Integration of PDEs (1) Modélisation et Simulation en Physique (HAP708P)

INTEGRATION OF PARTIAL DIFFERENTIAL EQUATIONS (1)

Objectives:
» Integrate a diffusion-like (first-order in time) partial differential equation numerically;
» Derive analytically the recurrence relation of a numerical solver from a partial differential equation;
» Implement the FTCS scheme;
» Implement the Crank-Nicolson scheme;
» Set up periodic boundary conditions;

» Set up boundary conditions involving the spatial derivatives of the solution.

No list manipulation is allowed in this tutorial!

I. Cooling of a ball

We consider a ball of radius R. At t = 0, we take it out of a oven where it was at uniform temperature T} and
we suspend it in the air at temperature T,. We assume that the temperature field 7" in the ball is isotropic (i.e.,
it only depends on 7 in spherical coordinates and on t). Under this assumption, the temperature profile verifies
the following set of equations:
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where D is the diffusion coefficient in the ball, X its thermal conductivity, and o the Newton convection coeffi-
cient at the air/ball interface.

We define § =T —T,, x = r/R, 7 = Dt/R?, 0; = T — Ty, and ¢ = aR/\. We can then transform Eq. (1)
into a non-dimensionalized system of equations:
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Question 1: We want to solve Eq. (2) using a FTCS scheme. We discretize space with a mesh size § and time
with a time step h: z; = 56 (j € [0, M] with Mé = 1) and 7, = nh (n € [0, NJ).

a. Show analytically that the discretized version of the spatial derivative reads, for j € [1, M],
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b. Deduce the recurrence relation, i.e., the relation between 9;”1 and the {0} }r<ns's for j € [1, M —1].
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c. We now need to set up the boundary conditions, i.e., to derive the recurrence relation for j =0 and j = M.
For j = 0, the recurrence relation reads (the derivation of this formula is not required):
6h

Ot =05 + 55 (67 — ). *)

For 7 = M, show that the discretized version of the boundary condition at 2 = 1 reads:
0]7\14_;'_1 = 9?\4_1 — 2@50?\4 (5)

Derive eventually the recurrence relation for j = M by injecting Eq. (5) into Eq. (3).

Question 2: Define a function FTCS_step(theta, x, c, delta, h) which takes as an input the array theta
containing all the values {07 };<ns at step n, the array x containing all the values {z;};<n, the constant c,
the mesh size 0 and the time step h, and modifies in place the array theta such that it contains the values
{9}”1}ng at step n + 1.

Hint: To avoid a loop, you can use the function roll of NumPy.

Question 3: We perform an experiment with a ball made of granite, for which A = 3W/m/K, D =
1.6.1075m2/s and R = 10cm. Initially, the ball is at temperature T} = 800°C, while the air is at temper-
ature T, = 20°C. We take the Newton convection coefficient o = 20 W/m? /K.

a. How should you choose h and 6 for the algorithm to work? You can set § to a reasonable value, e.g.,
0 = 0.01, and then find a value of h for which the algorithm works.

b. Integrate the PDE numerically and plot the temperature profile T'(r,t) [not 6(z, T)!] every 15 minutes on
the same graph.

c. Comment on what you see.

Question 4: We reproduce the experiment with a ball of radius R = 5 cm and another ball of radius R = 1 rmm.
Integrate the PDE numerically again and plot the temperature profile T'(r, t) at 15 different times between 0 and
2 hours on the same graph. Confront with the previous experiment.

Il. Free quantum particle

We want to describe the evolution of a free quantum particle of mass m in 1D initially described by a Gaussian
wave packet
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with & = 27/X\, A = 510" m, and 0 = 10719 m. The evolution of the wavefunction v (x,t) is given by the
time-dependent Schrodinger equation
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where the mass of the particle is m = 9.109.1073! kg. To avoid finite-size effects and to mimic the propagation
of the particle in infinite space, we adopt periodic boundary conditions for the wavefunction and we integrate
on a space domain [—L/2, L/2] with L chosen such that L > o and such that the initial condition verifies the

periodic boundary conditions. We thus choose L = 108 m. We recall that i = 1.05457182.10~34 kg.m?/s.

Question 1: For Schrédinger equation, the FTCS scheme is unstable. We thus propose to solve the above
equation using a Crank-Nicolson scheme. We discretize space and time as follows: x; = —L/2+j6 (j € [0, M]
with M = L) and ¢, = ne (n € [0, N]).

a. Derive analytically the recurrence relations between the {1/1;7“}]5]\/['5 and the {7 }j<nr's.
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b. By enforcing the periodic boundary conditions, show analytically that the recurrence relations can be recast

into the linear system
n+1
0

AV =B, with U= ; , (8)
n+1
M—1
with A a M x M matrix and B a vector column of size M to be determined.
Question 2: Use the above scheme to solve the Schrédinger equation up to ¢ = 8.107'6s. You can take

e=110""sand § = 5.107'2m. Plot the real part of the wavefunction for t = 0s, t = 2.107 16, t = 4.107 165,
t=6.10"1%5 and t = 8.107 %5 on the same graph. Comment.
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