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1 Rappels sur les anneaux

1.1 Anneaux, sous-anneaux, morphismes

Un anneau A est un ensemble muni de deux lois internes "`" et "¨"
vérifiant

1. pA,`q est un groupe abélien : son élément neutre est noté 0.

2. La loi "¨" est associative, avec un élément neutre noté 1.

3. La loi "¨" est distributive par rapport à "`" : @x, y, z P A, x ¨py`zq “

x ¨ y ` x ¨ z.

L’anneau est dit commutatif si la loi "¨" est commutative. Dans ces
notes, nous ne considèrons que des anneaux commutatifs, sauf in-
dication contraire. Dans la suite, le produit x ¨ y est noté xy.

Rappelons quelques notions associées à un anneau commutatif A :

1. x P A est inversible si Dy P A tel que xy “ 1 : l’élément y P A est
unique, et il est appelé l’inverse de x.

2. x P A est un diviseur de zéro si x ‰ 0 et si Dy ‰ 0 tel que xy “ 0.

3. x P A est nilpotent si Dn ě 1 tel que xn “ 0.

4. A est dit intègre si @x, y P A, xy “ 0 ùñ x “ 0 ou y “ 0.

5. A est un corps si tout élement non nul de A est inversible.

Définition 1.1 Notons Aˆ l’ensemble des éléments inversibles de A. On
remarque que pAˆ, ¨q est un groupe abélien.

Exercice 1.2 Montrer les faits suivants dans un anneau commutatif A :
— Si x, y P A sont nilpotents, alors x` y est nilpotent.
— Si x P Aˆ et y est nilpotent, alors x` y P Aˆ.
— Si A a un nombre fini d’éléments, alors A intègre ðñ A est un

corps.

Voici quelques exemples d’anneaux commutatifs :
— Z Ă Q Ă R Ă C.
— Z{NZ pour tout N ě 2.
— Anneaux de polynômes ArXs, ArX,Y s, ArX1, . . . , Xns.
— Anneaux de séries formelles ArrXss.
— Anneau produit A :“ A1 ˆ ¨ ¨ ¨ ˆAp.

Exercice 1.3 — Montrer que pArXsqˆ “ Aˆ lorsque A est intègre.
— Montrer que pZ{4ZrXsqˆ possède une infinité d’éléments.
— Montrer que P “

ř

kPN akX
k P ArrXss est inversible ssi a0 P Aˆ.

Définition 1.4 Un sous-ensemble B Ă A est un sous-anneau de A si
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— pB,`q est un sous-groupe de pA,`q.
— @x, y P B, xy P B.
— 1 P B.

Voici des exemples élémentaires de sous-anneaux :
— Z est un sous-anneau de Q.
— ZrXs Ă QrXs Ă RrXs sont des sous-anneaux de CrXs.

Soient A1 et A2 deux anneaux commutatifs. Une application φ : A1 Ñ A2

est un morphisme d’anneaux si
— @a, b P A1, φpa` bq “ φpaq ` φpbq.
— @a, b P A1, φpabq “ φpaqφpbq.
— φp1q “ 1.

On note que l’image de φ, notée φpA1q, est un sous-anneau de A2.

Voici quelques exemples de morphismes.

Exemple 1.5 Soit φ : A Ñ B un morphisme d’anneaux. Alors l’applica-
tion φ̃ : ArXs Ñ BrXs définie par φ̃p

řn
k“0 akX

kq “
řn

k“0 φpakqXk est un
morphisme d’anneaux.

Exemple 1.6 Soit A un sous-anneau de B. Pour tout β P B, l’application
le morphisme d’anneaux ϕβ : ArXs ÝÑ B définie par ϕβp

řn
k“0 akX

kq “
řn

k“0 ak β
k est un morphisme d’anneaux.

L’image de ϕβ est notée Arβs : c’est le plus petit sous-anneau de B conte-
nant A et β.

Ainsi pour tout z P C, on définit les sous-anneaux Zrzs Ă Qrzs de C.

1.2 Idéaux

Soit A un anneau commutatif.

Définition 1.7 I Ă A est un idéal de A si
— pI,`q est un sous-groupe de pA,`q.
— @x P I, @a P A, ax P I.

Définition 1.8 Un idéal I Ă A est dit principal s’il existe a P A tel que
I “ txa, x P Au. Cet idéal, noté paq ou bien aA, est le plus petit idéal de A
contenant a.

Nous avons des opérarions élémentaires sur les idéaux. Soient I, J deux
idéaux de A. On définit alors les idéaux suivants :

— I X J ,
— I ` J :“ ta` b; pa, bq P I ˆ Ju,
— IJ “ t

řn
k“1 akbk; pak, bkq P I ˆ J,@ku.
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De manière générale, si Ik, k P X est une famille d’idéaux de A, l’inter-
section

č

kPX
Ik

est un idéal de A.
A toute partie T Ă A, on associe

pT q :“
č

I idéal, TĂI

I,

qui est le plus petit idéal contenant T .
Voici quelques propriétés faciles à démontrer.

Proposition 1.9 — Soit I Ă A un idéal. Alors I “ A ðñ 1 P I.
— Si A est intègre, pxq “ pyq ðñ Du P Aˆ, x “ uy.
— Si φ : A Ñ B est un morphisme d’anneaux, alors

kerpφq :“ tx P A, φpxq “ 0u

est un idéal de A.
— Si T “ tx1, . . . , xpu alors, pT q “ px1q ` ¨ ¨ ¨ ` pxpq.
— I ` J “ pI Y Jq.
— IJ Ă I X J .
— IJ “ I X J si I ` J “ A.

Le radical d’un idéal I Ă A est l’idéal suivant :
?
I :“ tx P A, Dn ě 1, xn P Iu.

Petit exercice d’entrainement : vérifier que
?
I est bien un idéal de A.

Le radical de I “ t0u est appelé le nilradical de A :

NilpAq :“ tx P A, x nilpotentu.

Exercice 1.10 — Dans Z, expliciter l’idéal
a

p300q.
— Expliciter le nilradical de l’anneau Z{36Z.

1.3 Anneaux quotients

Soit I un idéal d’un anneau commutatif A. Considérons la relation d’équi-
valence „I sur A définie par : @x, y P A,

x „I y ðñ x´ y P I.

La classe d’équivalence de x P A est le sous-ensemble x :“ x` I Ă A.

Définition 1.11 1. On note A{I Ă PpAq l’ensemble des classes d’équi-
valences de „I .
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2. On note πI : A Ñ A{I la surjection définie par πpxq “ x.

Proposition 1.12 A{I possède une structure d’anneau pour laquelle l’ap-
plication πI : A Ñ A{I est un morphisme d’anneau.

La loi "`" sur A{I est définie par les relations

x` y “ x` y, @x, y P A.

L’égalité précédente est bien définie car si x “ a et y “ b, alors x` y “ a` b.
L’élément neutre pour pA{I,`q est 0.

La loi "¨" sur A{I est définie par les relations

x ¨ y “ xy, @x, y P A.

L’égalité précédente est bien définie car si x “ a et y “ b, alors xy “ ab.
L’élément neutre pour pA{I, ¨q est 1.

Voici un exemple fondamental.

Exemple 1.13 Considérons l’anneau quotient M :“ RrXs{I où I est l’idéal
principal pX2 ` 1q.

1. Vérifier que pour tout m P M , il existe un unique couple pa, bq P R2

tel que m “ a` bX.

2. Vérifier que l’application φ :M Ñ C, définie par φpa` bXq :“ a`ib,
est un isomorphisme d’anneaux.

Soit φ : A Ñ B un morphisme d’anneau. Notons πφ : A Ñ A{ kerpφq le
morphisme canonique.

Proposition 1.14 L’application φ : A{ kerpφq Ñ B définie par la relation
φpxq “ φpxq,@x P A, est un morphisme d’anneau injectif. De plus, on a la
relation φ “ φ ˝ πφ.

Considérons l’application φ´1 : PpBq Ñ PpAq définie par la relation
φ´1pYq “ tx P A,φpxq P Yu pour tout Y Ă B.

Proposition 1.15 1. Si J est un idéal de B, alors φ´1pJq est un idéal
de A contenant kerpφq.

2. Supposons φ surjectif. Dans ce cas :
— φ´1 détermine une bijection entre les idéaux de B et les idéaux de

A qui contiennent kerpφq.
— Pour tout idéal J de B, le morphisme φ induit un isomorphisme

A{φ´1pJq
„

ÝÑ B{J .
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Considérons un premier exemple d’application de la proposition 1.14.
Soit α P A, et πα : A Ñ A{αA le morphisme quotient (ici αA désigne l’idéal
engendré par α). On a vu dans l’exemple 1.5 que πα permet de définir un
morphisme d’anneaux

π̃α : ArXs Ñ A{αArXs.

On voit alors que kerpπ̃αq est égal à l’idéal αArXs. Grâce à la proposition
1.14 on sait que le morphisme π̃α induit un isomorphisme d’anneaux

ArXs{αArXs
„

ÝÑ A{αArXs. (1)

Considérons un autre exemple de passage au quotient. Soient I Ă J deux
idéaux de A. On considère le morphisme

πI : A Ñ A{I.

L’image πIpJq est un idéal de A{I que l’on note J{I. On considère alors le
quotient de l’anneau A{I par rapport à l’idéal J{I. C’est un anneau noté
pA{Iq{pJ{Iq. Considérons le morphisme quotient πJ{I : A{I Ñ pA{Iq{pJ{Iq,
et le morphisme d’anneaux

φ “ πJ{I ˝ πI : A Ñ pA{Iq{pJ{Iq.

Proposition 1.16 1. φ est surjectif.

2. Le noyau de φ est égal à J .

3. Le morphisme φ : A{J Ñ pA{Iq{pJ{Iq est bijectif.

Nous allons regarder un exemple qui permettra de comprendre l’utilité
de l’isomorphisme A{J » pA{Iq{pJ{Iq.

On considère l’anneau quotient K “ ZrXs{p3, 1 ` X2q. Ici J “ p3, 1 `

X2q “ p3q ` p1 ` X2q est un idéal de A “ ZrXs contenant I “ p3q. En
utilisant (1), on voit que l’anneau quotient A{I est isomorphe à Z{3ZrXs et
que l’ideal J{I est égal à pX2 ` 1q Ă Z{3ZrXs. Ainsi l’anneau pA{Iq{pJ{Iq

est isomorphe à Z{3ZrXs{pX2 ` 1q. D’après la proposition précédente, on
peut conclure que

K » Z{3ZrXs{pX2 ` 1q.

On verra à la section 1.7 que Z{3ZrXs{pX2 ` 1q est un corps de cardinal 9.

On termine cette section avec le lemme chinois.

Soient I, J deux idéaux de A tels que I ` J “ A. On considère le mor-
phisme d’anneau φ : A Ñ A{I ˆA{J défini par φpxq “ pπIpxq, πJpxqq. C’est
immédiat de voir que kerpφq “ IXJ : de plus la relation I`J “ A implique
que I X J “ IJ . Vérifions maintenant que φ est surjective.
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Comme I ` J “ A, il existe a P I et b P J tel que a` b “ 1. Considérons
pπIpxq, πJpyqq P A{I ˆA{J et posons z “ ay` bx. Les relations ax` bx “ x
et ay`by “ y permettent de voir que πIpzq “ πIpxq, et πJpzq “ πJpyq. Ainsi
φpzq “ pπIpxq, πJpyqq.

Théorème 1.17 (Lemme chinois) Soient I, J deux idéaux de A tels que
I`J “ A. Alors l’application φ : A{IJ Ñ A{IˆA{J est un isomorphisme
d’anneaux.

1.4 Localisation

Définition 1.18 Une partie S Ă A est dite multiplicative si

1. 1 P S,

2. a, b P S ùñ ab P S.

Nous allons construire un anneau S´1A et un morphisme j : A Ñ S´1A
tel que jpSq Ă pS´1Aqˆ.

Pour cela, on considère l’ensemble A ˆ S que l’on muni de la relation
d’équivalence R définie de la manière suivante : pa, sqRpb, tq ðñ Du P S tel
que upat´ bsq “ 0. On note S´1A l’ensemble quotient Aˆ S{R.

La classe de pa, sq dans S´1A est noté a{s, et on note j : A Ñ S´1A
l’application jpaq “ a{1.

Proposition 1.19 1. S´1A admet une structure d’anneau pour laquelle
j : A Ñ S´1A est un morphisme d’anneaux.

2. La loi "`" sur S´1A est définie par les relations a{s ` b{t “ pat `

bsq{st.

3. La loi "¨" sur S´1A est définie par les relations a{s ¨ b{t “ ab{st.

On remarque que 1{s est l’inverse de jpsq pour tout s P S.

Remarque 1.20 1. Si 0 P S, alors l’anneau S´1A est réduit à t0u.

2. Si S Ă Aˆ, alors j : A Ñ S´1A est un isomorphisme.

Un exemple important est celui d’un anneau A intègre. On peut alors
considérer la partie multiplicative S :“ A´ t0u. Dans ce cas, l’anneau S´1A
est un corps, appelé le corps de fraction de A. Par exemple, cette construction
permet de construire Q à partir de Z : Q est le corps de fraction de Z.

Voici un autre exemple : considérons la partie multiplicative S “ t10k, k P

Nu de l’anneau Z. Dans ce cas, S´1Z est le sous-anneau de Q formé des
nombres décimaux :

S´1Z » t
x

10k
, x P Z, k P Nu.
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Exercice 1.21 Notons As l’anneau S´1A, lorsque S “ tsk, k P Nu. Consi-
dérons le morphisme d’anneau φ : ArXs Ñ As qui envoie un polynôme P pXq

sur P p1{sq.

1. Vérifier que φ est surjectif.

2. Montrer que kerpφq est égal à l’idéal p1 ´ sXq.

3. En déduire que ArXs{p1 ´ sXq » As.

1.5 Idéaux premiers, idéaux maximaux

On veut comprendre sous quelles conditions l’anneau quotient A{I est
intègre, ou est un corps.

Définition 1.22 1. Un idéal I Ă A est dit maximal si I ‰ A, et si pour
tout idéal J contenant I, on a J “ I ou bien J “ A.

2. Un idéal I Ă A est dit premier si @x, y P A, xy P I ùñ x P I ou
y P I.

On peut caractériser le fait que I Ă A est maximal de la manière sui-
vante : I ‰ A et pour tout a R I on a I ` paq “ A.

Proposition 1.23 1. A{I est intègre ssi l’idéal I est premier.

2. A{I est un corps ssi l’idéal I est maximal.

Exemple 1.24 Dans l’anneau RrX,Y s :

1. L’idéal pXq est premier, mais pas maximal.

2. L’idéal pXq ` pY q est maximal.

Théorème 1.25 (Krull) Soit A un anneau (non-nul) et I un idéal de A
distinct de A. Il existe un idéal maximal M Ă A contenant I.

La preuve de ce théorème utilise le lemme de Zorn :

Lemme 1.26 (Zorn) Soit E un ensemble munie d’une relation d’ordre 1

ď. On suppose que toute partie F Ă E totalement ordonnée 2 possède un
majorant 3.

Alors E possède un élément maximal 4

1. Attention, l’ensemble pE,ďq n’est à priori pas totalement ordonné.
2. Pour tout x, y P F , x ď y ou y ď x.
3. m P E est un majorant de F si @x P F , x ď m
4. M P E est maximal si @x P E , M ď x ùñ M “ x.

9



La preuve du Théorème de Krull s’obtient en considérant l’ensemble E
des idéaux J de A tels que I Ă J ‰ A : E est non-vide et il est ordonné
au moyen de la relation d’inclusion Ă. On voit alors que pour partie F Ă E
totalement ordonnée, l’élément

JF “
ď

JPF
J

est un idéal de E qui majore tous les éléments de F . D’après le lemme de
Zorn, l’ensemble pE ,Ăq admet donc un élément maximal Jo. Par définition,
Jo est un idéal maximal de A contenant I. 2

1.6 Divisibilité dans un anneau intègre

Dans cette section, A est un anneau intègre.

Définition 1.27 Soient a, b P A´ t0u. On dit que a divise b (notation azb)
s’il existe q P A tel que b “ aq. Cette dernière condition est équivalent à
demander que pbq Ă paq.

Définition 1.28 On dit que a, a1 P A ´ t0u sont associés s’il existe un élé-
ment inversible u P Aˆ tel que a1 “ ua.

Lemme 1.29 Soient a, b P A ´ t0u. Les conditions suivantes sont équiva-
lentes :

— azb et bza,
— paq “ pbq,
— a et b sont associés.

Définition 1.30 Soient a, b P A´t0u. On dit que a et b sont premiers entre
eux ou sans facteur commun, si tout diviseur commun à a et b est inversible.
Ceci équivaut à dire que : A est le seul idéal principal contenant a et b.

Définition 1.31 Soit A un anneau intègre.
1. a P A´ t0u est dit irréductible si a R Aˆ et si @x, y P A on a :

a “ xy ùñ x P Aˆ ou y P Aˆ.

2. a P A´ t0u est dit premier si a R Aˆ et si @x, y P A, on a :

azxy ùñ azx ou azy.

3. On remarque que “a premier” ùñ “a irréductible”.

Voici deux faits généraux, valables dans un anneau intègre : pour tout
a R Aˆ Y t0u,

— a est premier si et seulement si l’idéal paq est premier.
— a est irréductible si l’idéal paq est maximal.
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1.7 Anneaux principaux

Définition 1.32 Un anneau commutatif A est dit principal si
1. A est intègre.
2. Tout idéal de A est principal.

Définition 1.33 Un anneau commutatif A est dit euclidien si
1. A est intègre,
2. Il existe ϕ : A´ t0u Ñ N satisfaisant la condition suivante : pour tout

pa, bq P AˆA´ t0u il existe q, r P A vérifiant
— a=bq+r
— r=0 ou bien ϕprq ă ϕpbq.

Exemple 1.34 1. L’anneau Z est euclidien. Ici on prend ϕpnq “ |n|.
2. Si K est un corps, l’anneau KrXs est euclidien. Ici ϕ : KrXs´t0u Ñ N

est l’application “degré”.
3. L’anneau Zris “ ta`ib, a, b P Zu est euclidien. Ici ϕpa`ibq “ a2`b2.

Considérons l’anneau quotient KrXs{pP q où P est un polynôme non nul.
L’utilisation de la division euclidienne dans KrXs donne une preuve directe
du fait suivant.

Exercice 1.35 KrXs{pP q est un K-espace vectoriel de dimension finie. Si
doP “ n ě 1, alors t1, . . . , X

n´1
u est une base de KrXs{pP q.

La prochaine proposition est fondamentale.

Proposition 1.36 Tout anneau euclidien est principal.

La preuve de ce fait est élémentaire. Si I est un idéal non nul d’un anneau
euclidien, on considère b P I ´ t0u tel que ϕpbq “ minϕpI ´ t0uq. On montre
alors, au moyen de la division euclidienne, que I “ pbq.

Terminons cette section en abordant les questions de divisibilité dans un
anneau principal.

Proposition 1.37 Dans un anneau principal A, on a l’équivalence des as-
sertions suivantes pour a P A´ t0u :

1. L’anneau quotient A{paq est intègre.
2. a est premier.
3. a est irréductible.
4. L’idéal paq est maximal.
5. L’anneau quotient A{paq est un corps.
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On remarque que les implications suivantes

1. ô 2. ñ 3. ð 4. ô 5.

sont valables dans n’importe quel anneau intègre.
L’implication 3. ñ 2. est appelée le Lemme d’Euclide : dans un anneau

principal, si a divise bc et a est irréductible, alors a divise b ou c.
La proposition 1.37, appliquée aux anneaux principaux Z et KrXs, donne

le résultat suivant.

Proposition 1.38 1. Considérons l’idéal pnq Ă Z associé à n ě 2.
Alors pnq maximal ðñ pnq premier ðñ n est un nombre premier.

2. Considérons l’idéal pP q Ă KrXs associé à un polynôme non constant
P . Alors pP q maximal ðñ pP q premier ðñ P est un polynôme
irréductible.

Exemple 1.39 À la section 1.3, on a considéré l’anneau quotient K :“
Z{3ZrXs{pX2 ` 1q. Le polynôme X2 ` 1 est irréductible dans Z{3ZrXs car il
ne possède pas de racine dans Z{3Z. Comme l’anneau Z{3ZrXs est principal,
on peut conclure que K est un corps.

Dans un anneau principal, on peut définir la définition de “pgcd” et
“ppcm” comme suit.

Définition 1.40 Soient A un anneau principal et a, b P A´ t0u.

1. pgcdpa, bq est défini (modulo Aˆ) par la relation paq`pbq “ ppgcdpa, bqq.

2. ppcmpa, bq est défini (modulo Aˆ) par la relation paqXpbq “ pppcmpa, bqq.

Dans un anneau principal, les assertions suivantes sont équivalentes :
— a et b sont sans facteur commun,
— paq ` pbq “ A,
— Dx, y P A, ax` by “ 1.

C’est le théorème de Bezout. Ce résultat permet d’obtenir une géné-
ralisation du lemme d’Euclide qui est le lemme de Gauss : soient a, b, c P A
non-nuls tel que a divise bc. Si a et b sont sans facteur commun alors a divise
c.

On considère maintenant une partie IrrpAq Ă A formée d’éléments irré-
ductibles et satisfaisant la condition suivante : pour tout irréductible p1 P A,
il existe un unique pu, pq P Aˆ ˆ IrrpAq tel que p1 “ up.

À tout p P IrrpAq, on associe la fonction valuation vp : A ´ t0u Ñ N
grâce à la relation

vppxq “ suptk P N, pkzxu.

Le fait que vppxq soit finie est assurée au moyen du résultat suivant.

12



Lemme 1.41 Soit A anneau principal.

1. Toute suite croissante d’idéaux de A est stationnaire.

2. Considérons une suite pxkq d’éléments non-nuls de A tel que @k P

N, xk`1zxk. Alors, DN P N, tel que @k, ℓ ě N , xk et xℓ sont associés.

On voit sans trop de difficultés que les énoncés 1. et 2. sont équivalents.
Pour vérifier le point 1., on procède ainsi. Si Ik Ă Ik`1, k P N est une
suite croissante d’idéaux, on vérifie que J “

Ť

kPN Ik est un idéal. Comme
A est principal, il existe a P

Ť

kPN Ik tel que J “ paq. Soit N P N tel que
a P IN : comme paq Ă IN Ă J “ paq, on obtient IN “ J . Cela implique que
@k ě N, Ik “ Ik`1. 2

On peut maintenant énoncer le théorème de décomposition.

Théorème 1.42 Soit A un anneau principal. Pour tout x P A´t0u il existe
un unique u P Aˆ tel que

x “ u
ź

pPIrrpAqx

pvppxq

où IrrpAqx “ tp P IrrpAq, vppxq ‰ 0u est fini.

Corollaire 1.43 Pour tout x, y P A´ t0u, on a

pgcdpx, yq “
ź

pPIrrpAq

pminpvppxq,vppyqq et ppcmpx, yq “
ź

pPIrrpAq

pmaxpvppxq,vppyqq

Dans cette notation, on utilise la convention p0 “ 1 pour tout p P IrrpAq.

On remarque en particulier que pour a, b P A ´ t0u, a divise b si et
seulement si vppaq ď vppbq, pour tout p P IrrpAq.

1.8 Anneaux factoriels

Partant d’un anneau A principal, l’anneau de polynômes ArXs n’est pas
nécéssairement principal. Par exemple, dans ZrXs, l’idéal p2q`pXq n’est pas
principal. Le but de cette section est d’introduire une notion plus faible qui
sera “stable” pour l’opération A; ArXs.

Définition 1.44 A est un anneau factoriel si
— A est intègre.
— @a P A´ t0u, Dp1, . . . , pN irréductibles tels que

a “ p1 ¨ ¨ ¨ pn.
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— Cette décomposition est unique au sens suivant. Si

a “ p1 ¨ ¨ ¨ pn “ p1
1 ¨ ¨ ¨ p1

m

alors m “ n et il existe une permutation τ P Sn telle que @k, ppkq “

pp1
σpkq

q.

Grâce au théorème 1.42 nous avons le résultat suivant.

Théorème 1.45 Tout anneau principal est factoriel.

Ainsi, nous savons que l’anneau Zris est factoriel, car il est principal. Par
contre, on peut facilement montrer que l’anneau Zri

?
3s n’est pas factoriel :

il suffit d’examiner la relation 4 “ 2 ¨ 2 “ p1 ` i
?
3qp1 ´ i

?
3q dans Zri

?
3s.

Comme les trois éléments 2, 1 ` i
?
3, 1 ` i

?
3 sont irréductibles dans Zri

?
3s

(pourquoi ?), on a deux décompositions distinctes de 4 comme produit d’ir-
réductibles : cela contredit la condition d’unicité d’une décomposition en
produit d’irréductibles pour les anneaux factoriels.

Remarque 1.46 Dans un anneau factoriel, on peut encore définir les “pgcd”
et les “ppcm” au moyen des formules du lemme 1.43.

Le résultat principal de la section est le suivant.

Théorème 1.47 Si A est factoriel, alors l’anneau de polynômes ArXs est
factoriel.

Voici les grandes étapes de la preuve.
Pour tout polynôme non-nul P “

řn
k“1 akX

k P ArXs, on définit son
contenu

cpP q “ pgcdpa0, . . . , anq.

On dira que P P ArXs est primitif, si cpP q “ 1.

Lemme 1.48 À tout p P A irréductible, on associe le morphisme canonique
φp : ArXs Ñ A{ppqrXs. Alors P P ArXs est primitif si φppP q ‰ 0 pour tout
p irréductible.

Le lemme précédent permet de montrer facilement le résultat suivant.

Lemme 1.49 @P,Q P ArXs, on a cpPQq “ cpP qcpQq.

On considère maintenant le corps de fraction K de A.

Proposition 1.50 Les polynômes irréductibles de ArXs sont
— Les éléments irréductibles de A (i.e. les polynômes de degré 0).
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— Les polynômes primitifs et de degré ě 1 dans ArXs qui sont irréduc-
tilbles dans KrXs.

On termine la preuve du théorème 1.47 de la manière suivante.
Soit P P ArXs un polynôme non nul.

1. On considère la décomposition P “ cpP qP̃ avec P̃ P ArXs primitif.

2. Dans l’anneau principal KrXs, on a la décomposition en irréductibles

P̃ “ απ1 ¨ ¨ ¨πn

où α P K ´ t0u et chaque πk est un polynôme primitif de ArXs qui
est irréductilble dans KrXs.

3. En utilisant le lemme 1.49, on montre que α P Aˆ.

4. En décomposant cpP q “ u p1 ¨ ¨ ¨ pm dans l’anneau factoriel A, on
obtient dans ArXs la décomposition de P en irréductibles

P “ uα p1 ¨ ¨ ¨ pm π1 ¨ ¨ ¨πn.

On vérifie facilement que cette décomposition est unique. 2

Le théorème 1.47 nous permet de produire beaucoup d’exemples d’an-
neaux factoriel qui ne sont pas principaux :

— ZrXs,
— ZrX1, . . . , Xns,
— KrX1, . . . , Xns, si n ě 2 et K un corps.

Certaines propriétés des anneaux principaux sont encore valables dans
les anneaux factoriels.

Proposition 1.51 Supposons A factoriel et soient a, b, c P A´ t0u.
(Lemme d’Euclide) a est irréductible et azbc ùñ , azb ou azc.
(Lemme de Gauss) Si azbc et a, b sont sans facteur commun, alors

azc.

On remarque que le Lemme de Gauss est équivalent à l’énoncé suivant :
si a, b sont sans facteur commun et divisent c, alors abzc.

Terminons cette section avec des considérations élémentaires sur les po-
lynômes irréductibles de ArXs de petit degré (voir Proposition 1.50). Dans
ce qui suit, a, b, c, . . . désignent des éléments d’un anneau factoriel A.

Exercice 1.52 — a est irréductible dans ArXs si et seulement si a est
irréductible dans A.

— a` bX est irréductible dans ArXs si et seulement si a et b sont sans
facteurs communs.
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— P pXq “ a`bX`cX2 est irréductible dans ArXs si et seulement si a,
b et c sont sans facteurs communs et si, de plus, P pXq n’admet pas
de racines dans la corps de fractions de A.

— P pXq “ a`bX`cX2`dX3 est irréductible dans ArXs si et seulement
si a, b, c et d sont sans facteurs communs et si, de plus, P pXq n’admet
pas de racines dans la corps de fractions de A.

Notons que tout se complique pour les polynômes de degré supérieur à 4.
Par exemple, P pXq “ pX2 ´2qpX2 `1q “ X4 ´X2 ´2 n’est pas irréductible
dans ZrXs alors qu’il n’admet aucune racine rationnelle.

2 Modules sur un anneau

La notion de module est la généralisation naturelle de celle d’espace vec-
toriel.

2.1 Premières définitions

Dans toute la suite, A désigne un anneau commutatif.

2.1.1 Modules et sous-modules

Définition 2.1 Un A-module M est un groupe abélien munie d’une mul-
tiplication externe A ˆ M ÝÑ M, pa,mq ÞÑ a ¨ m vérifiant : @a, b P A,
@m,n P M

a) a ¨ pm` nq “ a ¨m` a ¨ n,

b) pa` bq ¨m “ a ¨m` b ¨m,

c) a ¨ pb ¨mq “ ab ¨m,

d) 1 ¨m “ m.

On remarque que @m P M , on a 0 ¨m “ 0 et p´1q ¨m “ ´m.
À un groupe abélien pM,`q, on associe l’anneau (à priori, non-commutatif)

EndpMq :“ tf :M Ñ M morphisme de groupeu.

Une structure de A-module sur M correspond à la donnée d’un morphisme
d’anneaux ρ : A Ñ EndpMq : on aura ρpaqpmq “ a ¨m.

Exemple 2.2 ‚ Si A “ K est un corps, la structure de K-module correspond
à celle de K-espace vectoriel.

‚ Si A “ Z, la structure de Z-module correspond à celle de groupe abélien.

Exemple 2.3 Voici quelques exemples de A-modules :
— A,
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— An,
— un idéal I Ă A.

On peut aussi associer à un ensemble X (non-vide), les A-modules sui-
vants :

— AX “ tλ : X Ñ Au,
— ApX q “ tλ : X Ñ A, tel que tx, λpxq ‰ 0u est finiu

Exemple 2.4 Soit φ : A Ñ B un morphisme d’anneau. La multiplication
externe a ¨ b :“ φpaqb munit B d’une structure de A-module.

Par exemple, si I est un idéal de A, le morphisme canonique A Ñ A{I
permet de voir A{I comme un A-module.

Soit E un K-espace vectoriel. Tout endomorphisme u P EndKpEq munit
E d’une structure de KrXs-module, le produit externe étant défini par la
relation

P pXq ¨ x “ P puqx, @P pXq P KrXs, @x P E. (2)

Respectivement, si E est un KrXs-module, alors :
— E est un K-espace vectoriel,
— Du P EndKpEq, tel que le produit externe est défini par la relation (2).

Définition 2.5 Si E est un K-espace vectoriel, on note Eu le KrXs-module
associé à u P EndKpEq.

Définition 2.6 Soit M un A-module. Une partie N Ă M est un sous A-
module si

— N est un sous groupe de pM,`q,
— @a P, A, aN :“ ta ¨ n, n P Nu est contenu dans N .

Dans ce cas, N admet une structure de A-module, induite par celle de M .

Exemple 2.7 ‚ Les sous A-module de A sont les idéaux de A.
‚ Si A “ Z, un sous Z-module de M est juste un sous groupe de pM,`q.
‚ Soit Eu le KrXs-module associé à u P EndKpEq. Alors les sous KrXs-

modules de Eu sont les sous espace vectoriels F de E tels que upF q Ă F .

Considérons un A-module M . A chaque m P M , on associe

annApmq “ ta P A, a ¨m “ 0u

Lemme 2.8 Pour tout m P M , annApmq est un idéal de A.

Introduisons maintenant la notion de torsion d’un module.

Définition 2.9 Soit M un A-module. On note Mtor, l’ensemble des m P M
tels que annApmq ‰ t0u. Si l’anneau A est intègre, on vérifie facilement que
Mtor est un sous A-module de M : on l’appelle la torsion de M .

M est dit sans torsion si Mtor “ t0u.
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Exercice 2.10 1. Soit G un groupe abélien, vu comme un Z-module.
— Montrer que si G est fini, alors Gtor “ G.
— Donner un exemple où G est sans torsion.

2. Soit Eu le KrXs-module associé à u P EndKpEq. Montrer que si
dimKE est finie, alors pEuqtor “ Eu.

3. On considère l’anneau KrXs comme un KrXs-module. Dans ce cas,
montrer que KrXs est sans torsion.

Considérons maintenant le cas d’un A-module M et d’un sous A-module
N Ă M .

Proposition 2.11 Le groupe quotient M{N admet une structure canonique
de A-module. Le produit externe est défini par la relation suivante dans
M{N :

a ¨m :“ a ¨m, @a P A,@m P M.

2.1.2 Morphismes entre modules

Soient M et N deux A-modules. Une application f : M Ñ N est un
morphisme de A-modules si

— f est un morphisme de groupe abélien,
— @a P A,@m P M , on a fpa ¨mq “ a ¨ fpmq.

Définition 2.12 On note homApM,Nq, l’ensemble des morphismes de A-
modules f :M Ñ N . Lorsque M “ N , on note EndApMq :“ homApM,Mq.

Lorsque A “ Z, homZpM,Nq désigne l’ensemble des morphismes de
groupes f :M Ñ N .

Exercice 2.13 On considère un KrXs-module Eu. Montrer que f P EndKrXspEq

si et seulement si f P EndKpEuq et de plus f ˝ u “ u ˝ f .

On remarque que pour tout f P homApM,Nq :
— kerpfq est un sous A-module de M ,
— Imagepfq est un sous A-module de N .

Exercice 2.14 Rappelons que l’anneau A est commutatif.
— Montrer que homApM,Nq admet une structure canonique de A-module.
— Identifiez EndApMq à un sous-anneau de EndpMq.

Considérons maintenant trois A-modules M , N et P . La composition
pf, gq ÞÑ f ˝ g définit une application

homApM,Nq ˆ homApP,Mq ÝÑ homApP,Nq.

Un morphisme φ :M Ñ N est un isomorphisme de A-modules si l’une
des deux conditions (équivalentes) suivantes est satisfaite :
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— D g P homApN,Mq tel que φ ˝ g “ IdN et g ˝ φ “ IdM .

— φ est bijective.

Exercice 2.15 Soient a, b ě 2. Montrer que le Z-module homZpZ{aZ,Z{bZq

est isomorphe à Z{cZ où c “ pgcdpa, bq.

Exercice 2.16 Montrer que le A-module homApAk, Aℓq est isomorphe au
A-module Mℓ,kpAq formé des matrices de tailles ℓˆ k à coefficients dans A.

Exercice 2.17 Montrer que le A-module AN est isomorphe à ArrXss, tandis
que ApNq est isomorphe à ArXs.

Considérons maintenant une matrice X P MnpAq. Celle-ci définit un
morphisme X̃ : An Ñ An, v ÞÑ Xv. L’application X ÞÑ X̃ définit un isomor-
phisme entre MnpAq et EndApAnq.

Lemme 2.18 @X P MnpAq les énoncés suivants sont équivalents :
— DY P MnpAq tel que XY “ In.
— DY P MnpAq tel que Y X “ In.
— X̃ : An Ñ An est une application bijective.
— detpXq P Aˆ.

Exercice 2.19 Déterminer a, b P Z de telle manière à ce que le morphisme
φ : Z2 Ñ Z2 définie par φpx, yq “ p50x` ay, 21x` byq soit bijectif.

2.1.3 Factorisation

Soit f :M Ñ N un morphisme de A-modules. On considère le A-module
quotient M{ kerpfq. Notons π : M Ñ M{ kerpfq la projection canonique :
c’est un morphisme de A-modules.

Proposition 2.20 L’application f : M{ kerpfq Ñ N , définie par les rela-
tions

fpmq “ fpmq, @m P M

est un morphisme injectif de A-modules. On a alors la factorisation

f “ f ˝ π.

Considérons un A-module M et un ideal I de A.

Lemme 2.21 Supposons que @m P M , I Ă annApmq. Dans ce cas, M pos-
sède une structure de A{I-module : le produit externe A{I ˆ M Ñ M est
défini par la relation

a ¨m :“ a ¨m, @a P A,@m P M.

Considérons l’exemple du groupe abélien pZ{2Zqn. On voit que @m P

pZ{2Zqn, 2Z Ă annZpmq. Ainsi la structure de Z-module de pZ{2Zqn induit
une structure de Z{2Z-module : cette dernière est en fait la structure de
Z{2Z-espace vectoriel sur pZ{2Zqn.
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2.1.4 Opérations sur les modules et sous-modules

Nous allons définir quelques opérations élémentaires.

‚ Intersection : Si Ns, s P S est une famille de sous A-modules de M ,
alors

Ş

sPS NS est un sous A-module de M .

‚ Réunion croissante : Si Nk, k P N est une famille croissante 5 de sous
A-modules de M , alors

Ť

kPNNk est un sous A-module de M .

‚ Sous A-module engendré : Si X Ă M , on note ă X ą le plus petit
sous A-module de M contenant X : il est formé de tous les éléments de la
forme

ř

mPX λm ¨m, où les λm P A sont tous nuls à part un nombre fini. On
appelle ă X ą le sous A-module engendré par X

‚ Somme de sous A-modules : Si Ns, s P S est une famille de sous A-
modules de M , on note

ř

sPS Ns, le sous A-module engendré par
Ť

sPS NS :
il est formé de toutes les sommes (finies)

ř

sPSms où les ms P Ns sont tous
nuls à part un nombre fini.

‚ Produit cartésien : Si M1, . . . ,Mp sont des A-modules, le produit
cartésien M1 ˆ ¨ ¨ ¨ ˆ Mp admet une structure canonique de A-module. On
notera aussi

p
à

k“1

Mk

ce produit cartésien.

‚ Produit par un idéal : Si M est un A-module et que I est un idéal de
A, on note IM le sous A-module de M formé des sommes (finies)

ř

λPI λmλ,
où les λ P I sont tous nuls à part un nombre fini et mλ P M,@λ P I.

Lorsque G est un groupe abélien, on peut considérer l’idéal pnq Ă Z et le
sous-groupe pnqG qui est égal à nG :“ tnx, x P Gu.

Exercice 2.22 Montrer que M{IM admet une structure de A{I-module.

Ainsi, lorsque G est un groupe abélien, pour tout nombre premier p ě 2,
le quotient G{pG admet une structure de Z{pZ-espace vectoriel.

2.2 Modules de type fini, modules libres

Soit M un A-module et S Ă M une partie non vide.

— S Ă M est dite génératrice si ă S ą“ M .

— S Ă M est dite libre, si pour toute application λ : S Ñ A nulle
presque partout,

ř

sPS λpsq ¨ s “ 0 seulement si @s P S, λpsq “ 0.

— S Ă M est une base, si S est libre et génératrice.

5. @k P N, Nk Ă Nk`1
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On peut reformuler les notions précédentes en considérant le morphisme
de A-modules φS : ApSq Ñ M défini par la relation

φSpλq :“
ÿ

sPS

λpsq ¨ s.

Alors
— S est génératrice ðñ φS est surjective.

— S est libre ðñ φS est injective.

— S est une base ðñ φS est bijective.

Définition 2.23 — Un A-module est libre s’il admet une base.

— Un A-module est de type fini s’il admet une partie génératrice finie.

Voici le résultat principal de cette section.

Théorème 2.24 Soit M un A-module non-nul que l’on suppose libre et de
type fini. Alors il admet une base finie. De plus toutes les bases de M ont le
même cardinal, qu’on appelle le rang de M , et que l’on note rangpMq ě 1.

Remarque 2.25 Si M est le A-module nul, son rang est fixé égal à 0.

Le théorème 2.24 nous permet de voir qu’un A-module (non-nul) M est
libre et de type fini si et seulement si il est isomorphe à un certain Aℓ avec
ℓ “ rangpMq.

Exemple 2.26 — Pour tout ℓ ě 1, Aℓ est un A-module libre.
— ArXs est un A-module libre mais il n’est pas de type fini.
— Z{nZ, pour n ě 2 est un Z-module de type fini, mais il n’est pas libre.

Remarque 2.27 Si M est un A-module libre et A est intègre, alors Mtor “

t0u.

Lorsque l’on travaille avec un K-espace vectoriel E, on a les deux pro-
priétés suivantes :

1. Une base de E est une famille libre maximale.
2. Une base de E est une famille génératrice minimale.
Notons que ces deux énoncés ne sont plus valables lorsque l’on travaille

avec des A-modules. Voici deux exemples élémentaires obtenus avec le Z-
module Z :

1. t2u est une famille libre maximale de Z, mais ce n’est pas une base.
2. t3, 5u est une famille génératrice minimale de Z, mais ce n’est pas une

base.
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2.3 Modules de type fini sur un anneau principal

Dans tout ce paragraphe, A désigne un anneau principal.
Nous commençons par étudier tout d’abord les sous A-modules d’un A-

module libre de rang fini.

2.3.1 Sous-modules d’un module libre de rang fini

Nous avons un premier résultat important.

Théorème 2.28 Soit A un anneau principal. Alors tout sous-module N de
Aℓ est libre et de rang fini k ď ℓ.

La preuve se fait par récurrence sur ℓ ě 1.
Traitons le cas ℓ “ 1. Un sous-module N de A est un idéal de A. Comme

A est principal, il existe a P A tel que N “ paq. Si a “ 0, alors N “ 0 est
rangpMq “ 0. Si a ‰ 0, l’application x P A ÞÑ xa P N est un isomorphisme
de A-modules. Cela montre que N est libre de rang 1.

Supposons le résultat vrai au rang ℓ, et considérons un sous module N
de Aℓ`1. Notons π : Aℓ`1 Ñ A la projection sur la dernière coordonnée :
πpx1, . . . , xℓ`1q “ xℓ`1. L’image πpNq est un idéal de A et kerpπq s’identifie
avec le sous-module Aℓ Ă Aℓ`1. L’intersection N1 “ N X kerpπq est un
sous-module de An. Nous avons deux cas

— Si πpNq “ 0, alors N Ă An et l’hypothèse de récurrence nous permet
de conclure que N est libre et de rang fini k ď ℓ.

— Si πpNq ‰ 0, il existe no P M non-nul tel que πpMq “ pπpnoqq. Alors

M “ Ano ‘N1. (3)

L’hypothèse de récurrence, appliqée à N1 Ă Aℓ, nous permet de dire
que N1 est libre de rang inférieur à ℓ. On voit alors, grâce à (3), que
N est libre de rang inférieur à ℓ` 1.

2

Corollaire 2.29 Soit A un anneau principal et M un A-module libre de
rang ℓ. Alors tout sous-module de M est libre et de rang fini k ď ℓ.

Le reste de cette section est consacrée à la preuve du Théorème 2.31.
Considérons un A-module M libre de rang ℓ ě 1. Fixons une base pe1, . . . , eℓq
de M . Notons e˚

k P homApM,Aq les morphismes “coordonnées” :

m “

ℓ
ÿ

k“1

e˚
kpmq ¨ ei, @m P M.

On vérifie que pe˚
1 , . . . , e

˚
ℓ q est alors une base du A-module homApM,Aq.
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SoitN un sousA-module deM . On remarque que pour tout φ P homApM,Aq,
l’image φpNq est un idéal de A. Considérons l’ensemble

EN :“ tφpNq, φ P homApM,Aqu

ordonné au moyen l’inclusion. Le point clé est le résultat suivant.

Proposition 2.30 Soit d1 P A tel que pd1q “ e˚
1pNq ` ¨ ¨ ¨ ` e˚

ℓ pNq. Alors
pd1q est le plus grand élément de pEN ,Ăq. De plus, pour tout n P N , il existe
m P M tel que n “ d1m.

La preuve nécessite plusieurs étapes.

Étape 1. Supposons qu’un idéal I Ă A soit le plus grand élément de EN .
Soit φ P homApM,Aq tel que I “ φpNq. Il existe a1, . . . , aℓ, d P A tels que
I “ pdq et φ “

řℓ
k“1 ak ¨ e˚

k. Considérons n P N tel que

d “ φpnq “

ℓ
ÿ

k“1

ak e
˚
kpnq.

Cela montre que pd1q Ă e˚
1pNq ` ¨ ¨ ¨ ` e˚

ℓ pNq. Comme pdq est le plus grand
élément de EN , on a aussi e˚

kpNq Ă pdq, @k. On obtient finalement que
pdq “ e˚

1pNq ` ¨ ¨ ¨ ` e˚
ℓ pNq. 2

Étape 2. Tout d’abord, comme A anneau principal, on sait que toute
suite croissante d’idéaux de A est stationnaire (voir le Lemme 1.41). Cela
implique qu’il existe φ1 P homApM,Aq tel que φ1pNq est un élément maximal
de pEN ,Ăq. Soient n1 P N et d1 P A tel que φ1pn1q “ d1 et φ1pNq “ pd1q.
Le reste de la preuve consiste à montrer que pd1q est le plus grand élément
de pEN ,Ăq. 2

Étape 3. Vérifions que n1 P d1M . Pour cela, il faut montrer que d1 divise
e˚
kpn1q pour tout 1 ď k ď ℓ. Fixons k, et considérons l’idéal

pαkq :“ pd1q ` pe˚
kpn1qq

La relation de Bezout nous assure l’existence de a, b P A tel que αk “

aφ1pn1q ` be˚
kpn1q. Cela signifie que pour φ “ ae˚

k ` bφ1, on a αk P φpNq

et donc φ1pNq “ pd1q Ă pαkq Ă φpNq. La maximalité de φ1pNq impose que
φ1pNq “ φpNq et donc pd1q “ pαkq. Ceci signifie que pe˚

kpn1qq Ă pd1q. 2

Étape 4. A ce stade on sait que n1 “ d1m1 avec m1 P M vérifiant
φ1pm1q “ 1. Cela nous donne les sommes directes

M “ Am1 ‘M 1 et N “ Ad1m1 ‘N 1.

avec M 1 “ M X kerpφ1q et N 1 “ N X kerpφ1q.
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À tout φ P homApM,Aq, on associe φ̃ P homApM,Aq défini par les
relations : φ̃pm1q “ 1 et φ̃ “ φ sur M 1. On voit alors que

φ1pNq “ pd1q Ă pd1q ` φpN 1q “ φ̃pNq.

Comme φ1pNq est maximal, on a φ1pNq “ φ̃pNq et donc φpN 1q Ă pd1q.
Finalement,

φpNq “ pd1φpm1qq ` φpN 1q Ă pd1q “ φ1pNq.

On a bien démontré que pd1q “ φ1pNq contient tous les éléments de EN :“
tφpNq, φ P homApM,Aqu. 2

Nous pouvons maintenant démontrer le théorème de structure suivant.

Théorème 2.31 (Théorème de la base adaptée) Soit M un A-module
libre de rang ℓ ě 1. Soit N un sous A-module de M de rang 1 ď k ď ℓ. Il
existe une base pm1, . . . ,mℓq de M et des coefficients non-nuls d1, . . . , dk P A
tels que

— d1z ¨ ¨ ¨ zdk,
— pd1m1, . . . , dkmkq est une base de N .
De plus, la suite d’idéaux pd1q Ą ¨ ¨ ¨ Ą pdkq est unique.

On reprend la preuve par récurrence du Théorème 2.28.
Revenons à l’étape 4 de la preuve de la proposition 2.30. Il existe d1 P A,

m1 P M , φ1 P homApM,Aq tels que
— φ1pm1q “ 1,
— d1m1 P N ,
— pd1q “ φ1pNq contient tous les éléments de EN :“ tφpNq, φ P homApM,Aqu.
Comme N est non-nul, d1 ‰ 0. Nous avons alors des sommes directes

M “ Am1 ‘M 1 et N “ Ad1m1 ‘N 1.

où M 1 :“ MXkerpφ1q est un module libre de rand ℓ´1 et N 1 :“ NXkerpφ1q

est un sous-module de M 1 de rang k ´ 1.
Si on applique l’hypothèse de récurrence àN 1 Ă M 1, on obtient l’existence

d’une base pm2, . . . ,mℓq de M 1 et des coefficients non-nuls d2, . . . , dk P A tels
que

— d2z ¨ ¨ ¨ zdk,
— pd2m2, . . . , dkmkq est une base de N 1.
On remarque maintenant que EN 1 :“ tψpN 1q, ψ P homApM 1, Aqu est

contenu dans EN :“ tφpNq, φ P homApM,Aqu. Comme pd1q et pd2q sont res-
pectivement les plus grands éléments de EN et de EN 1 , on obtient pd2q Ă pd1q,
c’est à dire d1zd2. De plus, on peut conclure que

— pm1,m2, . . . ,mkq est une base de M .
— pd1m1, d2m2, . . . , dkmkq est une base de N .
La question de l’unicité est reportée au prochain chapitre. 2

24



2.3.2 Modules de type fini : théorème de structure

Théorème 2.32 Soit M un A-module de type fini sur un anneau principal
A. Alors il existe des éléments non-nuls n1, . . . , nq dans M tels que

M “

q
à

k“1

Anj ,

et vérifiant annApn1q Ą annApn2q Ą ¨ ¨ ¨ Ą annApnqq.
De plus, la suite d’idéaux annApnkq est unique.

Posons q “ t` s avec t “ cardinaltj, annApnjq “ 0u. Alors

Mtor “

s
à

k“1

Anj et M{Mtor » At.

Nous pouvons donner un autre formulation du théorème 2.32.

Théorème 2.33 Soit M un A-module de type fini sur un anneau principal
A. Alors il existe d1, . . . , ds dans A, non nuls et non inversibles, tels que

M » At ‘A{d1A‘ ¨ ¨ ¨ ‘A{dsA,

avec t P N et d1z ¨ ¨ ¨ zds.
De plus, l’entier t P N et la suite d’idéaux pd1q Ą ¨ ¨ ¨ Ą pdsq est unique.

Preuve : Considérons un ensemble tm1, ¨ ¨ ¨ ,mℓu qui engendre M : le
morphisme f : Aℓ Ñ M , fpλq “

řℓ
i“1 λi ¨ mi est surjectif. Posons N :“:

kerpfq. Alors f induit un isomorphisme entre Aℓ{N et M : λ`N ÞÑ fpλq.
Appliquons le Théorème de la base adaptée aux modules N Ă Aℓ : il

existe une base pv1, . . . , vℓq de Aℓ et des coefficients non-nuls d1
1, . . . , d

1
r P A,

avec r ď ℓ, tels que
— d1

1z ¨ ¨ ¨ zd1
r,

— pd1
1v1, . . . , d

1
rvrq est une base de N .

Cela entraine que l’application ϕ : A{d1
1Aˆ ¨ ¨ ¨A{d1

rAˆAℓ´r ÝÑ Aℓ{N
définie par

ϕpx̄1, . . . , x̄r, xr`1, . . . , xℓq “

ℓ
ÿ

i“1

xivi `N

est un isomorphisme de A-modules.
Posons r ´ s “ cardinalti, pd1

iq “ Au ď r. Cela signifie que la suite
d’idéaux pd1

1q Ą ¨ ¨ ¨ Ą pd1
rq est égale à

A Ą ¨ ¨ ¨ Ą A
loooooomoooooon

r´s fois

Ą pd1q Ą ¨ ¨ ¨ Ą pdsq,
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où les di sont non-nuls et non-inversibles. On remarque finalement que l’an-
neau A{d1

1Aˆ ¨ ¨ ¨A{d1
rAˆAℓ´r est isomorphe à At ‘A{d1A‘ ¨ ¨ ¨ ‘A{dsA

avec t “ ℓ´ r. 2

L’isomorphisme M » At ‘A{d1A‘ ¨ ¨ ¨ ‘A{dsA implique

Mtor » A{d1A‘ ¨ ¨ ¨ ‘A{dsA,

et que M{Mtor est isomorphe à At. On a ainsi montré que le A-module
M{Mtor est libre : l’entier t correspond à son rang.

Corollaire 2.34 Soit M un module de type fini sur A principal. Alors M
est libre si et seulement s’il est sans torsion.

2.3.3 Unicité

Pour montrer l’unicité de la suite des idéaux pd1q Ą ¨ ¨ ¨ Ą pdsq, on procède
de la manière suivante.

À tout élément irréductible p P A, on associe le sous A-module, appelé
« la composante p-primaire de M »,

Mp “ tm P M, Dk ě 1, pk ¨m “ 0u,

et la suite décroissante de sous-modules

Mp Ą ppMpq Ą p2pMpq Ą ¨ ¨ ¨ Ą pkpMpq Ą ¨ ¨ ¨

Comme M est de rang fini, on vérifie que
1. Mp ‰ 0 si seulement si p est associé à une famille finie P déléments

irréductible.
2. Mtor “ ‘pPPMp.
3. @p P P, Dk ě 1, pkpMpq “ 0.
4. Mp » Mtor{pkpMtorq pour k assez grand.

Les quotients pkpMpq{pk`1pMpq admettent une structure de A{pA-espace
vectoriel 6. De plus, on remarque que l’application

m P pkpMpq{pk`1pMpq ÞÝÑ p ¨m P pk`1pMpq{pk`2pMpq

est une application surjective.

Définition 2.35 Soit M un module de type fini sur A principal. A tout
element irreductible p P A, on associe la suite décroissante

λ‚
ppMq : λ0ppMq ě λ1ppMq ě ¨ ¨ ¨ ě λkppMq ě ¨ ¨ ¨

formée par les dimensions des A{pA-espaces vectoriels pkpMpq{pk`1pMpq,
k P N.

6. A{pA est un corps.

26



Remarque 2.36 Comme M est de type fini, la suite λ‚
ppMq “ pλkppMqqkPN

est nulle à partir d’un certain rang.

Proposition 2.37 Soit d P A non inversible et p P A irréductible. Soit
vppdq “ maxtk P N, pkzdu.

— Si p ne divise pas d, i.e. vppdq “ 0, alors λkppA{dAq “ 0, @k P N.
— Si p divise d, i.e. vppdq ě 1, alors

‚ λkppA{dAq “ 1 si k ď vppdq ´ 1,
‚ λkppA{dAq “ 0 si k ě vppdq.

Preuve : Si p ne divise pas d, alors pA{dAqp “ 0, et donc la suite λ‚
ppA{dAq

est nulle.
Supposons que p divise d : alors p “ pαq avec α “ vppdq. Dans ce cas

le sous-module pA{dAqp est égal à qpA{dAq, et ce dernier est isomorphe à
A{pαA. On vérifie alors que λkppA{pαAq “ 1 si k ď α´1, et que λkppA{pαAq “

0 si k ě α. 2

Considérons un A-module M qui est isomorphe à

At ‘A{d1A‘ ¨ ¨ ¨ ‘A{dsA, (4)

avec pd1q Ą ¨ ¨ ¨ Ą pdsq.
Pour tout p P A irréductible, et tout entier k P N, on a

λkppMq “

s
ÿ

j“1

λkppA{djAq “ Cardinal
!

j, k ď vppdjq ´ 1
)

.

On remarque tout d’abord que la suite λ‚
ppMq est nulle si p ne divise pas

ds. Notons P “ tp1, . . . , phu, l’ensemble 7 des diviseurs irréductibles de ds.
Alors pour tout i “ 1, . . . , s, on a une décomposition en facteurs irréduc-

tibles :
di “ ui

ź

pPP
pvppdjq.

Comme d1z ¨ ¨ ¨ zds, on a

0 ď vppd1q ď vppd2q ď ¨ ¨ ¨ ď vppdsq, @p P P. (5)

On sait que les idéaux pd1q Ą ¨ ¨ ¨ Ą pdsq sont entièrement déterminés au
moyen des suites de nombres entiers (5). Ainsi, pour montrer l’unicité de la
suite d’idéaux pd1q Ą ¨ ¨ ¨ Ą pdsq vérifiant (4), il suffit de montrer que les
suites de nombres entiers (5) peuvent être exprimées au moyen des suites
λ‚
ppMq, p P P.

On complète cette preuve d’unicité en remarquant que :
1. s “ suptλ0ppMq, p P Pu.

2. λk´1
p pMq ´ λkppMq “ Cardinaltj, vppdjq “ ku, @k ě 1.

3. s´ λ0ppMq “ Cardinaltj, vppdjq “ 0u.
7. Si p irréductible divise ds, alors D!pi P P tel que p et pi sont associés.
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2.4 Quelques applications

2.4.1 Groupes abéliens de type fini

Dans le cas A “ Z, le théorème de structure 2.32 donne :

Théorème 2.38 Soit M un groupe abélien de type fini (i.e. engendré par
un nombre fini d’éléments). Alors M est isomorphe à

Zt ‘ Z{d1Z ‘ ¨ ¨ ¨ ‘ Z{dsZ

où t P N,et les di sont des entiers ě 2 vérifiant d1z ¨ ¨ ¨ zds.
De plus, t P N et les di sont entièrement déterminés par M . On appellera

facteurs invariants du groupe M la suite d1z ¨ ¨ ¨ zds.

Remarque 2.39 On remarque que si un groupe abélien M est isomorphe à
Zt ‘ Z{d1Z ‘ ¨ ¨ ¨ ‘ Z{dsZ, alors

Mtor » Z{d1Z ‘ ¨ ¨ ¨ ‘ Z{dsZ et M{Mtor » Zt.

En particulier, on a montré qu’un groupe abélien de type fini est libre si et
seulement si il est sans torsion.

Voici un petit résultat qui découle immédiatement du théorème.

Exercice 2.40 ‚ Soit G un groupe abélien fini. Considérons le nombre entier

epGq “ inftk ě 1; kx “ 0, @x P Gu.

Montrer qu’il existe un élément de G d’ordre epGq.
‚ Soit K un corps et G un sous-groupe fini du groupe multiplicatif Kˆ.

Montrer que G est un groupe cyclique (on utilisera le résultat du premier
point).

Exercice 2.41 Calculer les facteurs invariants du groupe

G “ Z{90Z ˆ Z{100Z ˆ Z{432Z ˆ Z{1000Z.

2.4.2 Réduction des matrices de Mp,qpZq

Rappelons qu’une matrice carrée M P MnpZq admet un inverse dans
MnpZq si et seulement si detpMq “ ˘1 (cela découle de la formule classique
avec la comatrice de X).

On considère alors le groupe

GLnpZq “ tM P MnpZq, detpMq “ ˘1u.

On va considérer le Z-module des matrices de taille p ˆ q à coefficients
entiers : Mp,qpZq.
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Définition 2.42 Deux matrices M,M 1 P Mp,qpZq sont équivalentes si et
seulement si il existe pP,Qq P GLppZq ˆGLqpZq tel que

M 1 “ PMQ.

Remarque 2.43 Lorsque l’on travaille avec un corps K, pour toutes ma-
trices M,M 1 P Mp,qpKq, les assertions suivantes sont équivalentes :

— DpP,Qq P GLppKq ˆGLqpKq tel que M’=PMQ,
— rangpMq “ rangpM 1q.

À toute matrice M P Mp,qpZq, on associe les sous-modules
— ImpMq “ tXv, v P Zqu Ă Zp,
— kerpMq Ă Zq.
Le lemme suivant sera très utile par la suite.

Lemme 2.44 Supposons que rangpMq “ k ‰ 0. Il existe une famille de
vecteurs ei P Zq, i “ 1, . . . , k, telle que

p♣q Zq “ kerpMq ‘ Ze1 ‘ ¨ ¨ ¨ ‘ Zek et p♠q ImpMq “ Zf1 ‘ ¨ ¨ ¨ ‘ Zfk,

où fi “ Mei P Zp, i “ 1, . . . , k.

Preuve : Comme ImpMq est un sous Z-module du module libre Zp, il
possède une base f1, . . . , fk : la relation p♠q est satisfaite. Pour tout i, choi-
sissons ei P Zq tel que fi “ Mei. Alors pour tout v P Zq, il existe un unique
k-uplet pλ1, . . . , λkq P Zk, tel que Mv “

řk
i“1 λifi “

řk
i“1 λiMei : cette

dernière relation est équivalente à dire que v ´
řk

i“1 λiei P kerpMq. On a
bien montré la relation p♣q. 2

Corollaire 2.45 Pour des matrices M,M 1 P Mp,qpZq les relations suivantes
sont équivalentes :

1. ImpMq “ ImpM 1q.
2. Il existe Q P GLqpZq tel que M “ M 1Q.

Preuve : L’implication 2. ùñ 1. est immédiate car pour tout Q P GLqpZq,
ImpQq “ Zq et donc ImpM 1Qq “ M 1pImpQqq “ ImpM 1q.

Supposons maintenant que ImpMq “ ImpM 1q et considérons une base
f1, . . . , fk de ce sous Z-module. Soient e1, . . . , ek P Zq et e1

1, . . . , e
1
k P Zq tels

que fi “ Mei et fi “ M 1e1
i. On a alors les relations

Zq “ kerpMq ‘ Ze1 ‘ ¨ ¨ ¨ ‘ Zek “ kerpM 1q ‘ Ze1
1 ‘ ¨ ¨ ¨ ‘ Ze1

k.

Choisissons une base ek`1, . . . , eq de kerpMq et une base e1
k`1, . . . , e

1
q de

kerpM 1q. On voit alors que peiq1ďiďq et pe1
iq1ďiďq sont deux bases de Zq.

L’élément Q P GLqpZq défini par les relations Qei “ e1
i,@i, vérifie M “ M 1Q.

2

Nous avons un autre lemme préparatoire.
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Lemme 2.46 Soient E et F deux sous Z-modules de Zp. Les relations sui-
vantes sont équivalentes :

1. Il existe P P GLppZq tel que P pEq “ F .

2. les Z-modules Zp{E et Zp{F sont isomorphes.

Preuve : Supposons qu’il existe P P GLppZq tel que P pEq “ F . Alors
l’application v`E ÞÑ P pvq`F définit un isomorphisme entre Zp{E et Zp{F .

Supposons que Zp{E et Zp{F sont tous deux isomorphes à Z{d1Z‘ ¨ ¨ ¨ ‘

Z{dsZ où les di sont des entiers ě 2 vérifiant d1z ¨ ¨ ¨ zds. Cela signifie qu’il
existe deux bases pfiq1ďiďp et pf 1

iq1ďiďp de Zp telles que

E “ Zd1f1 ‘ ¨ ¨ ¨ ‘ Zdsfs et F “ Zd1f 1
1Z ‘ ¨ ¨ ¨ ‘ Zdsf 1

s.

L’élément P P GLppZq défini par les relations Qfi “ e1
i,@i, vérifie P pEq “ F .

2

Notre résultat principal est le suivant.

Théorème 2.47 ‚ Deux matrices M,M 1 P Mp,qpZq sont équivalentes si et
seulement si

Zp{ImpMq » Zp{ImpM 1q.

‚ Zp{ImpMq » Zp´s‘Z{d1Z‘¨ ¨ ¨‘Z{dsZ si et seulement si M P Mp,qpZq

est équivalente avec la matrice

∆d :“

ˆ

Diagpd1, . . . , dsq 0
0 0

˙

(6)

où Diagpd1, . . . , dsq est une matrice diagonale.
‚ Toute matrice M P Mp,qpZq est équivalente à une matrice ∆d où les di

appartiennent à N´ t0u et vérifient d1z ¨ ¨ ¨ zds. Ici “s” est égal au rang de la
matrice X, vue comme élément de Mp,qpZq, et les pdiq sont uniques.

Preuve : Grace au Lemme 2.46, on sait Zp{ImpMq » Zp{ImpM 1q si et
seulement si il existe P P GLppZq tel que ImpPMq “ P pImpMqq “ ImpM 1q.
Le corollaire 2.45 permet de voir que ImpPMq “ ImpM 1q si et seulement si
il existe Q P GLqpZq tel que PMQ “ M 1. Le premier point est démontré.

On voit immédiatement que l’image de la matrice ∆d est Zd1e1 ‘ ¨ ¨ ¨ ‘

Zdses où peiq est la base canonique de Zp. Ainsi le quotient Zp{Imp∆dq est
isomorphe à Zp´s ‘ Z{d1Z ‘ ¨ ¨ ¨ ‘ Z{dsZ. Le premier point nous permet de
voir que les assertions suivantes sont équivalentes :

— M est équivalente à une matrice ∆d,
— Zp{ImpXq » Zp{ImpXdq » Zp´s ‘ Z{d1Z ‘ ¨ ¨ ¨ ‘ Z{dsZ.
Le dernier point est une conséquence de second point et du théorème

2.38. 2
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Définition 2.48 Soit M P Mp,qpZq. À chaque 1 ď k ď inftp, qu, on associe
mk

M P N, qui est le pgcd de tous les mineurs de taille k de la matrice M .

Exercice 2.49 Soit M P Mp,qpZq.

1. Montrer que mk
M “ mk

PM pour tout P P GLppZq.

2. Montrer que mk
M “ mk

MQ pour tout Q P GLqpZq.

3. Si M est équivalente à une matrice ∆d (voir (6)) avec di P N ´ t0u

et d1z ¨ ¨ ¨ zds, alors
— mk

M “ d1 ¨ ¨ ¨ dk pour tout k ď s,
— mk

M “ 0 si k ą s.

Tous les résultats de cette section sont encore valables si on travaille avec
des matrices de Mp,qpAq où A est anneau principal.

2.4.3 Réduction des endomorphismes d’un K-espace vectoriel de
dimension finie

Soit E un K espace vectoriel de dimension finie : on notera n ě 1 sa
dimension. On note GLKpEq le groupe des isomorphismes de E.

Définition 2.50 Deux endomorphismes f, h P EndKpEq sont semblables si
et seulement si il existe g P GLKpEq tel que

h “ gfg´1.

Les classes d’équivalences tgfg´1, g P GLKpEqu sont appelées classes de si-
militudes.

On remarque que f, h sont semblables si et seulement si il existe des bases
B1,B2 de E telles que les matrices Matpf,B1q et Matph,B2q sont égales.

Le but de cette section est de caractériser les classes de similitude. Pour
cela on va considérer les KrXs-modules Ef attachés à chaque endomorphisme
f P EndKpEq (voir la définition 2.5). On commence avec le résultat élémen-
taire suivant.

Lemme 2.51 Deux endomorphismes f, h P EndKpEq sont semblables si et
seulement les KrXs-modules Ef et Eh sont isomorphes.

Définition 2.52 Un endomorphisme f P EndKpEq est dit cyclique s’il existe
un vecteur v P E, tel que la famille tfkpvq, k P Nu engendre E.

Notons que tout morphisme de KrXs-modules ϕ : KrXs ÝÑ Ef est défini
par la relation ϕpP q “ P pfqpvq où v “ ϕp1q : dans ce cas, l’image de ϕ est
égale au sous KrXs-module KrXsv et le noyau kerpϕq est égal à annKrXspvq.
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On voit donc qu’un endomorphisme f P EndKpEq est cyclique si et seulement
si il existe un morphisme de KrXs-modules surjectif

ϕf : KrXs ÝÑ Ef .

Si Pf “ Xn ´
řn´1

k“0 akX
k est le polynôme unitaire qui engendre kerpϕf q, le

morphisme ϕf induit un isomorphisme KrXs{pPf q » Ef de KrXs-modules.
De plus, si B est la base de E formée par la famille tv, fpvq, . . . , fn´1pvqu,

on remarque que

Matpf,Bq “

¨

˚

˚

˚

˚

˝

0 . . . . . . . . . a0
1 0 . . . . . . a1
0 1 0 . . . a2
. . . . . . . . . . . . . . .
0 . . . . . . 1 an

˛

‹

‹

‹

‹

‚

.

Cette dernière matrice, notée CpPf q, est la matrice compagnon associée à
Pf . Remarquons que lorsque n “ 1, la matrice CpPf q est égale à pa0q.

Exercice 2.53 — Montrer que le polynôme caractéristique de la matrice
CpPf q est égal à Pf .

— Montrer qu’un endomorphisme f P EndKpEq est cyclique si et seule-
ment si son polynôme caractéristique et égal à son polynôme minimal.

On peut maintenant énoncer le résultat principal de cette section.

Théorème 2.54 Pour tout endomorphisme f P EndKpEq, il existe une base
de E dans laquelle la matrice de f est de la forme

¨

˚

˚

˚

˝

CpP1q

CpP2q

. . .
CpPsq

˛

‹

‹

‹

‚

.

où les pPkq sont des polynômes unitaires de KrXs de degré au moins 1,
vérifiant : P1zP2z ¨ ¨ ¨ zPs.

Les polynômes pPkq, qui sont entièrement déterminés par l’endomor-
phisme f , sont appelés les invariants de similitude de f .

Deux endomorphismes dont semblables si et seulement si ils ont les mêmes
invariants de similitude.

Remarque 2.55 On remarque que le polynôme caractéristique de f P EndKpEq

est égal au produit P1 ¨ ¨ ¨Ps tandis que son polynôme minimal est égal à Ps.
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Preuve : Fixons f P EndKpEq et appliquons le théorème 2.32 au KrXs-
module Ef . Il existe des vecteurs non-nuls v1, . . . , vq tels que

Ef “

s
à

k“1

KrXs vj ,

et vérifiant annKrXspv1q Ą ¨ ¨ ¨ Ą annKrXspvsq ‰ 0. Désignons par Pk le
polynôme unitaire qui engendre l’idéal annKrXspvkq : on a bien P1zP2z ¨ ¨ ¨ zPs.

On remarque alors que Bk :“ tvk, fpvkq, . . . , fd
oPk´1pvkqu est une base

du sous espace Ek :“ KrXs vk tel que la matrice de l’endomorphisme f |Fk

dans la base Bk est égale à CpPkq. La preuve du théorème est complète. 2

Le reste de cette section est consacrée à la détermination des invariants
de similitude d’un endomorphisme f P EndKpEq. Soit M “ paijq P MnpKq

la matrice de f dans une base e1, . . . , en.
On considère le morphisme de KrXs-modules ϕ : KrXsn Ñ Ef défini par

la relation

ϕpP1, . . . , Pnq “

n
ÿ

k“1

Pkpfqpekq.

Notons ϵi “ p0, . . . , 0, 1, 0, . . . , 0q P KrXsn le vecteur tel que ϕpϵjq “ ej .
Posons hj “ Xϵj ´

řn
i“1 aijϵi. On remarque que @j, ϕphjq “ 0, ainsi

řn
j“1KrXshj Ă kerpϕq.

Lemme 2.56 On a les deux relations :
1. KrXsn “

řn
j“1KrXshj `

řn
j“1Kϵj.

2. kerpϕq “
řn

j“1KrXshj.

La matrice XIn ´ M P MnpKrXsq détermine le morphisme de KrXs-
modules ψ : KrXsn Ñ KrXsn, V ÞÑ pXIn ´ MqV . Le lemme précédent
montre que

kerpϕq “ Imagepψq,

et donc Ef est isomorphe au KrXs-module KrXsn{Imagepψq.
Si on utilise les résultats de la section 2.4.2, on sait que la matrice

XIn ´M P MnpKrXsq

est équivalente à une matrice diagonale DiagpQ1pXq, . . . , QnpXqq où les po-
lynômes QipXq P KrXs, qui peuvent être choisis unitaires, sont non-nuls et
vérifient Q1pXqz ¨ ¨ ¨ zQnpXq.

Alors le KrXs-module KrXsn{Imagepψq sera isomorphe à

‘n
k“1KrXs{pQkq.

On voit donc que les invariants de similitudes de l’endomorphisme f sont les
polynômes tQk, d

opQkq ě 1u.
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Définition 2.57 Soit M P MnpKq. À chaque 1 ď k ď n, on associe le
polynôme unitaire Rk

M P KrXs, qui est le pgcd de tous les mineurs de taille
k de la matrice XIn ´M .

On termine cette section en établissant le lien entre les invariants de
similitudes P1z ¨ ¨ ¨ zPs d’un endomorphisme f P EndKpEq et les polynômes
unitaires Rk

M P KrXs associés à la matrice M “ Matpf,Bq. Sachant que
la matrice XIn ´ M P MnpKrXsq est équivalente à la matrice diagonale
Diagp1, . . . , 1, P1, . . . , Psq, on obtient les relations suivantes :

1. s “ n´ cardinaltk,Rk
M “ 1u,

2. Rn´s`1
M “ P1,

3. Pour tout 1 ď i ď s, on a P1 ¨ ¨ ¨Pi “ Rn´s`i
M .

3 Produit tensoriel

Dans cette section A désigne un anneau commutatif. Soient M,N deux
A-modules. On va montrer l’existence d’un A-module M bA N et d’une
application A-bilinéaire b : M ˆ N Ñ M bA N, pm,nq ÞÑ m b n, telle que
M bA N est engendré par tous les éléments mb n.

Rappelons que si X est un ensemble et si P est un A-module, l’ensemble
FpX , P q formé de toutes les applications f : X Ñ P , admet une structure
naturelle de A-module.

3.1 Applications bilinéaires

Soient M,N,P trois A-modules.

Définition 3.1 Une application ϕ :M ˆN Ñ P est dite A-bilinéaire si elle
est A-linéaire en chacune des variables : @m,m1 P M , @n, n1 P N , @a P A,
nous avons

ϕpm` a ¨m1, nq “ ϕpm,nq ` a ¨ ϕpm1, nq,

ϕpm,n` a ¨ n1q “ ϕpm,nq ` a ¨ ϕpm,n1q.

On note bilApM ˆN,P q l’ensemble de ces applications.

On remarque que bilApMˆN,P q est un sous A-module de FpMˆN,P q.
À tout ϕ P bilApM ˆ N,P q, et tout pm,nq P M ˆ N , on associe les

morphismes de A-modules

ϕpm,´q : N Ñ P, et ϕp´, nq :M Ñ P

définis respectivement par les relations y P N ÞÑ ϕpm, yq et x P M ÞÑ ϕpx, nq.
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On vérifie aisément que les applicationsm P M ÞÑ ϕpm,´q P homApN,P q

et n P N ÞÑ ϕp´, nq P homApM,P q sont des morphismes de A-modules. On
a ainsi deux morphismes

α : bilApM ˆN,P q ÝÑ homApM,homApN,P qq,

β : bilApM ˆN,P q ÝÑ homApN, homApM,P qq,

définis par αpϕq : m ÞÑ ϕpm,´q et βpϕq : n ÞÑ ϕp´, nq.

Proposition 3.2 α et β définissent deux isomorphismes de A-modules.

3.2 Définition du produit tensoriel

Notons F0pM ˆ Nq le sous-module de FpM ˆ N,Aq formé de toutes
les applications f : M ˆ N Ñ A de support fini, i.e. telle que tpm,nq P

M ˆN, fpm,nq ‰ 0u est fini.
Notons δpm,nq P F0pM ˆ Nq la fonction nulle partout sauf en pm,nq, où

elle est égale à 1 P A. La famille tδpm,nq, pm,nq P M ˆ Nu est une base du
A-module F0pM ˆNq :

f “
ÿ

pm,nqPMˆN

fpm,nq δpm,nq, @f P F0pM ˆNq.

Soit K le sous A-module de F0pM ˆ Nq engendré par les éléments sui-
vants :

δpa¨m`m1,nq ´ a ¨ δpm,nq ´ δpm1,nq,

δpm,a¨n`n1q ´ a ¨ δpm,nq ´ δpm,n1q,

où m,m1 P M , n, n1 P N et a P A.

Définition 3.3 On note M bAN , le A-module quotient F0pM ˆNq{K. La
classe de δpm,nq est notée mb n P M bA N .

Voici les premières propriétés issues de la définition :
1. @m,m1 P M , @n, n1 P N et @a P A on a les relations

pm`m1q b n “ mb n`m1 b n,

mb pn` n1q “ mb n`mb n1,

a ¨ pmb nq “ pa ¨mq b n “ mb pa ¨ nq.

2. La famille tmb n, pm,nq P M ˆNu est génératrice dans M bA N .

Exemple 3.4 Dans certains cas, le produit tensoriel ne donne que le module
trivial réduit au vecteur nul : vérifier que pour tout n ě 2, on a

Z{nZ bZ Q “ t0u
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On a vu que l’application canonique b : M ˆ N Ñ M bA N est A-
bilinéaire. Ainsi, la composition ϕ ÞÑ ϕ ˝ b définit un morphisme

homApM bA N,P q ÝÑ bilApM ˆN,P q. (7)

Réciproquement, si f : M ˆ N Ñ P est une application A-bilinéaire, on
définit le morphisme f̃ : F0pM ˆ Nq Ñ P en posant f̃pδpm,nqq “ fpm,nq,
@pm,nq P MˆN . Comme f est A-bilinéaire, le noyau de f̃ contient le module
K et donc on peut définir le morphisme

f :M bA N ÝÑ P

en posant fpmb nq “ fpm,nq, @pm,nq P M ˆN .
On montre facilement que l’application f P bilApM ˆ N,P q ÞÑ f P

homApM bA N,P q est l’applicattion réciproque du morphisme (7).

Proposition 3.5 Pour tous A-modules M,N,P , on a des isomorphismes
de A-modules canoniques

homApM bA N,P q » bilApM ˆN,P q » homApM, homApN,P qq.

3.3 Quelques propriétés du produit tensoriel

On commence avec le résultat suivant

Lemme 3.6 1. Pour tout A-module M , on a un isomorphisme cano-
nique AbA M » M .

2. On a un isomorphisme canonique M bA N » N bA M qui envoit
mb n sur nbm.

3. On a un isomorphisme canonique pM bA Nq b P » N bA pM b P q

qui envoit pmb nq b p sur nb pmb pq.

Considérons maintenant deux morphismes de A-modules

f :M Ñ M 1 et g : N Ñ N 1.

Lemme 3.7 Il existe une unique morphisme f b g :M bA N Ñ M 1 bA N
1

qui satisfait les relations

f b gpmb nq “ fpmq b gpnq.

Le résultat précédent se montre en considérant l’application F : M ˆ N Ñ

M 1 bA N
1 défini par les relations

F pm,nq “ fpmq b gpnq.

On remarque que F est A-bilinéaire, ainsi il se factorise en un morphisme
f b g :“ F :M bA N ÝÑ M 1 bA N

1 (voir la section précédente).
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Remarque 3.8 1. Si f : M Ñ M 1 et g : N Ñ N 1 sont surjectifs, alors
f b g :M bA N Ñ M 1 bA N

1 est un morhisme surjectif.
2. Par contre, il existe des cas où f : M Ñ M 1 et g : N Ñ N 1 sont

des morphisme injectifs sans que f b g : M bA N Ñ M 1 bA N
1 le

soit. Par exemple, si g : Z{2Z Ñ Z{2Z est l’application identité et
f : Z Ñ Z, x ÞÑ 2x, alors f bg : Z{2Z Ñ Z{2Z est l’application nulle.

On montre maintenant que le produit tensoriel se comporte de manière
optimale par rapport aux sommes directes.

Proposition 3.9 Soient N et Mi, i P I, des A-modules. On a un isomor-
phisme de A-modules

˜

à

iPI

Mi

¸

bA N »
à

iPI

Mi bA N.

Corollaire 3.10 Si peiqiPI est une base du module M et pfjqjPJ est une base
du module N , alors pei b fjqpi,jqPIˆJ est une base du module M bA N .

On va maintenant aborder la question d’extension des coefficients. Soient
φ : A Ñ B un morphisme d’anneaux commutatifs et M un A-module.
Rappelons que B possède une structure de A-module en posant a¨b :“ φpaqb.
Le produit tensoriel B bA M est par définition un A-module.

Lemme 3.11 B bA M admet une structure de B-module qui satisfait la
relation

b ¨ pb1 bmq :“ bb1 bm, @b, b1 P B,@m P M.

Preuve : pour tout b P B, on considère l’application Tb : BˆM Ñ BbAM
tell que Tbpb1,mq :“ bb1 b m. On vérifie que Tb est A-bilinéaire, ainsi elle se
factorise en un morphisme A-linéaire Tb : B bA M Ñ B bA M . Alors le
produit extérieur B ˆ B bA M Ñ B bA M est déterminé par la relation :
b¨v :“ Tbpvq. On vérifie facilement que cela définit une structure de B-module
sur B bA M . 2

Exercice 3.12 Soient I un idéal de A et M un A-module. Le A{I-module
A{I bA M est canoniquement isomorphe à M{IM .

4 Représentations de groupes finis

4.1 Premières notions

Une action d’un groupe G sur un ensemble X est la donnée d’une appli-
cation

Gˆ X ÝÑ X
pg, xq ÞÝÑ g ¨ x

satisfaisant h ¨ pg ¨ xq “ hg ¨ x et 1 ¨ x “ x, @g, h P G, @x P X .
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Définition 4.1 Une représentation d’un groupe G est la donnée d’un K-
espace vectoriel V et d’un morphisme de groupes

ρ : G Ñ GLpV q,

où GLpV q “ tf : V Ñ V isomorphisme K ´ lineaireu.

L’action du groupe G sur l’espace vectoriel V est défini par la relation
g ¨ v :“ ρpgqpvq. On voit donc qu’une représentation d’un groupe G n’est
autre qu’une action pg, vq ÞÑ g ¨ v qui est linéaire par rapport à la variable
v P V .

Voici quelques exemples de représentations de groupes :

1. GLnpKq agissant sur MnpKq :

g
1
¨ X “ gX , g

2
¨ X “ Xg´1 , g

3
¨ X “ gXg´1 ,

g
4
¨ X “ X tg , g

5
¨ X “ gX tg .

2. Le groupe symétrique Sn agissant sur Kn :

σ ¨ px1, . . . , xnq “ pxσ´1p1q, . . . , xσ´1pnqq.

3. Le groupe symétrique Sn agissant sur KrX1, . . . , Xns :

pσ ¨ P qpX1, . . . , Xnq “ P pXσ´1p1q, . . . , Xσ´1pnqq.

4. Le groupe linéaire GLnpKq agissant sur KrX1, . . . , Xns :

pg ¨ P qpX1, . . . , Xnq “ P pg´1pX1, . . . , Xnqq.

5. Le groupe symétrique Sn agissant sur K au moyen de la signature
ϵ : Sn Ñ t˘1u :

σ ¨ z “ ϵpσqz.

6. Le groupe pK,`q agissant sur K2 à travers le morphisme

ρpλq :“

ˆ

1 λ
0 1

˙

.

7. Le groupe Z{nZ agissant sur R2 à travers le morphisme ρℓ : Z{nZ Ñ

GL2pRq :

ρℓpkq “

ˆ

cosp2kℓπn q ´ sinp2kℓπn q

sinp2kℓπn q cosp2kℓπn q

˙

.
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4.1.1 Sous-représentations et quotients

Définition 4.2 Soit pV, ρq une représentation du groupe G.
Un sous-espace vectoriel W Ă V est une sous-représentation de V si

ρpgqpW q Ă W, @g P G.

Dans ce cas le morphisme ρ1 : G Ñ GLpW q, défini par ρ1pgq “ ρpgq|W définit
une représentation du groupe G.

Voici quelques exemples :

1. Le groupe symétrique Sn agissant sur Kn : les sous-espaces W1 “

Kp1, . . . , 1q et W2 “ tx1`¨ ¨ ¨`xn “ 0u sont des sous-représentations.

2. Le groupe GLnpKq agissant sur MnpKq avec g ¨X “ gXtg : les sous-
espaces Sn :“ tmatrices symetriquesu etAn :“ tmatrices antisymetriquesu
sont des sous-représentations.

3. Le groupe GLnpKq agissant sur MnpKq par conjugaison : g ¨ X “

gXg´1. Le sous-espace W :“ tX P MnpKq, TrpXq “ 0u est une
sous-représentation.

4. Le groupe GLnpKq agissant sur l’espace fonctionnel FpKnq formé de
toutes les fonctions f : Kn Ñ K. L’action est définie par la relation
pg ¨ fqpvq :“ fpg´1 ¨ vq. Le sous-espace vectoriel PolpKnq Ă FpKnq

formé des fonctions polynomiales est une sous-représentation.

Définition 4.3 Soit pV, ρq une représentation du groupe G. On note V G la
sous-représentation formée des vecteurs v P V vérifiant

g ¨ v “ v, @g P G.

Les vecteurs de V G sont appelés les invariants de l’action.

Voici quelques examples :

1. Sn agissant sur Kn : ici pKnqSn “ Kp1, . . . , 1q.

2. GLnpKq agissant sur MnpKq par conjugaison : les matrices invariantes
pour cette action sont de la forme λIn avec λ P K.

3. Sn agissant sur KrX1, . . . , Xns : les polynômes invariants pour cette
action sont appelés les polynômes symétriques.

Définition 4.4 Soit W Ă V une sous-représentation du groupe G. L’espace
vectoriel quotient V {W est muni d’une action linéaire du groupe G, définie
par la relation

g ¨ w :“ g ¨ w, @pg, wq P Gˆ V.

39



4.1.2 Morphismes entre deux représentations

Soient V1 et V2 deux représentations du groupe G, sur le même corps K :

ρ1 : G Ñ GLpV1q et ρ2 : G Ñ GLpV2q.

Définition 4.5 L’espace vectoriel homKpV1, V2q est muni d’une action li-
néaire du groupe G, qui est définie par la relation :

g ¨ f “ ρ2pgq ˝ f ˝ ρ´1
1 pgq, @f P homKpV1, V2q,@g P G.

Définition 4.6 On note homGpV1, V2q Ă homKpV1, V2q la sous-représentation
formée des éléments invariants pour l’action de G. Les éléments de homGpV1, V2q

sont appelés des morphismes entre les représentations V1 et V2.

Ainsi, une application K-linéaire f : V1 Ñ V2 est un morphisme si pour
tout g P G, on a la relation :

f ˝ ρ1pgq “ ρ2pgq ˝ f.

Définition 4.7 Deux représentations V1 et V2 sont dites isomorphes si Df P

homGpV1, V2q qui soit bijectif. On note alors V1 » V2.

Exemple 4.8 Soit π : KrX1, . . . , Xns Ñ PolpKnq l’application canonique
qui à un élément P P KrX1, . . . , Xns associe la fonction polynomiale

px1, . . . , xnq ÞÑ P px1, . . . , xnq.

L’application π est un morphisme entre deux représentations de GLnpKq :
c’est un isomophisme si et seulement si K est un corps infini.

On termine cette section avec un résultat de factorisation.

Proposition 4.9 Soit f P homGpV1, V2q. Alors
— Impfq est une sous-représentation de V2,
— kerpfq est une sous-représentation de V1,
— Les représentations V1{kerpfq et Impfq sont isomorphes.

4.1.3 Somme et produit tensoriel

Considérons deux représentations V et W d’un groupe G (définies sur
un corps K). On peut alors construire d’autres représentations de G :

— Le produit cartésien V ˆW : g¨pv, wq :“ pg¨v, g¨wq, @pv, wq P V ˆW .
— Le produit tensoriel V bKW : g ¨ pv bwq :“ g ¨ v b g ¨w, @pv, wq P

V ˆW .
— Le dual V ˚ “ homKpV,Kq : xg ¨ξ, vy :“ xξ, g´1 ¨vy, @pv, ξq P V ˆV ˚.
— homKpV,W q
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À tout couple pξ, wq P V ˚ ˆW , on associe l’application linéaire ρpξ, wq P

homKpV,W q définie par la relation

ρpξ, wqpvq :“ xξ, vyw, @v P V.

L’application ρ : V ˚ ˆ W Ñ homKpV,W q est un morphisme entre deux
représentations de G. De plus, comme ρ est bilinéaire, elle se factorise en un
morphisme

ρ̄ : V ˚ bK W ÝÑ homKpV,W q. (8)

Proposition 4.10 Si V et W sont deux représentations de dimension finies,
le morphisme ρ̄ détermine un isomorphisme

V ˚ bK W » homKpV,W q.

On utilise le produit tensoriel dans le cadre plus général suivant. Soient E
une représentation d’un groupe G1 et F une représentation d’un groupe G2

(toutes deux définies sur un corps K). Alors E bK F est une représentation
de G1 ˆ G2 : l’action linéaire de pg1, g2q P G1 ˆ G2 sur E bK F est définie
par la relation

pg1, g2q ¨ peb fq :“ g1 ¨ eb g2 ¨ f, @pe, fq P E ˆ F.

4.1.4 Représentations irréductibles

Définition 4.11 Une représentation V d’un groupe G est dite irréductible
si les seules sous-représentations de V sont t0u et V .

On a un critère élémentaire pour savoir si une représentation ρ : G Ñ

GLpV q est irréductible. À tout vecteur v P V , on associe le sous espace
vectoriel Epvq engendré par la famille g ¨ v, g P G. On voit que Epvq Ă V est
une sous-représentation.

Lemme 4.12 Une représentation V d’un groupe G est irréductible si et
seulement si

Epvq “ V

pour tout v P V non-nul.

Considérons l’action du groupe Z{nZ sur R2 à travers le morphisme ρ :
Z{nZ Ñ GL2pRq :

ρpkq “

ˆ

cosp2kπn q ´ sinp2kπn q

sinp2kπn q cosp2kπn q

˙

“ ρp1qk.

On voit que pR2, ρq est une représentation irréductible de Z{nZ. Considérons
maintenant la cas de C2 muni de la même action ρ. Dans ce cas, pC2, ρq
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n’est pas une représentation irréductible de Z{nZ, car la droite Cpi, 1q est
une sous-représentation de C2.

Considérons maintenant l’action du groupe symétrique Sn sur Kn. On
a Kn “ E1 ‘ E2 où E1 “ Kp1, . . . , 1q et E2 “ tx1 ` ¨ ¨ ¨ ` xn “ 0u sont
deux sous-représentations. On vérifie que E1 et E2 sont toutes deux des
représentations irréductibles de Sn.

4.1.5 Lemme de Schur

Dans cette partie on suppose que le corps K est algébriquement clos.
Soient V,W deux représentations irréductibles de dimension finies

d’un groupe G (définies sur le corps K). Nous nous intéressons au K-espace
vectoriel homGpV,W q.

Lemme 4.13 (Lemme de Schur)
— Si V et W ne sont pas isomorphes, alors homGpV,W q “ t0u.
— Si V » W , alors dimhomGpV,W q “ 1.

Preuve : Supposons tout d’abord que V et W ne sont pas isomorphes
et considérons f P homGpV,W q. Comme le morphisme f n’est pas bijectif,
nous pouvons considérer deux cas :

— Soit kerpfq ‰ t0u. Comme kerpfq est une sous-représentation de V ,
et que V est irréductible, on doit avoir kerpfq “ V .

— Soit Imagepfq ‰ W . Comme Imagepfq est une sous-représentation de
W , et que W est irréductible, on doit avoir Imagepfq “ t0u.

Dans les deux cas, on obtient f “ 0.
Supposons maintenant qu’il existe un isomorphisme h : V Ñ W entre les

deux représentations. L’application g ÞÑ h ˝ g définit alors un isomorphisme
entre les espaces vectoriel homGpV, V q et homGpV,W q. Il nous suffit alors de
montrer que dimhomGpV, V q “ 1.

Soit g P homGpV, V q. Comme le corps K est algébriquement clos et que
le K-espace vectoriel V est de dimension fini, il existe λ P K tel que le sous-
espace propre kerpg ´ λIdV q est non-nul. Sachant que g ´ λIdV appartient
à homGpV, V q, on voit que kerpg ´ λIdV q est une sous-représentation de V .
Cette dernière étant irréductible, on a kerpg ´ λIdV q “ V , i. e. g “ λIdV .
On vient de montrer que homGpV, V q “ KIdV . 2

4.2 Le cas des groupes finis

Dans toute la suite G désigne un groupe fini. De plus les représentations
de G que l’on considère sont des espaces vectoriels complexes de dimension
finies.

On commence par un propriété fondamentale qui exploite le fait que G
est fini.
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Lemme 4.14 Soit N “ 7G. Soit ρ : G Ñ GLpV q, une représentation de
G. Alors pour tout g P G, l’endomorphisme ρpgq est diagonalisable, et ses
valeurs propres sont des racines N -ièmes de l’unité.

Preuve : Comme gN “ e dans G, on a ρpgqN “ IdV . Ainsi XN ´1 est un
polynôme annulateur de ρpgq. Comme celui-ci est scindé dans CrXs, ρpgq est
diagonalisable, et de plus toutes les valeurs propres de ρpgq sont des racines
du polynôme XN ´ 1. 2

4.2.1 L’algèbre CrGs

On note CrGs l’ensemble des fonctions sur G à valeurs complexes. C’est
un espace vectoriel complexe qui admet pour comme base canonique la fa-
mille de fonctions tδg, g P Gu :

δgpxq “

#

1 si x “ g

0 si x ‰ g.

On munit CrGs du produit de convolution ‹ : CrGs ˆ CrGs Ñ CrGs, qui
est défini par la relation

λ ‹ µpgq :“
ÿ

hPG

λphqµph´1gq.

Le produit ‹ définit une loi associative sur CrGs qui admet δ1 comme élément
neutre : δ1 ‹ µ “ µ ‹ δ1 “ µ pour tout µ P CrGs.

Le produit ‹ est distributif par rapport à la structure d’espace vectoriel
de CrGs : on a

paλ` bηq ‹ µ “ apλ ‹ µq ` bpη ‹ µq, @a, b P C,@λ, η, µ P CrGs.

Idem pour le produit µ ‹ paλ` bηq. Ainsi pCrGs,`, ‹q est une C-algèbre. On
remarque que

δg ‹ δh “ δgh (9)

pour tout g, h P G. Ainsi CrGs est une algèbre abélienne si et seulement si
le groupe G est abélien.

Le centre de CrGs

Définition 4.15 On note ZrGs le centre de l’algèbre CrGs.

On remarque que les conditions suivantes sont équivalentes :
— λ P ZrGs,
— λ ‹ δg “ δg ‹ λ, @g P G,
— λphgq “ λpghq, @g, h P G,
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— λ est une fonction constante sur les classes de conjugaison de G.
Si C Ă G est une classe de conjugaison, on note 1C P ZrGs la fonction

caractéristique de C.

Lemme 4.16 Les fonctions 1C, où C parcourt les classes de conjugaisons de
G, forment une base de ZrGs.

Structure de CrGs-modules

Définition 4.17 Soit V un espace vectoriel complexe. Une structure de CrGs-
module sur V est la donnée d’un morphisme d’algèbres

ρ̃ : CrGs ÝÑ EndCpV q,

telle que ρ̃pδ1q “ IdV .

Notons CrGsˆ l’ensemble des éléments inversibles de CrGs : c’est un
groupe par rapport à la loi ‹. On remarque qu’un morphisme d’algèbres
ρ̃ : CrGs Ñ EndCpV q induit un morphisme de groupe

ρ̃ : CrGsˆ Ñ GLpV q

car GLpV q “ pEndCpV qqˆ. Les relations (9) montre que l’application g ÞÑ δg
est un morphisme de groupe entre G et CrGsˆ.

Si on part d’un morphisme d’algèbres ρ̃ : CrGs ÝÑ EndCpV q, l’applica-
tion ρ : g P G ÞÑ ρ̃pδgq P GLpV q est un morphisme de groupe.

Réciproquement, considérons un morphisme de groupe ρ : G Ñ GLpV q.
On détermine un morphisme d’algèbre ρ̃ : CrGs ÝÑ EndCpV q en posant

ρ̃

˜

ÿ

gPG

λpgqδg

¸

:“
ÿ

gPG

λpgqρpgq.

Conclusion : on a montré que sur un espace vectoriel complexe, une struc-
ture de CrGs-module est équivalente à celle d’être une représentation de G.

La remarque qui suit sera utile plus tard.

Lemme 4.18 Soit ρ̃ : CrGs ÝÑ EndCpV q le morphisme associé à une re-
présentation V . Pour tout ϕ P ZrGs, on a ρ̃pϕq P homGpV, V q.

Preuve : Comme ρ̃pλq “
ř

gPG ϕpgqρpgq, on voit que

ρphqρ̃pϕqρphq´1 “
ÿ

gPG

ϕpgqρphgh´1q “
ÿ

gPG

ϕph´1ghqρpgq “ ρ̃pλq

44



car ϕ est une fonction constante sur les classes de conjugaison de G. 2

Représentation régulière de G

L’action par translation à gauche de G sur lui-même permet de munir
l’espace vectoriel CrGs d’une représentation de G, appelée représentation
régulière. Celle ci est déterminée par les relations suivantes

ph ¨r λqpxq “ λph´1xq, @λ P CrGs, @h, x P G.

On remarque par exemple que

h ¨r δg “ δhg, @h, g P G.

Soit pV, ρq une représentation irréductible de G et v P V ´ t0u. On consi-
dère l’application linéaire

Tv : CrGs ÝÑ V

définie par Tvpλq “
ř

hPG λphqρphqpvq.

Lemme 4.19 Tv est un morphisme surjectif entre la représentation régulière
et V . Cela implique que dimV ď n.

Preuve : Tv est un morphisme car Tvpg ¨r λq “ ρpgq pTvpλqq.
Par définition, l’image de Tv est égal à l’ espace vectoriel Epvq engendré

par la famille ρphqpvq, h P G. Comme pV, ρq est une représentation irréduc-
tible de G, on a Epvq “ V (voir le Lemme 4.12). Conclusion : Tv est un
morphisme surjectif. 2

4.2.2 Projection sur les invariants

A toute représentation E de G, on associe l’application linéaire πE P

EndCpEq :

πEpvq “
1

|G|

ÿ

gPG

g ¨ v, v P E.

Lemme 4.20 πE est un projecteur sur le sous-espace vectoriel EG :
— πE ˝ πE “ πE.
— ImagepπEq “ EG.

On peut voir aussi πE comme un morphisme surjectif entre E et la sous-
représentation EG.

Voici une application importante du lemme précédent.
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Proposition 4.21 Soit pV, ρV q une représentation de G et W Ă V une
sous-représentation. Alors il existe une sous-représentation W 1 Ă V telle
que

W ‘W 1 “ V.

Preuve : Considérons l’action linéaire de G sur E :“ homCpV, V q. D’après
le lemme précédent, on a un morphisme surjectif π : E Ñ EG “ homGpV, V q

défini par

πpAq “
1

|G|

ÿ

gPG

ρV pgq ˝A ˝ ρV pgq´1, A P homCpV, V q.

Soit p P homCpV, V q un projecteur surW . L’image p̃ “ πppq P homGpV, V q

est encore un projecteur sur W . Comme il vérifie les relations

p̃pg ¨ vq “ g ¨ p̃pvq, @g P G,@v P V,

le sous-espace vectoriel W 1 :“ kerpp̃q est une sous-représentation satisfaisant
W ‘W 1 “ E. 2

4.2.3 Décomposition en facteurs irréductibles

Soit pE, ρq une représentation de G (de dimension finie). Le résultat qui
suit se démontre par récurrence sur la dimension de E, au moyen de la
proposition 4.21.

Proposition 4.22 Il existe des sous-représentations Ej Ă E, j “ 1, . . . , n,
telles que

— Ej est irréductible, @j “ 1, . . . , n.
— E “ E1 ‘ ¨ ¨ ¨ ‘ En.

Appliquons ce résultat à la représentation régulière CrGs.

Définition 4.23 On note V1, . . . ,Vℓ une liste de sous-représentations ir-
réductibles de la représentation régulière satisfaisant la condition suivante :
pour toute sous-représentation irréductible E de la représentation régulière,
il existe un unique j tel que E » Vj.

Proposition 4.24 V1, . . . ,Vℓ correspond à la liste de “toutes” les représen-
tations irréductibles de G. En d’autres termes, pour toute représentation ir-
réductible V du groupe G, il existe un unique j tel que V » Vj.

Preuve : Soit V une représentation irréductible du groupe G. Le choix
d’un vecteur v P V non-nul détermine un morphisme surjectif Tv : CrGs Ñ V
(voir Lemme 4.19). Considérons une décomposition

CrGs “ ‘n
k“1Ek
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en sous-représentations irréductibles. Comme Tv est surjectif, un des mor-
phismes Tv|Ek

: Ek Ñ V est non-nul. D’après le Lemme de Schur cela im-
plique que V » Ek. Ainsi, il existe un unique j tel que V » Vj . 2

Dans la suite, lorsque E est une représentation et m P N, on utilisera la
notation suivante

mE “

$

’

&

’

%

t0u si m “ 0,

E ‘ ¨ ¨ ¨ ‘ E
loooooomoooooon

m fois

si m ě 1.

On peut préciser la proposition 4.22 de la manière suivante.

Proposition 4.25 Soit E une représentation de G (de dimension finie).
Alors

E » ‘ℓ
j“1mjVj

avec mj “ dimhomGpVj , Eq.

Dans l’isomorphisme E » ‘ℓ
j“1mjVj , chaque entier mj correspond à la

multiplicité de la repésentation irréductible Vj dans la représentation E.

4.2.4 Caractère d’une représentation

Si V est un espace vectoriel complexe de dimension finie, nous avons
l’application linéaire “trace”

Tr : EndCpV q Ñ C

qui est définie de la manière suivante. Considérons une base e1, . . . , en de V
et la base duale e˚

1 , . . . , e
˚
n de V ˚ : alors pour tout A P EndCpEq, on pose

TrpAq “

n
ÿ

k“1

xe˚
k, Apekqy.

Un petit calcul permet de vérifier que la somme de droite ne dépend pas du
choix de la base.

Définition 4.26 Le caractère d’une représentation ρ : G Ñ GLpV q est la
fonction χV : G Ñ C définie par

χV pgq :“ Trpρpgqq, g P G.

Voici quelques propriétés de la fonction caractère. Notons N le cardinal
de G.

— χV p1q “ dimV .
— Soient z1, . . . , zdimV P tz P C, zN “ 1u les valeurs propres de ρpgq

(voir le lemme 4.14). Alors
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1. χV pgq “
řdimV

i“1 zi,

2. |χV pgq| ď dimV ,

3. |χV pgq| “ dimV si et seulement si ρpgq est une homothétie.

— dimpV Gq “ 1
|G|

ř

gPG χV pgq.
— χV P ZrGs.
— χV “ χW si V » W .
Voici d’autres propriétés relatives aux opérations “somme” et “produit

tensoriel”.

Lemme 4.27 Soient V et W deux représentations de G. Alors
— χV ‘W “ χV ` χW .
— χV bW “ χV χW .
— χV ˚ “ χV .
— χhompV,W q “ χV χW

Munissons l’espace vectoriel CrGs du produit hermitien

ă λ, µ ą:“
1

|G|

ÿ

gPG

λpgqµpgq.

On a le lemme crucial suivant.

Lemme 4.28 Soient V et W deux représentations de G.

1. ă χV , χW ą“ dim phomGpW,V qq.

2. Si V et W sont irréductibles, on a

ă χV , χW ą“

#

1 si V » W,

0 sinon.

3. V est irréductible si et seulement si ă χV , χV ą“ 1.

4. V » W si et seulement si χV “ χW .

Preuve : Le premier point découle du calcul suivant

ă χV , χW ą “
1

|G|

ÿ

gPG

χV pgqχW pgq

“
1

|G|

ÿ

gPG

χV bW˚pgq

“ dimpV bW ˚qG.

Maintenant, sachant que V b W ˚ » hompW,V q, on voit que pV b W ˚qG »

homGpW,V q.
Le deuxième point découle du premier point et du lemme de Schur.
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Pour le troisième point, on utilise la proposition 4.25. Nous avons une
décomposition V » ‘ℓ

j“1mjVj avec mj “ dimhomGpVj , V q. Comme les
produits hermitiens ă χVi , χVj ą sont nuls si i ‰ j et égaux à 1 si i “ j, on
obtient

ă χV , χV ą“

ℓ
ÿ

j“1

pmjq
2. (10)

C’est maintenant clair que ă χV , χV ą“ 1 si et seulement si V est irréduc-
tible.

Le dernier point vient du fait que dans la décomposition V » ‘ℓ
j“1mjVj ,

les multiplicités mj P N sont déterminés par les relations

mj “ă χV , χVj ą .

Cela entraine que si χV “ χW , alors V » W .

4.2.5 Premier pas vers la classification des représentations irré-
ductibles

On a montré à la section 4.2.3 que G admet un nombre fini de repré-
sentations irréductibles V1, . . . ,Vℓ, et celles-ci apparaissent toutes dans la
représentation régulière CrGs : on a

CrGs » ‘ℓ
j“1njVj , (11)

avec nj ě 1 pour tout j.
Un calcul direct nous donne le caractère de la représentation régulière :

χCrGspgq “

#

|G| si g “ 1,

0 si g ‰ 1.

Cela permet de voir que les multiplicités nj satisfont les relations :

nj “ă χCrGs, χVj ą“ dimVj .

En comparant les dimensions dans l’identité (11), on obtient une première
relation

|G| “

ℓ
ÿ

j“1

pdimVjq
2

Nous allons maintenant montrer que les caractères des représentations
irréductibles V1, . . . ,Vℓ définissent une base de l’espace vectoriel ZrGs. On
sait déjà que pχVj q1ďjďℓ est une famille libre puisqu’elle est orthogonale.

Pour s’assurer que pχVj q1ďjďℓ est une famille génératrice de ZrGs, il suffit
de montrer le lemme suivant.
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Lemme 4.29 Soit ϕ P ZrGs, tel que ă ϕ, χVj ą“ 0, @j. Alors ϕ “ 0.

Preuve : Soit ϕ P ZrGs, tel que ă ϕ, χVj ą“ 0, @j.
Soit pE, ρq une représentation de G et ρ̃ : CrGs ÝÑ EndCpEq le mor-

phisme d’algèbre associé. L’endomorphisme ρ̃pϕq P homGpE,Eq est défini
par la relation

ρ̃pϕq “
ÿ

gPG

ϕpgqρpgq.

Considérons des sous-représentations Ek Ă E irréductibles, k “ 1, . . . , n,
telles que E “ E1 ‘ ¨ ¨ ¨ ‘ En. L’endomorphisme ρ̃pϕq laisse stable chaque
sous-représentation Ek. Comme ρ̃pϕq|Ek

P homGpEk, Ekq, il existe ak P C tel
que

ρ̃pϕq|Ek
“ akIdEk

.

En prenant la trace, on obtient

ak “ 1
dimpEkq

Tr pρ̃pϕq|Ek
q “ 1

dimpEkq

ÿ

gPG

ϕpgqTr pρEk
pgqq “

|G|

dimpEkq
ă ϕ, χE˚

k
ą .

Mais sachant qu’il existe j tel que E˚
k » Vj , on en déduit que ă ϕ, χE˚

k
ą“

ă ϕ, χVj ą“ 0. On obtient que ak “ 0, @k.
On a donc montré que l’endomorphisme ρ̃pϕq P homGpE,Eq est nul pour

n’importe quelle représentation E.
Appliquons ce résultat à la représentation régulière E “ CrGs. Rappelons

que le morphisme ρr : G Ñ GLpCrGsq satisfait la relation ρrpgqpδ1q “ δg.
Ainsi le vecteur ρ̃rpϕqpδ1q est égal à

ÿ

gPG

ϕpgqδg P CrGs.

Comme ρ̃rpϕq “ 0, on doit avoir
ř

gPG ϕpgqδg “ 0. Cette dernière condition
impose que ϕ “ 0. 2

Nous pouvons maintenant résumer ce que nous avons démontré concer-
nant les représentations irréductibles complexes d’un groupe fini.

Théorème 4.30 Soit G un groupe fini. Notons ℓ ě 1 le nombre de classes de
conjugaison de G. Alors G admet exactement ℓ représentations irréductibles
V1, ¨ ¨ ¨ ,Vℓ satisfaisant la relation

|G| “

ℓ
ÿ

j“1

pdimVjq
2.
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