as
HNVF of the most part of agricultural landscapes of greater naturalistic
value. In particular, they excluded the so-called cereal steppes, ex-
tensive cereal cropland with low landscape diversity, which provide
habitat for many typical steppic species (Bellini, Cillo, Giacoia, &
Gustin, 2008; Campedelli, Londi, La Gioia, Frassanito, & Florenzano,
2015), especially birds, many of which - such as Lesser Kestrel Falco
naumanni, Eurasian Skylark Alauda arvensis, Greater Short-toed Lark
Calandrella brachydactyla, and Calandra Lark Melanocorypha calandra
(BirdLife International, 2015; Burfield, 2005) - have an unfavourable
conservation status or are threatened. Similar results emerge from other
studies, both elsewhere in Italy - such as in the Marche region, where
HNVF were identified exclusively on the basis of vegetation structure
and characteristics (Galdenzi, Pesaresi, Casavecchia, Zivkovic, &
Biondi, 2012) - and in France, where statistical information was used
(Pointereau et al., 2007). In the Marche region, Morelli and Girardello
(2013) and Morelli, Jerzak, and Tryjanowski, (2014) studied the re-
lationship between HNVF and breeding bird species: they found that
while HNVF generally coincided with agricultural mosaics, they did not
include areas of species of conservation interest, such as Eurasian
Skylark and Ortolan Bunting Emberiza hortulana, which are tied to less
diversified agricultural landscapes. The French case study is also of
great interest: Doxa et al. (2010); Doxa, Paracchini, Pointereau,
Devictor, & & F, 2012 compared certain bird population parameters in
areas with varying degrees of HNVF extent - including areas that are not
officially recognized as HNVF but which the authors deemed potential
HNVF of national interest. They found a positive correlation between
population trends for farmland birds (Farmland Bird Index, FBI) - in-
cluding both generalist and specialist species - and the extent of HNVF.
A similar correlation exists with another index, the Community Spe-
cialization Index (CSI, Julliard, Clavel, Devictor, Jiguet, & Couvet,
2006). Nevertheless, if we consider farmland birds only (the CSI as-
sesses the degree of specialization of a community regardless of habitat
type), the correlation is negative for many of them (Eurasian Skylark,
Tawny Pipit Anthus campestris, Eurasian Stone-curlew Burhinus oe-
dicnemus, Grey Partridge Perdix perdix, Ortolan Bunting and Corn
Bunting Embriza calandra). As the authors themselves point out, this is
due to the fact that simpler agricultural landscapes lacking in structural
elements - which are the key habitats for these species - have been
excluded from HNVF.

These results suggest that identifying HNVF solely on the basis of
vegetation characteristics, as many methods currently do, results in
only heterogeneous landscapes being chosen, in addition to natural

habitats used for livestock (meadows and semi-natural pastures). This
might exclude agricultural landscapes that, even if they are not in-
tensive but rich in biodiversity, are not identified as HNVF.

However, the use of biodiversity indicators is not always a response
to this identification problem: in a German case study (Aue, Diekötter,
Gottschalk, Wolters, & Hotes, 2014), where criteria for identifying
HNVF included the presence of plant species of conservation interest,
the farmland bird species most closely correlated with HNVF were
generalists (bird data were derived from the German Common Breeding
Bird Survey scheme, using a methodological approach very similar to
our own). Additionally, in many cases, such as in Italy (Rete Rurale
Nazionale, 2014; Trisorio, De Natale, & Pignatti, 2013), the biodiversity
indicator was merely the richness of species associated with Natura
2000 network sites. As shown in Italy (Campedelli, Tellini Florenzano,
Londi, Cutini, & Fornasari, 2010) and Spain (Traba, García de la
Morena, Morales, & Suárez, 2007), these sites only protect a subset of
habitats, with serious gaps in farmland environments, especially ex-
tensive ones such as cereal crops. In most of the Mediterranean area,
these habitats have largely replaced original steppe habitats and are
particularly important for the conservation of threatened species
(Buisson & Dutoit, 2006; Campedelli et al., 2015).

In the last few years progress has been made in the development of
methods for HNVF identification, based on increased understanding of
the concept of HNVF. Many gaps still have to be filled, nevertheless
improvements in the use of biodiversity indicators to overcome some of
the previously described limits have occurred (European Commission,
2016).

The aim of our study is to assess to which extent HNVF identified in
Italy (Rete Rurale Nazionale, 2014) overlaps with the most important
areas for breeding birds tied to typical Mediterranean farmland habi-
tats. Our study also aims to show the usefulness of relying on existing
biodiversity monitoring programmes in order to improve the assess-
ment of HNVF. For this aim we analysed the correlation between HNVF
identified in the Apulia region according to the RRN (Italian Rural
Network) method (Rete Rurale Nazionale, 2014), and farmland areas
important for biodiversity, identified by using common breeding birds
as an indicator.

2. Methods

2.1. Study area

Apulia (Fig. 1) is a southern Italian region with a surface area of
about 19,350 km2, over 80% of which is farmland, and 30% non-irri-
gated arable crops, essentially cereal crops. In addition, there are al-
most 1100 km2 of pastures (almost 6%), including Mediterranean
steppe, classified as habitat of conservation interest by the EU Directive
UE 92/43/EEC (habitat codes 6210 and 6220). Apulia hosts some of the
largest and best-preserved continuous expanses of Mediterranean
steppe in the entire basin.

2.2. HNVF indicator

In Italy, HNVF were identified using an integrated approach, based
on land cover data derived from sampling (AGRIT2010 survey, Ministry
of Agricultural, Food, and Forestry Policies), combined with data from
Corine Land Cover and the national database of Natura 2000 sites (Rete
Rurale Nazionale, 2014). The analysis, which focused on areas of low-
intensity farmland, was conducted at the smallest scale for which data
were available for all three layers of information, 10× 10 km cells. The
classification of potential HNVF was based on three indicators corre-
sponding to the three types defined by Andersen et al. (2003): 1) per-
centage of cover of permanent meadows and pastures; 2) presence of
relevant “natural” landscape features (density of trees outside of forests
and density of margins of natural and semi-natural areas); and, 3)
number of species of conservation interest reported in Natura 2000
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sites. By combining the results of the criteria-based classification, and
by attributing to each cell the highest class among those assigned on the
basis of the individual criteria, the Italian agricultural landscapes have
been classified in four HNVF classes: Low (L), Medium (M); High (H);
and, Very High (VH). Overall, HNVF adds up to about 45% of agri-
cultural land in Apulia, broken down as follows: 34% low value (L); 6%
medium (M); 4% high (H); and, 1% very high (VH).

2.3. Bird data

Bird data was obtained from the Italian Common Birds Monitoring
Program (ICBMP) database (Campedelli et al., 2012). Data pertaining to
Apulia include a total of 31,502 records of 164 species collected in
2000–2014 in 1282 point count stations throughout the region (sam-
pled every year between 15 May and 30 June). We then selected, on the
basis of known ecological needs, a set of species tied to farmland,
especially those typical of the Mediterranean area; the species we used
are listed in Table 1.

2.4. Environmental data

The environmental variables used in all the analyses were obtained
from the Apulia regional administration land use map (following
standard CORINE land-cover map codes, www.sit.puglia.it), in addition
to climatic and biogeographical variables. The Roughness Index, which
describes the morphological variability of the landscape, was derived
from a Digital Terrain Model (Apulia Region SIT, cell size 8m). Land
use variables and the Roughness Index were calculated using the
Moving Window method (Dale et al., 2002) on raster maps at a scale of
100m×100m. As a simple measure of environmental heterogeneity

we chose the number of land-use categories (Atauri & de Lucio, 2001;
Fahrig et al., 2011; Farina, 1997) because, in our opinion, in simplified
landscapes such those of Apulia, the presence of a species and the
overall bird species richness depend on the presence of land-use types,
rather than on their relative extension. As a general rule, we calculated
all variables within a 300m radius from the census point. For some key-
factors for farmland birds, we additionally evaluated their effect at a
broader scale, namely within a 600m radius (De Juana, 2005). The key-
factors are: i) non irrigated arable land; ii) shrub and/or herbaceous
vegetation; iii) land-use heterogeneity, as being the most important
breeding habitat descriptors; and, iv) artificial surfaces, as a limiting
factor for these species presence. The variables used are listed in
Table 2.

2.5. Statistical analyses

Important areas for breeding birds were identified using two dif-
ferent approaches: a) those hosting the richest breeding bird commu-
nities, considering both the total number of species and only those
breeding in typical Mediterranean farmlands; and, b) those being sui-
table for species of conservation concern.

2.5.1. Community parameters
In calculating overall richness and richness for Mediterranean

farmland species, we tried to maximize the spatial and temporal re-
presentativeness of available data, dividing the timeframe of the data-
base (2000–2014) into two sub-periods: 2000–2008 and 2009-2014.
We made this choice because starting from 2009 the bird monitoring
programme was characterized by an important increase in the sampling
effort.

Fig. 1. Study area. In the detailed map of Apulia region are indicated names and positions of some sub-regional territories mentioned in the results and in the
discussion.
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We then selected the 722 point count stations that were visited at
least once in each period (Fig. 2). For each point we then selected one
visit for each period; for points that were visited more than once in the
same period, selection was randomized. For each point, we then

selected total species richness (S_tot), namely the total number of spe-
cies recorded over the two visits, and farmland species richness
(S_farm), selecting only those species listed in Table 1.

For each richness parameter we prepared a spatial distribution
model using GLM (Generalized Linear Models; McCullagh & Nedler,
1989) and assuming a Poisson distribution for residuals.

We conducted preliminary analyses to assess the presence of mul-
ticollinearity between variables (Dormann et al., 2013) or spatial au-
tocorrelation of residuals (Dormann et al., 2007). These analyses
showed that the simultaneous presence in the models of non irrigated
arable lands, measured at both scales, (variable codes: Crop and
Crop_600), and olive groves (variable code: Oliv) generates variance
inflation problems (Variance Inflation Factor> 5 for both variables in
both models). The Variance Inflation Factors (VIF) measures how much
the variance of the estimated regression coefficients are inflated as
compared to when the predictor variables are not linearly related
(Dormann et al., 2013). We therefore decided to retain only one of the
two variables for each analysis (see below).

In each model, residuals were spatially autocorrelated (Moran’s
I > 0.04; P < 0.001). Of the various available models to account for
spatial autocorrelation (Dormann et al., 2007), the Spatial Eigenvector
Mapping model, hereafter SEVM, has shown good flexibility and per-
formance in estimating model parameters (Dormann et al., 2007;
Mauricio Bini et al., 2009; Peres-Neto & Legendre, 2010). This method
is based on the concept that the spatial structure of data can be ex-
pressed in explanatory variables (eigenvectors) that capture spatial ef-
fects at various scales. Among the possible implementations of SEVM,
we chose the one that calls for the generation of eigenvectors using
Moran's Eigenvector Mapping (Dray, Legendre, & Peres-Neto, 2006;
Peres-Neto & Legendre, 2010; Siesa, Manenti, Padoa-Schioppa, De
Bernardi, & Ficetola, 2011).

The analyses thus adopted the following procedure, based in part on
Le Rest, Pinaud, and Bretagnolle, (2013): 1) extraction of eigenvectors
starting from the empty models (no predictors); 2) selection of the best
models according to the Akaike Information Criterion corrected for
small samples (AICc; Burnham & Anderson, 2002), using as predictors
environmental variables (Table 2) and spatial eigenvectors; and, 3)
parameters estimation through model averaging (Burnham & Anderson,
2002).

Table 1
Farmland species monitored by ICBMP in Apulia. For each species we report the
number of observations and the number of sites where the species were de-
tected. The SDM column shows species for which we carried out Spatial
Distribution Models.

Species n. observations n. sites SDM

White Stork Ciconia ciconia 2 2
Black Kite Milvus migrans 21 16
Red Kite Milvus milvus 7 7
Egyptian Vulture Neophron percnopterus 1 1
Montagu's Harrier Circus pygargus 11 10
Lesser Kestrel Falco naumanni 213 106 x
Common Kestrel Falco tinnunculus 473 309
Lanner Falcon Falco biarmicus 2 2
Common Quail Coturnix coturnix 137 86
Eurasian Stone-

curlew
Burhinus oedicnemus 7 6

European Roller Coracias garrulus 21 12
Calandra Lark Melanocorypha

calandra
252 118 x

Greater Short-toed
Lark

Calandrella
brachydactyla

250 125 x

Crested Lark Galerida cristata 2017 827
Woodlark Lullula arborea 46 38 x
Skylark Alauda arvensis 211 126 x
Tawny Pipit Anthus campestris 8 8
European Stonechat Saxicola rubicola 199 151 x
Black-eared

Wheatear
Oenanthe hispanica 33 22

Zitting Cisticola Cisticola juncidis 827 518
Spectacled Warbler Sylvia conspicillata 16 14
Red-backed Shrike Lanius collurio 20 16
Lesser Grey Shrike Lanius minor 53 46 x
Woodchat Shrike Lanius senator 92 80 x
Rock Sparrow Petronia petronia 4 3
Black-headed

Bunting
Emberiza
melanocephala

8 8

Corn Bunting Emberiza calandra 868 374

Table 2
List of environmental variables tested in the Spatial Distribution Models.

Variable name Corine Land Cover Map Code Variable description

climatic variables
Ombr. Ombrotype, climatic classification based on annual rainfall (Blasi et al. 2004)
morphological variables
Rough. Roughness Index, estimated at a 200m scale
land use variables
Urb 1 Extension of artificial surfaces (within 300m)
Urb_600 1 Extension of artificial surfaces (within 600m)
Crop 211 Extension of non irrigated arable land (within 300m)
Crop_600 211 Extension of non irrigated arable land (within 600m)
I_Crop 212 Extension of permanently irrigated land (within 300m)
Vine 221 Extension of vineyards (within 300m)
Orch 222 Extension of orchards (within 300m)
Oliv 223 Extension of olive groves (within 300m)
H_Lan 24 Extension of heterogeneous agricultural areas (within 300m)
Wood 31 Extension of woodlands (within 300m)
Pas 321 Extension of pastures (within 300m)
Srb 32 Extension of shrub and/or herbaceous vegetation association (within 300m)
Srb_600 32 Extension of shrub and/or herbaceous vegetation association (within 600m)
Bare 33 Extension of open spaces with little or no vegetation (within 300m)
Wetl 4 Extension of wetlands (within 300m)
Lake 5 Extension of water bodies (within 300m)
Het Land-use heterogeneity (no. land-use categories within 300m)
Het_600 Land-use heterogeneity (no. land-use categories within 600m)
biogeographic variables
Grad Longitudinal gradient
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All analyses on community parameters were performed using R
software (R Core Team, 2017).

We decided to discard some predictors before running the analyses
in order to limit the number of possible models; this grows ex-
ponentially with the number of predictors (number of possible
models= 2N, where N is the number of predictors). The variables
omitted were those that led to the least significant single-variable
Poisson GLM (LRT with P > 0.5) and, at the same time, to the biggest
increase in AICc with respect to the null model. In this way, we tried to
leave out the variables that were presumably less linked to species
richness.

We used the same criterion to decide which variable to retain be-
tween non irrigated arable lands and olive groves (we retained non
irrigated arable lands for Mediterranean farmland species richness and
olive groves for total species richness) and which radius to consider
(300m or 600m) for the variables in the Mediterranean farmland
species analyses.

For both species richness measures we ran all possible models
through the ‘dredge’ function in MuMIn package (Bartoń, 2016) and we
ordered the models according to their AICc value.

The use of AIC as selection criterion may select overly complex
models, therefore we considered a complex model as a candidate one
only if there was not a simpler nested model with lower AICc (Richards,
Whittingham, & Stephens, 2011).

We obtained model-averaged parameter estimates for the variables
contained in the best models (with ΔAICc< 2). We conducted analyses
on standardized predictors in order to show directly comparable model-
coefficients.

As a measure of predictive performance for the species richness

models, we used the Pearson’s correlation coefficient between fitted
and observed values (CFO, Zheng & Agresti, 2000). CFO is easily in-
terpretable (values bounded between 0 and 1) and is highly correlated
with other well known measures of predictive performance like, for
instance, adjusted cross validation of prediction error (CVPE): we tested
this statement for total species richness (correlation test between CFO
and CVPE for all candidate models: mean r=−0.892, P always<
0.001, N=77). Moreover, CFO does not vary at each calculation like
CVPE does.

We used model-averaged coefficients to draft two predictive rich-
ness distribution charts, spatializing eigenvectors via ordinary kriging
(N’Goran et al., 2012).

2.5.2. Species of conservation concern
The species for which we developed habitat suitability models were

selected among those tied to farmland habitats (Table 1) in accordance
with two criteria: 1) conservation interest, thus all species in Annex I of
the Birds Directive 2009/147/EC (Lesser Kestrel, Calandra Lark,
Greater Short-toed Lark, Woodlark, Lesser Grey Shrike) or with highly
negative population trends (according to Campedelli et al., 2012) at the
national level (European Skylark, European Stonechat, Woodchat
Shrike); and, 2) size of the sample, with the minimum threshold set to
40 different localizations over the entire survey period (2000–2014),
considering all the available data.

Habitat suitability models for individual species were built with
MaxEnt (Phillips & Dudík, 2008; Phillips, Anderson, & Schapire, 2006),
an analytical method that uses presence data only, and tests the effects
of the same environmental variables used for richness (Table 2).
MaxEnt is often used in conservation biology and ecology, since it

Fig. 2. Distribution of the 906 sampling points used for the analyses.
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provides reliable results even with limited samples, often the case for
rare species (Papeş & Gaubert, 2007; Pearson, Raxworthy, Nakamura, &
Townsend Peterson, 2007). Although MaxEnt is better than other
models in accounting for uneven sampling levels, the presence of strong
biases in the distribution of samples can negatively affect the perfor-
mance of the models and the ability to interpret the obtained results
(Kramer-Schadt et al., 2013; Syfert, Smith, & Coomes, 2013). To reduce
the potential effects of uneven sampling, such as those caused by
sampling units that are not evenly distributed among the various ha-
bitats, Fourcade, Engler, Rödder, and Secondi, (2014) proposed four
different methods, including the use of a bias file; this is the model we
chose. A bias file is an information layer, much like those normally used
in ecological analyses (e.g. land use type, DEM), which contains the
sampling intensity in each spatial unit as georeferenced information.
The bias file was built using the overall number of point counts carried
out in each grid of the ICBMP project (10×10 km squares). MaxEnt
was used at its default settings.

In order to rule out the presence of correlations between variables,
we carried out a Spearman correlation analysis; in all cases - with the
exception of land use variables calculated at two different spatial scales
which were never used simultaneously - the Spearman correlation was
never higher than 0.5. The models were built using a step procedure,
eliminating the variable whose contribution was null. For each species,
models were selected according to an informative-theoretical approach
based on the AICc value (Burnham & Anderson, 2002). The models
were built using a subset of available data, selected at random and
amounting to 80% of the total. As suggested by Warren and Seifert
(2011), validation was made using the totality of the available sample.

Species models were evaluated using validation datasets. Model
evaluation should deal with two aspects, the performance and the sig-
nificance of the model (Peterson et al., 2011; Tarjuelo, Morales, Traba,
& Delgado, 2014). Model performance shows how well, or poorly, the
model classifies absence, or better pseudo-absence, and presence.
Omission error rate (OER, the proportion of presence occurrence re-
cords of the evaluation dataset that fall in an area predicted as un-
suitable for the species) was used as a measure of model performance,
expecting low omission rates for good models (Peterson et al., 2011;
Tarjuelo et al., 2014). This measure of model performance was selected
because it does not require true absence records, as the MaxEnt soft-
ware does (Peterson et al., 2011; Tarjuelo et al., 2014). To assess model
significance, i.e. whether the model predicts presence from the eva-
luation dataset better than expected under random predictions
(Peterson et al., 2011), we performed one-tailed binomial tests (one per
model) to evaluate whether the proportion of correctly classified oc-
currences differs from the proportion of area predicted as presence by
the model (Tarjuelo et al., 2014).

The habitat suitability maps prepared for each species were overlaid
summing the value of the MaxEnt logistic output (suitability values) in
order to identify the most suitable areas for Mediterranean farmland
species.

2.6. Assessment of HNVF

In order to assess the extent to which areas of importance for
farmland species of conservation interest and areas with the richest bird
communities are represented in the various HNVF classes, we applied a
Kruskal-Wallis one-way ANOVA: for each species we compared the
median value of suitability as represented by the MaxEnt logistic
output; at the same time for the two community parameters (S_tot and
S_farm) we compared the median number of predicted species. The
comparison was made by sub-dividing the spatial units into three
classes on the basis of the HNV value: a) low, b) medium and c) high or
very high (these two categories were lumped as their number would
have been too low otherwise). In cases in which the variance test found
a significant difference, we used a Bonferroni-corrected Conover post-
hoc test (Conover, 1999) to identify the difference between the three
groups.

3. Results

3.1. General results

Data used to analyse species richness contained information con-
cerning 109 species (see supplementary material): 89 species were
detected between 2000 and 2008 and 95 between 2009 and 2014. The
median number of detected species per point count was 7 between 2000
and 2008 (maximum=23) and 8 between 2009 and 2014 (max-
imum=18). Total species richness was on average higher in the second
period (Wilcoxon signed rank test: V=63,651; P < 0.001). During
selected point counts 22 species of typical Mediterranean farmland
birds were detected (19 in the first period and 20 in the second one).
The median number of these species detected during a point count (1)
did not vary between periods, with maximum values of 7 between 2000
and 2008 and 6 between 2009 and 2014.

3.2. Community parameters

Through the analyses of total species richness we identified seven
most supported models (ΔAICc<2 – Table 3). For all of these models
variance inflation was not an issue (VIF always< 2) as well as spatial
autocorrelation (for all models Moran’s I test P > 0.437).

Looking at the full averaged coefficients (Table 4) we can argue that

Table 3
Best models describing variation in species richness on the basis of environmental variables. Models are ranked according to their ΔAICc; the model with the lowest
ΔAICc is the best AICc model.

Model description df AICc Δ AICc w

Total species richness
Het+Wood+ SEVs(2) + Rough+Ombr+Urb+Orch 9 3505.75 0.000 0.2187
Het+Wood+ SEVs(2) + Rough+Ombr+Orch 8 3506.04 0.290 0.1892
Het+Wood+ SEVs(2) + Rough+Urb+Orch 8 3506.55 0.799 0.1467
Het+Wood+ SEVs(2) + Rough+Ombr+Urb 8 3506.69 0.932 0.1373
Het+Wood+ SEVs(2) + Rough+Orch 7 3507.12 1.368 0.1103
Het+Wood+ SEVs(2) + Rough+Urb 7 3507.33 1.574 0.0996
Het+Wood+ SEVs(2) + Rough+Ombr 7 3507.36 1.602 0.0982
Mediterranean farmland species richness
Urb_600 + Crop_600 + I_Crop+Wood+PAS+SEVs(5) + H_LAN 12 2057.99 0.000 0.2763
Urb_600 + Crop_600 + I_Crop+Wood+PAS+SEVs(5) 11 2058.01 0.018 0.2739
Urb_600 + Crop_600 + I_Crop+Wood+PAS+SEVs(4) + H_LAN 11 2058.31 0.322 0.2352
Urb_600 + Crop_600 + I_Crop+Wood+PAS+SEVs(4) 10 2058.50 0.506 0.2146

AICc, Akaike information criterion corrected for the dimension of sample; ΔAICc, difference between the AICc of each model and the AICc of the best model; w, AICc
weight of the model; div.3, land use diversity within 300m; SEVs(n) number of spatial eigenvectors. For the environmental parameters see Table 2.
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total species richness is positively influenced by the land-use hetero-
geneity, by the landscape morphological variability, and by the extent
of woodlands, the latter being very scarce in Apulia. Other predictors
have been retained in some of the most supported models, but they
seem to have a weak effect on total species richness: namely ombrotype,
urban areas and orchards. The model for total species richness has a
poor predictive performance (correlation between predicted and ob-
served values, CFO=0.422).

With regards to species richness for typical Mediterranean farmland
birds, the analyses identified four most supported models (ΔAICc< 2 -
Table 3). For all of these models variance inflation was not an issue (VIF
always< 2) as well as spatial autocorrelation (for all models Moran’s I
test P > 0.091).

Non irrigated arable lands seem to be the most important factor in
determining the distribution of these species, influencing positively
species richness. Pastures and irrigated arable lands are other variables
that seem to positively influence farmland species richness, even if with
a smaller effect size. On the other hand the extent of urban areas and of
woodlands show a negative influence on the outcome. The model for
Mediterranean farmland species richness has a better predictive per-
formance (correlation between predicted and observed values,
CFO=0.711). The information in the models translates into two maps
that are largely contrasting (Figs. 3 and 4).

3.3. Species of conservation concern

The models for all eight species are all highly coherent from an
ecological point of view, and successfully select the habitat parameters
that best describe the breeding ecology and regional distribution of
these species (Table 5).

Using AUC to assess the accuracy of predictive models (0.9–1 ex-
cellent, 0.8–0.9, good, 0.7–0.8 fair, 0.6–0.7 poor, 0.5–0.6 fail - Metz,
1978; Lüdemann, Grieger, Wurm, Wust, & Zimmer, 2006), one showed
excellent predictive performance, four were good, two fair and one was
poor.

The models with the worst predictive performance concerned spe-
cies that, at least in Apulia, occur in a wide range of landscapes and
habitats (e.g. European Stonechat and Woodchat Shrike). In such cases,
it is objectively difficult to identify ecological parameters that can
specifically identify the ecological preferences of these species; however
these models have been very usefull as they successfully identified the

geographic range of these species, as shown by the low OER value.
Finally, all models show a high level of significance, never higher than
0.001.

On average, the most important predictive variable was arable land,
which was present in six models, either with a positive effect (five
models) or with a quadratic relation (one model). For Lesser Kestrel,
Calandra Lark, Greater Short-toed Lark, Skylark and European
Stonechat this variable was the most important one. All these species,
with the exception of the Lesser Kestrel and European Stonechat, show
positive relationships with the amount of arable land at larger scale,
stressing their well known steppic-character. Another important pre-
dictive variable was the amount of urban area, particularly at broader
scale: except for European Stonechat that shows a quadratic relation-
ship, five species have a negative relationship with this variable:
Calandra Lark, Woodlark, Skylark, Lesser Grey Shrike and Woodchat
Shrike (for the last two species, Urb_600 was the most important pre-
dictor). Interestingly, urban areas seem to not affect negatively the
presence of Greater Short-toed Lark, another iconic steppe-species of
Mediterranean farmland. However, it is known that this species is less
sensitive to human presence and it is able to adapt also in moderately
urbanized landscapes (Campedelli et al., 2015). Another general ne-
gative effect, with few exceptions, concerns woodlands (three models),
vineyards and olive groves (respectively three and four models each);
these variables express the presence of arboreal vegetation, albeit in
drastically different manners. The only species showing an important
positive effect of these predictors are Woodlark (Wood) and Woodchat
Shrike (Oliv). Other variable types have a smaller effect; it is interesting
to note that land-use heterogeneity has no effect whatsoever.

The overall map incorporating those developed for each species
(Fig. 5) clearly highlights three areas of particular interest for Medi-
terranean farmland species of conservation concern: the Gargano
steppes, the rural landscapes of the Subappennino Dauno and Tavoliere,
and finally the Murge area.

3.4. Assessment of HNVF

To evaluate the degree of similarity among the three output maps
(total and farmland richness and overall suitable map), we performed a
pixel by pixel Spearman rank correlation analysis. The total species
richness model showed very low and negative correlation with the
models based on typical Mediterranean farmland species (respectively
r=−0.324 for richness and r=−0.124 for overall habitat suit-
ability), which are instead highly correlated (r= 0.859).

To show the extent to which current HNVF classifications (Rete
Rurale Nazionale, 2014) fits to farmland relevant for avifauna protec-
tion, and especially birds tied to Mediterranean farmland, Table 6 re-
ports the results of a comparison between various classes of HNVF with
regards to: habitat suitability values for individual species; and, for
community parameters (total richness and farmland species richness).

Variance analysis shows significant differences in only two cases out
of 10: total species richness, and at the individual species level only for
Woodlark. Nevertheless, the post-hoc test never shows a prevalence for
H-HH areas, which are never differentiated from medium-value (M)
areas.

4. Discussion

Our study showed the importance of using biodiversity indicators to
effectively identify High Nature Value Farmland. According to the re-
sults of the analyses, the most important farmland areas within the
study area are the southern part of Gargano peninsula, Monti Dauni,
Tavoliere, and Murge. These areas were identified using the two chosen
analytical approaches: the first one is the identification of the richest
avian communities, the second one is based on the ecological pre-
ferences of individual species of high conservation interest.

The fact that both approaches led to the identification of the same

Table 4
Full model-averaged parameters estimates with 95% CI limits and relative
importance (RI) based upon most supported models (ΔAICc<2) for total
(S_tot) and farmland (S_farm) species richness. Number of spatial eigenvectors
retained in the best models and the Pearson's Correlation between Fitted and
Observed values (C.F.O.; Zheng & Agresti, 2000) are also reported.

95% CI

Predictors Estimate lower upper RI

Total species
richness
(7 models)
C.F.O.= 0.422

Het 0.0384 0.0139 0.0629 1.00
Ombr 0.0136 −0.0142 0.0414 0.64
Rough 0.0295 0.0050 0.0540 1.00
Urb −0.0113 −0.0367 0.0141 0.60
Orch 0.0127 −0.0120 0.0374 0.66
Wood 0.0372 0.0134 0.0609 1.00
+ 2 spatial
eigenvectors

0.0327 0.0111 0.0543 1.00

Mediterranean
farmland
species richness
(4 models)
C.F.O.= 0.711

Urb_600 −0.2245 −0.3181 −0.1309 1.00
Crop_600 0.3142 0.2531 0.3754 1.00
I_Crop 0.1939 0.1501 0.2377 1.00
H_Lan −0.0281 −0.1051 0.0490 0.51
Wood −0.1185 −0.1991 −0.0379 1.00
Pas 0.1542 0.1072 0.2012 1.00
+ 5 spatial
eigenvectors

0.0671 0.0189 0.1154 1.00
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Fig. 3. Model prediction for total specie richness.

Fig. 4. Model prediction for richness of species linked to Mediterranean farming systems.

T. Campedelli et al. Journal for Nature Conservation 46 (2018) 66–78

73



areas reinforces the validity of the results. Moreover, these areas are of
great importance for other Mediterranean farmland species that were
excluded from our analyses either because they are rare, or because
they are difficult to survey using ICBMP methodology. These include
the Stone Curlew (Burhinus oedicnemus), which has one of its largest
Italian breeding populations in Apulia (Brichetti & Fracasso, 2004),
mostly in the Tavoliere, Murge, and Gargano steppes (Meschini, 2010),
and several raptor species such as the Red Kite (Milvus milvus), whose

population has been dropping in recent years and which is mostly found
in the Monti Dauni and Gargano (Liuzzi et al., 2013). The last known
haunts of the Little Bustard (Tetrax tetrax), a species now considered
extinct in Apulia (Bux et al., 2013), are also included in the areas we
identified (mainly Tavoliere and Gargano steppes). These remarks
confirm both the validity of the results and that the use of indicator
species, including common and widespread ones, is an effective method
for biodiversity analyses.

Table 5
Results of the MaxEnt models for farmland species. For each variable we report the percent contribution (only if bigger than 1%) and the sign of the relationships
(brackets stand for a threshold effect). Moreover, for each model we report two parameters to describe their efficiency: the area under the ROC curve (AUC) and the
Omission Error Test (OER). Species abbreviations: F.n. = Lesser Kestrel, M.c. = Calandra Lark, C.b. = Greater Short-toed Lark, A.a. = Skylark, S.r. = European
Stonechat, L.m. = Lesser Grey Shrike, L.s. = Woodchat Shrike.).

F.n. M.c. C.b. L.a. A.a. S.r. L.m. L.s.

variables
Rough. −8.7 (4.5) + 27.5
Urb −13.4
Urb_600 −2.2 −4.5 (27.2) −54.9 −65.3
Crop + 47.5
Crop_600 + 47.9 + 58 + 37.4 (51.1) + 7.9
I_Crop (4.4) (5.2) + 16.4
Vine −12.4 −5.7 −13.1
Orch (2.9) + 4.2 (2.0)
Oliv + 3.9 −24.3 −21.8 −33.6 −4.1 + 34.7
H_Lan −5.9 −1.9
Wood (5.2) −7.3 (3.0) −3.3 −24.5
Pas + 24.6
Srb −5.9
Srb_600 −7.7 (21.7) + 8.6
Grad (31.0)

model performance
AUC .857 .897 .863 .901 .854 .720 .797 .640
OER .120 .037 .073 .024 .078 .154 .064 .197

Fig. 5. Overall map summarizing habitat suitability (i.e sum of the logistic outputs of each species' model) for all species of conservation concern linked to
Mediterranean farmland systems.
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4.1. Community parameters

The total species richness model identified Apulia’s most species
rich areas at the broad scale (Liuzzi et al., 2013). However, total species
richness is largely influenced by generalist species and by species
characteristic of habitats other than farmland, surely not the best
parameter to identify HNVF. This situation can be explained by the
(pixel by pixel) correlation between the models’ outputs.

A completely different situation affects the richness for typical
Mediterranean farmland birds. In this case, the only important factors
positively influencing the models are the extent of cereal non irrigated
cropland coupled, to a lesser extent, with pastures and irrigated crop-
lands. Moreover, it is worth noting the negative effect of woodland and
urban areas extents. This situation leads to an almost completely dif-
ferent spatial pattern of species rich areas, if compared to the total
richness one (Fig. 3 vs Fig. 4).

4.2. Species of conservation concern

The models for individual species are effective and the habitat
suitability maps produced largely matched the known distribution for
nearly all species (La Gioia, 2009; Liuzzi et al., 2013), showing that the
habitat parameters used in drafting the ecological models do affect their
distribution.

The Woodchat Shrike is the only species for which discrepancies
emerge from its known distribution (Chiatante, Brambilla, & Bogliani,
2014), but these discrepancies, presumably caused by the different data
collection methods, which in the study by Chiatante et al. (2014) were
targeted specifically for Woodchat Shrikes, have little influence on the
identification of the most important areas for farmland birds.

4.3. Assessment of HNVF

The differences between the three identified types of HNVF in re-
lation to habitat suitability for individual species or predicted species
richness are rather minor, yet highly indicative. Indeed, there are no
significant differences in habitat suitability between HNVF identified
types for species such as Calandra Lark, Greater Short-toed Lark, or
Lesser Grey Shrike, which are considered of conservation interest at the
European level (Birds Directive 2009/147/EC) and are closely tied to
the presence of extensive non-irrigated arable land (cereal steppes) and
landscapes with low habitat variability (cf. Table 5). These habitats are
not among those identified by the first two types of HNVF, that rely on
landscape structure and vegetation. The situation seems a little

different for the Woodlark, a species tied to more varied habitats, which
are included within type 2 of HNVF: for this species we found sig-
nificance differences in mean habitat suitability between HNVF cate-
gories; however, areas classified as high value are not significantly
differentiated from medium value areas.

The same results are obtained when we analyse the comparisons
carried out with the two richness indexes. For farmland bird richness,
there is no significant difference between the three classes of HNVF; for
total richness, which is higher in areas of greater land-use heterogeneity
(Field et al., 2009; Stein, Gerstner, & Kreft, 2014), the situation appears
better in H-HH areas even if they are not distinguished from medium-
value areas (M).

Taken as a whole, these comparisons indicate that, in Apulia, HNVF
selection and evaluation criteria failed to identify the most important
areas for Mediterranean farmland birds, and thus for species of con-
servation interest, as required by type 3 HNVF “farmland supporting rare
species or a high diversity of species of European or global interest”
(Andersen et al., 2003).

This situation is caused by two factors: the first concerns the nature
of the first two criteria, namely the selection of particular crop and
landscape types linked to HNVF indicators 1 and 2, while the second
has to do with the chosen application of the third criterion.

Concerning the first two types of HNVF, as already stated in the
introduction, they have been formulated to pinpoint low-intensity
farming systems supposed to support high levels of biodiversity. On the
other hand HNVF type 3 should identify farmlands supporting rare
species or a high proportion of species populations regardless of land-
use type. It could be difficult to integrate these different conceptual
frameworks. Looking at HNVF types 1 and 2 in our case study, it is
evident that their poor representativeness in terms of biodiversity de-
pends on the failure to include cereal cropland among the AGRIT land
cover classes supposed to be farmed at low intensity and therefore in-
cluded in the process of HNVF type 2 identification (Rete Rurale
Nazionale, 2014).

If we analyse the distribution of the areas with the largest extent of
HNVF (Fig. 6), we can see that it does not include the most important
areas for Mediterranean farmland birds identified in this study (Figs. 4
and 5).

This map clearly shows that the most important category, at least in
terms of surface area, is represented by olive groves, which are parti-
cularly widespread in the southern part of the region (Salento). When
managed properly (e.g. low chemical input, ploughing to get an un-
derstory of many annual flowers), olive groves can provide important
habitats for many animal species (Davy, Russo, & Fenton, 2007).
However, when using birds as indicators, they are clearly less important
than cereal steppes.

The other factor that determines the complementarity between
high-biodiversity areas and HNVF is criterion 3, which was meant to
take into consideration more explicit biodiversity criteria tied to the
presence of species of conservation interest. As it is often the case,
Italian HNVF (Rete Rurale Nazionale, 2014) was identified using, as
criterion 3, the richness of species of conservation concern as reported
by Natura 2000 site forms. While these are truly representative of the
most important areas for biodiversity conservation in habitats such as
forests and wetlands, and protected areas, Natura 2000 sites in general
are scarcely representative of agroecosystems (Campedelli et al., 2010).
Indeed, in spite of their acknowledged value in terms of biodiversity,
landscape, history, culture, and ecosystem services (Swinton, Lupi,
Robertson, & Hamilton, 2007), agricultural areas are under-protected
almost everywhere (Oldfield, Smith, Harrop, & Leader-Williams, 2004;
Scott et al., 2001; Tuvi, Vellak, Reier, Szava-Kovats, & Pärtel, 2011; Yip,
Corlett, & Dudgeon, 2004). It is thus crucial for type 3 HNVF to be
identified using a different approach, which takes into account the
actual distribution of species of conservation interest, regardless of the
location of protected areas. All too often – and including in Italy
(Pratesi, 2001) – protected areas have been established according to

Table 6
Results of variance analysis; for each ornithological parameters we report the
results of Kruskal-Wallis and Bonferroni-corrected Conover post-hoc tests. For
the species, the values of different HVNF classes stand for the median value of
their habitat suitability; for the richness models the values stand for the number
of species expected by the models. (High Nature Value Farmland abbreviations:
L= Low; M=Medium; H = High; VH=Very High).

High Nature Value

Species L M H-VH P Kruskal groups

Falco naumanni 0.181 0.210 0.215 n.s.
Melanocorypha calandra 0.029 0.154 0.083 n.s.
Calandrella brachydactyla 0.115 0.204 0.139 n.s.
Lullula arborea 0.121 0.253 0.393 < 0.001 ABB
Alauda arvensis 0.054 0.160 0.108 n.s.
Saxicola torquatus 0.453 0.456 0.463 n.s.
Lanius minor 0.426 0.421 0.388 n.s.
Lanius senator 0.500 0.454 0.454 n.s.

Richness
S_farm 1.436 2.036 1.847 n.s.
S_tot 10.753 11.442 11.101 < 0.01 A B AB
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political criteria aiming to minimize conflict with human activities –
which obviously take place in farmland areas – rather than with the aim
of protecting the most deserving areas (Araújo, Lobo, & Moreno, 2007;
Oldfield et al., 2004).

HNVF is an indicator that aims to assess the impact of agricultural
policies on biodiversity. The process to identify such areas is thus quite
fraught, since the indications arising from the analysis of HNVF trends
over time depend on it. In our study area, for instance, the criteria used
so far would fail to fully identify a decrease in cereal steppes and in the
species of conservation interest associated with them. It is thus im-
portant to carefully consider the indicators chosen for identifying the
three types of HNVF.

Concerning the types of cropland and landscapes to be considered in
defining HNVF, it is very important to carefully evaluate the local
characteristics of the area in question. There is an immense variety of
local conditions in EU Member States (ranging from the size and types
of farms, prevailing land use patterns, data availability, and so forth), so
that at a certain scale it would be both impossible and inappropriate to
impose common methods for the identification of HNVF, alternatively
local adjustments are required reflecting site-specific conditions and
based on detailed data available at local level.

4.4. Type 3 HNV and the use of available data

Concerning type 3 HNVF, we think it is crucially important to use
available databases on local biodiversity. Additionally, since HNVF is
an indicator that has to be calculated over time it is also important to
have biodiversity data collected with continuity and with standardized
methods. From this point of view, birds play a key role, since they are
one of the few animal groups for which standardized monitoring pro-
grammes are already in place in nearly all Member States (Klvaňová,
Voříšek, Gregory, van Strien, & Meyling, 2009). These monitoring
programmes generally ensure both good spatial coverage and the pre-
sence of long-term temporal series.

Current data analysis tools can maximize the value of the in-
formation present in the databases of existing monitoring programmes,
and can use such information for purposes and in ways other than those
for which they were originally collected. ICBMP data, whose goal is to
calculate population trends for common and widespread species, have
helped in identifying HNVF areas in Apulia, using a multi-methodolo-
gical approach that improves the reliability of the results obtained.

One of the strengths of the approach detailed here consists in having
obtained these results beginning with available information from an
existing database. As mentioned in the section on results, while the
most important areas were identified using relatively common species,
these same areas are also the most important ones for a number of rare
and local species that would otherwise have required specific mon-
itoring programmes at a much greater expense. Our results underscore
the importance of biodiversity monitoring (Magurran et al., 2010;
Niemelä, 2000; Pereira & Cooper, 2006) and the need for institutional
support and significant funding for such efforts, in order to ensure high
qualitative standards during all phases, especially concerning the set-
ting of proper goals (Green et al., 2005). Indeed, biodiversity mon-
itoring efforts generate crucial data for the proper steering of biodi-
versity management strategies (Lindenmayer et al., 2012).

5. Conclusions

HNVF is a very useful indicator that can help assessing the outcomes
of the EU’s rural biodiversity policies. It is of crucial importance for
both targeting interventions and evaluating their effects. Its effective-
ness is strictly related to the appropriate assessment of HNVF extent and
quality and, therefore, on methodology and data used. Our results
clearly highlight the importance of using specific biodiversity indicators
and appropriate biodiversity data in the HNVF identification process,
with particular reference to HNVF type 3. Indeed, the latter allows for
identification of farmlands of highest natural value that an approach
based solely on landscape structure and vegetation types might fail to

Fig. 6. Map showing the extension and the overall classification of HNVF in the 10 x 10 km cells used as working units in this paper.
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identify. Our results also highlight the need to use an approach based
on the analysis of the actual distribution of species of conservation
interest based on monitoring programmes, and show the limits of re-
lying on the distribution of protected areas or data drawn from them.
Indeed, especially with regards to farmland habitats, the distribution of
protected areas and that of species of conservation interest often do not
overlap. As these species are often rare and not widespread, data col-
lected about them are difficult to extrapolate to an entire region,
therefore the use of common species, that could be also used as in-
dicators of rarer species presence, is a particularly useful approach.
Nearly all European countries currently have large-scale, multi-taxa
monitoring programmes, and wide availability of evenly distributed
environmental data layers, thus allowing analysis of the distribution of
many species. This suggests the importance of efficient use of all
available data.
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