Omics or how to handle

massive biologic data?
Emergence of new sciences

Anna-Sophie Fiston-Lavier



Background

(1) Where and how
genetic information
is organized

Cell = Unit of the organisms

DNA = Unit of the genetic information
String composed of [ACGT]

Chromosome




Background

(2) Gene to protein

| Membrane |
| plasmique |

lllllllllllllll




Background

(2) Gene to protein

Séquence . Séquence
Brin 5 amont Exon 1 intron 1-2 Exon 2 intron 2-3 Exon 3 3' aval
dADN L — — =
ARN polymerase |v .—.qmsmn:—uﬁos
> génération d'un transcrit primaire
(pre-ARN messager) a partir de I'ADN,
pre-ARN
messager

Epissage
{excision des introns et assemblage des exons,
le plus souvent catalysé par un complexe

protéique, le spliceosome )

Spliceosome —P»

ARN messager
mature

correspondant .
Transcript

| Ribosome |

i Membrane
| plasmique




Background

(2) Gene to protein

Séquence . Séquence
Brin 5 amont Exon 1 intron1-2  Exon2 intron2-3 Exon 3 3' aval
d'ADN
ARN polymerase —p» Transcription
e génération d'un transcrit primaire
(pre-ARN messager) a partir de I'ADN,

pre-ARN
messager

R » Epissage

pliceosome {excision des introns et assemblage des exons,

le plus souvent catalysé par un complexe
protéique, le spliceosome )

ARN messager
mature
correspondant
Ribosome —p» Traduction
Protéine | | { |
Protéines diverses 3 Modifications,

acquisition des structures

dont protéines chaperon
secondaires et tertiaires

Membrane

Protéine active : .
\ plasmique



Background

(2) Gene to protein

L'épissage alternatif

messager

Epissage 1
ARN messager
mature 1

ARN messager
mature 2

ﬁ Traducti v ! Protéine |
raduction @ ...... it
Po@:m_. @. _ Poamsmw_ . _ /-------- J

Membrane
plasmique




Background

(2) Gene to protein

| Membrane |
| plasmique |

lllllllllllllll




\

\ower | |
hoo,os: \Eﬁ_._ﬁwéi oo —

DNA cL
N seqqen provein thot \Welps wcc)ﬂ/ﬂ fowexs

wake m.,nuge‘i.m

Polygenic character?

A high diversity of phenotypes



Qower
co\ov
apine

DNA - sequence

provein thot \Welps parple flowers

wake ﬂ., wgg)lm

co\ov ==
s = L

Loci
EYCLI,
EycCL?,

EYCL3 and
OCA2

A high diversity of phenotypes
biometric identification

10



“Omics” a new way of thinking

Ome = set of objects of study of such fields

OmiCS = field of study in biology ending in this suffix

11



The “Ome’s

E )

Transcriptome <

E A

. Lipids
Metabolome =S Nucleotides (Lipidome)

Metabolites

4

Phenotype/Function
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The “Omics”

Omics instances

Integrated database

Mutant lines

Natural variations

Metabolic map

Metabolome profiles

Proteome / modificome profiles

Subcellular localization

Full-length cDNA clones, ESTs
Expression profiles

Non-coding RNA profiles

Co-expression network

Genome sequence, gene annotation

Re-sequencing

Focused gene family database (eg.
Transcription factor)

DNA methylome

Chromatin epigenome

From Mochida and Shihdzaki 2011



The “Omics” for what?

Identification of candidate genes

Transcriptome Identification of genes expressed

Identification of proteins producted

Metabolome § Identification of metabolites used in the cell

14



Genomics

& >
< >

Genome is
a store of
biological
iInformation.

Genomics is the study of whole sets of
genes and their interactions.

15



Next in Genomics

Structural genomics = generate new sequence
assemblies, sequence organization

Comparative genomics = identification conserved
and unknown genomic sequences and interpreting
their evolutionary history

Functional genomics = function of all the gene
sequences and their expressions in an organism

Metagenomics...

16



Metagenomics

Technological advances
have also facilitated
metagenomics, in which A.
DNA from a group of R,
species (a metagenome) |

Is collected from an
environmental sample
and sequenced.

Soil Thermal Springs Marine  Freshwater

Terrestrial Aquatic

Total DNA extracted - non-DNA impurities removed

This technique has been used on microbial communities,
allowing the sequencing of DNA of mixed populations, and
eliminating the need to culture species in the lab.

17



TARA project: a better
understanding of marine, soil and
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Transcriptomics

N

v

Transcriptome =

complete set of all RNA E
molecules ("transcripts”) .
produced from a genome. E

N

v

Or specific subset of
transcripts present in a
particular cell type or
under specific growth
conditions

Transcriptome bypasses the need for exome enrichment
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Transcriptomics

Transcriptome =

complete set of all RNA E

N
v

molecules ("transcripts”)
produced from a genome. [ErrueEs

N

v

specific subset of
transcripts present in a
particular cell type or
under specific growth
conditions

Transcriptomics involves large- scale analysis of RNAs to
follow when, where, and under what conditions genes are

expressed.
P 20



Transcriptomics: Expression
U—.Oda__g@_.__@:-ﬁ:qoésccﬁ techniques based on

DNA microarray technology

. >

Isolate mRNAs from cells

at two stages of development;
each mRNA sample represents
all the genes expressed in

the cells at that stage.

e
5 NW.NWWA.N L@f\ﬁf mRNA

Convert mRNAs to cDNAs
by reverse transcriptase, everse
using fluorescently labeled transcriptase
deoxyribonucleotide
triphosphates.
0¥
NV%WM\W\AP cDNA
WY
Add the cDNAs to a

microarray; fluorescent
cDNAs anneal to
complementary sequences
on the microarray.

b
i g

DNA
microarray

Removal of
unhybridized probe

@

Each fluorescent spot
represents a gene expressed
in the cells.

NGS technology (RNA-seq)

Isolated RNA

!
DN

BAE O
/|I
/\\\>

|CGCCATCAGT| [AGTCCGCTATACGA| [ACGATACTGGT|

CGCCATCAGT] ACGATACTGGT
| |

[AGTCCGCTATACGA|
| [ [ |

| |

| |

| |

| |

| |

| |

| . 3 f : |
["CGCCATCAGTCCGCTATACGATACTGGT |




Proteomics

Proteome = complete set
of proteins for a given E
organism

N

N

A

or ﬁ Q
A complete set of protein

produced under a given

set of conditions

Proteome varies because it reflects genes that are actively
expressed at any given time

22



Proteomics an Extension of
Genomics

Proteomics is the study of the structure and
function of proteins, which is important in
development of new diagnostic tests and drugs

Proteomics - Study of expressed proteins in a cell
at a specific time under a particular set of
circumstances

=» can bring researchers closer than gene
expression studies to what's actually happening in the



Proteomics

2D-electrophoresis and mass spectrometry
High-throughput, but less than transcriptomics

Advantages
Detect proteins not RNA (post transcriptional
regulation)

Limitations
Only the most highly expressed proteins are detected
Overlapping spots may be difficult to resolve
Not likely to be useful in metagenomics

24



Role of Proteomics

Understanding gene function and its
changing role in development and aging

|dentifying proteins that are biomarkers for
diseases; used to develop diagnostic tests

Finding proteins for development of drugs
to treat diseases and genetic disorders



Transcriptomics vs. Proteomics

Transcriptomics and proteomics are both powerful, but
are used differently: transcriptomics is cheaper and more
user friendly than proteomics

Differences in their practical application:

~ Transcriptomics is robust, relatively cost-effective
and user-friendly

> Proteomics still relatively limited — problems can
remain with purification and stability of proteins

26



Sequencing technologies
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Omics

coincide with dramatic improvements in
different sequencing technologies

1,000,000,000

100,000,000
10,000,000
1,000,000
100,0000
>
& 10,000
& 1,000-
o
2
5 100
@
10-

Single
molecule?

Massively parallel
sequencing
Short-read
sequencers
Capillary sequencing U
pyrosequencing
Gel-based systems
Second-generation
Aitoriatad capillary sequencer
Manual siabgol First-generation
slab gel capillary
1 I || I 1 I 1 1
1980 1985 1990 1995 2000 2005 2010 Future
Year

mawnmma fron M. Stratton



Maxam-Gilbert sequencing

Chemical modification of DNA
Radioactive labelling in 5’ end

DNA cleavage induced by the
chemical treatment at a small
proportion of four reactions
(G, A+G, C, C+T).

The fragments in the four
reactions are then
electrophoresed side by side in
denaturing acrylamide gels for
Size separation.

no longer in widespread use, having been

5 32PGCTACGTA 3’

R

Cleavage at: A+G G C C+T

32Pger 3?Pgeraci?Pc PG

32PGCTAC 32PGeTA *PGe
32 32
“PGCTACGT : wwoog
32PGCTACG
A+G G C C+T

7 - A

6 - T

5 Gl G G

4 GED D C

3 - A

2 as | T

| G D C

supplanted by next-generation sequencing. Sequencing3del



Sanger method

The Sanger method involves four PCR reactions. Each reaction contains the four normal
nucleotides plus one dideoxynucleotide stock. As a typical PCR reaction generates over 1
billion DNA molecules, each of the four PCR reactions will generate all of the possible
terminating fragments for that particular base.

Dideoxynucleotides are
fluorescently labelled and so,

PCR in pr of fluor t, chain-t inating nucleotides

RIS
when the four PCR samples , \ 1 . .
are run through gel vat] foan wic faac]
electrophoresis, the sequence i AR AAEAE
of the fragments can be AAAE ARAAAE ARAARAARRAAE

detected by a laser and bprbbnbpf LLERLELGLEE

. J

ﬂmcﬂmmmj.ﬁmg <_m m / \ Fragments run through gel electrophoresis
chromatogram Y

Laser beam

— &= |||
Vg
32

Fluor: t frag ts detected by laser and repr ted on a chr togram

https://youtu.be/KTstRrDTmWI




chromatogram

TGGCGGHN CCTCTHAHG AACT AATGG ATCCCHNCGGG
60 CCGC 70 G a0 C

| il

Limitations of Sanger Sequencing
Low throughput

Inconsistent base quality
Expensive

Not quantitative

Chromatogram Viewers

- s
For Peaks, Four Peaks. \m ~°m§= 0 —x— romas
4 Peaks BioEdit Chromas
[Mac] [Windows] [Windows]
CodonCode Corporation ’ Applied
Sofeare for ONA Sequescing Qmomﬁ_ zZa* Biosystems
Trace Viewer Finch TV Sequence Scanner
[Windows / Mac] [Windows / Mac] [Windows]

33



Genome sequencing

Two genome sequencing strategies:

- Clone-by-clone method (aka hierarchical
shotgun or BAC by BAC sequencing)
(government’s genome project)

- Whole Genome Shotgun method
(privately-funded Celera genome project)



Clone-by-Clone (CBC)

Hjﬁmmlmﬁm@m >_UU—.ODO—J ._”O Cytogenetic map

Genome Sequencing

1. Genetic mapping (cM)

centimorgan (abbreviated cM) or map unit

(m.u.) is a unit for measuring genetic linkage.

It is defined as the distance between
chromosome positions (also termed loci or
markers) for which the expected average
number of intervening chromosomal
crossovers in a single generation is 0.01.
(in human: 1cM =+ 1 mégabase in plants 1
cM =% 200 kilobases)

Chromosome
bands N

W .

Genes locate
by FISH

Genetic
marker

N\

Overlapping
fragments

‘ -~GACTTCATCGGTATCGAACT: -




Clone-by-Clone (CBC)

Chromosome
bands N

W .

Hjﬁmmlmﬁm@m >_UU—.ODO—J ._”O Cytogenetic map

Genome Sequencing Genes locats

1. Genetic mapping (cM) ‘
2. Physical maps (bp) Genetic

i marker
3. DNA sequencing of
ordered clones ‘

N\

Overlapping
fragments

The clones have been
arranged to cover an ‘
entire chromosome

-~GACTTCATCGGTATCGAACT: -




Whole-Genome Shotgun (WGS)

- d
This approach skips genetic k

and physical mapping and
sequences random DNA _
fragments directly P

1.  DNA sequencing of
—.N:QOB O_ijm ‘ [CGCCATCAGT| [AGTCCGCTATACGA| [ACGATACTGGT] reads

2. Assembly (order / \
.T.N@E@D._”m _3._”0 d CGCCATCAGT ACGATACTGGT
continuous Y

mmncm:omv

AGTCCGCTATACGA
| [

| L L L L
‘ [-"CGCCATCAGTCCGCTATACGATACTGGT-| gssembly




CBC vs. WGS

CBC is time-consuming, expensive and does not allow
resolving repeats

WGS is now widely used as the sequencing method of
choice.

- The road to commoditisation (3
DNA sequencing and growth in DNA data

loq scales

The development of o \ ot
new WGS sequencing e
1 107

technologies has
resulted in massive 0.001 / o

. . 0.0001 10

increases In speed 0.00001 —tuistssslusssta i Yy
1971 80 90 2000 08

1 *Growth in Genbank

m:a anqmmmmm —: Source: ma..,:ﬁ...,_nu_.“_._,.h\..m; cﬁ_z_r.omhnu_.__vﬂ_maa..‘;g

cost. >



First genome sequenced

First genome sequenced by
Sanger sequencing (enzyme
synthesis) in 1977
bacteriophage X174 single
strand of 5,375 bp

Ecil,FspI,Aval,BsoBI,PaeR7I,Xhol,Af1III,M1ul
BseRI,Dral,BsaBI
BsiWI
BsrBI
BssSI

PstI,BseYI,BseYI,BcgI,BssHII
DrdI,Dralll
Avall,Sau96I
BtgZI
CspCI,BsaAl
Eael,Apall,BaeGI,BstAPI

Asel

BsaAI
PspGI
BstNI,BstAPI

BsiEI

Stul
NruI,BtgZI Sau96I,Bcgl
Af1II BpuEI
BsmFI Sspl
Asel KasI
NarI,SfoI,PluTI
Eael AccI,BsmFI
BseRI
Earl
Pf1MI 9
U_._ iX174 Dral
Pf1MI
Mfel 5386 bp
Sapl
Earl CspCI
BspQI
PshAI
AhdI
BpuEI
SexAI,BstNI,Accl Ecil
PspGI
Af1III,Mlul

BssSI
SfoI,P1luTI
NarI

BtsI,Nrul
PsiI

KasI
BsaBI,Zral,AatII,BsiWI,NciI,SacII,Af1II,Alel

Bael

39



Genomes sequenced

1st whole pluricellular

1st whole mm.:oBm genome 1st Human genome
Haemophilus Caenorhabditis elegans launched in 1990
influenzae ~ 97Mb ~3Gb
~ 1.8Mb 1998 2001-2004
1995
>
A

_ 1st whole eucaryote
1st whole eucaryote

7 genome
. genome
Saccharomyces cerevisae 5 i _ H
1977-1990 ~120Mb rosop hmpwsomﬁhommm er
Birth of the 1996
2000

Computer

sciences

40



Human Genome Project...
expensive

1988 - 2004
soit 16 ans et 3 milliards de $

1 dollar par base

: mmm:ao..mﬁimv..é
1 W n.onider “AE

ko Nl G Ll R Objectif : décoder le génome

Carcer prospects
Sequience creafes ety

arimines s v e e humain pour accélérer les
| £ e Oy progrés en génétique, de la
médecine a |'évolution de
I'humain.

41



Next-generation sequencing (NGS) technologies

AB 3730 reduced

Megabace offline 454 Titanium

PacBio Nanopore .
454 in production Solexalin production _m<3=2_m
lllumina HiSeq 2000 | - 1o rent ong reads

IHumina MiSeq

SOL|D early agge
/2007

lHlumina GAllx 454 1K

01/2007 04/2007 10/2007

07/2008 12/2009

05/2009
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1-Sequencing: Concepts 2-Data Storage 3-Assembly Algorithms 4-Estimate the quality of an assembly 5-And next?

Sequencing or how to read a sequence

DNA Sequence

-

Set of strings based on
4 letters as DNA alphabet {A,C,G,T}

Different technologies for different data

Short reads Long
reads




Sequencing ==> reads

DNA Sequence

fragments % i

Size selection

-

Sequencing

/I
(= 7 Nt

R
//_\ \ —
e T

reads



1)

2nd NGS
technologies

Fragmentation and tagging of
genomic/cDNA fragments —
provides universal primer
allowing complex genomes to
be amplified with common
PCR primers

Input DNA

|

Fragmentation

|

End repair and adapter ligation

|

Fragment library

Adapter Fragment A Adaptor

Adapter Fragment B Adapter
Adapter Fragment C Adapter

Clonal amplification of each fragment

Emulsion PCR - Bridge PCR
Template immobilization — 1 2
DNA separated into single A® 8@ A B C
strands and captured onto
beads (1 DNA C 78

molecule/bead)

Clonal Amplification — Solid
Phase Amplification

Sequencing and Imaging —
Cyclic reversible termination
(CRT) reaction

Sequencing of clonal amplicons in a flow cell

Pyrosequencing
or Reversible Dyc Terminalors
Saquencing by Ligation
- >

—

Generation of luminescent or fluorescent images

_

Conversion lo sequence



Input DNA

NGS process : ﬁ

Fragmentation

_ _ _ umina End repair and adapter ligation
Fragment library
Adapter Fragment A Adaptor
Adapter Fragment B Adapter
Adapter Fragment C Adapter
Clonal amplification of each fragment
Emulsion PCR Bridge PCR
>
1 2
A @ B - @ A BRIl C
. ._ -
Sequencing of clonal amplicons in a flow cell
|
Videos :
Reversible Dyc Terminalors

https:/lyoutu.be/fCd6B5HRaZ8 lllumina

o

https://www.youtube.com/watch?v=HMyCqWhwBS8E

or fluorescent images

sequence



Sequencing technologies
Illumina

Genomic DNA

e

v
shear 4 1al. .

- - Select ~200-300 bp fragments Aot
— — — BT -. 2 J . . w.\},
14 | 5\ 4 b

= Clusters
attach adapters to GRLY &
create sequencing library ; ‘
« O alONa:

cluster generation by Kﬂ - S 1 B
solid phase PCR @Y e 1 P e R
(bridge amplification)

Sequencing Cycles A

Dagital Iimage




Reversible terminator sequencing - lllumina

Flow Cell

=

Base Calling

GATGCTACG

Cycie 1 Cvcle 2
Cycle 3 Cycle 4
‘Oxn_m 5 Cycle &
Cycle7 Cycle8

ﬂ

Cycle 8

Q ..

50




Different read types

Single end read

— Only have sequence from one end of fragment

B
Paired / Mated read

— Have sequence from both ends of fragment
—— ——




How to define a pair of reads?

inner distance (100pb)

>

Read 1 (100pb) insert (100pb) Read 2 (100pb)

< >
outer distance (300pb)

= |nsert size



Lectures

Débit

Lectures/run

Précision

Temps
d'exécution

HiSeq
2000/2500
2x100 pb
600 Gb
3 milliards

99,9%

11 jours

HiScan SQ

2x100 pb

140 Gb

700 millions

99,9%

8 jours

Genome
Analyzer lIx
2x150 pb
96 Gb
320 millions

99,9%

14 jours

54

MiSeq

2x250 pb

7,5 Gb

15 millions

99,9%

39h



Definitions (1) (in french)

Séquencage haut débit (SHD) : terme générique et
peu spécifique (utilisation a éviter).

Séquencage nouvelle génération (NGS) ou massif en
parallele : regroupe les technologies de 2nde et 3eme
génération.

Séquencage de 2nde génération : séquencage d'un
ensemble de molécules nucléotidiques a l'aide de
techniques de “wash-and-scan” (ou cycles).

“Wash-and-scan” : technique basée sur des
polymérases et réactifs qui doivent étre enlevés a
chaque cycle apres l'incorporation des bases a _mmm.



Definitions (2) (in french)

Séquencage de 3eme génération : processus de
sequencage de molécules unigues ne nécessitant
pas de “wash-and-scan”.

Lecture : fragment nucléotidique individuel dont |la
sequence est determinée par un instrument.

Longueur de lecture : correspond au hombre de
bases individuelles composant une lecture donnée.

Préparation de librairies : procédure expérimentale
précédant le sequencage des fragments d'ADN
d'intérét. Varie en fonction de la technologie.

56



Definitions (3) (in french)

Paire de lecture: couple de deux lectures correspondant aux
deux extrémités du fragment a séquencer. En fonction du
protocole expérimental utilisé pour la préparation de |la
librairie, la taille et orientation des lectures varient.

Taille d’insert ( insert size ): Distance entre deux lectures d’une
paire en incluant leur longueur. Différent de la « outer size »

57



Short reads

-

\

Paired-end reads

S I e —

Long Paired-end reads (Mate pair) t ———— —

—

-

Sequencing data =
FASTQ file




entéte Jv@

séquence

Génome de référence
Fasta format

Format of a FASTA definition line

i _.G.E_A\}&'_

eql [organism=Carpodacus mexicanus] [clone=6b] actin (act) mRNA, partial CDS
_LCTTTATCTAATCTTTGGAGCAYGAGCTGGCATAGTTGGAACCGCCCTCAGCCTCCTCATC

Fichier multifasta

>Sequence 1 assemblyl
CCCTAAACCCTAAACCCTAAACCCTAAACCTCTGAATCCTTAATCCCTAAATCCCTAAAT
CTTTAAATCCTACATCCATGAATCCCTARAATACCTAATTCCCTAAACCCGAAACCGGTTT
CTCTGGTTGAAAATCATTGTGTATATAATGATAATTTTATCGTTTTTATGTAATTGCTTA
TTGTTGTGTGTAGATTTTTTAAAAATATCATTTGAGGTCAATACAAATCCTATTTCTTGT
GGTTTTCTTTCCTTCACTTAGCTATGGATGGTTTATCTTCATTTGTTATATTGGATACAA
GCTTTGCTACGATCTACATTTGGGAATGTGAGTCTCTTATTGTAACCTTAGGGTTGGTTT
ATCTCAAGAATCTTATTAATTGTTTGGACTGTTTATGTTTGGACATTTATTGTCATTCTT
>Sequence 2
CCCTAAACCCTAAACCCTAAACCCTAAACCTCTGAATCCTTAATCCCTAAATCCCTAAAT
CTTTAAATCCTACATCCATGAATCCCTARAATACCTAATTCCCTAAACCCGAAACCGGTTT
CTCTGGTTGAAAATCATTGTGTATATAATGATAATTTTATCGTTTTTATGTAATTGCTTA
TTGTTGTGTGTAGATTTTTTAAAAATATCATTTGAGGTCAATACAAATCCTATTTCTTGT
GGTTTTCTTTCCTTCACTTAGCTATGGATGGTTTATCTTCATTTGTTATATTGGATACAA
GCTTTGCTACGATCTACATTTGGGAATGTGAGTCTCTTATTGTAACCTTAGGGTTGGTTT
ATCTCAAGAATCTTATTAATTGTTTGGACTGTTTATGTTTGGACATTTATTGTCATTCTT

haord return



Converting RAW data to FASTQ

FASTQ File FASTQ — FASTA “with an attitude”
INSTRUMENT NAME (embedded quality scores). Originally
N Tile # ADAPTOR developed at the Sanger to couple (Phred)
M XY INDEX quality data with sequence, it is now
Lane # A A AA m_zm__mw,omz_u common to specify raw read output data
\_/ from NGS machines in this format.

@SN971:3:2304:20.80:100.00#0/1
NAAATTTCACATTGCGTTGGGAACAGTTGGCCCAAACTCAGGTTGCAGTAACTGTCACAATACCATTCTCCATCAACTTC
AAGAAATGTTCAACAAAACAC

+

Line 1: begins with ‘@’ followed by sequence identifier
Line 2: raw sequence

Line 3: +

Line 4: base quality values for sequence in Line 2



FASTQ file

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
L"#$%&"' ()*+,-./0123456789:;
<=>? @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]"_~abcdefghijklmnopgrstuvwxyz{ |}~

33 59 64 73 104
126
®o00000000000000000000000 PBoo00Blooooooc 40
=Poooolocooooo0 $)0060000000000000000000000000600 40
Ocecocsce Qeceoecccccccscsscsoscscsccscs 40
0/c2l cieieciesiosiosooecescesocooe 26...31l.ccccce. 41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)

I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)

L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

Differing in the format of the sequence identifier and in the valid
range of quality scores. See:
http://en.wikipedia.org/wiki/FASTQ_format
http://maq.sourceforge.net/fastq.shtml
http://nar.oxfordjournals.org/content/early &



Pre-pregess:EAST anal Ysis:y

FASTQ/A msona,omam.ua.uao%ngo

Home | Download & Installation | Galaxy Cmmom. Command-line Usage | License | Useful ._._:_6 Contact

Introduction
The FASTX-Toolkit is a collection of command line tools for Short-Reads FASTA/FASTQ files preprocessing.

Next-Generation sequencing machines usually produce FASTA or FASTQ files, containing multiple short-reads sequences (possibly with
quality information).

The main processing of such FASTA/FASTQ files is mapping (aka aligning) the sequences to reference genomes or other databases using
specialized programs. Example of such mapping programs are: Blat, SHRIMP, LastZ, MAQ and many many others.

However,
It is sometimes more productive to preprocess the FASTA/FASTQ files before mapping the sequences to the genome - manipulating the

sequences to produce better mapping results.

The FASTX-Toolkit tools perform some of these preprocessing tasks. _|m N =x~ _<_ a ﬁomx or C 1] mx on _<



Mapping vs. Assembly

-

\

Paired-end reads /

ead 1
—
L ——

- e —
e —
e
T

Long Paired-end reads (Mate pair) l s —

I PR
— e S
——— | —

D —
Reag 2

genome

Reference Amv _,\_mttm:m No Reference De novo

genome Assembly

— —) mmml
———— P —— —mia
.il. — mMml.m

-I

Assembly e S S

Contigs/scaffolds
62




Mapping vs. Assembly

Mapping (re-sequencing):

Will miss genome rearrangements

Only as good as the reference

Reference
genome

Mapping

No Reference De novo
genome ~ Assembly

Assembly e VL
Contigs/scaffolds
63



The most famous NGS technologies

Short reads
lllumina - Genome Analyzer lIx (GAIIx), HiSeq2000, HiSeq2500, MiSeq

Long reads
PacBio RS - Pacific Bioscience
GridlION — Oxford Nanopore



PacBio sequencing

Single molecule resolution in real time
Short waiting time for result and simple
workflow
- Generate basecalls in <1 day
- Polymerase speed >1 base per second
No amplification required
- Bias not introduced
- More uniform coverage
Direct observation
- Distinguish heterogeneous samples
- Simultaneous kinetic measurements
Long reads
- ldentify repeats and structural variants
- Less coverage required
Information content

- One assay, multiple applications
Genetic variation (SVs to SNPs)
Methylation
Enzymology

Videos :

https://www.youtube.com/watch?v=RcP85JHLmnlI

C2 chemistry — installed March 2012
- Long reads 6-10kb
Meidan size of molecules 3kb
Still 15% error rate
No strobe sequencing

Software focus on:
De novo assembly
Hi quality CCS consensus reads

In preparation
Load long molecules by magnetic

beads
Modified nucleotides detection
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LS - long sequencing reads
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Large insert sizes (2kb-10kb)
Generates one pass on each molecule sequenced
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Oxford Nanopore — new view on sequencing
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Hemolysin — pore - inner diameter of 1nm, about 100,000 times smaller than
that of a human hair.



Oxford Nanopore
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DNA sequencing
Error rate 4%, prediction for end of the year 0.1 — 2%.



Oxford Nanopore — new concepts

MinlON

- 150Mb per run
- Tested 48kb read length
- $900 per instrument

500 pores per device

GridION

Tested 48kb read length
2000 pores per device,
soon 8000 pores

Cost per human genome
$1500.
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NGS technology comparison

Capacity Speed Read Length
454 Roche 35-700 Mb 10-23 hours | 400-700 bp
SOLiD 90-180 Gb 7-12 days 75 bp
Nlumina™ 6-600 Gb 2-14 days 100-250 bp
lon Torrent 20 Mb- 1Gb 4.5 hours 200 bp
Helicos 35 Gb 8 days 35 bp
PacBio™ 1Gb 30 minutes 3000 bp

High DNA quality and quantity
Low sequencing error rate
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Challenges
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“There is a real disconnect between the
ability to collect next-generation sequence
data (easy) and the ability to analyze it
meaningfully (hard)”

Dave O'Connor




Omics methods are
not
defined by HIGH THROUGH-PUT...

...but by
HIGH OUT-PUT!

Large amount of %
data to analyze New expertise

Expensive studies
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We need to deal
with large and
complex data
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How to handle Omics data?

* Tools needed to manage large amounts of data

Security? ’ P p Cost-effective?
76



We need specific
computational

with these new
data
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How to handle Omics data”

* Tools needed to manage large amounts of data

* New computational approaches needed

- New methods for analysis and visualization needed
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How to handle Omics data”

* Tools needed to manage large amounts of data
* New computational approaches needed

* New methods for analysis
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How to handle Omics data”

* Tools needed to manage large amounts of data

* New computational approaches needed

- New methods for ¢

De bruijn algo

Original sequence

GTAGTATAGT(
SLlAGCIALAGCL

4

TR TR AR TR
TAGTAT AGTATA
mamamsnm
TATAGT
GCTC TAGTCA AGTCAG

GTCAGT TCAGTA

Sequence reads
CGTACTA

GTATAG
ATA

AR Y R YR T TV A FTY /N R
TATI( G

CAGTA AG

b

Consensus overlap assembly

GTACTA
TACTAT
ACTATA
GTATAG
TATAGT
ATAGTC
TAGTCA
AGTCAG
GTCAGT
TCAGTA
CAGTAT
AGTATC

|-
GTATCA

AR SIIR PR SV YR SN N T Y
GTAGTATAGTCAGTATCA

k-mers (2-mers)

GT TA AG AT TC CA

de Bruijn graph
l —

FaT
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How to handle Omics data”

* Tools needed to manage large amounts of data
New computational approaches needed
New methods for analysis and visualization needed

Experiments + theory needed for design for omics

experimentation:
Sampling resolution?
Dosis concentration?
Study which (parts of) cells?

New ideas and concepts about regulation of biological
functions needed.
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New ways of
analyzing and
showing
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How did life change for a biologist?

Analyzed
genes

RNA analysis by Northern blot: 1-15 genes

A BEC D E G HE E K EMNNE PO R S T

Samples of 20
cellular experiments

RNA analysis by 3510-0113: 1.000-40.000 mm:mm\
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isualization of NGS Data -

http://www.broadinstitute.org/igv/

-’ W SWid § § Wi Wi | W il | W

17| Integrative
Genomics
Viewer

kg Integrative
¥ Downloads mm:os—nm

[E] Documents

» Hosted Genomes
» FAQ
=GV User Guide
[ File Formats

# Release Notes
» Credits

Search website

search

What's New Downloads

Broad Home NEWS October 17, 2011. Data from the 29 mammals Please register to download IGV. After registering,
Cancer Program miwRii  paper is now available from the hg18 "Load from c you can log in at any time using your email
(W..t. = server..." menu. Bl 2ddress. Permission to use IGV is granted under

the GNU LGPL license.

EZBROAD

INSTITUTE

© 2011 Broad Institute

September 24, 2011. IGV 2.0.10 is released with bug fixes
and support for loading indexed fasta files. See notes for PR
more details. Citation

May 31, 2011. IGV version 2.0 is now available on the To cite your use of IGV in your publication:
downloads page. See the IGV 2.0 Feature Guide for an
overview of changes and new features. James T. Robinson, Helga Thorvaldsdattir, Wendy Winckler,
Mitchell Guttman, Eric S. Lander, Gad Getz, Jill P. Mesirov.
More... Integrative Genomics Viewer. Nature Biotechnology 29.
24-26 (2011)
E) Subscribe
. Funding
Overview

Develooment of IGV is made possible bv fundina from the



Application exemples

Category

Examples of applicalions

Complee genome resequencing

Reduced representation sequencing
Targeted genomic resequencirg
Paired end sequencing
Metagenomic sequencing

Transcriptome sequencing

small RNA sequencing
sequencing of sisulfite-treated DNA

Chromatin immunoprezipitation—
sequencing (CHIP-Seq)

Nuclease fragmentation and
sequencing

Molecular barcoding

Comprehensive polymorphism and mutation discovery
in individual ruman genomes

Large-scale polymorphism discovery

Targeted polymorphism and mutation discovery
Discovery of inherited and acquired structural variation
Discovery of infectious and commensal flora

Quantification of gere expression ayd altemative
splicing; transcript annotation; discovery o” transcribed
SMPs or somatic muzations

microXMNA profiling

Determining patterns of cytosine methylation in
genomic DNA

Genome-wide mapping of protein-DNA interactions

Muclecsome positioning

Multiplex sequencing of samples from mukiple
individuals
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The Future of Omic Research

Six fields were targeted for development as
Omic information grows

— Resources: Genome sequences and libraries/DB
— Technology such as new sequencing methods

— Software for computational biology

— Training professionals in interdisciplinary skills
— Ethical, legal, and social implications

— Education of health professionals and public



Mapping”

@ Genome

Données de
séquencage

(lectures ou reads)

Séquence de
référence




Structural variants (SV)

Chromosome
SV traditionally defined as T, ng—
deletions, insertions, or A
. . g " Genes from
inversions > 1 kb (AW B reference
genome
Often involves repetitive
. Deletion A BENCH
regions of the genome and
complex rearrangements insertion [ WM MENC T NN I

Importance not recognized esion v wm Wy

No optimal method for SV copy-number
discovery e

ATIATATA NN B

S A B E BNCH A B B |

duplication
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Les variants nucléeotidiques (SNP) et structuraux

Read count Read paired split-read assemblage

A =

deletion == —

B( 4

insertion X

Cr R j " , R

inversion X

duplication P e




An assembly

reads
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Assembly = Solving Puzzles Without a Picture




Assembly = Solving Puzzles Without a Picture




Assembly = Solving Puzzles Without a Picture
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Assembly = Solving Puzzles Without a Picture

The assembly process is complicated by the fact that
underlying assumption is incorrect.



Assembly
process

Contig = a set of reads

Unitig = a contig formed
from overlapping
unambiguously unique
sequences (/.e., a high-
confidence contig)

Scaffold = an ordered and
oriented set of one or more
contigs with distances
assigned to the gaps
between contigs
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Find overlapping reads —
Q111

Assemble reads into contigs —

Join contigs into —
scaffolds using
matepairs _ " _ _ T " __T" T _ T_
T T 77 Tmatepair
—_— scaffold
Join scaffolds into —

“finished” sequence

ACTTGTAT TATTACAAACTGACOOC TAAARAAC TG TCCALATACALACACAC ACATAT TATTT AR A AR TT TCARTAATTGOTCTACCATAAGCATAATATALAG



e
Assembly paradigms

Assemblers are based on one of several different paradigms:

1. Greedy
~.Overlap-Layout-Consensus (OLC)
=.De Bruijn Graph



i e s
1/Greedy

e While there are sequences with overlap:

» Find sequences with largest overlap
» Merge those sequences

Elﬁ—.l.lﬂ

The choices made by the assembler are inherently local and do not take
into account the global relationship between the reads.



1/Greedy

e Advantage.:
e Simple
e Disadvantage:
e Early mistakes create bad assemblies



2/0LC:
Overlap-Layout-Consensus



.
2/0LC:

Overlap-Layout-Consensus

e | Clean your input
Remove "vector sequence”, low quality, etc




2/0LC:
Overlap-Layout-Consensus

e Clean your input

Remove "vector sequence”, low quality, etc _I.lu.—.lmlll
4

2
e Overlap: What reads are intersecting?
* Create a node for each read
* Create directed edge for each overlap




2/0LC:

Overlap-Layout-Consensus

e Clean your input

Remove "vector sequence”, low quality, etc _Jlujlll

2
e Overlap: What reads are intersecting?

» Create a node for each read
» Create directed edge for each overlap

e | Layout:

« Simplify graph

How combine the reads?

» Find suitable paths in the graph

Determine Hamiltonian path

« In the mathematical field of graph theory, a Hamiltonian path (or traceable
path) is a path in an undirected or directed graph that visits each node exactly

once. »



2/0LC:
Overlap-Layout-Consensus

From http://www.cbcb.umd.edu/research/assembly_primer.shtml



.
2/0LC:

Overlap-Layout-Consensus

Exemple:
« True sequence (/bp) AGTCTAT
« 3 Reads (4bp each) AGTC (A), GTCT (B), CTAT (C)

« Alignments

AGTC- AGTC---  GTCT-
GTCT  --CTAT  --CTAT



2/0LC:

Overlap-Layout-Consensus

 Nodes are the 3 read sequences

« Edges are the overlap alignment
with orientation

« Edge thickness represents score
of overlap

Optimal path: A->B ->C




2/0LC:
Overlap-Layout-Consensus

Clean your input
Remove "vector sequence”, low quality, etc _|.-.||u—.|HII.|
4

2

e Overlap: What reads are intersecting?
* Create a node for each read

» Create directed edge for each overlap k

e Layout: How combine the reads?
« Simplify graph
* Find suitable paths in the graph

e Consensus: Derive contigs from layout




2/0LC:
Overlap-Layout-Consensus

Seqg4 TTCACACACCCTATACCAATAGTTTTCTGGCTCCTGACCATCAAACTG

Seg5 TTTTCTGGCTCCTGACCTITCAAACTGCCTCCATATGACTGTGCTCT
Segb TACCAATAGTTTACTGGCTCCTGACCCTCAAACTGCCTCC
Seq7 ATAGTTTTCTGGCTCCTGACCGTCAAACTGCCTCCATATGA

Cons TTCACACACCCTATACCAATAGTTTICTGGCTCCTGACCNTCAAACTGCCTCCATATGACTGTGCTCT




.
2/0LC:

Overlap-Layout-Consensus

 Nodes are the 3 read sequences

« Edges are the overlap alignment
with orientation

« Edge thickness represents score
of overlap

Optimal path: A -> B -> C Y=

Consensus aGTCTat




2/0LC:
Overlap-Layout-Consensus

The OLC paradigm was made popular by the
work of Gene Myers, embodied in Celera
Assembler and dominated the assembly
world until the emergence of the new
generation of short-read sequencing
technologies.



3/De Bruijn Graphs

A Read Layout B Overlap Graph

R,: GACCTACA

R,:  ACCTACAA

R,: CCTACAAG

R,: CTACAAGT

TACAAGTT

ACAAGTTA
CAAGTTAG

TACAAGTC

ACAAGTCC
CAAGTCCG

N X O WP



OLC

DBG

3/De Bruijn Graphs

: GACCTACA

A Read Layout B Overlap Graph

ACCTACAA
CCTACAAG
CTACAAGT
TACAAGTT
ACAAGTTA
CAAGTTAG
TACAAGTC
ACAAGTCC
CAAGTCCG

C de Bruijn Graph
K-mers / one edge per k-mer

4-mers/ node of 3 bp | ‘/‘




3/De Bruijn Graphs

¢ Divide reads into smaller strings of size k (k-mers)
® Break reads of L bp into L-k+1 k-mers per read



3/De Bruijn Graphs

¢ Divide reads into smaller strings of size k (k-mers)

® Break reads of L bp into L-k+1 k-mers per read
If L=36 and k=31, we will get 36-31+1=6 k-mers



3/De Bruijn Graphs

¢ Divide reads into smaller strings of size k (k-mers)

® Break reads of L bp into L-k+1 k-mers per read
If L=36 and k=31, we will get 36-31+1=6 k-mers
e Why create even smaller segments?



e
3/De Bruijn Graphs

¢ Divide reads into smaller strings of size k (k-mers)
® Break reads of L bp into L-k+1 k-mers per read
If L=36 and k=31, we will get 36-31+1=6 k-mers
e Why create even smaller segments?

® Smaller chance of containing erroneous base

e But the tradeoff is that repetitive sequences are more common
and harder to resolve

1. Construct a de Bruijn graph (DBG)

1. Nodes = one for each unique k-mer
2. Edges = k-1 exact overlap between two nodes

2. Graph simplification
1. Merge chains, remove bubbles and tips

3. Find a Eulerian path through the graph
1. Linear time algorithm, unlike Hamiltonian



1. Construct a de Bruijn graph (DBG)

® Sequence CAATATG
o K-mers (k=3) CAA AAT ATA TAT ATG
* Graph Nodes = one for each unique k-mer

Edges = k-1 exact overlap between two nodes



1. Construct a de Bruijn graph (DBG)

® Sequence CAATATG
o K-mers (k=3) CAA AAT ATA TAT ATG
* Graph Nodes = one for each unique k-mer

Edges = k-1 exact overlap between two nodes
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2. graph simplification

® Remove tips or spurs
® Dead ends in graph due to errors at read end

® Collapse bubbles
® Errors in middle of reads
e But could be true SNPs or diploidity

® Remove low coverage paths
® Possible contamination

= Makes final Eulerian path easier and hopefully
more accurate contigs



¢ Collapse the De Bruijn graph

PR L R L et ccssannnssessss,

GCCCACAGC

.
P el Velakvelek daks -
L TCCTGCTGGTCTCT
LA A L A A A A A AR & 9

e R

R
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e

ACCGCCC

Necssssssnnnnnn

A\ >4

. T TR OAT LT A
CAGCGCTTCCT s, CTCTTGTTGGTCGTAG

-

TCCTCT

L T T

GCCCTCAGC

R

e Assembled isoforms

« In graph theory, an Eulerian trail (or Eulerian path) is a trail in a
graph which visits every edge exactly once. »



3/De Bruijn Graphs

De Bruijn approach was popularized by the assembler Eulerl/ and
has dominated the design of modern assemblers targeted at
short-read sequencing data, such as Velvet, SOAPdenovo and
ALLPATHS.

De Bruijn-graph-based approaches have been successful in
assembling highly accurate short reads (<~100 bp, such as those
generated by the Illumina Solexa technology), whereas overlap-
based approaches (such as OLC or string graph) are mostly used
for longer, more inaccurate data (>200 bp, such as Roche 454 and
Sanger sequencing data)



 Seauencing: Concepls 2 Dat Storege 3 Assembly Algorthms - €stmte hecualty of an assembly 5 v nent
Modern Sequence Assemblers

Assemblers Technology Availability Notes Refs
Genome assemblers
ALLPATHS-LG  lllumina. Requires a specific sequencing 40
Pacific Biosciences recipe (BOX 3)
SOAPdenovo  Illumina http://soap.genomics.org.cn/ Also used for transcriptome and 22
soapdenovo.html metagenome assembly
Velvet Illumina. SOLID. : May have substantial memory 20
454, Sanger velvet requirements for large genomes
ABySS lllumina, SOLID. http://www.bcgsc.ca/platform/ Also used for transcriptome 21
454, Sanger ioi assembly
Metagenome assemblers
Genovo 454 Uses a probabilistic model for 66
assembly
MetaVelvet lllumina, SOLID. Based on Velvet -
454 Sanger
Meta-IDBA lllumina Based on IDBA 5
Transcriptome assemblers
Trinity Illumina, 454 bttp://trinityrnaseq.sourceforge.net  Tailored to reconstruct full-length 8
transcripts: may require
substantial computational time
Oases Illumina, SOLID, Based on Velvet 72
454, Sanger oases
Single-cell assemblers
SPAdes llumina 7
IDBA-UD lllumina Based on IDBA 6

Note that only a few of the popular and freely available assemblers are included here for each application (a more complete listis
provided in Supplementary information 51 (table)). and all of the listed assemblers (except Genovo) are based on de Bruijn graph

construction. IBDA, Iterative De Bruijn graph short read Assembler.



viodern sequence Assemblers




Sleaday
Algquiasse-SiW JO 824N0S ulew ay |




Sleaday
Algquiasse-SiW JO 824N0S ulew ay |




Sleaday
Algquiasse-SiW JO 824N0S ulew ay |




The main source of mis-assembly:
Repetitive DNA

True structure of genomic region

B ==

Segments of DNA repeated
yield fragments with highly

similar s equences that Incorrect assembly with “orphan” contig (red)

originate from different
places in the genome. ; I

(Salzberg and Yorke, 2005; Miller et al., 2010)



Omic impact

Transcriptome
=>» nearly identical
sequences may originate
from different transcripts

Genome assemblers expect even coverage.
Assembled regions with high coverage are assumed to be repeats.

— —
Repeats Repeats

But individual genes within a transcriptome will have very
different amounts of coverage...

Low expression High Multiple
expression isoforms



Omic impact

Genome assemblers expect even coverage.
Assembled regions with high coverage are assumed to be repeats.

Transcriptome LLI'

— —

=> nearly identical Repeats Repeats
sequences may O_\_m_ nate But individual genes within a transcriptome will have very
from different transcri pts different amounts of coverage...

Low expression High Multiple
expression isoforms

Metagenomic samples
= nearly identical sequences may originate from genomes within the

sample.
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Other sources of mis-assembly

Sequencing error Polymorphism
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-> Increase the coverage

e
e
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invertebrate species) from its host in the sequencing library.

-> Test contamination before the assembly

Drosophila Wolbachia

(Werren et al., 2008)



Sequencing to Assembly

In:
A set of reads

/I.
NS/ | /|\\_/
/\// \ —
/I_ \_/I

NN

—»

Out:
A genome model

—_—

In practice:
A set of contigs

- i — —




From reads to assembly

»
 Dgital normalization

Assembly



S
From reads to assembly

' Adapters trimming Most assemblers cut reads into k-mers
read | ACTGATGAC
ACT
Error correction CTG
k-mers aw.u
(k=3)
ATG
m Oxgital normalization TGA
GAC

Assembly



From reads to assembly

' Adapters trimming Most assemblers cut reads into k-mers
read | ACTGATGAC
ACT
Error correction CTG
k-mers aw.u
(k=3)
ATG
TGA

Dugital normalization

Assembly

GAC

Why this is so important?



From reads to assembly

m Adapters lrimming

»
" Error correclion
»

Dugital normalization

Assembly

Why this is so important?
Again repeats!!!

genome n =
ey Irepeat] repeat
sequenced e T e e e e el Tt
kemers: | o= =t e
ideal world:
single contig

missing k-mers
break contigs

repetitions also break
contigs and reduce

total assembly size R

K should be kept small to prevent the overuse of
computer memory, while still large enough so that

most k-mers are unique in the genome
k-mer size < mean repeat size



How 1o estimate the optimum
K-mer size?

Without looking at the data
—Ao_z H_ AZr\Qv -C _

where N, is the total number of k-mers in the reads,
G Is the estimated genome size,
C is the desired k-mer coverage.



How 1o estimate the optimum
K-mer size?

Looking at the data -> Compute the k-mer abundance histogram

- X axis: abundance
- y axis: number of k-mers having abundance x (seen x times)

Example reads dataset:

ACTCA

GTCA

ce of each
3-mer




How 1o estimate the optimum
K-mer size?

Looking at the data -> Compute the k-mer abundance histogram

- X axis: abundance
- y axis: number of k-mers having abundance x (seen x times)

Example reads dataset:

ACTCA
GTCA

3-mers:

ACT e of each
CTC
TCA
GTC
TCA

o>-Mmer




How 1o estimate the optimum
K-mer size?

Looking at the data -> Compute the k-mer abundance histogram

- x axis: abundance
- y axis: number of k-mers having abundance x (seen x times)

Abundance of each distinct 3-mer:

Example reads dataset: ACT: 1
ACTCA CTC: 1
GTCA TCA: 2
3-mers: e L
ACT 3-mer abundance:
CTC X y
TCA 1 3
GTC 2Rl
TCA 3 0
4 O



How 1o estimate the optimum
K-mer size?

Looking at the data -> Compute the k-mer abundance histogram

- Severals tools to build the k-mer histograms already exist (e.g. k-
mer counting, Jellyfish, DSK...)

- Chikhi R., Medvedev P. designed one approach to estimate
the optimim k-mer (KmerGenie Bioinformatics 2013)



Understand the k-mer
histogram

21

GAGE dataset k
Human chrl4 ~ 88 Mb

1e+09
|

k=21

Number of kmers
1e+07
|

1e+05
|

We expect to see multiple peaks,
from different causes. 0 5 100 150
Abundance



Understand the k-mer
histogram

Low k-mer frequency = Erroneous k-mers
k=21

1e+09

e Sequencing errors,
« PCR amplification errors,
« Polymorphisms...

Number of kmers
1e+07

Note: For metagenomic libraries, that
polymorphism may be a major
contributor to the initial peak

1e+05

0 50 100 150

Abundance



Understand the k-mer
histogram

I
N
=

Genomic non-
repeated k-mers

Number of kmers
1e+05 1e+07 1e+09
|




Understand the k-mer
histogram

I
N
=

Genomic repeated
k-mers or artifacts

Number of kmers
1e+05 1e+07 1e+09
|




Understand the k-mer
histogram

-> genomic and
sequencing
characteristics

Number of kmers
1e+05 1e+07 1e+09




Understand the k-mer
histogram

x
1}

N
—

2 + 3 = total number
of distinct k-mers
covering the genome

Number of kmers
1e+05 1e+07 1e+09
|

0 50 100 150



Understand the k-mer

Number of kmers

=
1}

1e+05 1e+07 1e+09
|
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How to determine exactly

the area

Quake’s statistical model

-~ They fit a Gamma distribution to the
untrusted k-mers, a Gaussian for
unrepeated trusted k-mers and a Zeta for
the high frequency repeated trusted k-mers.

1e

1e+07
1

The distribution of the trusted reads is
actually expected to be Poisson, but the
variance is significantly larger than the
mean due to sequencing biases

1e+05
|

0 20 40 60 80 120

(Chor et al., 2009; Kelley et al., 2010)



Now, read the k-mer histograms

To find the optimal k, one can compare histograms for different values of k.
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Now, read the k-mer histograms

To find the optimal k, one can compare histograms for different values of k.

Number of kmers
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Number of kmers
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Choose the k value which maximizes the assembly size



Now, read the k-mer histograms

To find the optimal k, one can compare histograms for different values of k.

Number of kmers
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Computing a single histogram is time and memory expensive.
=> quickly estimates the histograms using sampling



The k-parameter

Assembly is not robust with respect to the parameter k. Because the ideal
k-mer size depends on :

- sequencing coverage

- sequencing error rate

- genome complexity

20000 - 10000
4000 -

10000 - 5000
2000 —

0 - 0 — 0 -

I | | I I | I I I I

20 40 60 20 40 60 80 20 40 80 80
k K K

k vs NG50 for 3 organisms : bacteria (S. aureus), human chr14, whole bumblebee genome (B.
impatiens)

NG50
NG50
NGS0




How 1o estimate the optimum
K-mer size?

Velvet Advisor

Questions
I have [ 30 | million reads.

They areé  paired-end & reads.

Each read is [ 101 | base-pairs long.

| estimate my genome size to be [_ss | megabases (million bases).

| would lixe to have about E fold k-mer coverage for my assembly (defined below, suggest between 10 and 30)

Answer

You have a yield of sos0 megabases.
You have about ss fold nucleotide coverage of your genome.

We recommend trying k= 57  for your Velvet assembly.

The Velvet sequence type iS:  -shoetPaired

http://dna.med.monash.edu.au/~torsten/velvet advisor/




The main stats to estimate the
quality of an assembly

Number of contigs/scaffolds

Total length of the assembly

Length of the largest contig/scaffold
Percentage of gaps in scaffolds ('N’)
NS0/NGS0 of contigs/scaffolds
Number of predicted genes

Number of core genes



The main stats to estimate the
quality of an assembly

=~ Number of contigs/scaffolds

~ Total length of Sm' K-mer!!!
-~ Length of the largest contig/scaffold

-~ Percentage of gaps in scaffolds ('N’)

-~ N50/NG50 of contigs/scaffolds

=~ Number of predicted genes

-~ Number of core genes




The main stats to estimate the
quality of an assembly

Number of contigs/scaffolds
Total length of the assembly
Length of the largest contig/scaffold
Percentage of gaps in scaffolds ('N’)

NSONGSO o contigs/scaffolds.

Number of predicted genes
Number of core genes



1-Sequencing: Concepts  2-Data Storage

N50 = Largest contig length
at which longer contigs co-
ver 50% of the total assem-

bly length

Genome

Assembly

3-Assembly Algorithms 4-Estimate the quality of an assembly 5-And next?

NG50 = Largest contig
length at which longer
contigs cover 50% of the
total genome length




1-Sequencing: Concepts  2-Data Storage 3-Assembly Algorithms 4-Estimate the quality of an assembly 5-And next?

N50 = Largest contig length NG50 = Largest contig
at which longer contigs co- length at which longer
ver 50% of the total assem- contigs cover 50% of the
bly length total genome length

Genome

s 3

Assembly

A practical way to compute N50 :
Sort contigs by decreasing lengths
Take the first contig (the largest) : does it cover 50% of the assembly ?

If yes, this is the NS0 value. Else, try the next one (the second largest),
and so on..



 LiSequencing: Concepts  2-Data Storage 3Assembly Algorithms 4-Estimate the quality of an assembly S:And next?
Let’'s do It

Here are two assemblies, aligned to the same reference :
Ref EEEEEEEEEEESEEEEEEENEERN?2

ASM]l mmmEmEEESG

EE2
EEEEEEENS
EEE 3
ASM2 mEmmEES
EEEEEEENO
N2
EE

- For each, compute the following metrics :
» Total size of the assembly, N50, NG50 (bp)
» Coverage (%)

- Which one is better than the other ?



Solution

Here are two assemblies, aligned to the same reference :
Ref EEEEEEEEEEEEEEEEENEENEEN?

AsSM]l memEmEEEG
AN

EEEEEREEREERS
EENE 3

ASM?2 mEEENES

EEEEERENO
mE2

HE 2

- For each, compute the following metrics :

» Total size of the assembly (19 bp, 18 bp), N50 (6 bp, 9 bp), NG50 (6 bp, 5 bp)
» Coverage (%) (90, 90)

- Which one is better than the other ? (| would say first one)



 LSequencing: Concepts  2Data Storage - 3 Assembly Algoriims 4-Estimate the quality of an assembly 5And next?
High N50 but bad assembly

”The standard of judging assembly quality by size of contigs is
questionable. Large contigs may simply reflect overly aggressive
joining of contigs, thereby creating larger contigs with mis-
assemblies. As a consequence, genome scientists who are not
experts at assembly can be completely misled by statistics about
contig sizes, and as a result might prefer the ’larger’ but incorrect
assembly when given a choice.”

Salzberg & Yorke, 2005



Assembly score

N5, is the NS5O statistic of the assembly

Gs is the number of contigs contained in the assembly

Mg is the mean assembly contig length
then GoM; = L is the estimated size of the assembled genome

Lz is the expected (actual) genome size
then |Lz — L¢|is the error between the expected size of the (actual) genome and the estimated size
of the assembled genome, and in non-pathological cases, |[Lg— (Lg +1)| > 0

A is the Assembly Score

Nso

1
A= G- (L + DI 10

Note that Souho multiplier is only added for ease of interpretation of the scores. It has no biological meaning.



R
Mapping vs. Assembly

Paired-end reads

Read 1
q I
Long Paired-end reads (Mate pair) G B ———
L __________ —
p— —— —
No Reference De novo Reference @ Mapping
genome Assembly genome
Assembly -I/H\_II/IHHI o o
Contigs/scaffolds




