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1 Rappels sur les anneaux

1.1 Anneaux, sous-anneaux, morphismes

Un anneau A est un ensemble muni de deux lois internes "+" et "."
vérifiant

1. (A, +) est un groupe abélien : son élément neutre est noté 0.

2. La loi "-" est associative, avec un élément neutre noté 1.

3. Laloi "-" est distributive par rapport a "+" : Va,y,z € A, x-(y+2) =

rT-yYy+x-z.

L’anneau est dit commutatif si la loi "-" est commutative. Dans ces
notes, nous ne considérons que des anneaux commutatifs, sauf in-
dication contraire. Dans la suite, le produit x - y est noté xy.

Rappelons quelques notions associées & un anneau commutatif A :

1. x € A est inversible si 3y € A tel que xy = 1 : I'élément y € A est
unique, et il est appelé 'inverse de x.

2. x € A est un diviseur de zéro si x # 0 et si dy # 0 tel que xy = 0.
3. x € A est nilpotent si dn =1 tel que z™ = 0.

4. A est dit intégresi Ve,ye A, ay=0=—=x=0o0uy = 0.
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. A est un corps si tout élement non nul de A est inversible.

Définition 1.1 Notons A* [’ensemble des éléments inversibles de A. On
remarque que (A*,-) est un groupe abélien.

Exercice 1.2 Montrer les faits suivants dans un anneau commutatif A :
— Six,y € A sont nilpotents, alors x + y est nilpotent.
— Six e A* ety est nilpotent, alors x + ye A*.
— Si A a un nombre fini d’éléments, alors A intégre < A est un
coTpSs.

Voici quelques exemples d’anneaux commutatifs :

— ZcQcRcC.

— 7Z/NZ pour tout N = 2.

— Anneaux de polynomes A[X], A[X,Y], A[X1,..., X,]
— Anneaux de séries formelles A[[X]].

— Anneau produit A := Ay x --- x 4.

Exercice 1.3 — Montrer que (A[X])* = A* lorsque A est intégre.
— Montrer que (Z/AZ[X])* posséde une infinité d’éléments.
— Montrer que P =Y, yar X" € A[[X]] est inversible ssi ag € AX.

Définition 1.4 Un sous-ensemble B < A est un sous-anneau de A si



— (B, +) est un sous-groupe de (A, +).
— Vz,ye B, xye B.
— leB.

Voici des exemples élémentaires de sous-anneaux :
— Z est un sous-anneau de Q.
— Z[X] < Q[X] < R[X] sont des sous-anneaux de C[X].

Soient A; et Ay deux anneaux commutatifs. Une application ¢ : A1 — Ag
est un morphisme d’anneauz si

— Va,be Ay, p(a+b) = p(a) + ¢(b).

— Ya,be Ay, p(ab) = o(a)p(b).

— (1) =1.
On note que I'image de ¢, notée p(A;), est un sous-anneau de As.

Voici quelques exemples de morphismes.

Exemple 1.5 Soit ¢ : A — B un morphisme d’anneauz. Alors l’applica-
tion ¢« A[X]| — B[X] définie par (3 j_oarX*) = Yp_oolar)XF est un
morphisme d’anneaut.

Exemple 1.6 Soit A un sous-anneau de B. Pour tout 8 € B, Uapplication
le morphisme d’anneauz ¢g : A[X]| — B définie par ¢g(Xp_oarX*) =
Dho Gk B* est un morphisme d’anneau.

L’image de ¢g est notée A[S] : c’est le plus petit sous-anneau de B conte-
nant A et (.

Ainsi pour tout z € C, on définit les sous-anneaux Z[z] < Q[z] de C.

1.2 Idéaux

Soit A un anneau commutatif.

Définition 1.7 I < A est un idéal de A si
— (I,+) est un sous-groupe de (A, +).
— VYrel,Vae A, axel.

Définition 1.8 Un idéal I < A est dit principal s’il existe a € A tel que
I = {za,x € A}. Cet idéal, noté (a) ou bien aA, est le plus petit idéal de A
contenant a.

Nous avons des opérarions élémentaires sur les idéaux. Soient I, J deux
idéaux de A. On définit alors les idéaux suivants :

— InJ,

— I+ J:={a+bj(a,b)elx J}

— IJ = {Zzzl akbk; (ak,bk) el x J, Vk}.



De maniére générale, si I, k € X est une famille d’idéaux de A, 'inter-

N
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est un idéal de A.
A toute partie T' < A, on associe

1= () I
I ideal, T

qui est le plus petit idéal contenant T'.
Voici quelques propriétés faciles & démontrer.

Proposition 1.9 — Soit I ¢ A un idéal. Alors I = A < 1€ 1.
— Si A est integre, () = (y) <= Jue A*, v = uy.
— Sip: A— B est un morphisme d’anneaux, alors

ker(p) :={x € A, ¢(z) =0}

est un idéal de A.
— SiT =A{x1,...,zp} alors, (T) = (x1) + -+ (zp).
— I+J=(IuvlJ).
— IJcInlJ.
— IJ=1InJsil+J=A.
Le radical d’un idéal I < A est 'idéal suivant :

VIi={zeAIn=12"el}.

Petit exercice d’entrainement : vérifier que A/T est bien un idéal de A.
Le radical de I = {0} est appelé le nilradical de A :

Nil(A) := {x € A, z nilpotent}.

Exercice 1.10 — Dans Z, expliciter l'idéal 4/(300).
— Eaxpliciter le nilradical de l’anneau Z/367Z.

1.3 Anneaux quotients

Soit I un idéal d’un anneau commutatif A. Considérons la relation d’équi-
valence ~j sur A définie par : Vz,y € A,

r~ry<=zxz—yecl.
La classe d’équivalence de x € A est le sous-ensemble T :=xz + [ < A.

Définition 1.11 1. On note A/I < P(A) l’ensemble des classes d’équi-
valences de ~7.



2. On note nr : A — A/I la surjection définie par 7(z) = T.

Proposition 1.12 A/I posséde une structure d’anneau pour laquelle ’ap-
plication 7y : A — A/I est un morphisme d’anneau.

La loi "+" sur A/I est définie par les relations

T+y=x+y, Vr,yeA

L’égalité précédente est bien définie carsiz = aety = b, alors v + y = a + b.
L’élément neutre pour (A/I,+) est 0.
La loi "-" sur A/I est définie par les relations

7.7 =7y, Va,yeA.

L’égalité précédente est bien définie car si T = @ et ¥ = b, alors Ty = ab.
L’élément neutre pour (A/I,-) est 1.
Voici un exemple fondamental.

Exemple 1.13 Considérons l’anneau quotient M := R[X]/I ou I est l’idéal
principal (X% +1).
1. Vérifier que pour tout m € M, il existe un unique couple (a,b) € R?
tel que m = a + bX.
2. Veérifier que Uapplication ¢ : M — C, définie par ¢(a + bX) := a+ib,
est un isomorphisme d’anneauz.

Soit ¢ : A — B un morphisme d’anneau. Notons 7, : A — A/ker(p) le
morphisme canonique.

Proposition 1.14 L’application @ : A/ker(p) — B définie par la relation
2(7) = p(x),Vx € A, est un morphisme d’anneau injectif. De plus, on a la
relation p = pom,.

Considérons Papplication =1 : P(B) — P(A) définie par la relation
o YY) ={xre A p(x)e Y} pour tout Y < B.

Proposition 1.15 1. Si J est un idéal de B, alors ¢~ 1(J) est un idéal
de A contenant ker(yp).

2. Supposons  surjectif. Dans ce cas :
— @~ 1 détermine une bijection entre les idéauzx de B et les idéaux de
A qui contiennent ker ().
— Pour tout idéal J de B, le morphisme @ induit un isomorphisme

Alp=1(J) = B/J.



Considérons un premier exemple d’application de la proposition 1.14.
Soit v € A, et 4 : A — A/aA le morphisme quotient (ici A désigne 'idéal
engendré par «). On a vu dans l'exemple 1.5 que 7, permet de définir un
morphisme d’anneaux

7ot A[X] — AJaA[X].

On voit alors que ker(7,) est égal a l'idéal aA[X]. Grace a la proposition
1.14 on sait que le morphisme 7, induit un isomorphisme d’anneaux

A[X]/aA[X] —>  AJaA[X]. (1)

Considérons un autre exemple de passage au quotient. Soient I < J deux
idéaux de A. On considére le morphisme

mr:A— A/l

L’image 7;(J) est un idéal de A/I que I'on note J/I. On considére alors le
quotient de l’anneau A/I par rapport a l'idéal J/I. C’est un anneau noté
(A/I)/(J/I). Considérons le morphisme quotient m/; : A/I — (A/I)/(J/I),

et le morphisme d’anneaux
p=myromr: A— (A/D)/(J/I).

Proposition 1.16 1. ¢ est surjectif.
2. Le noyau de ¢ est égal a J.
3. Le morphisme @ : A/J — (A/I)/(J/I) est bijectif.

Nous allons regarder un exemple qui permettra de comprendre I'utilité
de l'isomorphisme A/J ~ (A/I)/(J/I).

On considére I'anneau quotient K = Z[X]/(3,1 + X?). Ici J = (3,1 +
X?2) = (3) + (1 + X?) est un idéal de A = Z[X] contenant I = (3). En
utilisant (1), on voit que 'anneau quotient A/I est isomorphe a Z/3Z[X] et
que ideal J/I est égal & (X2 + 1) < Z/3Z[X]. Ainsi 'anneau (A/I)/(J/I)
est isomorphe & Z/3Z[X]/(X? + 1). D’aprés la proposition précédente, on
peut conclure que

K ~ Z/3Z[X]/(X? + 1).
On verra a la section 1.7 que Z/3Z[X]/(X? + 1) est un corps de cardinal 9.
On termine cette section avec le lemme chinois.

Soient I, J deux idéaux de A tels que I + J = A. On considére le mor-
phisme d’anneau ¢ : A — A/I x A/J défini par p(z) = (77(x), ms(x)). Cest
immédiat de voir que ker(¢) = I nJ : de plus la relation I +J = A implique
que I nJ = IJ. Vérifions maintenant que ¢ est surjective.



Comme [+ J = A, il existe a € I et b e J tel que a +b = 1. Considérons
(rr(x),m5(y)) € A/I x A/J et posons z = ay + bzx. Les relations az + bz = z
et ay +by = y permettent de voir que 77(z) = mr(z), et my(2) = 7s(y). Ainsi
o(z) = (m1(x), 75 (y))-

Théoréme 1.17 (Lemme chinois) Soient I, J deuz idéaux de A tels que
I+J=A. Alors Uapplication g : A/IJ — AJIx A/J est un isomorphisme
d’anneausr.

1.4 Localisation

Définition 1.18 Une partie S < A est dite multiplicative si
1. 1€ S,
2. a,be S = abe S.

Nous allons construire un anneau S~'A et un morphisme j : A — S™1A4
tel que () < (S71A)*.

Pour cela, on considére I'ensemble A x S que 'on muni de la relation
d’équivalence R définie de la maniére suivante : (a, s)R(b,t) < Jue S tel
que u(at — bs) = 0. On note S~1A4 I'ensemble quotient A x S/R.

La classe de (a,s) dans S™!A est noté a/s, et on note j : A — S~14
lapplication j(a) = a/1.

Proposition 1.19 1. STA admet une structure d’anneau pour laquelle
j:A— STA est un morphisme d’anneau.

2. La loi "+" sur ST'A est définie par les relations a/s + b/t = (at +
bs)/st.

3. La loi "" sur STIA est définie par les relations a/s - b/t = ab/st.
On remarque que 1/s est l'inverse de j(s) pour tout s € S.

Remarque 1.20 1. Si0e S, alors 'anneau ST A est réduit a {0}.

2. 8i S c AX, alors j : A — STA est un isomorphisme.

Un exemple important est celui d’'un anneau A intégre. On peut alors
considérer la partie multiplicative S := A — {0}. Dans ce cas, I'anneau S~'4
est un corps, appelé le corps de fraction de A. Par exemple, cette construction
permet de construire Q & partir de Z : Q est le corps de fraction de Z.

Voici un autre exemple : considérons la partie multiplicative S = {10, k €
N} de I'anneau Z. Dans ce cas, S™'Z est le sous-anneau de Q formé des
nombres décimaux :

S”Z:{ﬁ%weZ$eN}



Exercice 1.21 Notons A, Uanneau ST'A, lorsque S = {s*, k € N}. Consi-
dérons le morphisme d’anneau ¢ : A[X]| — As qui envoie un polynéme P(X)
sur P(1/s).

1. Vérifier que ¢ est surjectif.

2. Montrer que ker(p) est égal a 'idéal (1 — sX).

3. En déduire que A[X]/(1 — sX) ~ As.

1.5 Idéaux premiers, idéaux maximaux

On veut comprendre sous quelles conditions 'anneau quotient A/I est
integre, ou est un corps.

Définition 1.22 1. Unidéal I c A est dit maximal si I # A, et si pour
tout idéal J contenant I, on a J = I ou bien J = A.

2. Un idéal I < A est dit premier si Vz,y € A, zy e I = z € I ou
yel.

On peut caractériser le fait que I < A est maximal de la maniére sui-
vante : I # A et pour tout a¢ I on a I + (a) = A.

Proposition 1.23 1. A/I est intégre ssi l'idéal I est premier.

2. A/I est un corps ssi l'idéal I est mazimal.

Exemple 1.24 Dans l'anneau R[X,Y] :
1. L’idéal (X) est premier, mais pas maximal.
2. L’idéal (X) + (Y) est mazimal.

Théoréme 1.25 (Krull) Soit A un anneau (non-nul) et I un idéal de A
distinct de A. Il existe un idéal maximal M < A contenant I.

La preuve de ce théoréme utilise le lemme de Zorn :

Lemme 1.26 (Zorn) Soit £ un ensemble munie d’une relation d’ordre®
<. On suppose que toute partie F < € totalement ordonnée? posséde un
majorant 3.

Alors € posséde un élément maximal 4

Attention, 'ensemble (F, <) n’est & priori pas totalement ordonné.
Pour tout z,ye F,x <youy<ux.

m € & est un majorant de F siVex e F, x < m

M e £ est maximalsiVre £, M <z = M = x.

L e



La preuve du Théoréme de Krull s’obtient en considérant I’ensemble &
des idéaux J de A tels que I < J # A : £ est non-vide et il est ordonné
au moyen de la relation d’inclusion <. On voit alors que pour partie F c £
totalement ordonnée, 1’élément

Jr=J7

JeF

est un idéal de £ qui majore tous les éléments de F. D’aprés le lemme de
Zorn, 'ensemble (£, <) admet donc un élément maximal J,. Par définition,
J, est un idéal maximal de A contenant I. O

1.6 Divisibilité dans un anneau intégre

Dans cette section, A est un anneau intégre.

Définition 1.27 Soient a,be A — {0}. On dit que a divise b (notation a\b)
s’il existe ¢ € A tel que b = aq. Cette derniére condition est équivalent a
demander que (b) < (a).

Définition 1.28 On dit que a,a’ € A — {0} sont associés s’il existe un élé-
ment inversible u € A* tel que a' = ua.

Lemme 1.29 Soient a,b € A — {0}. Les conditions suivantes sont équiva-
lentes :

— a\b et b\a,

— (a) = (b),

— a et b sont associés.

Définition 1.30 Soient a,b e A—{0}. On dit que a et b sont premiers entre
eux ou sans facteur commun, si tout diviseur commun a a et b est inversible.
Ceci équivaut a dire que : A est le seul idéal principal contenant a et b.

Définition 1.31 Soit A un anneau intégre.
1. a e A— {0} est dit irréductible si a ¢ A* et si Vo,ye A on a :

a=xy = x€A* ou yeA*.
2. a€ A— {0} est dit premier sia¢ A* et siVx,y€ A, ona:
a\ry = a\x ou a\y.
3. On remarque que “a premier” => “a irréductible”.

Voici deux faits généraux, valables dans un anneau intégre : pour tout
a¢ A* U {0},

— a est premier si et seulement si 'idéal (a) est premier.

— a est irréductible si I'idéal (a) est maximal.
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1.7 Anneaux principaux

Définition 1.32 Un anneau commutatif A est dit principal si
1. A est integre.
2. Tout idéal de A est principal.

Définition 1.33 Un anneau commutatif A est dit euclidien si
1. A est inteégre,

2. 1l existe ¢ : A—{0} — N satisfaisant la condition suivante : pour tout
(a,b) € A x A—{0} il existe q,r € A vérifiant
— a=bg+r
— =0 ou bien ¢(r) < ¢(b).

Exemple 1.34 1. L’anneau Z est euclidien. Ici on prend ¢p(n) = |n|.
2. SiK est un corps, 'anneau K[ X] est euclidien. Ici ¢ : K[X]—{0} - N

577

est lapplication “degré”.

3. L’anneau Z[i] = {a+1ib,a,be Z} est euclidien. Ici ¢(a+ib) = a®+b2.

Considérons l'anneau quotient K[X]/(P) ou P est un polynéme non nul.
L’utilisation de la division euclidienne dans K[X] donne une preuve directe
du fait suivant.

Exercice 1.35 K[X]/(P) est un K-espace vectoriel de dimension finie. Si
d°P =n>1, alors {1,... ,Yn_l} est une base de K[ X]/(P).

La prochaine proposition est fondamentale.
Proposition 1.36 Tout anneau euclidien est principal.

La preuve de ce fait est élémentaire. Si I est un idéal non nul d’un anneau
euclidien, on considére b € I — {0} tel que ¢(b) = min ¢(I — {0}). On montre
alors, au moyen de la division euclidienne, que I = (b).

Terminons cette section en abordant les questions de divisibilité dans un
anneau principal.

Proposition 1.37 Dans un anneau principal A, on a l’équivalence des as-
sertions suivantes pour a € A — {0} :

1. L’anneau quotient A/(a) est intégre.
2. a est premier.

3. a est irréductible.

4. L’idéal (a) est mazimal.

5

. L’anneau quotient A/(a) est un corps.
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On remarque que les implications suivantes
lLe2. =3 <4. <5.

sont valables dans n’importe quel anneau intégre.

L’implication 3. = 2. est appelée le Lemme d’Euclide : dans un anneau
principal, si a divise bc et a est irréductible, alors a divise b ou c.

La proposition 1.37, appliquée aux anneaux principaux Z et K[ X], donne
le résultat suivant.

Proposition 1.38 1. Considérons l’idéal (n) < 7Z associé a n > 2.
Alors (n) mazimal <= (n) premier <= n est un nombre premier.

2. Considérons lidéal (P) < K[X] associé a un polynéme non constant
P . Alors (P) mazimal <= (P) premier <= P est un polynéme
wrréductible.

Exemple 1.39 A la section 1.3, on a considéré l'anneau quotient K :=
Z/3Z[X]/(X? +1). Le polynome X%+ 1 est irréductible dans Z/3Z[X] car il
ne posséde pas de racine dans Z/3Z. Comme l'anneau Z/3Z[ X ] est principal,
on peut conclure que K est un corps.

Dans un anneau principal, on peut définir la définition de “pged” et
“ppcm” comme suit.

Définition 1.40 Soient A un anneau principal et a,be A — {0}.
1. pgcd(a,b) est défini (modulo A* ) par la relation (a)+(b) = (pged(a,b)).
2. ppem(a, b) est défini (modulo A* ) par la relation (a)n(b) = (ppem(a,b)).

Dans un anneau principal, les assertions suivantes sont équivalentes :
— a et b sont sans facteur commun,

() + () = 4,

— dx,ye A, ax + by = 1.

C’est le théoréme de Bezout. Ce résultat permet d’obtenir une géné-
ralisation du lemme d’Euclide qui est le lemme de Gauss : soient a,b,c € A
non-nuls tel que a divise be. Si a et b sont sans facteur commun alors a divise
c.

On considére maintenant une partie Irr(A) < A formée d’éléments irré-
ductibles et satisfaisant la condition suivante : pour tout irréductible p’ € A,
il existe un unique (u,p) € A* x Irr(A) tel que p’ = up.

A tout p € Irr(A), on associe la fonction valuation v, : A — {0} —» N
grace a la relation

vy(x) = sup{k € N, p"\z}.

Le fait que vp(z) soit finie est assurée au moyen du résultat suivant.
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Lemme 1.41 Soit A anneau principal.
1. Toute suite croissante d’idéaur de A est stationnaire.

2. Considérons une suite (xy) d’éléments non-nuls de A tel que Vk €
N, zpi1\zk. Alors, AN € N, tel que Vk, 0 = N, x}, et xy sont associés.

On voit sans trop de difficultés que les énoncés 1. et 2. sont équivalents.
Pour vérifier le point 1., on procéde ainsi. Si Iy < Ixi1,k € N est une
suite croissante d’idéaux, on vérifie que J = |Jyon Ir est un idéal. Comme
A est principal, il existe a € | J,n Ix tel que J = (a). Soit N € N tel que
a € Iy : comme (a) € Iy < J = (a), on obtient Iy = J. Cela implique que
Vk =N, I, =1;,. O

On peut maintenant énoncer le théoréme de décomposition.

Théoréme 1.42 Soit A un anneau principal. Pour tout x € A—{0} il existe
un unique u € A tel que

T =1Uu H pvp(ff)

pelrr(A)z
ot Irr(A)y = {p € Irr(A),vy(x) # 0} est fini.
Corollaire 1.43 Pour tout x,y € A — {0}, on a

ngd([I}, y> _ H pmin(vp(x),vp(y)) et ppcm(m, y) _ H pmax(vp(x),up(y))
pelrr(A) pelrr(A)

Dans cette notation, on utilise la convention p® = 1 pour tout p € Irr(A).

On remarque en particulier que pour a,b € A — {0}, a divise b si et
seulement si vy(a) < vy(b), pour tout p € Irr(A).

1.8 Anneaux factoriels

Partant d’un anneau A principal, ’anneau de polynémes A[X] n’est pas
nécéssairement principal. Par exemple, dans Z[ X, I'idéal (2) + (X)) n’est pas
principal. Le but de cette section est d’introduire une notion plus faible qui
sera “stable” pour l'opération A ~ A[X].

Définition 1.44 A est un anneau factoriel si
— A est integre.
— Yae A—{0}, Ip1,...,pN irréductibles tels que

a=pi-pn.
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— Cette décomposition est unique au sens suivant. Si
/ /
a=pipp=pL P
alors m = n et il existe une permutation T € Sy, telle que Yk, (px) =
/
(pg(k))~
Gréace au théoréme 1.42 nous avons le résultat suivant.

Théoréme 1.45 Tout anneau principal est factoriel.

Ainsi, nous savons que 'anneau Z[i] est factoriel, car il est principal. Par
contre, on peut facilement montrer que I'anneau Z[iv/3] n’est pas factoriel :
il suffit d’examiner la relation 4 = 2 -2 = (1 + iv/3)(1 — i1/3) dans Z[iv/3].
Comme les trois éléments 2,1 + i4/3, 1 4 i4/3 sont irréductibles dans Z[Z\/g]
(pourquoi ?), on a deux décompositions distinctes de 4 comme produit d’ir-
réductibles : cela contredit la condition d’unicité d’une décomposition en
produit d’irréductibles pour les anneaux factoriels.

Remarque 1.46 Dans un anneau factoriel, on peut encore définir les “pged”
et les “ppem” au moyen des formules du lemme 1.43.

Le résultat principal de la section est le suivant.

Théoréme 1.47 Si A est factoriel, alors l'anneau de polynomes A[X] est
factoriel.

Voici les grandes étapes de la preuve.
Pour tout polynéme non-nul P = 37, a; X* € A[X], on définit son
contenu
c(P) = pgcd(ag, . . ., an).

On dira que P € A[X] est primitif, si c¢(P) = 1.
Lemme 1.48 A tout p € A irréductible, on associe le morphisme canonique
op t A[X] — A/(p)[X]. Alors P € A[X] est primitif si pp(P) # 0 pour tout
p wrréductible.

Le lemme précédent permet de montrer facilement le résultat suivant.
Lemme 1.49 VP, Q € A[X], on a ¢(PQ) = c¢(P)c(Q).

On considére maintenant le corps de fraction K de A.

Proposition 1.50 Les polynomes irréductibles de A[X]| sont
— Les éléments irréductibles de A (i.e. les polynomes de degré 0).
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— Les polynomes primitifs et de degré = 1 dans A[X] qui sont irréduc-
tilbles dans K[ X].

On termine la preuve du théoréme 1.47 de la maniére suivante.
Soit P € A[X] un polynéme non nul.

1. On considére la décomposition P = ¢(P)P avec P € A[X] primitif.
2. Dans l'anneau principal K[X], on a la décomposition en irréductibles

P=am - -m,

ou a € K — {0} et chaque 7 est un polynoéme primitif de A[X] qui
est irréductilble dans K[X].

3. En utilisant le lemme 1.49, on montre que o« € A*.

4. En décomposant ¢(P) = upi---pm dans lanneau factoriel A, on
obtient dans A[X] la décomposition de P en irréductibles

P=uapy - pm T Thp.

On vérifie facilement que cette décomposition est unique. O

Le théoréme 1.47 nous permet de produire beaucoup d’exemples d’an-
neaux factoriel qui ne sont pas principaux :

— Z[X1,..., Xy,

— K[X1,...,Xy], sin > 2 et K un corps.

Certaines propriétés des anneaux principaux sont encore valables dans
les anneaux factoriels.

Proposition 1.51 Supposons A factoriel et soient a,b,c € A — {0}.
(Lemme d’Euclide) a est irréductible et a\bc = , a\b ou a\c.
(Lemme de Gauss) Si a\bc et a,b sont sans facteur commun, alors

a\c.

On remarque que le Lemme de Gauss est équivalent a 1’énoncé suivant :
si a, b sont sans facteur commun et divisent ¢, alors ab\c.

Terminons cette section avec des considérations élémentaires sur les po-
lynémes irréductibles de A[X] de petit degré (voir Proposition 1.50). Dans
ce qui suit, a, b, ¢, ... désignent des éléments d’un anneau factoriel A.

Exercice 1.52 — a est irréductible dans A[X] si et seulement si a est
irréductible dans A.

— a+ bX est irréductible dans A[X] si et seulement si a et b sont sans
facteurs communs.
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— P(X) =a+bX +cX? est irréductible dans A[X] si et seulement si a,
b et ¢ sont sans facteurs communs et si, de plus, P(X) n’admet pas
de racines dans la corps de fractions de A.

— P(X) = a+bX +cX?+dX?3 est irréductible dans A[X] si et seulement
sia, b, c et d sont sans facteurs communs et si, de plus, P(X) n’admet
pas de racines dans la corps de fractions de A.

Notons que tout se complique pour les polynémes de degré supérieur a 4.
Par exemple, P(X) = (X?—2)(X?2+1) = X*— X2 — 2 n’est pas irréductible
dans Z[X] alors qu’il n’admet aucune racine rationnelle.

2 Modules sur un anneau

La notion de module est la généralisation naturelle de celle d’espace vec-
toriel.
2.1 Premiéres définitions

Dans toute la suite, A désigne un anneau commutatif.

2.1.1 Modules et sous-modules

Définition 2.1 Un A-module M est un groupe abélien munie d’une mul-
tiplication externe A x M — M, (a,m) — a - m vérifiant : Ya,b € A,
Ym,ne M

a) a-(m+n)=a-m+a-n,

b) (a+b)-m=a-m+b-m,
¢)a-(b-m)=ab-m,
d) 1-m=m.

On remarque que Vme M,ona0-m=0et (—1)-m = —m.
A un groupe abélien (M, +), on associe I’anneau (& priori, non-commutatif)

End(M) := {f : M — M morphisme de groupe}.

Une structure de A-module sur M correspond a la donnée d’un morphisme
d’anneaux p : A — End(M) : on aura p(a)(m) = a-m.

Exemple 2.2 o 5i A = K est un corps, la structure de K-module correspond
a celle de K-espace vectoriel.
e Si A =7, la structure de Z-module correspond & celle de groupe abélien.

Exemple 2.3 Voici quelques exemples de A-modules :
— A,
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— A"
— un tdéal I  A.

On peut aussi associer & un ensemble X' (non-vide), les A-modules sui-
vants :

— AY ={\: X - A},

— A =\ X — A, tel que {x, \(z) # 0} est fini}

Exemple 2.4 Soit ¢ : A — B un morphisme d’anneau. La multiplication
externe a - b := p(a)b munit B d’une structure de A-module.

Par exemple, si I est un idéal de A, le morphisme canonique A — A/I
permet de voir A/I comme un A-module.

Soit E un K-espace vectoriel. Tout endomorphisme v € Endg (F) munit
E d’une structure de K[X]-module, le produit externe étant défini par la
relation

P(X) -z =Pz, VP(X)eK[X], VzeFE. (2)

Respectivement, si E est un K[X]-module, alors :
— F est un K-espace vectoriel,
— Ju € Endg (FE), tel que le produit externe est défini par la relation (2).

Définition 2.5 Si E est un K-espace vectoriel, on note E, le K[X]-module
associé a u € Endg (FE).

Définition 2.6 Soit M un A-module. Une partie N < M est un sous A-
module si

— N est un sous groupe de (M, +),

— Yae, A, aN :={a-n, ne N} est contenu dans N.
Dans ce cas, N admet une structure de A-module, induite par celle de M.

Exemple 2.7 o Les sous A-module de A sont les idéaux de A.
o Si A =17, un sous Z-module de M est juste un sous groupe de (M, +).
e Soit B, le K[X]-module associé 4 u € Endg(FE). Alors les sous K[X]-
modules de E,, sont les sous espace vectoriels F' de E tels que u(F') c F.

Considérons un A-module M. A chaque m € M, on associe
anng(m) = {a€ A, a-m = 0}
Lemme 2.8 Pour tout m € M, anng(m) est un idéal de A.
Introduisons maintenant la notion de torsion d’un module.

Définition 2.9 Soit M un A-module. On note My, l’ensemble des m € M
tels que anny(m) # {0}. Si 'anneau A est intégre, on vérifie facilement que
Mo est un sous A-module de M : on appelle la torsion de M.

M est dit sans torsion si My, = {0}.
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Exercice 2.10 1. Soit G un groupe abélien, vu comme un Z-module.
— Montrer que si G est fini, alors Gior = G.
— Donner un exemple ot G est sans torsion.

2. Soit E, le K[X]-module associé & w € Endg(F). Montrer que si
dimg E est finie, alors (Ey)ior = Ey.

3. On considére Uanneau K[X]| comme un K[X]-module. Dans ce cas,
montrer que K[X] est sans torsion.

Considérons maintenant le cas d’'un A-module M et d’un sous A-module
Nc M.

Proposition 2.11 Le groupe quotient M /N admet une structure canonique
de A-module. Le produit externe est défini par la relation suivante dans
M/N :

a-m:=a-m, VYVaeAVme M.

2.1.2 Morphismes entre modules

Soient M et N deux A-modules. Une application f : M — N est un
morphisme de A-modules si
— f est un morphisme de groupe abélien,

— Yae A,Yme M,ona f(a-m)=a- f(m).

Définition 2.12 On note hom4 (M, N), l’ensemble des morphismes de A-
modules f: M — N. Lorsque M = N, on note End (M) := homy4 (M, M).

Lorsque A = Z, homz(M,N) désigne ’ensemble des morphismes de
groupes f: M — N.

Exercice 2.13 On considere un K[ X |-module E.,,. Montrer que f € Endg[x(E)
si et seulement si f € Endg(FE,) et de plus fou =wuo f.

On remarque que pour tout f € homa(M,N) :
— ker(f) est un sous A-module de M,
— Image(f) est un sous A-module de N.

Exercice 2.14 Rappelons que 'anneau A est commutatif.
— Montrer que homy (M, N) admet une structure canonique de A-module.
— Identifiez End 4 (M) a un sous-anneau de End(M).

Considérons maintenant trois A-modules M, N et P. La composition
(f,9) — f o g définit une application

hom4 (M, N) x hom (P, M) — hom (P, N).

Un morphisme ¢ : M — N est un isomorphisme de A-modules si 'une
des deux conditions (équivalentes) suivantes est satisfaite :
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— J gehomy(N, M) tel que pog=1Idy et gop = Idy.

— ¢ est bijective.
Exercice 2.15 Soient a,b = 2. Montrer que le Z-module homy(Z/aZ, Z/bZ)
est isomorphe a Z/cZ ot ¢ = pgcd(a,b).

Exercice 2.16 Montrer que le A-module homa(A*, AY) est isomorphe au
A-module My ,(A) formé des matrices de tailles £ x k a coefficients dans A.

Exercice 2.17 Montrer que le A-module AN est isomorphe a A[[X]], tandis
que AN est isomorphe o A[X].

Considérons maintenant une matrice X € Mp(A). Celle-ci définit un
morphisme X : A" — A" v — Xwv. ’application X — X définit un isomor-
phisme entre M, (A) et End4(A").

Lemme 2.18 VX € M, (A) les énoncés suivants sont équivalents :
— 3Y € M,,(A) tel que XY = I,,.
— Y € M, (A) tel que YX = I,,.
— X : A" — A" est une application bijective.

— det(X) e A%,

Exercice 2.19 Déterminer a,b € Z de telle maniére a ce que le morphisme
@ : 72 — 7?2 définie par o(z,y) = (50x + ay, 21z + by) soit bijectif.

2.1.3 Factorisation

Soit f : M — N un morphisme de A-modules. On considére le A-module
quotient M /ker(f). Notons m : M — M /ker(f) la projection canonique :
c’est un morphisme de A-modules.

Proposition 2.20 L’application f : M/ker(f) — N, définie par les rela-
tions

f(m) = f(m), VYmeM
est un morphisme injectif de A-modules. On a alors la factorisation
f=Tfom
Considérons un A-module M et un ideal I de A.

Lemme 2.21 Supposons que Ym € M, I < anng(m). Dans ce cas, M pos-
séde une structure de A/I-module : le produit externe A/I x M — M est
défini par la relation

a-m:=a-m, Yac A VYme M.

Considérons 'exemple du groupe abélien (Z/2Z)". On voit que Vm €
(Z)2Z)", 27, < anngz(m). Ainsi la structure de Z-module de (Z/27)™ induit
une structure de Z/2Z-module : cette derniére est en fait la structure de
7/27-espace vectoriel sur (Z/27,)".

19



2.1.4 Opérations sur les modules et sous-modules
Nous allons définir quelques opérations élémentaires.

e Intersection : Si N, s € S est une famille de sous A-modules de M,
alors (),cg N est un sous A-module de M.

e Réunion croissante : Si N, k € N est une famille croissante® de sous
A-modules de M, alors | J.n Nk est un sous A-module de M.

e Sous A-module engendré : Si X ¢ M, on note < X > le plus petit
sous A-module de M contenant X : il est formé de tous les éléments de la
forme Y _y Am - m, oit les A, € A sont tous nuls a part un nombre fini. On
appelle < X > le sous A-module engendré par X

e Somme de sous A-modules : Si Ny, s € S est une famille de sous A-
modules de M, on note ), g N, le sous A-module engendré par | J, g Ns :
il est formé de toutes les sommes (finies) >, o ms ol les my € Ny sont tous
nuls & part un nombre fini.

e Produit cartésien : Si My,..., M, sont des A-modules, le produit
cartésien My x --- x M), admet une structure canonique de A-module. On

notera aussi
P
P My
k=1

ce produit cartésien.

e Produit par un idéal : Si M est un A-module et que I est un idéal de
A, on note I M le sous A-module de M formé des sommes (finies) >}, ; Amy,
ol les A € I sont tous nuls a part un nombre fini et my € M,V e 1.

Lorsque G est un groupe abélien, on peut considérer 1'idéal (n) c Z et le
sous-groupe (n)G qui est égal & nG := {nz,z € G}.

Exercice 2.22 Montrer que M/IM admet une structure de A/I-module.

Ainsi, lorsque G est un groupe abélien, pour tout nombre premier p > 2,
le quotient G/pG admet une structure de Z/pZ-espace vectoriel.
2.2 Modules de type fini, modules libres

Soit M un A-module et S < M une partie non vide.

— S < M est dite génératrice si < S >= M.

— S < M est dite libre, si pour toute application A : § — A nulle
presque partout, > ..o A(s) - s = 0 seulement si Vs € S, A(s) = 0.

— S < M est une base, si S est libre et génératrice.

5. Vk e N, Nk c Nk+1
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On peut reformuler les notions précédentes en considérant le morphisme
de A-modules g : A®) — M défini par la relation

ws(A) = Z A(s) - s.

seS

Alors
— S est génératrice <<= g est surjective.

— Sest libre <= g est injective.

— S est une base <= (g est bijective.

Définition 2.23 — Un A-module est libre s’il admet une base.

— Un A-module est de type fini s’il admet une partie génératrice finie.
Voici le résultat principal de cette section.

Théoréme 2.24 Soit M un A-module non-nul que ’'on suppose libre et de
type fini. Alors il admet une base finie. De plus toutes les bases de M ont le
méme cardinal, qu’on appelle le rang de M, et que l’on note rang(M) > 1.

Remarque 2.25 Si M est le A-module nul, son rang est fixé égal a 0.

Le théoréme 2.24 nous permet de voir qu'un A-module (non-nul) M est
libre et de type fini si et seulement si il est isomorphe & un certain A¢ avec
¢ = rang(M).

Exemple 2.26 — Pour tout ¢ = 1, A® est un A-module libre.
— A[X] est un A-module libre mais il n’est pas de type fini.
— Z/nZ, pour n = 2 est un Z-module de type fini, mais il n’est pas libre.

Remarque 2.27 Si M est un A-module libre et A est intégre, alors Mo, =

{0}.

Lorsque l'on travaille avec un K-espace vectoriel E, on a les deux pro-
priétés suivantes :

1. Une base de E est une famille libre maximale.
2. Une base de E est une famille génératrice minimale.

Notons que ces deux énoncés ne sont plus valables lorsque 1'on travaille
avec des A-modules. Voici deux exemples élémentaires obtenus avec le Z-
module 7Z :

1. {2} est une famille libre maximale de Z, mais ce n’est pas une base.

2. {3,5} est une famille génératrice minimale de Z, mais ce n’est pas une
base.

21



2.3 Modules de type fini sur un anneau principal

Dans tout ce paragraphe, A désigne un anneau principal.
Nous commencons par étudier tout d’abord les sous A-modules d’un A-
module libre de rang fini.

2.3.1 Sous-modules d’un module libre de rang fini

Nous avons un premier résultat important.

Théoréme 2.28 Soit A un anneau principal. Alors tout sous-module N de
A® est libre et de rang fini k < {.

La preuve se fait par récurrence sur £ > 1.

Traitons le cas £ = 1. Un sous-module N de A est un idéal de A. Comme
A est principal, il existe a € A tel que N = (a). Si a = 0, alors N = 0 est
rang(M) = 0. Si a # 0, Papplication x € A — xa € N est un isomorphisme
de A-modules. Cela montre que N est libre de rang 1.

Supposons le résultat vrai au rang ¢, et considérons un sous module N
de A“!. Notons m : A“*! — A la projection sur la derniére coordonnée :
(1, ..., Tp41) = Tgp1. L'image m(N) est un idéal de A et ker(w) s’identifie
avec le sous-module A < A1l L’intersection Ny = N N ker(r) est un
sous-module de A™. Nous avons deux cas

— Si7w(N) =0, alors N © A" et 'hypothése de récurrence nous permet

de conclure que N est libre et de rang fini k£ < /4.
— Siw(N) # 0, il existe n, € M non-nul tel que 7(M) = (7(n,)). Alors

M = An, @® Ny. (3)

L’hypothése de récurrence, appliqée a N; < A%, nous permet de dire
que Ny est libre de rang inférieur a ¢. On voit alors, grace a (3), que
N est libre de rang inférieur a ¢ + 1.

O

Corollaire 2.29 Soit A un anneau principal et M un A-module libre de
rang £. Alors tout sous-module de M est libre et de rang fini k < £.

Le reste de cette section est consacrée & la preuve du Théoréme 2.31.
Considérons un A-module M libre de rang ¢ > 1. Fixons une base (e, ..., es)
de M. Notons e} € homy (M, A) les morphismes “coordonnées” :

4
m = ZeZ(m)-ei, Vm e M.
k=1
On vérifie que (e}, ..., e}) est alors une base du A-module hom4 (M, A).
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Soit N un sous A-module de M. On remarque que pour tout ¢ € hom4 (M, A),
I'image ¢(N) est un idéal de A. Considérons l'ensemble

EN = {@(N)a pEe hOInA(M, A)}
ordonné au moyen l'inclusion. Le point clé est le résultat suivant.

Proposition 2.30 Soit di € A tel que (d1) = ef(N) + --- + e} (N). Alors
(dy) est le plus grand élément de (En,<). De plus, pour tout n € N, il existe
m e M tel que n = dym.

La preuve nécessite plusieurs étapes.

Etape 1. Supposons qu’un idéal I — A soit le plus grand élément de Ey.
Soit ¢ € hom (M, A) tel que I = ¢(N). 1l existe ay,...,as,d € A tels que
I'=(d)ety= Zizl ay - e. Considérons n € N tel que

14
d=p(n) = Z ai ex(n).
k=1

Cela montre que (d1) < ef(N) + -+ + ej(IN). Comme (d) est le plus grand
élément de Ey, on a aussi e (N) < (d), Vk. On obtient finalement que
(d) =€ef(N)+---+ej(N). O

Etape 2. Tout d’abord, comme A anneau principal, on sait que toute
suite croissante d’idéaux de A est stationnaire (voir le Lemme 1.41). Cela
implique qu’il existe ¢1 € hom 4 (M, A) tel que ¢1(N) est un élément maximal
de (En, ). Soient n; € N et di € A tel que p1(n1) = dy et p1(N) = (dy).
Le reste de la preuve consiste & montrer que (dy) est le plus grand élément
de (EN, C). O

Etape 3. Vérifions que n; € d; M. Pour cela, il faut montrer que d; divise
e;(n1) pour tout 1 < k < £. Fixons k, et considérons 'idéal

(ak) = (d1) + (ef(n1))

La relation de Bezout nous assure l'existence de a,b € A tel que o =
api(n1) + bej(ni). Cela signifie que pour ¢ = aef + by, on a ai € p(N)
et donc ¢1(N) = (d1) < (ag) < p(N). La maximalité de ¢ (V) impose que
©1(N) = ¢(N) et donc (dy) = (ay). Ceci signifie que (e} (n1)) < (di). O

Etape 4. A ce stade on sait que n; = dymq avec m; € M vérifiant
¢1(m1) = 1. Cela nous donne les sommes directes

MzAml@M' et NZAdlml@N/.

avec M' = M nker(¢1) et N' = N n ker(p1).
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A tout ¢ € homa(M, A), on associe ¢ € homg(M, A) défini par les
relations : p(m1) = 1 et ¢ = ¢ sur M’. On voit alors que

@1(N) = (d1) < (d1) + p(N') = ¢(N).

Comme ¢1(N) est maximal, on a ¢1(N) = @(N) et donc p(N') < (dy).
Finalement,

p(N) = (dip(m)) + ¢(N') = (d1) = ¢1(N).

On a bien démontré que (dy) = ¢1(NN) contient tous les éléments de Ey :=
{SO(N)v pe hOIIlA(M, A)} U

Nous pouvons maintenant démontrer le théoréme de structure suivant.

Théoréme 2.31 (Théoréme de la base adaptée) Soit M un A-module
libre de rang ¢ = 1. Soit N un sous A-module de M de rang 1 < k < £. 11

existe une base (my,...,my) de M et des coefficients non-nuls dy, . ..,d € A
tels que

— di\--\dp,

— (dyma, ..., dgmyg) est une base de N.

De plus, la suite d’idéauz (dy) > -+ D (dy) est unique.

On reprend la preuve par récurrence du Théoréme 2.28.
Revenons a ’étape 4 de la preuve de la proposition 2.30. 11 existe dq; € A,
my € M, p1 € homy (M, A) tels que
7 <,01(ml) =1,
- d1m1 € N,
— (d1) = p1(N) contient tous les éléments de En := {@(N), p € hom4 (M, A)}.
Comme N est non-nul, d; # 0. Nous avons alors des sommes directes

M:Am1®M’ et N=Ad1m1€i-)N’.

ou M’ := M nker(p1) est un module libre de rand £—1 et N := N nker(p;)
est un sous-module de M’ de rang k — 1.
Si on applique I’hypothése de récurrence a N’ < M’, on obtient I’existence

d’une base (ma, ..., my) de M’ et des coefficients non-nuls da, . .., d;, € A tels
que

— d2\ - \dk,

— (dama, ..., dpmy) est une base de N'.

On remarque maintenant que Exv = {P(N'),¢) € homy(M’', A)} est
contenu dans Ey := {p(N), p € homy (M, A)}. Comme (d;) et (d2) sont res-
pectivement les plus grands éléments de Ey et de Env, on obtient (da) < (dy),
c’est a dire d;j\dz. De plus, on peut conclure que

— (m1,ma,...,mg) est une base de M.

— (dymy,dama, ..., dgmy) est une base de N.

La question de I'unicité est reportée au prochain chapitre. O
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2.3.2 Modules de type fini : théoréme de structure

Théoréme 2.32 Soit M un A-module de type fini sur un anneau principal

A. Alors il existe des éléments non-nuls ni,...,ng dans M tels que
q
M = (—B ATL]‘,
k=1
et vérifiant anng(n1) D anny(ng) D -+ - D anny(ng).

De plus, la suite d’idéauz anng(ng) est unique.

Posons ¢ = t + s avec t = cardinal{j,annx(n;) = 0}. Alors

Mtor = (—D An] et M/Mtor ~ At.
k=1

Nous pouvons donner un autre formulation du théoréme 2.32.

Théoréme 2.33 Soit M un A-module de type fini sur un anneau principal
A. Alors il existe dy,...,ds dans A, non nuls et non inversibles, tels que

M~A"QA/GAD- - @ A/d,A,

avect € N et dp\ - - - \ds.
De plus, Uentier t € N et la suite d’idéaux (dy) > -+ D (ds) est unique.

Preuve : Considérons un ensemble {mq,---,my} qui engendre M : le
morphisme f : A — M, f()\) = Zle Ai - m; est surjectif. Posons N :=:
ker(f). Alors f induit un isomorphisme entre A*/N et M : A + N — f()).

Appliquons le Théoréme de la base adaptée aux modules N < A¢ : il
existe une base (vy,...,v,) de A et des coefficients non-nuls dy,....d €A,
avec r < £, tels que

— A\

— (djv1,...,dLv,) est une base de N.

Cela entraine que Papplication ¢ : A/djA x --- A/d). A x AT — AYN
définie par

¢
qb(fl""?fT,xTJrla'-"xZ) = invi + N
i=1
est un isomorphisme de A-modules.

Posons r — s = cardinal{i, (d}) = A} < r. Cela signifie que la suite

d’idéaux (d}) o --- D (d}.) est égale a

AD.---DA>D(d) > > (ds),
—_—

r—s fois
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ol les d; sont non-nuls et non-inversibles. On remarque finalement que I’an-
neau A/djA x --- A/d. A x A" est isomorphe & A'@ A/d1A® - D AJdA

avect =/{¢—r. O
L’isomorphisme M ~ A'@® A/d1A® - - @ A/ds A implique
Mo ~ A/dlA@ T @A/dsAv

et que M /My, est isomorphe & A'. On a ainsi montré que le A-module
M /M,y est libre : entier ¢ correspond a son rang.

Corollaire 2.34 Soit M un module de type fini sur A principal. Alors M
est libre si et seulement s’il est sans torsion.

2.3.3 Unicité

Pour montrer I'unicité de la suite des idéaux (d1) o --- D (ds), on procéde
de la maniére suivante.

A tout élément irréductible p € A, on associe le sous A-module, appelé
« la composante p-primaire de M »,

M,={meM, Ik=1, p* -m =0},
et la suite décroissante de sous-modules

M, = p(My) 2 p*(My) > -+ 2 pF(M,) > -+

Comme M est de rang fini, on vérifie que

1. M, # 0 si seulement si p est associé a une famille finie P déléments
irréductible.

2. Mo = @pePMp'
3. VpeP, 3k =1, pF(M,) = 0.
4. My ~ Myor/p"(Myor) pour k assez grand.

Les quotients p*(M,,)/p**1(M,) admettent une structure de A/pA-espace
vectoriel 6. De plus, on remarque que 1’application

me pk(Mp)/pk+1(Mp) —p-me pk+1(Mp)/pk+2(Mp)
est une application surjective.

Définition 2.35 Soit M un module de type fini sur A principal. A tout
element irreductible p € A, on associe la suite décroissante

Ap(M) - )\g(M) > /\;(M) > ... ;)\’;(M) > ...

formée par les dimensions des A/pA-espaces vectoriels p*(M,)/pFT1(M,),
keN.

6. A/pA est un corps.
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Remarque 2.36 Comme M est de type fini, la suite Ay (M) = ()\’;(M))keN
est nulle a partir d’un certain rang.

Proposition 2.37 Soit d € A non inversible et p € A irréductible. Soit
vp(d) = max{k € N, p*\d}.
— Si p ne divise pas d, i.e. vy(d) =0, alors )\];(A/dA) =0, VkeN.
— Sip divise d, i.e. vy(d) =1, alors
o M (A/dA) =1 sik <wp(d) —1,
o MN(A/dA) =0 si k = vpy(d).
Preuve : Sip ne divise pas d, alors (A/dA), = 0, et donc la suite A3 (A/dA)
est nulle.
Supposons que p divise d : alors p = p*q avec a = v,(d). Dans ce cas
le sous-module (A/dA), est égal a q(A/dA), et ce dernier est isomorphe a
A/p*A. On vérifie alors que )\];(A/paA) =1sik <a—1,etque )\];(A/paA) =
Osik>a O

Considérons un A-module M qui est isomorphe a
AT A/AD - @ AJdsA, (4)

avec (dy) o -+ D (dy).
Pour tout p € A irréductible, et tout entier k € N, on a

(M) = 3N (A/d; A) = Cardinal{ Gk < updy) — 1}.
j=1

On remarque tout d’abord que la suite )\I;(M ) est nulle si p ne divise pas

ds. Notons P = {p1,...,pp}, lensemble” des diviseurs irréductibles de d;.
Alors pour tout ¢ = 1,..., s, on a une décomposition en facteurs irréduc-
tibles :
di = u; Hpvp(dj)‘
peP

Comme d;\ - --\ds, on a
0 < vp(di) < vp(de) < -+ <vp(ds), VpeP. (5)

On sait que les idéaux (d1) > -+ D (ds) sont entiérement déterminés au
moyen des suites de nombres entiers (5). Ainsi, pour montrer 1'unicité de la
suite d’idéaux (dy) D --- D (ds) vérifiant (4), il suffit de montrer que les
suites de nombres entiers (5) peuvent étre exprimées au moyen des suites
A (M), peP.

On compléte cette preuve d’unicité en remarquant que :

1. s = sup{\)(M),p € P}.

2. AE=L(M) — AE(M) = Cardinal{j,vy(d;) = k}, Yk > 1.

3. s = AY(M) = Cardinal{j, v,(d;) = 0}.

7. Si p irréductible divise ds, alors 3!p; € P tel que p et p; sont associés.
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2.4 Quelques applications
2.4.1 Groupes abéliens de type fini

Dans le cas A = Z, le théoréme de structure 2.32 donne :

Théoréme 2.38 Soit M un groupe abélien de type fini (i.e. engendré par
un nombre fini d’éléments). Alors M est isomorphe a

OL/T® - ®TL)dT

ot t € Njet les d; sont des entiers = 2 vérifiant dy\ - - - \ds.
De plus, t € N et les d; sont entierement déterminés par M. On appellera
facteurs invariants du groupe M la suite dq\ - - - \ds.

Remarque 2.39 On remarque que si un groupe abélien M est isomorphe a
TPOL/HWZD - ®Z)dsZ, alors

My ~Z)\Z& - - @ Z)dZ et M/Myp ~ It

En particulier, on a montré qu’un groupe abélien de type fini est libre si et
seulement si il est sans torsion.

Voici un petit résultat qui découle immédiatement du théoréme.

Exercice 2.40 e Soit G un groupe abélien fini. Considérons le nombre entier
e(G) = inf{k > 1;kx = 0, Vx € G}.

Montrer qu’il existe un élément de G d’ordre e(Q).

e Soit K un corps et G un sous-groupe fini du groupe multiplicatif K*.
Montrer que G est un groupe cyclique (on utilisera le résultat du premier
point ).

Exercice 2.41 Calculer les facteurs invariants du groupe

G = 7/90Z x 7,/100Z x 7./4327 x 7,/1000Z.

2.4.2 Réduction des matrices de M, ,(Z)

Rappelons qu’'une matrice carrée M € M,(Z) admet un inverse dans
M, (Z) si et seulement si det(M) = +1 (cela découle de la formule classique
avec la comatrice de X).

On considére alors le groupe

GLn(Z) = {M € M,(Z), det(M) = +1}.

On va considérer le Z-module des matrices de taille p x g a coefficients
entiers : M, 4(Z).

28



Définition 2.42 Deux matrices M, M’ € M, ,(Z) sont équivalentes si et
seulement si il existe (P, Q) € GLy(Z) x GL4(Z) tel que

M' = PMQ.

Remarque 2.43 Lorsque l'on travaille avec un corps K, pour toutes ma-
trices M, M' € M, ,(K), les assertions suivantes sont équivalentes :

— 3(P,Q) € GLy(K) x GLy(K) tel que M’=PMQ,

— rang(M) = rang(M').

A toute matrice M € M, ,(Z), on associe les sous-modules
— Im(M) = {Xv,veZ} c ZP,

— ker(M) c Z1.

Le lemme suivant sera trés utile par la suite.

Lemme 2.44 Supposons que rang(M) = k # 0. Il existe une famille de
vecteurs e; € Z9,1 = 1,...,k, telle que

(b) ZI=ker(M)DZer®---DZep, et (®) Im(M)=Zfi D - ®ZLfy,
oﬂfizMeieZp,izl,...,k‘.

Preuve : Comme Im(M) est un sous Z-module du module libre ZP, il
posséde une base fi,..., fr : la relation (#) est satisfaite. Pour tout ¢, choi-
sissons e; € Z? tel que f; = Me;. Alors pour tout v € Z4, il existe un unique
k-uplet (A,...,\x) € ZF, tel que Mv = Zle ANifi = Zle AiMe; : cette
derniére relation est équivalente a dire que v — Zle Aie; € ker(M). On a
bien montré la relation (). O

Corollaire 2.45 Pour des matrices M, M' € M, 4(Z) les relations suivantes
sont équivalentes :

1. Im(M) = Im(M’).
2. 1l existe Q € GL4(Z) tel que M = M'Q.

Prewve : L’implication 2. = 1. est immédiate car pour tout Q € GL,(Z),
Im(Q) = Z7 et donc Im(M'Q) = M'(Im(Q)) = Im(M’).

Supposons maintenant que Im(M) = Im(M’) et considérons une base
f1,-., fr de ce sous Z-module. Soient ey, ..., e, € Z9 et €,..., e} € Z tels
que f; = Me; et f; = M’e}. On a alors les relations

79 =ker(M)®Ze1 ® -+ @ Zey = ker(M') D Ze| ® - - ® Ze,.

Choisissons une base ej;1,...,e, de ker(M) et une base € ,...,e, de
ker(M'). On voit alors que (e;)1<i<q €t (€})1<i<q sont deux bases de Z9.
L’élément () € GL4(Z) défini par les relations Qe; = e, Vi, vérifie M = M'Q).
Od

Nous avons un autre lemme préparatoire.
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Lemme 2.46 Soient E et F' deux sous Z-modules de ZP. Les relations sui-
vantes sont équivalentes :

1. Il existe P € GL,(Z) tel que P(E) = F.
2. les Z-modules ZP/E et ZP/F sont isomorphes.

Preuve : Supposons qu’il existe P € GL,(Z) tel que P(E) = F. Alors
Papplication v+ E +— P(v)+ F définit un isomorphisme entre ZP/E et ZP/F.

Supposons que ZP/E et ZP/F sont tous deux isomorphes & Z/d1Z@®- - -@®
Z/dsZ ou les d; sont des entiers > 2 vérifiant d;\ - - - \ds. Cela signifie qu’il
existe deux bases (fi)1<i<p et (f!)1<i<p de ZP telles que

E=Z2dif1® - @®ZLdsfs et F=ZLd\fiZ®-- ®Ldsf..

L’éléement P € GL,(Z) défini par les relations Q f; = €}, Vi, vérifie P(E) = F.
g

Notre résultat principal est le suivant.

Théoréme 2.47 o Deux matrices M, M’ € M, ,(Z) sont équivalentes si et
seulement si
ZP /Tm(M) ~ ZP/Tm(M").

o ZP/Im(M) ~ ZPT*@L/d\ ZD- - - DL/ dZ si et seulement si M € My, 4(Z)

est équivalente avec la matrice

A, (Diag(dl(,]. o dy) 8) (©)

ot Diag(dy,...,ds) est une matrice diagonale.

o Toute matrice M € M, 4(7Z) est équivalente a une matrice Agq ou les d;
appartiennent a N — {0} et vérifient di\ - --\ds. Ici “s” est égal au rang de la
matrice X, vue comme élément de My, 4(Z), et les (d;) sont uniques.

Preuve : Grace au Lemme 2.46, on sait Z7/Im(M) =~ ZP/Im(M’) si et
seulement si il existe P € GL,(Z) tel que Im(PM) = P(Im(M)) = Im(M").
Le corollaire 2.45 permet de voir que Im(PM) = Im(M’) si et seulement si
il existe Q € GL4(Z) tel que PMQ = M'. Le premier point est démontré.

On voit immédiatement que 'image de la matrice Ay est Zdie1 @ --- @
Zdges on (e;) est la base canonique de ZP. Ainsi le quotient ZP/Im(A,) est
isomorphe & ZP* @ Z/d1Z @ - - - @ Z/dsZ. Le premier point nous permet de
voir que les assertions suivantes sont équivalentes :

— M est équivalente a une matrice Ay,

— ZP/Tm(X) ~ ZP/Im(Xy) ~ 2P @ L)1 LD - - D Z/d,Z.

Le dernier point est une conséquence de second point et du théoréme
2.38. 0
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Définition 2.48 Soit M € M, ,(Z). A chaque 1 < k < inf{p, q}, on associe
m% e N, qui est le pged de tous les mineurs de taille k de la matrice M.

Exercice 2.49 Soit M € M, ,(Z).

1. Montrer que m%, = mk,, . pour tout P e GL,(Z).

2. Montrer que m%, = m?\/[@ pour tout Q € GL4(Z).

3. Si M est équivalente a une matrice Ag (voir (6)) avec d; € N — {0}
et di\---\ds, alors

— m]f\/[=d1-~dk pour tout k < s,

— mﬂ“w =0s1 k> s.
Tous les résultats de cette section sont encore valables si on travaille avec
des matrices de M) 4(A) ou A est anneau principal.

2.4.3 Reéduction des endomorphismes d’un K-espace vectoriel de
dimension finie

Soit F un K espace vectoriel de dimension finie : on notera n > 1 sa
dimension. On note GLg(F) le groupe des isomorphismes de E.

Définition 2.50 Deux endomorphismes f,h € Endg(FE) sont semblables si
et seulement si il existe g € GLg(E) tel que

h=gfg "

Les classes d’équivalences {gfg~',g € GLx(E)} sont appelées classes de si-
malitudes.

On remarque que f, h sont semblables si et seulement si il existe des bases
Bi1, By de E telles que les matrices Mat(f,B1) et Mat(h,Bs) sont égales.

Le but de cette section est de caractériser les classes de similitude. Pour
cela on va considérer les K[ X |-modules E; attachés a chaque endomorphisme
f € Endg(FE) (voir la définition 2.5). On commence avec le résultat élémen-
taire suivant.

Lemme 2.51 Deux endomorphismes f,h € Endg(F) sont semblables si et
seulement les K[ X]-modules Ey et Ejy, sont isomorphes.

Définition 2.52 Un endomorphisme f € Endg(FE) est dit cyclique s’il existe
un vecteur v € E, tel que la famille {f*(v), k € N} engendre E.

Notons que tout morphisme de K[ X]-modules ¢ : K[X]| — E est défini

par la relation ¢(P) = P(f)(v) ou v = ¢(1) : dans ce cas, 'image de ¢ est
égale au sous K[ X]-module K[X]v et le noyau ker(¢) est égal & anngx(v).
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On voit donc qu'un endomorphisme f € Endg (F) est cyclique si et seulement
si il existe un morphisme de K[X]-modules surjectif

¢ K[X] — Ej.

Si Pp=X"— Z;é ap X" est le polynome unitaire qui engendre ker(¢ 7)), le
morphisme ¢ induit un isomorphisme K[X|/(Pf) ~ E¢ de K[X]-modules.

De plus, si B est la base de E formée par la famille {v, f(v), ..., f* 1(v)},
on remarque que

0 ap
1 0 ay
Mat(f,B)=10 1 0 as
o ... ... 1 ay

Cette derniére matrice, notée C(Py), est la matrice compagnon associée a
P;. Remarquons que lorsque n = 1, la matrice C'(Py) est égale & (ao).

Exercice 2.53 — Montrer que le polyndéme caractéristique de la matrice
C(Py) est égal a Py.

— Montrer qu’un endomorphisme f € Endg(E) est cyclique si et seule-

ment si son polyndéme caractéristique et égal a son polynéme minimal.

On peut maintenant énoncer le résultat principal de cette section.

Théoréme 2.54 Pour tout endomorphisme f € Endg(E), il existe une base
de E dans laquelle la matrice de f est de la forme

c(h)
C(P2)

C(Ps)

ot les (Py) sont des polynomes unitaires de K[X] de degré au moins 1,
vérifiant : PP\Ps\ - - -\ Ps.

Les polynomes (Py), qui sont entiérement déterminés par l’endomor-
phisme f, sont appelés les invariants de similitude de f.

Deux endomorphismes dont semblables si et seulement st ils ont les mémes
invariants de similitude.

Remarque 2.55 On remarque que le polyndme caractéristique de f € Endg (F)
est égal au produit Py --- Ps tandis que son polynéme minimal est égal a Ps.
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Preuve : Fixons f € Endg(FE) et appliquons le théoréme 2.32 au K[X]-
module Ey. Il existe des vecteurs non-nuls vy, ..., v, tels que

S
Ep = D K[X]vj,
k=1

et vérifiant anng(xj(v1) > .-+ D anng[x)(vs) # 0. Désignons par Py le
polynéme unitaire qui engendre I'idéal anngx)(vg) : on a bien Pi\R\ - - -\ Ps.

On remarque alors que By, := {vg, f(vr),..., f< T (ug)} est une base
du sous espace Ej := K[X] vy tel que la matrice de 'endomorphisme f|p,
dans la base By, est égale a C(Py). La preuve du théoréme est compléte. O

Le reste de cette section est consacrée a la détermination des invariants
de similitude d’un endomorphisme f € Endg(E). Soit M = (a;j) € M, (K)
la matrice de f dans une base eq, ..., e,.

On considére le morphisme de K[ X ]-modules ¢ : K[X]" — E; défini par
la relation

¢(Pr,..., Pn) = i Pi(f)(e)-

k=1

Notons €¢; = (0,...,0,1,0,...,0) € K[X]" le vecteur tel que ¢(e;) = e;.

Posons h; = Xe;j — >, a;j¢;. On remarque que Vj, ¢(h;) = 0, ainsi
S0 KXy  ker(d).
Lemme 2.56 On a les deux relations :

1OK[X] = 30 KX Ay + 3 Ke;.

2. ker(¢) = >7_ K[X]h;.

La matrice X1, — M € M,(K[X]) détermine le morphisme de K[X]-
modules ¢ : K[X]" — K[X]|",V — (XI, — M)V. Le lemme précédent

montre que

ker(¢) = Image(v),

et donc E est isomorphe au K[X]-module K[X]"/Image(v).
Si on utilise les résultats de la section 2.4.2, on sait que la matrice

X1, — M e M,(K[X])

est équivalente a une matrice diagonale Diag(Q1(X),...,Qn(X)) ou les po-
lynémes Q;(X) € K[X], qui peuvent étre choisis unitaires, sont non-nuls et

vérifient Q1(X)\ -+ - \Qn(X).
Alors le K[X]-module K[X]"/Image(¢) sera isomorphe a

Dpp—1 K[X]/(Qr)-

On voit donc que les invariants de similitudes de I’endomorphisme f sont les
polynomes {Q, d°(Qx) = 1}.
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Définition 2.57 Soit M € M, (K). A chaque 1 < k < n, on associe le
polyndme unitaire R?M € K[X], qui est le pged de tous les mineurs de taille
k de la matrice X1, — M.

On termine cette section en établissant le lien entre les invariants de
similitudes P;\ ---\Ps d’'un endomorphisme f € Endg(F) et les polynomes
unitaires Ré"w € K[X] associés a la matrice M = Mat(f,B). Sachant que
la matrice X1, — M € M,(K[X]) est équivalente & la matrice diagonale
Diag(1,...,1, P,..., Ps), on obtient les relations suivantes :

1. s =n — cardinal{k, Rk, = 1},
2. Ry 5T =Py,

3. Pour tout 1 <4 < s, onapl...pz.:Rfj\ZJ—sH'

3 Produit tensoriel

Dans cette section A désigne un anneau commutatif. Soient M, N deux
A-modules. On va montrer 'existence d’'un A-module M ®4 N et d’une
application A-bilinéaire ® : M x N — M ®4 N, (m,n) — m ® n, telle que
M ®4 N est engendré par tous les éléments m ® n.

Rappelons que si X' est un ensemble et si P est un A-module, I’ensemble
F (X, P) formé de toutes les applications f : X — P, admet une structure
naturelle de A-module.

3.1 Applications bilinéaires

Soient M, N, P trois A-modules.

Définition 3.1 Une application ¢ : M x N — P est dite A-bilinéaire si elle
est A-linéaire en chacune des variables : Ym,m' € M, Vn,n' € N, Va € A,
nous avons

dm+a-m',n) = ¢(m,n)+a-d(m, n),

d(m,n+a-n') = ¢(m,n)+a-p(m,n).
On note bil4(M x N, P) ’ensemble de ces applications.

On remarque que bil4 (M x N, P) est un sous A-module de F(M x N, P).
A tout ¢ € bilgy(M x N, P), et tout (m,n) € M x N, on associe les
morphismes de A-modules

¢(m,—): N —-> P, et o¢(—,n): M — P

définis respectivement par les relations y € N — ¢(m,y) et x € M — ¢(x,n).
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On vérifie aisément que les applications m € M +— ¢(m, —) € hom4 (N, P)
et n € N — ¢(—,n) € homy(M, P) sont des morphismes de A-modules. On
a ainsi deux morphismes

a:bily(M x N,P) — homyu(M,homy(N, P)),
B :bilg(M x N,P) — homy(N,homy(M, P)),

définis par a(¢) : m — ¢(m,—) et B(¢) : n— ¢(—,n).

Proposition 3.2 « et 8 définissent deux isomorphismes de A-modules.

3.2 Définition du produit tensoriel

Notons Fo(M x N) le sous-module de F(M x N,A) formé de toutes
les applications f : M x N — A de support fini, i.e. telle que {(m,n) €
M x N, f(m,n) # 0} est fini.

Notons §(, ny € Fo(M x N) la fonction nulle partout sauf en (m,n), ot
elle est égale a 1 € A. La famille {5, ), (m,n) € M x N} est une base du
A-module Fo(M x N) :

f= > fmn)dumu,  VfeFo(MxN).
(m,n)eM xN

Soit K le sous A-module de Fo(M x N) engendré par les éléments sui-
vants :

6(a-m+m’,n) —a- 6(m,n) - 5(m’,n)v
5(m,a-n+n’) —a- 5(m,n) - 5(m,n’)’

oum,m € M,n,n €N etac A

Définition 3.3 On note M ®4 N, le A-module quotient Fo(M x N)/K. La
classe de O ) €st notée m@mn e M ®4 N.

Voici les premiéres propriétés issues de la définition :

1. Ym,m' e M, Vn,n’ € N et Ya € A on a les relations

(m+m)®n=m®n+m @n,
m@n+n)=mn+men,
a-(m®n)=(a-m)@n=m® (a-n).

2. La famille {m ® n, (m,n) € M x N} est génératrice dans M ®4 N.

Exemple 3.4 Dans certains cas, le produit tensoriel ne donne que le module
trivial réduit au vecteur nul : vérifier que pour tout n = 2, on a

Z/nZ ®z Q = {0}
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On a vu que lapplication canonique ® : M x N — M ®4 N est A-
bilinéaire. Ainsi, la composition ¢ — ¢ o ® définit un morphisme

homy (M ®4 N, P) — bil4(M x N, P). (7)

Réciproquement, si f : M x N — P est une application A-bilinéaire, on
définit le morphisme f : Fo(M x N) — P en posant f((s(mm)) = f(m,n),
V(m,n) € M xN.Comme f est A-bilinéaire, le noyau de f contient le module
K et donc on peut définir le morphisme

fM®4sN—P

en posant f(m®mn) = f(m,n), V(m,n) e M x N. B
On montre facilement que lapplication f € bily(M x N,P) — f €
hom4 (M ®4 N, P) est I'applicattion réciproque du morphisme (7).

Proposition 3.5 Pour tous A-modules M, N, P, on a des isomorphismes
de A-modules canoniques

homy (M ®4 N, P) ~ bila(M x N, P) ~ hom (M, homy (N, P)).

3.3 Quelques propriétés du produit tensoriel
On commence avec le résultat suivant

Lemme 3.6 1. Pour tout A-module M, on a un isomorphisme cano-
niqgue AQa M ~ M.

2. On a un isomorphisme canonique M ®4 N ~ N ®a4 M qui envoit
men surn@m.

3. On a un isomorphisme canonique (M ®4 N)® P ~ N ®4 (M ® P)
qui envoit (Mm@ n) ®p surn® (m® p).

Considérons maintenant deux morphismes de A-modules
f:M—->M e g:N-—N.

Lemme 3.7 Il existe une unique morphisme f @ ¢qg: M @a N — M' @4 N’
qui satisfait les relations

f®g(m®n) = f(m)®g(n).

Le résultat précédent se montre en considérant ’application F' : M x N —
M’ ®4 N’ défini par les relations

F(m,n) = f(m) ® g(n).

On remarque que F est A-bilinéaire, ainsi il se factorise en un morphisme
f®g:=F: M®s N— M ®4 N (voir la section précédente).
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Remarque 3.8 1. Si f: M — M et g: N — N’ sont surjectifs, alors
fRg: MRy N — M ®s N’ est un morhisme surjectif.

2. Par contre, il existe des cas ou f : M — M' et g : N — N’ sont
des morphisme injectifs sans que f @ g : M @4 N — M' ®4 N’ le
soit. Par exemple, si g : 7/27 — 7./27 est Uapplication identité et
f:Z > Z,x— 2x, alors fRg : Z/27Z — 727 est l'application nulle.

On montre maintenant que le produit tensoriel se comporte de maniére
optimale par rapport aux sommes directes.

Proposition 3.9 Soient N et M;,i € I, des A-modules. On a un isomor-
phisme de A-modules

(@Mi) Q4N ~ P M;®a N.

iel el
Corollaire 3.10 Si (e;)icr est une base du module M et (f;)jecs est une base
du module N, alors (e; ® f;) i jyerxs est une base du module M @4 N.

On va maintenant aborder la question d’extension des coefficients. Soient
¢ : A — B un morphisme d’anneaux commutatifs et M un A-module.
Rappelons que B posséde une structure de A-module en posant a-b := ¢(a)b.
Le produit tensoriel B ® 4 M est par définition un A-module.

Lemme 3.11 B ®4 M admet une structure de B-module qui satisfait la
relation
b- (VY ®@m) := b ®m, Vb, € B,Ym e M.

Preuve : pour tout b € B, on considére 'application T : BXM — B M
tell que Tp(b', m) := b’ ® m. On vérifie que T}, est A-bilinéaire, ainsi elle se
factorise en un morphisme A-linéaire Tp, : B®4 M — B ®4 M. Alors le
produit extérieur B x B ®4 M — B ®a M est déterminé par la relation :
b-v := Tp(v). On vérifie facilement que cela définit une structure de B-module
sur B®q M. O

Exercice 3.12 Soient I un idéal de A et M un A-module. Le A/I-module
A/I®4 M est canoniquement isomorphe a M /IM.

4 Représentations de groupes finis

4.1 Premiéres notions

Une action d’un groupe G sur un ensemble X est la donnée d’une appli-
cation

GxX — X
(9:2) — g-x
satisfaisant h- (g-x) =hg-zetl-x =x,Vg,he G,Vx e X.
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Définition 4.1 Une représentation d’un groupe G est la donnée d’un K-
espace vectoriel V et d’un morphisme de groupes

p:G— GL(V),
ou GL(V) = {f : V — V isomorphisme K — lineaire}.

L’action du groupe G sur l'espace vectoriel V' est défini par la relation
g-v := p(g)(v). On voit donc qu'une représentation d’'un groupe G n’est
autre qu’une action (g,v) — g - v qui est linéaire par rapport a la variable
veV.

Voici quelques exemples de représentations de groupes :

1. GL,(K) agissant sur M, (K) :

9 X =gX|, |g?X=Xg"|, |g°X =gXg"|

g X =X g’ X =gX|

2. Le groupe symétrique &,, agissant sur K" :
0 (T15 0, Tn) = (To-1(1)y - -+, Tom1(n))-
3. Le groupe symétrique &,, agissant sur K[ X1,..., X, ] :
(- P)(X1,..., Xp) = P(Xo-1(1)5 -+ » Xo1(n))-

4. Le groupe linéaire GL,(K) agissant sur K[ X1,..., X,] :

(g-P)(X1,...,X,) = P(g"HX1,...,X,)).
5. Le groupe symétrique &, agissant sur K au moyen de la signature

€:6, - {+1}:
o-z=¢(0)z.

6. Le groupe (K, +) agissant sur K? & travers le morphisme

o= (5 7)-

7. Le groupe Z/nZ agissant sur R? & travers le morphisme py : Z/nZ —

GLy(R) : B cos(2kLm) —sin(M)
k <sin() cos(%ﬂr) ) .

n
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4.1.1 Sous-représentations et quotients

Définition 4.2 Soit (V, p) une représentation du groupe G.
Un sous-espace vectoriel W < V' est une sous-représentation de V' st

p(g) (W)W, Vged.

Dans ce cas le morphisme p' : G — GL(W), défini par p'(g) = p(g)|w définit
une représentation du groupe G.

Voici quelques exemples :

1. Le groupe symétrique &,, agissant sur K" : les sous-espaces W; =
K(1,...,1) et Wy = {1+ -+, = 0} sont des sous-représentations.

2. Le groupe GL,(K) agissant sur M,,(K) avec g- X = gX’g : les sous-
espaces S, := {matrices symetriques} et A,, := {matrices antisymetriques}
sont des sous-représentations.

3. Le groupe GL,(K) agissant sur M, (K) par conjugaison : g - X =
gXg~!. Le sous-espace W := {X € M,(K), Tr(X) = 0} est une
sous-représentation.

4. Le groupe GL,(K) agissant sur l'espace fonctionnel F(K™) formé de
toutes les fonctions f : K™ — K. L’action est définie par la relation
(g- f)(v) :== f(g7" - v). Le sous-espace vectoriel Pol(K") < F(K")
formé des fonctions polynomiales est une sous-représentation.

Définition 4.3 Soit (V, p) une représentation du groupe G. On note VS la
sous-représentation formée des vecteurs v € V vérifiant

g-v=v, Vged.
Les vecteurs de VC sont appelés les invariants de action.

Voici quelques examples :
1. &, agissant sur K" : ici (K")%" = K(1,...,1).

2. GL,(K) agissant sur M, (K) par conjugaison : les matrices invariantes
pour cette action sont de la forme A, avec A € K.

3. 6, agissant sur K[X7y,..., X,] : les polynémes invariants pour cette
action sont appelés les polynémes symétriques.

Définition 4.4 Soit W < V une sous-représentation du groupe G. L’espace
vectoriel quotient V /W est muni d’une action linéaire du groupe G, définie
par la relation

g W:=g-w, V(g,w)e G x V.
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4.1.2 Morphismes entre deux représentations

Soient V1 et V5 deux représentations du groupe G, sur le méme corps K :
p:G— GL(Vy) et ps:G— GL(V3).

Définition 4.5 L’espace vectoriel homgk(Vi, Va) est muni d’une action li-
néaire du groupe G, qui est définie par la relation :

g-f=p9)ofopii(g),  Vfehomx(Vi,V2),VgeG.

Définition 4.6 On note homg(Vi, Va) < homg (Vi, V2) la sous-représentation
formée des éléments invariants pour ’action de G. Les éléments de homg(Vy, V)
sont appelés des morphismes entre les représentations Vi et Va.

Ainsi, une application K-linéaire f : V; — V5 est un morphisme si pour
tout g € G, on a la relation :

fopi(g) =p2g)of.

Définition 4.7 Deux représentations Vi et Vo sont dites isomorphes si 1f €
homg (V1, Va) qui soit bijectif. On note alors Vi ~ Vs.

Exemple 4.8 Soit 7 : K[Xy,...,X,,] — Pol(K") l'application canonique
qui @ un élément P € K[X,..., X, ] associe la fonction polynomiale

(X1y..oyxpn) — P(x1,...,2p).

L’application 7 est un morphisme entre deux représentations de GL,(K) :
c’est un isomophisme si et seulement si K est un corps infini.

On termine cette section avec un résultat de factorisation.

Proposition 4.9 Soit f € homg(Vi, V2). Alors
— Im(f) est une sous-représentation de Vs,
— ker(f) est une sous-représentation de Vi,
— Les représentations Vi /ker(f) et Im(f) sont isomorphes.

4.1.3 Somme et produit tensoriel

Considérons deux représentations V' et W d’un groupe G (définies sur
un corps K). On peut alors construire d’autres représentations de G :
— Le produit cartésien VW : g-(v,w) := (g-v, g-w), Y(v,w)eVxW.
— Le produit tensoriel Vg W :g- (vQ@w) :=g-v®g-w, V(v,w)E
V x W.
— Ledual V* = homg (V,K) : {g-&,v) := (&, g7 vy, V(v,&) e VxV*
— homg (V, W)

40



A tout couple (&, w) € V* x W, on associe I'application linéaire p(&, w) €
homg (V, W) définie par la relation

p(fvw)(v) = <§,v>w, VvoeV.

L’application p : V* x W — homg(V, W) est un morphisme entre deux
représentations de G. De plus, comme p est bilinéaire, elle se factorise en un
morphisme

51 V* @k W —> homg (V, W). (8)

Proposition 4.10 SiV et W sont deux représentations de dimension finies,
le morphisme p détermine un isomorphisme

V* @k W ~ homg (V, W).

On utilise le produit tensoriel dans le cadre plus général suivant. Soient £
une représentation d’un groupe G et F' une représentation d’un groupe Go
(toutes deux définies sur un corps K). Alors E ®g F' est une représentation
de G1 x Gy : l'action linéaire de (g1, g92) € G1 x G2 sur E ®g F' est définie
par la relation

(91,92)  (e®f):=g1-e®g2- f, V(e,f) e E x F.

4.1.4 Représentations irréductibles

Définition 4.11 Une représentation V' d’un groupe G est dite irréductible
st les seules sous-représentations de V' sont {0} et V.

On a un critére élémentaire pour savoir si une représentation p : G —
GL(V) est irréductible. A tout vecteur v € V, on associe le sous espace
vectoriel E(v) engendré par la famille g-v, g € G. On voit que E(v) < V est
une sous-représentation.

Lemme 4.12 Une représentation V' d’un groupe G est irréductible si et
seulement si

Ewv)=V

pour tout v € V. non-nul.

Considérons P'action du groupe Z/nZ sur R? & travers le morphisme p :
Z/nZ — GLo(R) :

cos(ZET)  —gin(2kr _
p(k) = <sin((2’?”)) cos(gk’r:))> = p(D)".

On voit que (R?, p) est une représentation irréductible de Z/nZ. Considérons
maintenant la cas de C2 muni de la méme action p. Dans ce cas, (C?,p)
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n’est pas une représentation irréductible de Z/nZ, car la droite C(7, 1) est
une sous-représentation de C2.

Considérons maintenant l'action du groupe symétrique &,, sur K". On
aK'=FE ®FE;,ouFE, =K(1,...,1) et By = {z; + -+ x, = 0} sont
deux sous-représentations. On vérifie que E; et Ey sont toutes deux des
représentations irréductibles de &,,.

4.1.5 Lemme de Schur

Dans cette partie on suppose que le corps K est algébriquement clos.

Soient V,W deux représentations irréductibles de dimension finies
d’un groupe G (définies sur le corps K). Nous nous intéressons au K-espace
vectoriel homg(V, W).

Lemme 4.13 (Lemme de Schur)
— SiV et W ne sont pas isomorphes, alors homg(V, W) = {0}.
— SiV ~ W, alors dimhomg(V, W) = 1.

Preuve : Supposons tout d’abord que V' et W ne sont pas isomorphes
et considérons f € homg(V,W). Comme le morphisme f n’est pas bijectif,
nous pouvons considérer deux cas :

— Soit ker(f) # {0}. Comme ker(f) est une sous-représentation de V,

et que V est irréductible, on doit avoir ker(f) = V.
— Soit Image(f) # W. Comme Image(f) est une sous-représentation de
W, et que W est irréductible, on doit avoir Image(f) = {0}.
Dans les deux cas, on obtient f = 0.

Supposons maintenant qu’il existe un isomorphisme h : V' — W entre les
deux représentations. L’application g — h o g définit alors un isomorphisme
entre les espaces vectoriel homg(V, V) et homg(V, W). Il nous suffit alors de
montrer que dimhomg(V, V) = 1.

Soit g € homg(V, V). Comme le corps K est algébriquement clos et que
le K-espace vectoriel V' est de dimension fini, il existe A € K tel que le sous-
espace propre ker(g — A dy) est non-nul. Sachant que g — Al dy appartient
a homg(V, V), on voit que ker(g — AIdy ) est une sous-représentation de V.
Cette derniére étant irréductible, on a ker(g — Aldy) = V, i. e. g = Mdy.
On vient de montrer que homg(V, V) = Kldy. O

4.2 Le cas des groupes finis

Dans toute la suite G désigne un groupe fini. De plus les représentations
de G que I'on considére sont des espaces vectoriels complexes de dimension
finies.

On commence par un propriété fondamentale qui exploite le fait que G
est fini.
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Lemme 4.14 Soit N = §G. Soit p : G — GL(V), une représentation de
G. Alors pour tout g € G, l’endomorphisme p(g) est diagonalisable, et ses
valeurs propres sont des racines N-iemes de l'unité.

Preuve : Comme gV = e dans G, on a p(g)"N = Idy. Ainsi XV —1 est un
polynéme annulateur de p(g). Comme celui-ci est scindé dans C[X], p(g) est
diagonalisable, et de plus toutes les valeurs propres de p(g) sont des racines
du polynéme XV — 1. O

4.2.1 L’algébre C[G]

On note C[G] 'ensemble des fonctions sur G & valeurs complexes. Cest
un espace vectoriel complexe qui admet pour comme base canonique la fa-
mille de fonctions {d,4,g € G} :

5,(z) 1 si z=g
xTr) =
7 0 si z#g.

On munit C[G] du produit de convolution * : C[G] x C[G] — C[G], qui
est défini par la relation

Axp(g) = D Ah)u(h™g).

heG

Le produit * définit une loi associative sur C[G] qui admet §; comme élément
neutre : 01 * u = p* 01 = p pour tout p € C[G].
Le produit  est distributif par rapport a la structure d’espace vectoriel

de C[G] : on a
(aX +bn) * = a(X* u) + b(n*p), Va,be C,¥Y\,n,ue C[G].

Idem pour le produit p* (aX + bn). Ainsi (C[G], +, ) est une C-algébre. On
remarque que

59 * (Sh = 5gh (9)

pour tout g, h € G. Ainsi C[G] est une algébre abélienne si et seulement si
le groupe G est abélien.

Le centre de C[G]

Définition 4.15 On note Z[G] le centre de l’algébre C[G].

On remarque que les conditions suivantes sont équivalentes :
— Xe Z[G],

— Axdy=04% A, VgeG,

— A(hg) = Agh), Vg, h € G,

43



— X est une fonction constante sur les classes de conjugaison de G.
Si C < G est une classe de conjugaison, on note 1¢ € Z[G] la fonction
caractéristique de C.

Lemme 4.16 Les fonctions 1¢, ot C parcourt les classes de conjugaisons de
G, forment une base de Z[G].

Structure de C[G]-modules

Définition 4.17 Soit V un espace vectoriel compleze. Une structure de C[G]-
module sur V est la donnée d’un morphisme d’algébres

p: C[G] — Endc(V),
telle que p(61) = Idy .
Notons C[G]* l'ensemble des éléments inversibles de C[G] : c’est un

groupe par rapport a la loi *. On remarque qu'un morphisme d’algébres
p : C[G] — Endc¢(V) induit un morphisme de groupe

5:C[G]* — GL(V)

car GL(V) = (End¢(V))*. Les relations (9) montre que I'application g — &,
est un morphisme de groupe entre G et C[G]*.
Si on part d’'un morphisme d’algébres p : C[G] — End¢(V'), l'applica-
tion p: g€ G — p(dy) € GL(V) est un morphisme de groupe.
Réciproquement, considérons un morphisme de groupe p : G — GL(V).
On détermine un morphisme d’algébre p : C[G] — Endc¢ (V') en posant

p (Z A(g)5g> = > M9)p(g).
geG geG

Conclusion : on a montré que sur un espace vectoriel complexe, une struc-
ture de C[G]-module est équivalente a celle d’étre une représentation de G.

La remarque qui suit sera utile plus tard.

Lemme 4.18 Soit p : C[G] — End¢ (V) le morphisme associé a une re-
présentation V. Pour tout ¢ € Z[G], on a p(¢) € homg(V,V).

Preuve : Comme p(A) = >} . ¢(9)p(g), on voit que

p(h)p(@)p(h) ™" =D d(g)p(hgh™) = > d(h ™ gh)p(g) = (M)

geG geG
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car ¢ est une fonction constante sur les classes de conjugaison de G. O

Représentation réguliére de G

L’action par translation & gauche de G sur lui-méme permet de munir
lespace vectoriel C[G] d’une représentation de G, appelée représentation
réguliére. Celle ci est déterminée par les relations suivantes

(h - AN)(z) = Mh7'z), VYAeC[G], Vh,zed.
On remarque par exemple que
h-dy=0ng, Vh,geG.

Soit (V, p) une représentation irréductible de G et v € V' — {0}. On consi-
deére 'application linéaire

T,:C[G] —V
définie par T,(A) = Y ea A(R)p(h)(v).

Lemme 4.19 T, est un morphisme surjectif entre la représentation réguliére
et V. Cela implique que dimV < n.

Preuve : T, est un morphisme car T,,(g -+ \) = p(g) (T,(X)).

Par définition, I'image de T}, est égal a 1" espace vectoriel E(v) engendré
par la famille p(h)(v),h € G. Comme (V, p) est une représentation irréduc-
tible de G, on a E(v) = V (voir le Lemme 4.12). Conclusion : T, est un
morphisme surjectif. O

4.2.2 Projection sur les invariants

A toute représentation F de G, on associe 'application linéaire g €
Endc(F) :

1
WE(U)=|G‘QEZGg-'U, veEE.

Lemme 4.20 7p est un projecteur sur le sous-espace vectoriel EC
— MpOTE = TE.
— Image(rg) = EC.

On peut voir aussi 7 comme un morphisme surjectif entre E et la sous-

représentation EC.
Voici une application importante du lemme précédent.
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Proposition 4.21 Soit (V,py) une représentation de G et W < V wune
sous-représentation. Alors il existe une sous-représentation W' < V telle
que

Wew =V.

Preuve : Considérons 'action linéaire de G sur E := hom¢(V, V). D’apreés
le lemme précédent, on a un morphisme surjectif 7 : £ — E¢ = homg(V, V)
défini par

1 _
w(A)=@Z pvig)oAopy(g)™!,  Aehome(V,V).
geG

Soit p € home(V, V) un projecteur sur W. L’image p = m(p) € homg(V, V)
est encore un projecteur sur W. Comme il vérifie les relations

p(g-v) =g-p(v), Vge G,Yv eV,

le sous-espace vectoriel W’ := ker(p) est une sous-représentation satisfaisant
WeW =E.O

4.2.3 Décomposition en facteurs irréductibles

Soit (E, p) une représentation de G (de dimension finie). Le résultat qui
suit se démontre par récurrence sur la dimension de E, au moyen de la
proposition 4.21.

Proposition 4.22 ] existe des sous-représentations E; < E, j =1,...,n,
telles que

— FEj est irréductible, Vj =1,...,n.

— EFE=E® - --®F,.

Appliquons ce résultat a la représentation réguliere C[G].

Définition 4.23 On note V1q,...,Vy une liste de sous-représentations ir-
réductibles de la représentation réguliére satisfaisant la condition suivante :
pour toute sous-représentation irréductible E de la représentation réguliére,
il existe un unique j tel que B ~V;.

Proposition 4.24 Vy,...,V, correspond a la liste de “toutes” les représen-
tations irréductibles de G. En d’autres termes, pour toute représentation ir-
réductible V' du groupe G, il existe un unique j tel que V ~V;.

Preuve : Soit V' une représentation irréductible du groupe G. Le choix
d’un vecteur v € V non-nul détermine un morphisme surjectif T,, : C[G] — V
(voir Lemme 4.19). Considérons une décomposition

ClG] = @1 Bk
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en sous-représentations irréductibles. Comme T, est surjectif, un des mor-
phismes Ty |g, : Ex — V est non-nul. D’aprés le Lemme de Schur cela im-
plique que V =~ Ej. Ainsi, il existe un unique j tel que V ~V;. O

Dans la suite, lorsque F est une représentation et m € N, on utilisera la
notation suivante

{0} si m =0,
mE={E® --®E si m>1.
—_—

m fois

On peut préciser la proposition 4.22 de la maniére suivante.

Proposition 4.25 Soit E une représentation de G (de dimension finie).
Alors
E ~ (—BgzlmjVj

avec mj = dimhomg(V;, E).
Dans l'isomorphisme F ~ @ﬁzlmjVj, chaque entier m; correspond a la
multiplicité de la repésentation irréductible V; dans la représentation .

4.2.4 Caractére d’une représentation

Si V' est un espace vectoriel complexe de dimension finie, nous avons
I’application linéaire “trace”

Tr : Endg(V) — C

qui est définie de la maniére suivante. Considérons une base eq,...,e, de V
et la base duale €7, ..., e} de V* : alors pour tout A € End¢(E), on pose

Tr(A) = Z (ex, Aler))-
k=1

Un petit calcul permet de vérifier que la somme de droite ne dépend pas du
choix de la base.

Définition 4.26 Le caractére d’une représentation p : G — GL(V) est la
fonction xy : G — C définie par

xv(g) := Tr(p(g)), g€G.

Voici quelques propriétés de la fonction caractére. Notons N le cardinal
de G.
— (1) =dimV.
— Soient z1,...,24imv € {z € C,2" = 1} les valeurs propres de p(g)
(voir le lemme 4.14). Alors
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L. xv(g) = Z?i:nilv 2,
2. |xv(g)| <dimV,

3. |xv(g)| = dimV si et seulement si p(g) est une homothétie.

— dm(VE) = & Yy v (9).
— Xv € Z[G]
— xyv=xwsiV W,

Voici d’autres propriétés relatives aux opérations “somme” et “produit

tensoriel”.

Lemme 4.27 Soient V et W deuz représentations de G. Alors

— Xvew = XV + Xw.
— XVRW = XVXW-
— Xvx =XV

— Xhom(V,W) = XVXW

Munissons ’espace vectoriel C[G] du produit hermitien

<A\ p>i= |é| g;}k(g)u(g)-

On a le lemme crucial suivant.
Lemme 4.28 Soient V et W deuz représentations de G.

1. < xv,xw >= dim (homg (W, V)).
2. 51V et W sont irréductibles, on a

1 si VW,

<XV, XW >= { .
0 sinon.

3.V est irréductible si et seulement si < xv,xyv >= 1.

4.V =W si et seulement si xy = xw -

Preuve : Le premier point découle du calcul suivant

1
<xvoxw > = 2 xv(@xw(g)
Gl =2

= |Cll\ > xvews(9)

geG
— dim(V @ W*)°.

Maintenant, sachant que V @ W* ~ hom(W, V), on voit que (V ® W*)&

homg (W, V).

Le deuxiéme point découle du premier point et du lemme de Schur.
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Pour le troisiéme point, on utilise la proposition 4.25. Nous avons une
décomposition V ~ @?zlmjVj avec m; = dimhomg(V;, V). Comme les
produits hermitiens < xv,, xv; > sont nuls si i # j et égaux a 1si i = j, on

obtient ,

< xv,xv >= Y, (m;)°. (10)
j=1

C’est maintenant clair que < xy, xy >= 1 si et seulement si V' est irréduc-
tible.

Le dernier point vient du fait que dans la décomposition V' ~ G—)ﬁzlmjVj,
les multiplicités m,; € N sont déterminés par les relations

my =< XV XV, >

Cela entraine que si xy = xw, alors V ~ W.

4.2.5 Premier pas vers la classification des représentations irré-
ductibles

On a montré a la section 4.2.3 que G admet un nombre fini de repré-
sentations irréductibles Vy,...,V,, et celles-ci apparaissent toutes dans la
représentation régulicre C[G] : on a

ClC] ~ @i,V (1)

avec n; = 1 pour tout j.
Un calcul direct nous donne le caractére de la représentation réguliére :

(g) = G| si g=1,
XD =0 s g -1

Cela permet de voir que les multiplicités n; satisfont les relations :
n; =< XcC[G]) XV; >= dimVj.

En comparant les dimensions dans l'identité (11), on obtient une premiére
relation

4
Gl = ) (dim V)
j=1

Nous allons maintenant montrer que les caractéres des représentations
irréductibles Vy,...,V, définissent une base de l'espace vectoriel Z[G]. On
sait déja que (xv,)1<j<¢ est une famille libre puisqu’elle est orthogonale.

Pour s’assurer que (xv;)1<j<¢ est une famille génératrice de Z[G], il suffit
de montrer le lemme suivant.
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Lemme 4.29 Soit ¢ € Z[G], tel que < ¢, xy, >= 0, Vj. Alors ¢ = 0.

Preuve : Soit ¢ € Z[G], tel que < ¢, xy, >= 0, Vj.

Soit (E, p) une représentation de G et p : C[G] — Endc(F) le mor-
phisme d’algébre associé. L’endomorphisme p(¢) € homg(E, E) est défini
par la relation

p(e) =D d9)p(g).

geG
Considérons des sous-représentations E, < FE irréductibles, & = 1,...,n,
telles que E = F1 @ --- @ E,,. L’endomorphisme 5(¢) laisse stable chaque
sous-représentation Ejy. Comme p(¢)|g, € homg(Ey, E), il existe ay € C tel
que
p(@)|E, = axldp,.

En prenant la trace, on obtient

k= gt T (0(0) 5) = gty Zgé(g)Tr (PEc(9)) = qaty < 62X > -
ge

Mais sachant qu’il existe j tel que Ej ~ V;, on en déduit que < ¢, Xpx >=
< ¢,xv; >= 0. On obtient que a; = 0, Vk.

On a donc montré que 'endomorphisme p(¢) € homg(E, E) est nul pour
n’importe quelle représentation F.

Appliquons ce résultat a la représentation réguliére E' = C[G]. Rappelons
que le morphisme p, : G — GL(C[G]) satisfait la relation p,(g)(d1) = dg.
Ainsi le vecteur p,(¢)(01) est égal a

>, 9(9)5; € C[G].

geG

Comme pr(¢) = 0, on doit avoir ¥, c; ¢(g)dg = 0. Cette derniére condition
impose que ¢ = 0. O

Nous pouvons maintenant résumer ce que nous avons démontré concer-
nant les représentations irréductibles complexes d’un groupe fini.

Théoréme 4.30 Soit G un groupe fini. Notons £ = 1 le nombre de classes de
conjugaison de G. Alors G admet exactement £ représentations irréductibles
Vi, -+, Vy satisfaisant la relation

y4
G| = ). (dim V;)?.
j=1
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