
Integration of PDEs (1) Modélisation et Simulation en Physique (HAP708P)

INTEGRATION OF PARTIAL DIFFERENTIAL EQUATIONS (1)

Objectives:

▶ Integrate a diffusion-like (first-order in time) partial differential equation numerically;

▶ Derive analytically the recurrence relation of a numerical solver from a partial differential equation;

▶ Implement the FTCS scheme;

▶ Implement the Crank-Nicolson scheme;

▶ Set up periodic boundary conditions;

▶ Set up boundary conditions involving the spatial derivatives of the solution.

No list manipulation is allowed in this tutorial!

I. Cooling of a ball

We consider a ball of radius R. At t = 0, we take it out of a oven where it was at uniform temperature Ti and
we suspend it in the air at temperature Ta. We assume that the temperature field T in the ball is isotropic (i.e.,
it only depends on r in spherical coordinates and on t). Under this assumption, the temperature profile verifies
the following set of equations: 
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where D is the diffusion coefficient in the ball, λ its thermal conductivity, and α the Newton convection coeffi-
cient at the air/ball interface.

We define θ = T − Ta, x = r/R, τ = Dt/R2, θi = Ti − Ta, and c = αR/λ. We can then transform Eq. (1)
into a non-dimensionalized system of equations:
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(2)

Question 1: We want to solve Eq. (2) using a FTCS scheme. We discretize space with a mesh size δ and time
with a time step h: xj = jδ (j ∈ J0, MK with Mδ = 1) and τn = nh (n ∈ J0, NK).

a. Show analytically that the discretized version of the spatial derivative reads, for j ∈ J1, MK,
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, (3)

with xj±1/2 = (j ± 1/2)δ.

b. Deduce the recurrence relation, i.e., the relation between θn+1
j and the {θnk}k≤M ’s for j ∈ J1, M − 1K.
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c. We now need to set up the boundary conditions, i.e., to derive the recurrence relation for j = 0 and j =M .
For j = 0, the recurrence relation reads (the derivation of this formula is not required):

θn+1
0 = θn0 +

6h

δ2
(θn1 − θn0 ) . (4)

For j =M , show that the discretized version of the boundary condition at x = 1 reads:

θnM+1 = θnM−1 − 2cδθnM . (5)

Derive eventually the recurrence relation for j =M by injecting Eq. (5) into Eq. (3).

Question 2: Define a function FTCS_step(theta, x, c, delta, h) which takes as an input the array theta
containing all the values {θnj }j≤M at step n, the array x containing all the values {xj}j≤M , the constant c,
the mesh size δ and the time step h, and modifies in place the array theta such that it contains the values
{θn+1

j }j≤M at step n+ 1.
Hint: To avoid a loop, you can use the function roll of NumPy.

Question 3: We perform an experiment with a ball made of granite, for which λ = 3W/m/K, D =
1.6.10−6m2/s and R = 10 cm. Initially, the ball is at temperature Ti = 800◦C, while the air is at temper-
ature Ta = 20◦C. We take the Newton convection coefficient α = 20W/m2/K.

a. How should you choose h and δ for the algorithm to work? You can set δ to a reasonable value, e.g.,
δ = 0.01, and then find a value of h for which the algorithm works.

b. Integrate the PDE numerically and plot the temperature profile T (r, t) [not θ(x, τ)!] every 15 minutes on
the same graph.

c. Comment on what you see.

Question 4: We reproduce the experiment with a ball of radius R = 5 cm and another ball of radius R = 1 rmm.
Integrate the PDE numerically again and plot the temperature profile T (r, t) at 15 different times between 0 and
2 hours on the same graph. Confront with the previous experiment.

II. Free quantum particle

We want to describe the evolution of a free quantum particle of mass m in 1D initially described by a Gaussian
wave packet

ψ(x, 0) =
1

π1/4
√
σ
e−x2/(2σ2)eikx, (6)

with k = 2π/λ, λ = 5.10−11m, and σ = 10−10m. The evolution of the wavefunction ψ(x, t) is given by the
time-dependent Schrödinger equation
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where the mass of the particle is m = 9.109.10−31 kg. To avoid finite-size effects and to mimic the propagation
of the particle in infinite space, we adopt periodic boundary conditions for the wavefunction and we integrate
on a space domain [−L/2, L/2] with L chosen such that L≫ σ and such that the initial condition verifies the
periodic boundary conditions. We thus choose L = 10−8m. We recall that ℏ = 1.05457182.10−34 kg.m2/s.

Question 1: For Schrödinger equation, the FTCS scheme is unstable. We thus propose to solve the above
equation using a Crank-Nicolson scheme. We discretize space and time as follows: xj = −L/2+ jδ (j ∈ J0, MK
with Mδ = L) and tn = nϵ (n ∈ J0, NK).

a. Derive analytically the recurrence relations between the {ψn+1
j }j≤M ’s and the {ψn

j }j≤M ’s.
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b. By enforcing the periodic boundary conditions, show analytically that the recurrence relations can be recast
into the linear system

AΨ = B, with Ψ =

ψn+1
0
...

ψn+1
M−1

 , (8)

with A a M ×M matrix and B a vector column of size M to be determined.

Question 2: Use the above scheme to solve the Schrödinger equation up to tf = 8.10−16 s. You can take
ϵ = 1.10−19 s and δ = 5.10−12m. Plot the real part of the wavefunction for t = 0 s, t = 2.10−16 s, t = 4.10−16 s,
t = 6.10−16 s and t = 8.10−16 s on the same graph. Comment.
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