Sismologie et Traitement du signal

- Introduction
- Les séismes: comment sont-ils générés?

Contraintes, déformation, élasticité et rupture

- Les séismes: comment les étudier?
 - Les ondes sismiques
 - Mesures d'un séisme et analyse d'un sismogramme:

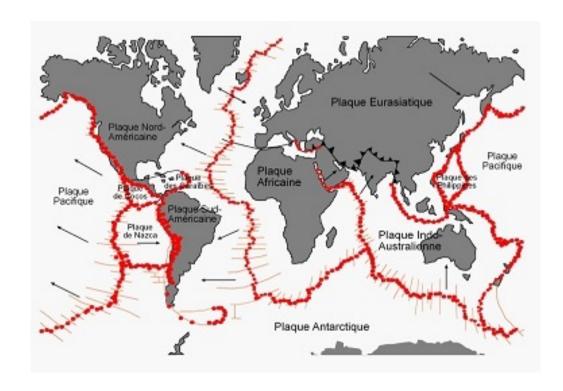
Localisation, magnitude, intensité,...

- Méga séismes, et étude de la source sismique
- Imagerie de la Terre
 - Structure interne et tomographie sismologique
 - Sismique réflexion et sismique réfraction
- Aléa sismique et prévention
- Phénomènes induits (Tsunami...)

Les séismes: comment sont-ils générés?

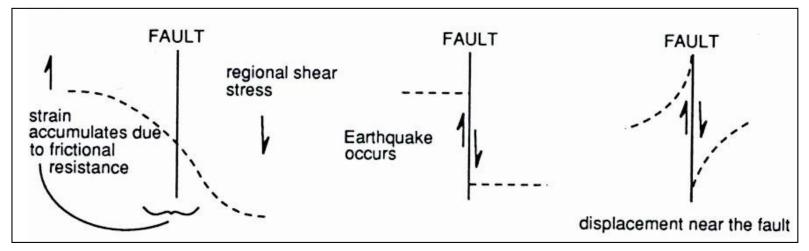
Introduction

Origine d'un séisme tectonique



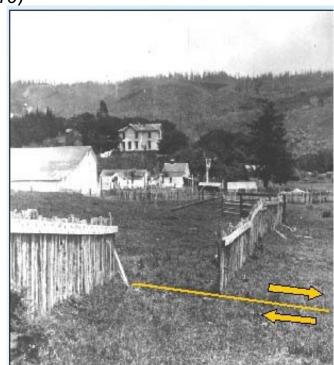
Le mouvement des plaques provoque des contraintes qui entraînent des déformations : une rupture et l'énergie qui s'était accumulée se libère soudainement sous forme d'ondes élastiques qui se propagent dans toutes les directions en produisant une secousse du terrain. (BRGM)

Origine d'un séisme tectonique



Théorie du rebond élastique, Reid (1910)

SÉISME = INCRÉMENT DE LA DÉFORMATION DUE À L'ACCUMULATION DES CONTRAINTES TECTONIQUES

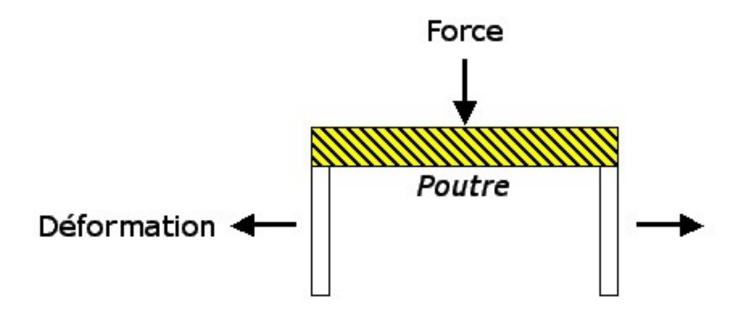


Notion de force

 $\mathbf{F} = \mathbf{m} \times \mathbf{g} \qquad N (kg.m/s^2)$

g : accélération de la pesanteur : 9,81 m/s²

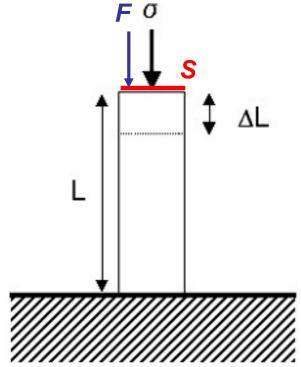
m: masse kg



Lorsqu'elle est soumise à des forces, la croûte terrestre se déforme.

On peut définir simplement la contrainte comme étant une force appliquée à une certaine unité de surface.

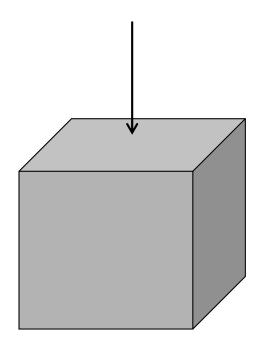
$$\sigma = \frac{F}{S}$$



Elle se mesure en Pascal (Pa ou N/m²).

Une contrainte s'exerce toujours sur une surface:

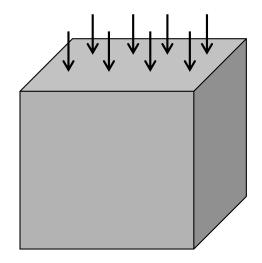
1) Contrainte perpendiculaire à une surface = contrainte normale



Par convention : une compression est positive une extension est négative

Une contrainte s'exerce toujours sur une surface:

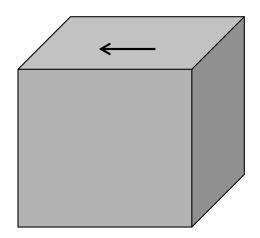
1) Contrainte perpendiculaire à une surface = contrainte normale



La contrainte est distribuée sur toute la surface.

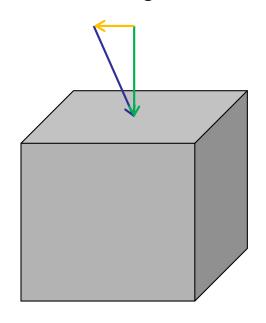
Une contrainte s'exerce toujours sur une surface:

- 1) Contrainte perpendiculaire à une surface = contrainte normale
- 2) Contrainte tangentielle à la surface



Une contrainte s'exerce toujours sur une surface:

- 1) Contrainte perpendiculaire à une surface = contrainte normale
- 2) Contrainte tangentielle à la surface

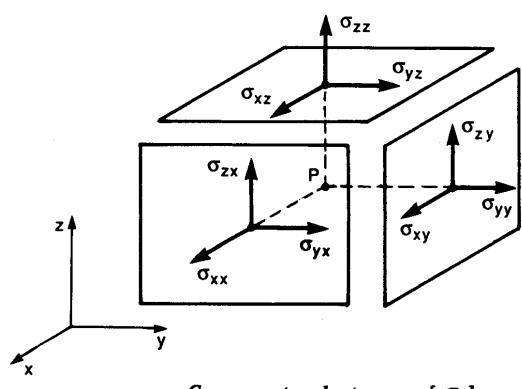


contrainte normale

.

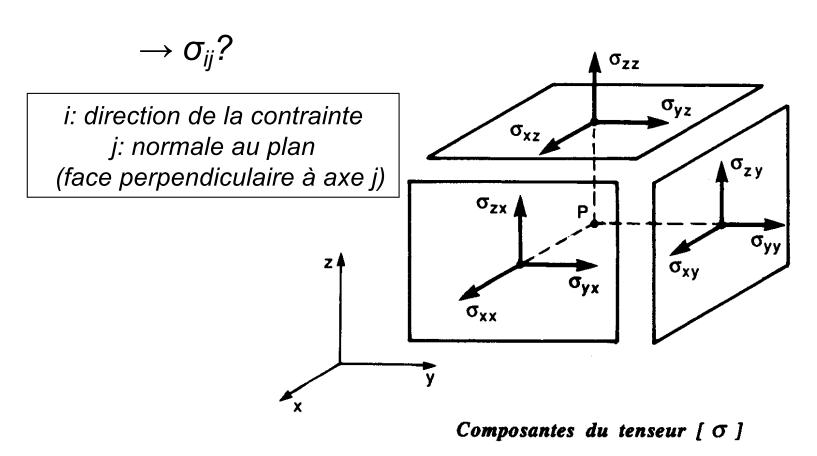
contrainte tangentielle

Définition du tenseur des contraintes sur un volume élémentaire: Contraintes normales / Contraintes tangentielles



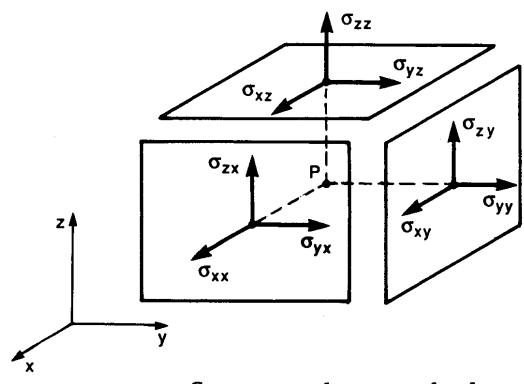
Composantes du tenseur [σ]

Les 3 composantes sont nommées σ_{ij} avec i direction de la contrainte et j la direction de la normale au plan sur lequel elle s'applique.



Remarque: $\sigma_{[direction]}[plan normal]$

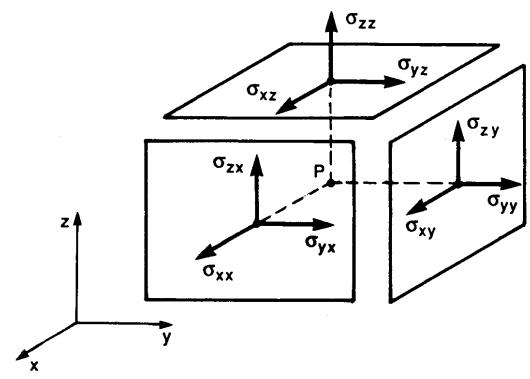
La condition d'équilibre du cube implique $\sigma_{ij} = \sigma_{ji}$



Composantes du tenseur [σ]

Ce tenseur est donc symétrique ($\sigma_{ij} = \sigma_{ji}$) \rightarrow MATRICE SYMETRIQUE sinon l'élément de volume subirait une rotation

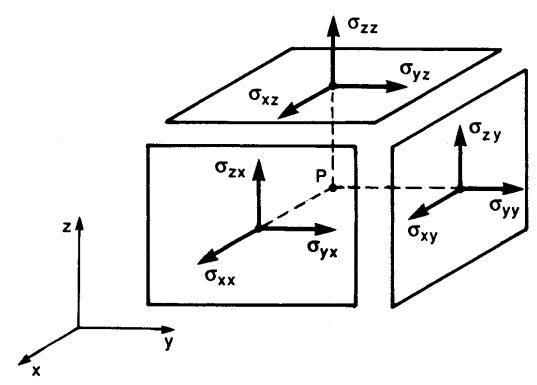
$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \sigma_{yx} & \sigma_{zx} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{zy} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{pmatrix}$$



Composantes du tenseur [σ]

- → TENSEUR DES CONTRAINTES
 - = état de contrainte en un point.

$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \sigma_{yx} & \sigma_{zx} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{zy} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{pmatrix}$$



Composantes du tenseur [σ]

Notion de contraintes principales:

contraintes normales sur toutes les faces

Notion de contrainte isostatique:

(contrainte de pression):

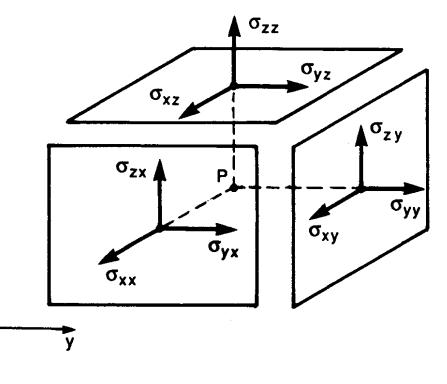
contrainte moyenne (σ_{xx} + σ_{yy} + σ_{zz})/3

Notion de déviateur des contraintes:

(écart à la moyenne)

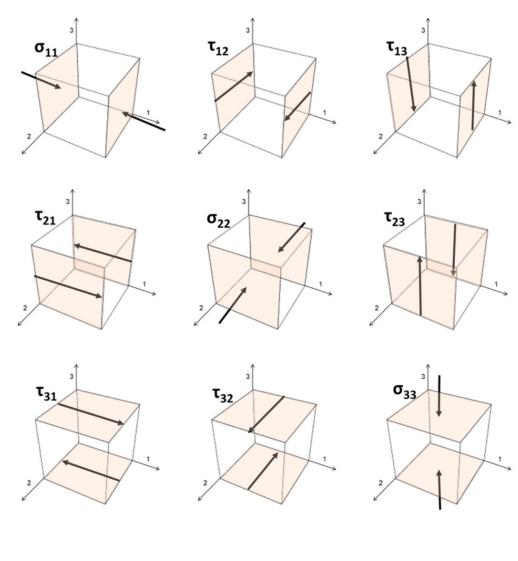
responsable des changements z

de forme.



Composantes du tenseur [σ]

Stress Tensor



$$\begin{bmatrix} \sigma_{11} & \tau_{12} & \tau_{13} \\ \tau_{21} & \sigma_{22} & \tau_{23} \\ \tau_{31} & \tau_{32} & \sigma_{33} \end{bmatrix}$$

Tenseur des contraintes

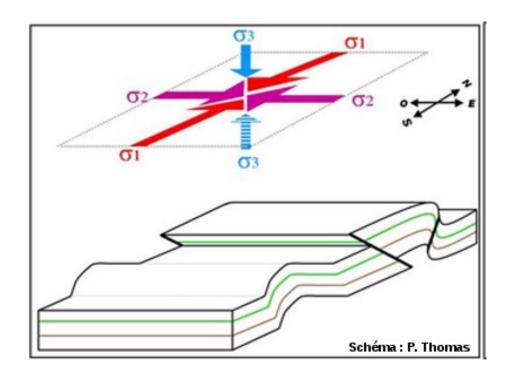
L'une des propriétés d'un tenseur symétrique est d'être **diagonalisable**. Autrement dit, on peut toujours trouver un système de coordonnées pour lequel le tenseur des contraintes est représenté par une matrice diagonale:

$$\sigma = \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{pmatrix}$$

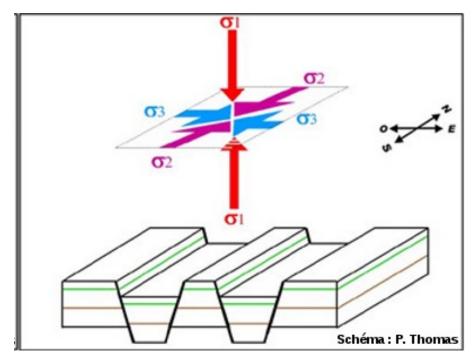
 σ_1 σ_2 et σ_3 sont appellées *contraintes principales* et 1,2,3 sont les axes principaux de contrainte.

$$\sigma_1 \geq \sigma_2 \geq \sigma_3$$

P axe de pression σ_1 (compression) T axe de tension σ_3 (extension) N axe nul σ_2



P axe de pression σ_1 (compression) T axe de tension σ_3 (extension) N axe nul σ_2



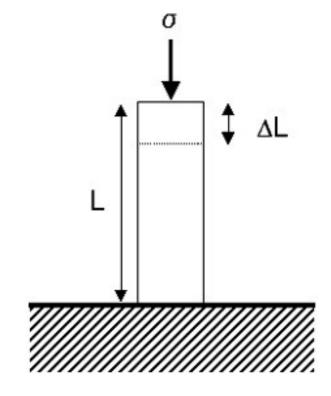


Notion de déformation

La déformation indique dans quelles proportions le corps a été déformé sous l'action d'une contrainte.

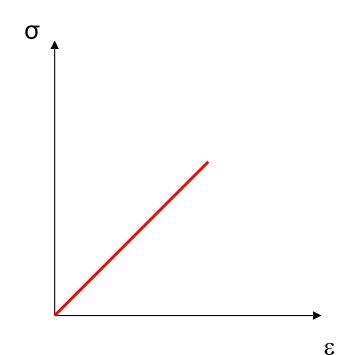
La déformation, pour une traction simple, est le rapport de l'allongement à la longueur initiale.

$$\varepsilon = \frac{\Delta L}{L}$$



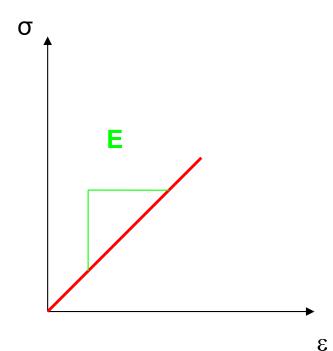
La déformation est sans unité.

La **contrainte** de traction appliquée à un matériau et la **déformation** qui en résulte est constant tant que la déformation est petite (Thomas Young, 1773-1829).



1660 – **Loi de Hooke**: Relation entre contrainte et déformation

La **contrainte** de traction appliquée à un matériau et la **déformation** qui en résulte est constant tant que la déformation est petite (Thomas Young, 1773-1829).



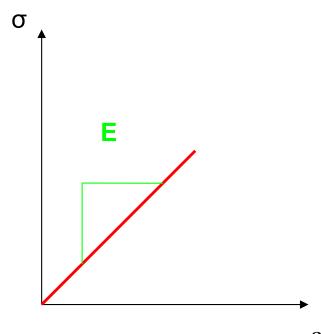
1660 – **Loi de Hooke**: Relation entre contrainte et déformation

La **contrainte** de traction appliquée à un matériau et la **déformation** qui en résulte est constant tant que la déformation est petite (Thomas Young, 1773-1829).

$$\sigma = E\varepsilon$$

E est le module de Young (Pa)

1660 – **Loi de Hooke**: Relation entre contrainte et déformation 1807 – Young: notion de **module d'élasticité**

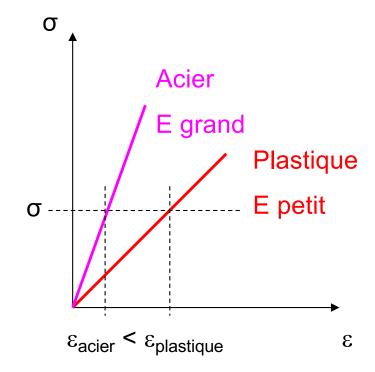


3

La **contrainte** de traction appliquée à un matériau et la **déformation** qui en résulte est constant tant que la déformation est petite (Thomas Young, 1773-1829).

$$\sigma = E\varepsilon$$

E est le module de Young (Pa)

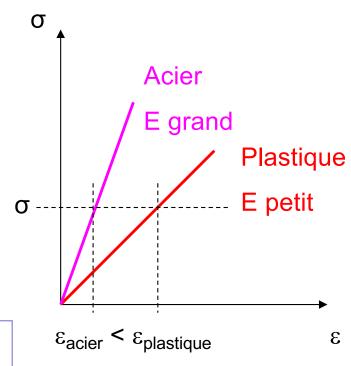


La **contrainte** de traction appliquée à un matériau et la **déformation** qui en résulte est constant tant que la déformation est petite (Thomas Young, 1773-1829).

$$\sigma = E\varepsilon$$

E est le module de Young (Pa)

A contrainte égale, un matériau ayant un module d'élasticité élevé subira une déformation plus petite qu'un matériau ayant un module d'élasticité grand.



 $E = 200 \ 10^9$ Pa pour l'acier

 $E = 60 \ 10^9 \text{ Pa pour le granite}$

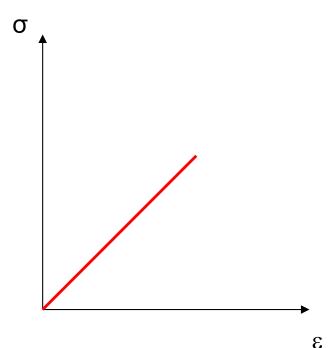
 $E = 0.02 \ 10^9 \ Pa$ pour le caoutchouc

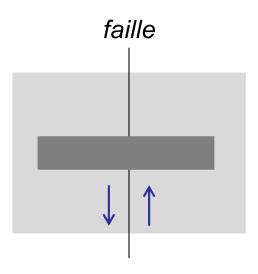
La **contrainte** de traction appliquée à un matériau et la **déformation** qui en résulte est constant tant que la déformation est petite (Thomas Young, 1773-1829).

$$\sigma = E\varepsilon$$

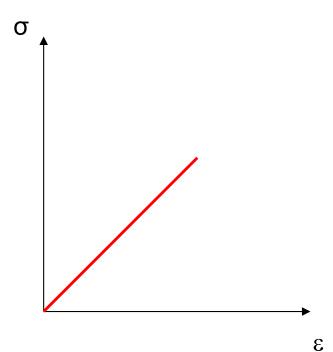
E est le module de Young (Pa)

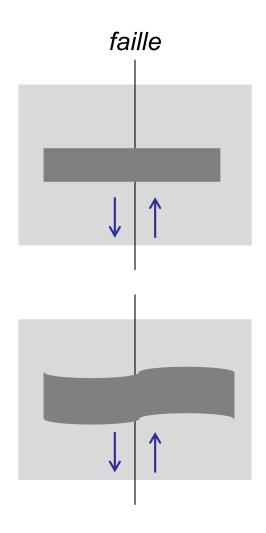
DÉFORMATION ÉLASTIQUE

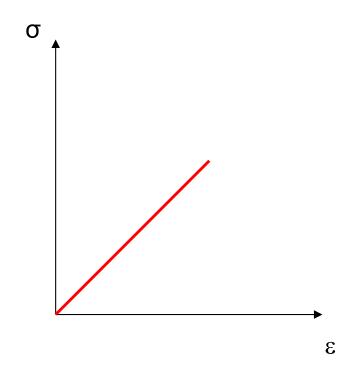


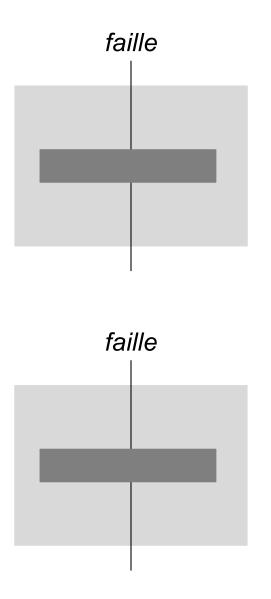


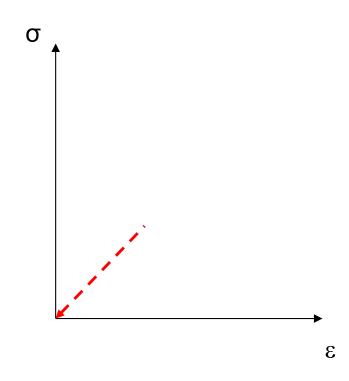
Application d'une contrainte qui va entraîner une déformation.



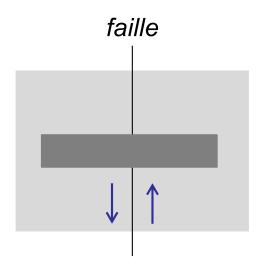


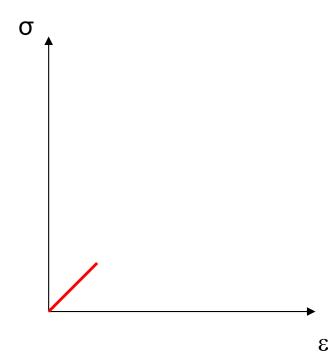


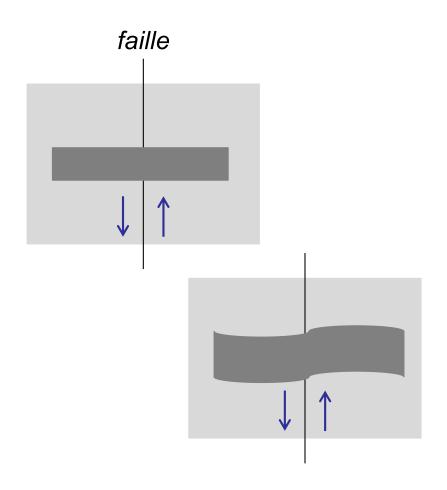


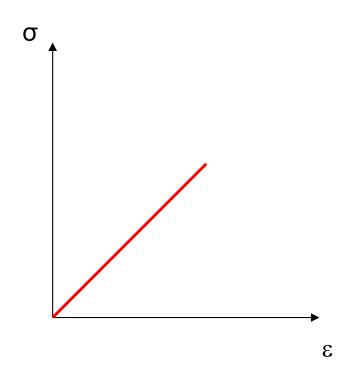


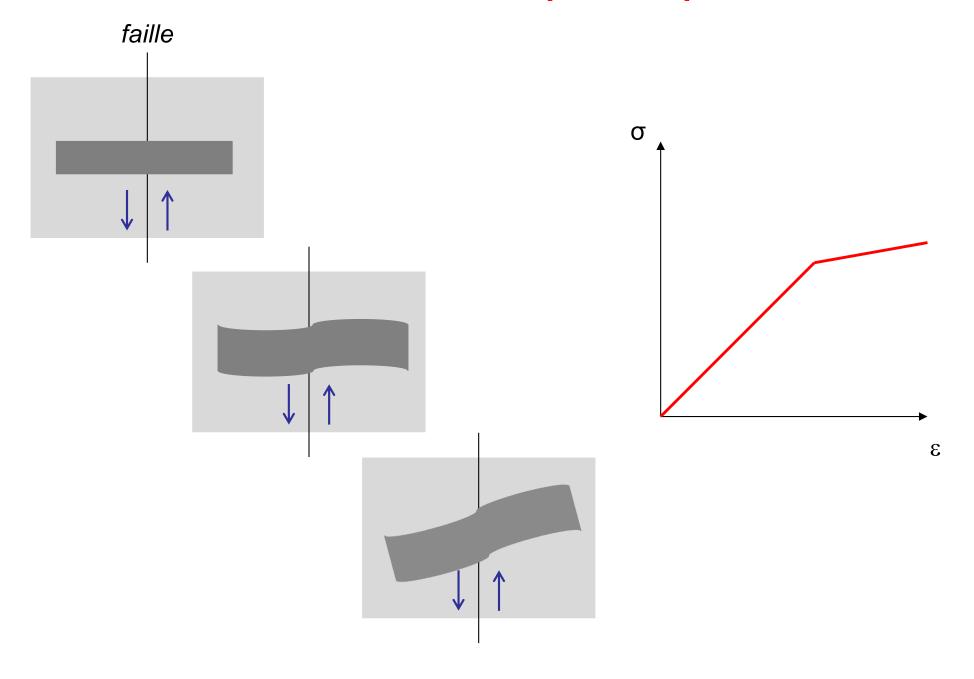
Relâchement de contraintes: la déformation n'est pas permanente

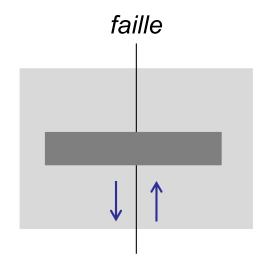


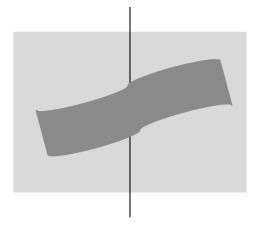


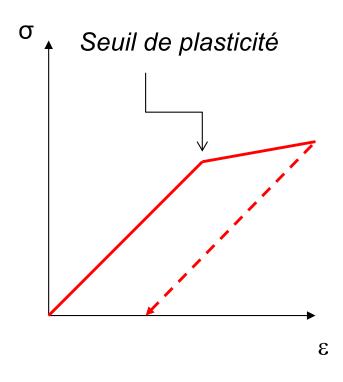




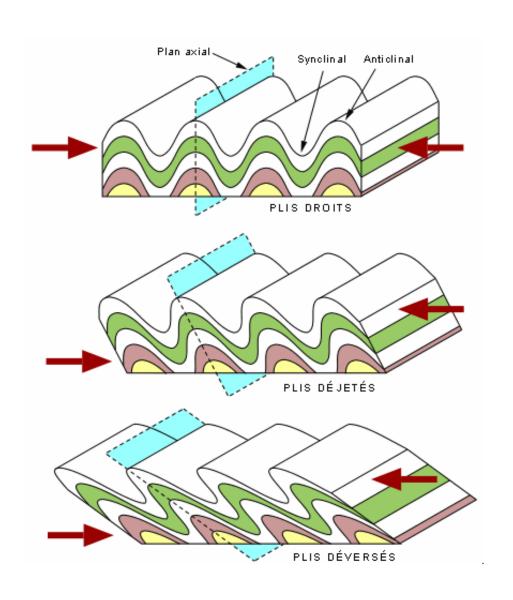


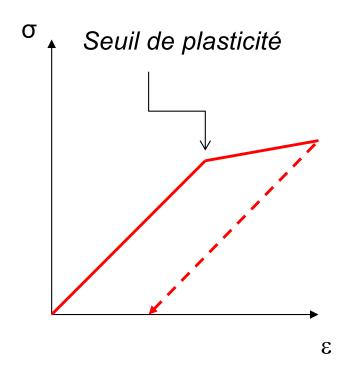






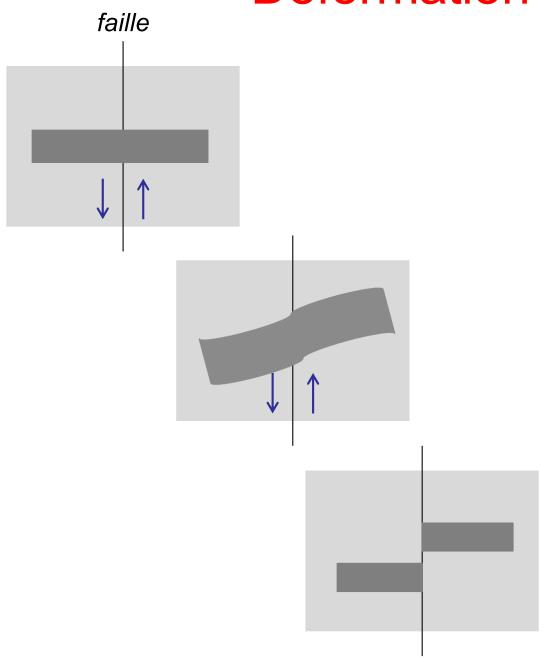
Relâchement de contraintes: la déformation est permanente mais pas cassante

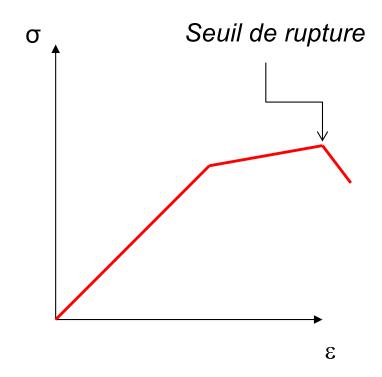




Relâchement de contraintes: la déformation est permanente mais pas cassante

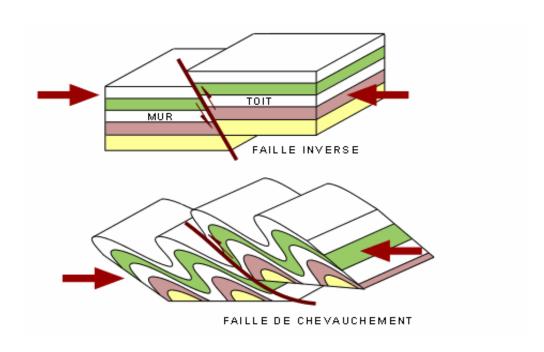
Déformation cassante

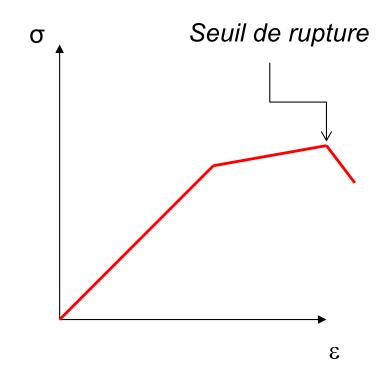




Dépassement du seuil de rupture: déformation cassante.

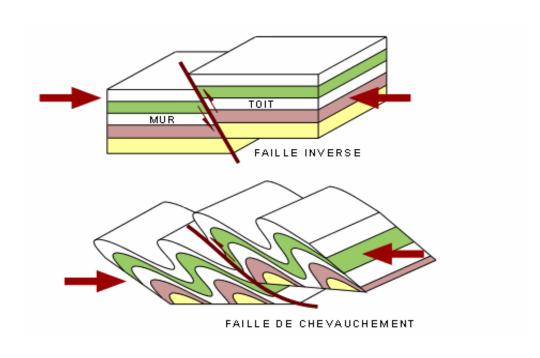
Déformation cassante

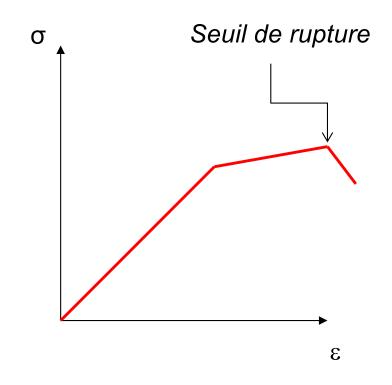




Dépassement du seuil de rupture: déformation cassante.

Déformation cassante





Lors de la rupture de l'énergie est libérée sous la forme d'ondes élastiques → séisme.

Dépassement du seuil de rupture: déformation cassante.

Loi de Hooke – tension axiale

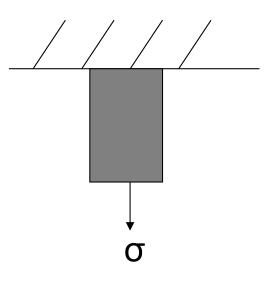
$$E = \frac{\sigma_{xx}}{\varepsilon_{xx}}$$

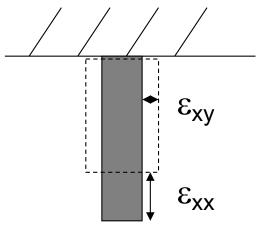
Traction ou une compression →

la largeur de la pièce varie, à l'inverse de l'allongement.

Coefficient de Poisson (sans unité) :

$$\nu = -\frac{\varepsilon_{xy}}{\varepsilon_{xx}} = -\frac{\varepsilon_T}{\varepsilon_N}$$





Loi de Hooke – tension axiale

$$E = \frac{\sigma_{xx}}{\varepsilon_{xx}}$$

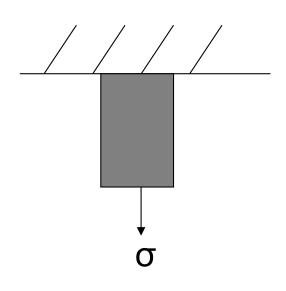
Coefficient de Poisson (sans unité) :

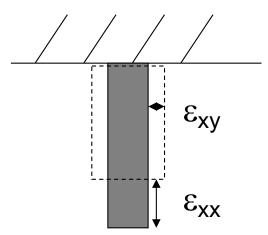
caractérise la contraction de la matière perpendiculairement à la direction de l'effort appliqué (direction de la contrainte).

$$\nu \leq 1/2$$

et si ν =1/2 le matériau est parfaitement incompressible.

$$u = -\frac{\varepsilon_T}{\varepsilon_N}$$





 $E = 200 \ 10^9 \ Pa, \ v = 0.30 \ pour \ l'acier$

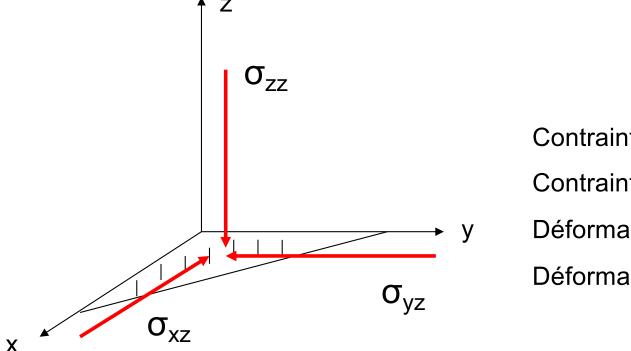
 $E = 60 \ 10^9 \ Pa, \ v = 0.27 \ pour \ le granite$

 $E = 0.02 \ 10^9 \ Pa \ v = 0.50 \ pour \ le caoutchouc$

$$\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$$
 Milieu isotrope

λ: premier coefficient de Lamé (Pa)

μ: module de cisaillement aussi appelé second coefficient de Lamé (Pa).



Contrainte normale o_{ii}

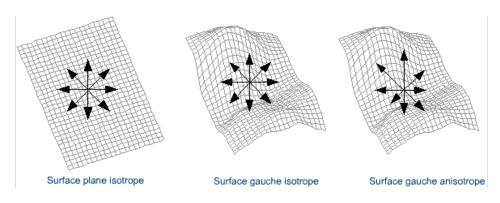
Contrainte tangentielle σ_{ij}

Déformation normale ε_{ii}

Déformation tangentielle ϵ_{ij}

Milieu isotrope:

milieu dont les propriétés sont identiques quelle que soit la direction d'observation



δ_{ij} est le **symbole de Krönecker**

$$\delta_{ij} = 1$$
 si $i=j$
 $\delta_{ij} = 0$ si $i \neq j$

$$(\delta_{ij})_{(i,j)\in\{1,2,3\}^2} = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight)$$

$$\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$$
 Milieu isotrope

λ: premier coefficient de Lamé (Pa)

μ: module de cisaillement aussi appelé second coefficient de Lamé (Pa).

Ecriture matricielle!!!

$$\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$$

λ: premier coefficient de Lamé (Pa)

μ: module de cisaillement aussi appelé second coefficient de Lamé (Pa).

Ces paramètres caractérisent les propriétés élastiques du matériau

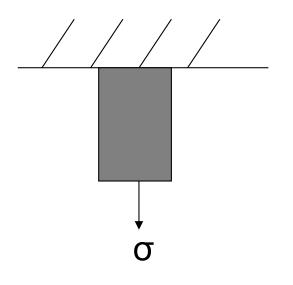
E: module de Young (Pa)

v: coefficient de Poisson (Pa)

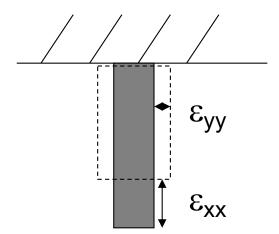
→ accessibles expérimentalement

$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu} \qquad \qquad \upsilon = \frac{\lambda}{2(\lambda + \mu)}$$

Coefficients de Lamé



- Mesure E et ν
- Déduit λ et μ



$$E = \frac{\sigma_{xx}}{\varepsilon_{xx}}$$

$$\nu = -\frac{\varepsilon_{xy}}{\varepsilon_{xx}}$$

$$E = \frac{\lambda}{\lambda + \mu}$$

$$v = \frac{\lambda}{2(\lambda + \mu)}$$

$$\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$$

λ: premier coefficient de Lamé (Pa)

μ: module de cisaillement aussi appelé second coefficient de Lamé (Pa)

$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu} \qquad \upsilon = \frac{\lambda}{2(\lambda + \mu)}$$

Liquide: μ =0 donc v =0.5 (pas de cisaillement!)

Sédiments meubles: µ petit donc v→0.5

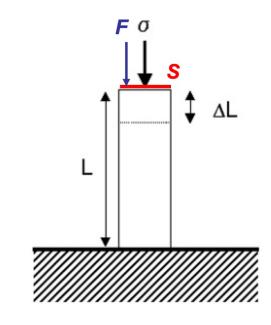
<u>Résumé</u>

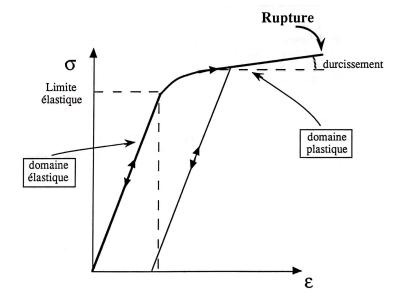
Déformation:
$$\varepsilon = \frac{\Delta L}{L}$$
 (sans unité)

Loi de Hooke:
$$\sigma = E \varepsilon$$

E: module de Young (Pa)

Poisson:
$$\nu = -\frac{\varepsilon_{xy}}{\varepsilon_{xx}}$$





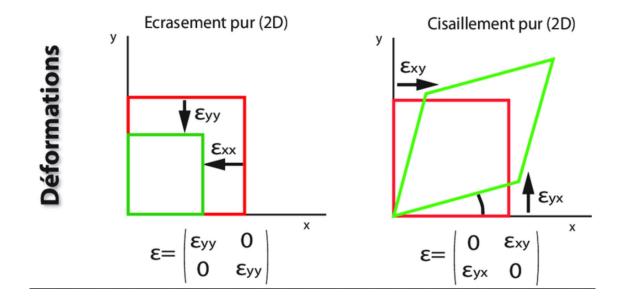
Loi de Hooke généralisée:
$$\sigma_{ij}=\lambda \varepsilon_{kk}\delta_{ij}+2\mu \varepsilon_{ij}$$
 Milieu isotrope

λ: premier coefficient de Lamé (Pa) μ: module de cisaillement aussi appelé second coefficient de Lamé (Pa).

Contrainte

Déformation

$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \sigma_{yx} & \sigma_{zx} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{zy} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{pmatrix} \longrightarrow \mathcal{E}_{ij} = \begin{pmatrix} \varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} \end{pmatrix}$$



Relations sismicité - déformation

Exemple simple:

décrochement avec un déplacement S

$$e_{12} = e_{21} = S/2W$$

Identique si on a une série de séismes qui produisent un offset total S

