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Preface

Dear Participants and Colleagues,

We are very pleased to present the proceedings of the 2025 edition of JOBIM, hosted this
year in Bordeaux, which brought together 500 participants on-site and more than 90 joining online.

This edition stands out in particular for the fruitful collaboration between the Program
Committee and PCl Genomics and PCI Mathematical and Computational Biology, resulting in 9
submissions through the PCI track. All PCl submissions were accepted for presentation at JOBIM and
have entered the PCl peer-review process, an encouraging sign of the growing synergy between open
peer-review platforms and scientific conferences.

Thanks to the dedication of the Program Committee, we were able to finalize a rich and
balanced scientific program. In total, we received 61 long submissions, leading to 22 accepted
Proceedings articles out of 34 submissions, 9 PCl submissions (all accepted for presentation), 5 long
platform papers accepted out of 6, 9 Highlights accepted out of 12, helping ensure thematic diversity.
This results in 45 oral presentations, scheduled across 15 parallel sessions. In addition, 151 posters
were accepted out of 176 submissions.

We are pleased to highlight the nine mini-symposia proposals received this year, of which
four were selected by the Program Committee. These four themes will enrich Thursday afternoon
with an exciting and diverse program, covering:

- Comment concilier nos activités en bioinformatique avec les limites planétaires ?

- The Genomics of Biodiversity,

- Alin Healthcare: From Fundamentals to the Clinic, and

- Methods for Interfacing with Graphs of Genomic Sequences: Novel Pangenome
Paradigms.

We warmly thank all reviewers, authors, and contributors who made this scientific program
possible. We hope these proceedings reflect the diversity, innovation, and collaborative spirit of the
JOBIM 2025 community.

In addition, we are particularly honored to welcome six distinguished keynote speakers
whose contributions have greatly enriched this edition of JOBIM: Anamaria Necsulea (CNRS, Lyon),
Bjorn Griining (University of Freiburg), Simona Cocco (CNRS, ENS Paris), Emma Schymanski
(University of Luxembourg), Eric Rivals (CNRS, Montpellier) and Jean Monlong (INSERM, Toulouse).

We would also like to express our sincere thanks to our institutional partners: SFBI, IFB and
GdR BIMMM. Their support and commitment have been essential to the success of this event.

Finally, we thank everyone who contributed to making JOBIM 2025 a welcoming and vibrant
space for the exchange of ideas in computational biology.

We hope you will enjoy these proceedings, and we look forward to your continued
engagement in the future editions of JOBIM.

Sylvain Prigent, Patricia Thébault and Raluca Uricaru
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Integrating structural variants in genomic studies of rare and

complex diseases with long-read sequencing and pangenomes

Jean MONLONG?

1 Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France

Corresponding Author: jean.monlong@inserm.fr

Keywords

structural variants, sequencing, pangenome, rare disease
Abstract

Variant affecting more than 50 nucleotides, or structural variants, can have important functional
impacts. They are unfortunately understudied because of technical challenges hindering their
detection. | will present two approaches to integrate those variants in genomic studies. The first uses
pangenomes as augmented reference genome containing common variants (including structural
variants). With this more complete reference, like the one produced by the Human Pangenome
Reference Consortium, short sequencing reads are better analyzed, resulting in a larger number of
structural variants that can finally be genotyped accurately and could be considered in large
association studies. The second approach uses cost-efficient long read sequencing technology, such as
Oxford Nanopore, to infer phased variants at unprecedented resolution. This protocol is currently

being tested to help diagnose rare disease patients in diagnostic impasse.



On n'a pas de terres rares, mais on a des idées.

- Partitionnement en classe d'équivalence pour le test d'algorithmes du texte.

- Vers une approche scientifique pour choisir au mieux les instances de tests.

Eric Rivals®

1 LIRMM, CNRS, Univ Montpellier, FRANCE

Corresponding Author: eric.rivals@lirmm.fr

Abstract

La consommation de ressources, telles que I'électricité ou les matériaux de fabrication des
ordinateurs, s'accroit fortement avec le développement de I'économie et des activités humaines
numériques. La question se pose de limiter cette consommation sans pour autant réduire des activités
qui peuvent s'avérer socialement utiles ou nécessaires.

En bioinformatique, nous développons beaucoup de logiciels, et parfois de nombreux logiciels pour la
méme tache, la méme question computationnelle. Prenez par exemple le cas de I'assemblage de
génome ou celui de la localisation des lectures de séquencage (ou "read mapping" en anglais--
footnote{Plusieurs dizaines d'outils de mapping ont été développés et maintenus.}).

En matiere de développement logiciel, il est recommandé de développer des tests les plus complets
possibles afin de s'assurer de la validité d'un logiciel. Dans le cycle de développement, nous itérons,
fréquemment ou automatiquement, |'exécution des tests afin de vérifier la correction du logiciel ou
d'en évaluer la rapidité. Dés lors, on peut se questionner scientifiquement sur ['utilité ou la
redondance de certaines instances de tests.

Considérons le cas d'un programme de recherche d'un mot dans un texte, par exemple votre génome
préféré (ou bien dans la séquence de De Bruijn d'ordre k). Pour tester le logiciel dans toutes les
situations, on peut lancer des tests sur tous les mots de longueur k, pour k égale 2, puis 3, puis 4, ...,
jusqu'a par ex. disons 31 (footnote{La valeur k=31 est commune pour certaines analyses sur séquence
d'ADN.}). Mais clairement le nombre d'instances augmente exponentiellement avec la longueur k, et
devient vite rédhibitoire. Du point de vue de la science informatique, nous pouvons reformuler notre
guestion initiale ainsi:

Peut-on identifier des instances de test redondantes ? Peut-on générer seulement des instances de
test utiles ?

J'aborderai ces questions durant cet exposé en les illustrant avec deux algorithmes complexes de

traitement des séquences et en montrant lI'impact du choix des instances. Ce principe d'organisation



des tests se nomme Partitionnement par Classes d'Equivalence. L'étude de ces classes d'équivalence
pour un algorithme donné peut s'avérer complexe.

Etant donnée la fréquence d'exécution des tests durant le développement logiciel, ce type d'approche
peut aider a diminuer l'impact écologique de nos développements. Outre I'avantage en termes
d'utilisation de ressources, |'approche par Partitionnement peut aussi nous informer sur le temps
moyen d'exécution du programme sur une classe d'instances d'une taille donnée. Cette réflexion
générique ouvre des pistes de recherches pour de nombreux algorithmes, pistes a méme de favoriser

des interactions avec d'autres domaines de la recherche en informatique.

Abstract

Selection of test instances for string algorithms

The consumption of resources, such as electricity and materials used in the manufacture of
computers, is increasing sharply with the development of the digital economy and human activities.
The question is how to limit this consumption without reducing activities that may be socially useful
or necessary.

In bioinformatics, we develop a lot of software, and sometimes many software for the same task, the
same computational question. Think, for instance, about genome assembly or read mapping.

When it comes to software development, it's advisable to develop the most comprehensive series of
tests to ensure the validity of a piece of software. In the development cycle, we iterate, frequently or
automatically, the execution of tests in order to verify the software's correctness at each step. Tests
may also be run to evaluate computational speed. This raises scientific questions about the usefulness
or redundancy of certain test instances.

Let's take the case of a program that searches for a word in a text, such as your favorite genome. To
test the program in all situations, we can run tests on all words of length k, for k equals 2, then 3, then
4, ...,upto, say 31 (footnote{The value k=31 is common for some DNA sequence analyses.}). But clearly
the number of instances increases exponentially with length k, and quickly becomes prohibitive. From
the point of view of computer science, we can rephrase our initial question as follows:

Can we identify redundant test instances? Can we generate only useful test instances?

| will address these questions during this talk, illustrating them with two complex sequence processing
algorithms and showing the impact of instance selection.

This  principle of test organization is called Equivalence Class Partitioning
([[https://en.wikipedia.org/wiki/Equivalence_partitioning][ECP]]) in the domain of software

development. The study of these equivalence classes for a given algorithm can be complex.



Given the frequency with which tests are run during software development, and the number of
software in bioinformatics, this type of approach can help reducing the ecological impact of our
developments.

In addition to the advantage in terms of resource usage, the partitioning approach can also inform us
about the average program execution time on a class of instances of a given size. This generic
approach points to avenues of research for many core algorithms, avenues that may foster
interactions with other areas of computer science.

# LocalWords: reads Bruijn



Deciphering the genomic basis of convergent phenotypic evolution

Anamaria Necsulea?

1 Laboratoire de Biométrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Université Claude Bernard —

Lyon 1

Corresponding Author: anamaria.necsulea@univ-lyon1.fr

Keywords
convergent phenotypic evolution, evolutionary genomics, gene expression evolution, regulatory

evolution.

Abstract

Biology has recently undergone a fundamental transformation, powered by the development of
sensitive molecular techniques combined with high-throughput sequencing. Major technical
breakthroughs include the ability to sequence complete genomes, to finely quantify gene activity and
to study its control mechanisms. Applying these techniques across species gives us a unique
opportunity to study the evolution of genomic functions, and thus to better understand the
mechanisms that underlie phenotypic evolution. Functional evolutionary genomics studies can bring
insights into the selective pressures and molecular mechanisms that drive the emergence (or loss) of

biological functions and of phenotypes.

Here, we illustrate how comparative genomics approaches can bring insights into the genomic basis
of convergent phenotypic evolution, in birds. The avian clade displays a spectacular diversity of
phenotypes. Numerous instances of convergent phenotypic evolution are known in birds, such as the
convergent loss of flight [1] or the parallel gain of vocal learning [2]. In this presentation, we will focus
on one peculiar case of convergent morphological evolution : the loss of the intromittent male phallus
[3]. Although an intromittent phallus was likely present in the ancestor of all amniotes, this organ was
reduced or entirely lost in multiple avian lineages, including the major Neoaves clade and the
Phasianidae family [3]. The evolutionary processes that led to phallus reduction or loss are still unclear,
as are the genomic consequences of this major phenotypic change. Taking advantage of the availability
of hundreds of avian genomic sequences, we have performed large-scale evolutionary analyses of
protein-coding gene sequences and of non-coding regulatory elements, searching for genomic

changes that occur in parallel with phenotypic changes. We found that hundreds of protein-coding



genes and non-coding regulatory elements underwent an acceleration of their rate of evolution
following this major phenotypic change. We also identify numerous gene expression differences
between bird species that have retained the intromittent phallus and species that have lost this organ.
While we cannot claim that these changes in expression patterns and regulatory programs are causal
to the loss of the phallus, our findings illustrate the genome-wide consequences of this major
phenotypic change.

References
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Open Science Data Processing and Integration Workflows in

Metabolomics and Exposomics

Emma Schymanski®

1 Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 6 avenue du Swing, 4367, Belvaux, Luxembourg.

Corresponding Author: emma.schymanski@uni.lu

Keywords

Metabolomics, Exposomics, Open Science, Cheminformatics, Non-target Screening.
Abstract

Exposomics researchers need to identify relevant chemicals covering the entirety of potential
exposures over entire lifetimes. With over 100 million chemicals in the largest open chemical
databases, coupled with broadly acknowledged knowledge gaps, researchers are faced with too much
yet not enough information at the same time. Improvements in analytical technologies and
computational mass spectrometry workflows coupled with the rapid growth in databases and
increasing demand for high throughput “big data” services from the research community present
significant challenges for both data hosts and workflow developers. This talk will showcase FAIR and
Open Science developments in the Environmental Cheminformatics group, including the NORMAN
Suspect List Exchange (NORMAN-SLE), MassBank, MetFrag, PubChemlLite for Exposomics [1], patRoon,
ShinyTPs and the Chemical Stripes. Beyond the software developments, it will showcase how these
are applied in our active research projects in our data processing and integration workflows to tackle
challenges in non-target exposomics studies [2,3]. The case studies will show how enhancing the
FAIRness (Findability, Accessibility, Interoperability and Reusability) of open resources can mutually
enhance several resources for whole community benefit. Many thanks to all group members,

collaborators and colleagues who have been a part of these efforts!
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Abstract

In this talk | will introduce the Restricted Boltzmann Machines (RBM): a simple Machine learning
model with a bipartite graph architecture, learned only on sequence data. | will focus on the
applications of RBM on the predictions of SARS-CoV-2 evolution. By integrating pre-pandemic
evolutionary constraints gathered from SARS-CoV-2 far homologous sequences, with large-scale Deep
mutational Scans (DMS) data we model how viral fitness, ACE2 binding, and immune escape pressures
jointly sculpt the mutational landscape. In contrast to structure-based models that are restricted in
scalability, our sequence-based energy framework enables broad exploration of evolutionary
trajectories while remaining valuable for experimental validation. Experimental validation of model
predictions includes the test of 22 synthetic RBD variants with up to 21 mutations from the wild-type.
Half of these variants maintained expression and ACE2 binding, and some successfully escaped most

of the 9 antibodies tested.
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Abstract

Recent advances in k-mer indexing have facilitated the cataloging and rapid querying of planetary-scale
genomic data. While these indices excel at high-throughput sequence lookups, they often lack context-
rich exploration capabilities and rely on simplistic match-based queries. This gap hinders deeper
investigations into variants, regulatory elements, and other features crucial for pangenomic and
transcriptomic analyses. We present Vizitig, a novel system that harnesses a de Bruijn graph as the core
data structure. By directly encoding overlapping k-mers from both genome and transcriptome data,
Vizitig supports the processing of partially or completely unassembled sequences, making it broadly
applicable from collections of genomes to eukaryotic RNA-seq. Vizitig integrates k-mer indices into a
database framework, providing an intuitive, metadata-aware approach to querying. Users can select
candidate regions by specific annotations (e.g., genes, motifs) or sample-specific features (e.g.,
abundance, presence or absence in annotated genes or samples), retrieving relevant graph

neighborhoods and associated metadata from extensive datasets.
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Abstract

Over the past decade, significant efforts have been made to develop indexing solutions capable of
guerying sequence presence in large genomic data repositories. Recent indexing approaches have
made giant steps toward the ultimate goal of indexing repositories like the SRA and ENA, leveraging k-
mers for efficiency. In the case of indexing RNA samples, querying k-mer abundance is equally
important as the presence itself. The currently available methods for indexing abundances either fail
to scale to the vast number of datasets, lose variants, or lack precision in abundance estimation.
Moreover, the rapid accumulation of sequencing data presents a significant computational challenge
for these structures, which are mostly static.

We introduce REINDEER2, a novel k-mer abundance index that addresses these limitations by providing
three key properties: scalability, dynamicity, and tunable precision. Unlike recent methods that
sacrifice memory for completeness, REINDEER2 indexes all k-mers, ensuring nucleotide-level
exploration remains possible. Additionally, it supports high-throughput queries, enabling rapid
retrieval of k-mer abundance across large-scale transcriptomic datasets. One of the key advantages of
REINDEER?2 is its tunable abundance precision. Furthermore, REINDEER2 supports updatability: new
datasets can be added efficiently without requiring a complete reindexing process. We report
REINDEER2’s great efficiency at indexing collections of 1,000-10,000 RNA-seq samples, and

demonstrate its capacity to provide abundance estimations comparable to state-of-the-art methods.

Availability: github. com/ Yohan-HernandezCourbevoie/ REINDEER2
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Abstract

Recent advances in high-throughput and third-generation sequencing technologies have created
significant challenges in storing and managing the rapidly growing volume of read datasets. Although
more than 50 specialized compression tools have been developed, employing methods such as
reference-based approaches, customized generic compressors, and read reordering, many users still
rely on common generic compressors (e.g., gzip, zstd, xz) for convenience, portability, and reliability,
despite their low compression ratios. Here, we introduce OReO, a simple read-reordering framework
that achieves high compression performance without requiring specialized software for
decompression. By grouping overlapping reads together before applying generic compressors, OReO
exploits inherent redundancies in sequencing data and achieves compression ratios on par with state-
of-the-art tools. Moreover, because it relies only on standard decompressors, OReO avoids the need
for dedicated installations and maintenance, removing a key barrier to practical adoption. We
evaluated OReO on both ONT and HiFi genomic datasets of varying sizes and complexities. Our results
demonstrate that OReO provides substantial compression gains with comparable resource usage and
outperforms dedicated methods in decompression speed. The OReO code is open source and available

at github.com/girunivlille/oreo.
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Abstract

Microproteins—defined as proteins comprising fewer than 100 amino acids—have long been
overlooked due to challenges in detection arising from their small size and low expression. However,
emerging evidence reveals that they are key regulators of translation, development, metabolism, and
cellular stress responses, and are implicated in diseases such as cancer and cardiovascular disorders.
Recent advances in ribosome profiling and mass spectrometry have uncovered a vast transient
microproteome originating from non-canonical open reading frames (ORFs) overlapping annotated
genes or located in UTRs or intergenic regions. Although many of these sequences lack signs of
selection and are evolutionarily transient, some impact fitness and may represent early stages of de
novo gene formation. In this study, we introduce a novel computational framework that employs deep
learning—based protein language models (pLMs) to infer the structural properties of microproteins
without relying on evolutionary information. Using embeddings from ProtT5-XL, we analyzed
thousands of microproteins from annotated sources (e.g., Uniprot) and potential iORF-encoded
microproteins across diverse eukaryotic genomes with varying GC content. Using simple dimensionality
reduction of these embeddings, we constructed a comprehensive map of the microprotein structural
landscape, confirming that amino acid composition and residue ordering are the primary determinants
of structure. Then we fine-tuned a classifier that demonstrated robust performance in predicting
structural categories, capturing additional signals beyond those revealed by embedding dimensionality
reduction. Our results indicate that annotated microproteins occupy narrow, well-defined regions of
the structural space, whereas iORF-encoded microproteins exhibit a broader, GC-dependent
distribution. Specifically, low-GC iORFs are biased toward encoding transmembrane peptides, while

high-GC iORFs predominantly yield disordered proteins. Moreover, certain iORF sequences fall into a
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“void” region not populated by canonical proteins, suggesting a region that might have been
counterselected by evolution. Taken together, these findings challenge prior knowledge of protein-
coding potential and offer fresh insights into the potential evolutionary emergence and structural
diversity of microproteins. Our results characterize the structural landscapes of two distinct yet
interconnected microproteomes—the annotated coding microproteome and the unannotated,
noncoding counterpart—and lay the groundwork for new hypotheses about the molecular evolution

of coding sequences from noncoding origins.
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GrAnnol, a tool for efficient and
reliable annotation transfer through
pangenome graph
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Abstract

The increasing availability of genome sequences has highlighted the limitations of us-
ing a single reference genome to represent the diversity within a species. Pangenomes,
encompassing the genomic information from multiple genomes, offer thus a more com-
prehensive representation of intraspecific diversity. However, pangenomes in form of
graph often lack annotation information, which limits their utility for forward analy-
ses. We introduce here GrAnnoT, a tool designed for efficient and reliable annotation
transfer using such graphs, by projecting existing annotations from a source genome to
the graph and subsequently to other embedded genomes. GrAnnoTl was benchmarked
against state-of-the-art tools on pangenome graphs and linear genomes from rice, hu-
man, and E. coli. The results demonstrate that GrAnnoT is consensual, conservative, and
fast, outperforming alignment-based methods in accuracy or speed or both. It provides
informative outputs, such as presence-absence matrices for genes, and alignments of
transferred features between source and target genomes, aiding in the study of ge-
nomic variations and evolution. GrAnnol’s robustness and replicability across different
species make it a valuable tool for enhancing pangenome analyses. GrAnnoT is available
under the GNU GPLv3 licence at https://forge.ird.fr/diade/dynadiv/grannot.

Keywords: Pangenome, graph, annotation transfer
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Introduction

Recent advances in genome sequencing and assembly have allowed access to a massive and
increasing number of genome sequences per species. This has highlighted the fact that a single
individual is not enough to represent the whole diversity of a species. Indeed, while currently
prevalent, the use of a single reference genome has been shown to bias some analysis (Chen et al.,
2021; Martiniano et al., 2020; Maurstad et al., 2024). This has led to the development of the con-
cept of pangenomics across the whole tree of life (Bayer et al., 2020; Liao et al., 2023; Miga and
Wang, 2021; Rouli et al., 2015; Shi et al., 2023; Tranchant-Dubreuil et al., 2019). A pangenome
aims to represent the complete genomic information from several genomes of the same species
or group, in order to better represent the intra-specific/group diversity. This information can
be organized in different ways depending on the type of study involved. The pangenome graph
structure has recently emerged as a solution to store and model these pangenomes. This struc-
ture has the advantage of containing the whole sequence information (genic and inter-genic
regions) and of encoding the relationships between the genomes (which regions are identical,
where are the variations) in a compact and comprehensive way. These pangenome graphs can
be stored in variation graphs in GFA format, the standardized text format used by many tools.
It is human-readable and represents the multiple genome alignment. Multiple forms of graphs
that can be stored in the GFA format; the graphs we consider in this paper are bi-directed and
acyclic genome graphs (see 2.1 for details on the graphs used).

Pangenome graphs have already proven their usefulness to better understand the structure
and dynamics of genomes, for structural variations detection, or for genotyping for instance
(Rice et al., 2023; Zhou et al., 2022). However, their practical use still has limitations, as the tools
to manipulate them are often still in development. In particular, these graphs usually do not
contain any annotation information. Similarly to a genome without annotation, a pangenome
graph without embedded biological information is less useful, and the variations present in the
graph are harder to interpret. Therefore any variation found in the graph has to be reported back
to a single linear annotated genome to see if it overlaps with a region of interest. An annotated
graph would then allow to more easily study the structure and evolution of a species pangenome.

Furthermore, despite the recent appearance of Al-based tools (Holst et al., 2023), de novo
genome annotation is a long and complicated process. However, good quality and manually cu-
rated annotations already exist for many species, usually for a single linear individual genome.
These existing annotations can be transferred to other non-annotated genomes to add mean-
ingful biological information. This transfer operation is much faster than a de novo annotation,
requiring far less computation and resources. Annotation transfer between linear genomes is
usually performed using a blast-like approach (e.g. Liftoff (Shumate and Salzberg, 2021)), by
mapping/aligning the sequence of the annotated elements on the target genome. However, this
approach is not currently adapted to pangenome graphs. Indeed, alignment on a graph is more
complex than alighment on a linear sequence, and existing graph alignment tools are quite re-
cent and still under maturation. However, the graph itself already represents a global alignment
between the annotated genome and the other embedded genomes. Thus, this alighment can be
used to project the coordinates of the annotated elements from the linear genome to the graph,
and any information concerning a linear genome position can be transferred to the graph. Once
the annotation is transferred onto the graph, it can be transferred back to any other genome
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embedded in the graph. Therefore, any information added to the graph will benefit all the em-
bedded genomes.

We developed GrAnnoT (Graph Annotation Transfer) to perform these operations. This command-

line tool will allow to gather more information in pangenome graphs and better harness the many
graphs that have been already produced (Rice et al., 2023; Shi et al., 2023; Zhou et al., 2022).
It includes functions to transfer annotations and to study the variations present in the graph in
the annotated elements. We applied it to different pangenome graphs to ensure it works with
various species, and compared it to existing methods for annotation transfer. Compared to these
methods, GrAnnoT is consensual, conservative, and fast. It also offers informative outputs to al-
low the user to review the transfers performed, such as a presence-absence matrix, alignments
between the genes in different genomes or a list of the variations found in annotated regions.

1. Implementation

GrAnnoT isimplemented in Python 3.10, as a Linux command-line tool that can be installed as
a standard python package. It uses the package tgdm and the external program bedtools (Quin-
lan, 2014) (that must be accessible in the user or in the global path). The code is available on the
IRD forge (https://forge.ird.fr/diade/dynadiv/grannot) under the GNU GPLv3 licence.

1.1. Code overview

GrAnnoTl performs annotation transfer from an annotated genome (the source genome) to a
pangenome graph (Figure 1). It can also transfer the annotation from the graph to one, several or
all other genomes embedded in the graph (the target genomes). It takes as input a pangenome
graph in GFA 1.1 format (which includes the source and target genomes), and the annotation
of the source genome in GFF3 format. For the sake of clarity, in the present paper the graph
considered has a unique path for each haplotype, but the method works for assemblies with
several chromosomes/contigs.

The annotation transfer only relies on the graph structure, harnessing the multiple alignment
it naturally represents. GrAnnoT projects the coordinates between the graph and the genomes,
transferring annotations in an alignment-free manner.

Once the annotation has been loaded, GrAnnoT outputs the graph annotation in GAF for-
mat, which describes the paths of the annotated features in the graph. It can then output the
annotation in GFF format of a chosen set of target linear genomes included in the graph. These
transfers can be filtered through sequence identity and coverage scores. For these transfers, the
alignment of each feature between the source genome and the target one can be outputted in
a Clustal-like format, as well as a list of all the variations recorded in the alignments. Finally, a
presence-absence matrix for gene features summarizes the transfer on the target genomes.

1.2. Implementation details

The first step is to find the start and stop positions of each node from the graph on the source
and target genomes (Figure 1, step 1). For that, GrAnnoT follows the paths of these genomes
in the graph and computes the start and stop positions of the nodes for each of them; these
positions are then stored in BED files. Then, the BED file representing the source genome is
compared to its annotation file using bedtools intersect (Quinlan, 2014). The resulting BED file
is processed to compute the paths of the features in the graph and output the graph annotation
in GAF format.
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Figure 1 - GrAnnoT overview. Step 1: the position of the feature is projected from the
source genome to the graph using the positions of the nodes on the source genome. Step
2: the position of the feature is projected from the graph to the target genome. The first
and last nodes from the feature that are on the target genome (the blue ones) are the
ends of the feature in this genome, and everything in between is considered as part of
the feature. The differences between the two genomes in this region in terms of path in
the graph mirror the differences between the two versions of the feature.

In order to transfer an annotation to a target genome, the sub-path of the genome corre-
sponding to the feature is extracted (Figure 1, step 2). For that, all the nodes from the original
feature path are looked for in the target genome path. These nodes are then grouped into copies
of the feature, and for each copy the first and the last nodes are considered as the ends of the
feature's copy in the target genome. All the nodes between them in the target genome path
are expected to be part of the feature’s copy to transfer, including the nodes absent from the
original feature path, corresponding to insertions. Nodes from the original feature path that are
not found in the target genome correspond to deletions. An insertion and a deletion at the same
locus in the graph correspond to a substitution.

For the transfer itself, only the two nodes at the ends of the feature path on the target
genome are considered (nodes in blue in Figure 1). The BED file previously computed report-
ing the positions of the nodes on the target genome is used to locate these two nodes on the
genome.

Transferred features are then filtered based on the coverage (in base) and the identity level
between the source and the target genomes. These parameters are estimated by computing the
cumulated length of the shared and different nodes between the paths of the features in the
two genomes. The output is finally printed out in the GFF format.

If the user is interested in the differences between the source and target annotation, GrAnnoT
can provide a detailed comparison between the feature alternative paths in the source and any
embedded target genome. For that, it can output the variations details in a text format that de-
scribes all the variations present in the feature (node deletion, insertion, substitution). A Clustal-
like alignment file of all the transferred features based on their alternative paths is similarly gen-
erated.

2. Benchmark

2.1. Data and tools for benchmarks

The main test data used in this paper is a rice pangenome graph built with 13 genomes
(Kawahara et al., 2013a; Zhou et al., 2020) using minigraph-cactus v2.8.2 with default options
(Hickey et al., 2023; see supplementary data for the exact commands) and the cv Nipponbare as
reference. The rice genome is 380-410Mb long and has 12 chromosomes. The annotation used

4
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as source (Kawahara et al., 2013b) includes 57,585 gene features for 813,790 total features, and
is rich in transposable elements (15,848/57,858~27%).

GrAnnoT was also tested on a graph of the human chromosome 1 with 92 haplotypes (from
Liao et al., 2023) and an E. coli 12 genomes (Jangir et al., 2022) graph built using the same pro-
tocol as for rice (detailed commands available online, Marthe and Sabot, 2025b).

GrAnnoTl was compared to existing and state-of-the-art tools (see below) that can also per-
form annotation transfer in order to assess its efficiency, and using the different data presented
before to test its replicability and robustness. All analyses were ran on a biprocessor Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 48 HT CPU computer with 144Gb of RAM, under
RockyLinux 9.1 Blue Onyx.

The current state-of-the-art annotation transfer tool for linear genome sequences is Liftoff
(Shumate and Salzberg, 2021). It is widely used (Alonge et al., 2022; Kim et al., 2021; Wang et al.,
2021; Yang et al., 2023), and relies primarily on the alignment of the nucleic sequences of the
annotated features from the source genome upon the target one. However, since Liftoff does
not use a pangenome graph to transfer annotations, the comparison with GrAnnoT is biased by
the graph itself, whose structure partially impacts the results of GrAnnoTl transfer (see below).

Liftoff approach to transfer annotations can be adapted to a pangenome graph by aligning
the sequences of the annotated features to the graph. Graph pangenome alighnment tools can
be thus compared to GrAnnoT for graph annotation transfer: GraphAligner was chosen for this
purpose (Rautiainen and Marschall, 2020), as a state-of-the-art tool for aligning long sequences
on a graph.

VG and ODGI are state-of-the-art tools for pangenome graph manipulation (Garrison et al.,
2018; Guarracino et al., 2022). They do not have options specifically designed to transfer an-
notations between genomes of the graph, but they do have options to project coordinates be-
tween the graph and its embedded genomes, specifically odgi position and vg inject/surject. These
options can be adapted to transfer annotations between genomes, and from a genome to the
graph. VG also has an option for annotation transfer on the graph (vg annotate). The results and
execution time of all these functions were compared to GrAnnol.

The versions of the tools used are available in the supplementary data. The complete ex-
act commands used for those benchmark are available online (Marthe and Sabot, 2025b) The
Jupyter notebooks used for the analysis are available on our Forge (https://forge.ird.fr/
diade/dynadiv/grannot, Marthe et al., 2025). All the data used for the analysis and the out-
puts are available online (Marthe and Sabot, 2025a,b).

2.2. Comparison of the transfers

Comparison with other tools

Results were evaluated for the two types of transfers that GrAnnol can perform: from genome
to graph and from genome to genome. In both cases, the transfer was performed with the dif-
ferent tools described before when possible. Then, for each transferred feature, its positions
provided by the different tools were compared. Given a feature, we consider two transfers as
different if they placed the feature at different positions. A transfer is specific to a tool if it is
different from all the other transfers. By definition, a feature transfer is also specific to a tool if
the feature is only transferred by this tool.
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Figure 2 - Genome to graph transfer comparison, Upset representation. Each vertical
bar represents the number of identical transfers between the different tools specified
below the bar. Two transfers are considered identical if they placed the feature at the
exact same path in the graph and either at the exact same position on the nodes (a) or at
a distance of maximum 1 nucleotide (b).

We tested GrAnnoT, GraphAligner and VG (inject and annotate functions) by transferring the
annotation of the cv Nipponbare (Kawahara et al., 2013b) to the rice pangenome graph. We
tested GrAnnaT, Liftoff, VG (inject+surject functions) and ODGI (position function) by transferring
the annotation of cv Nipponbare to cv Azucena.

Genome to graph transfer:

The three methods that do not perform alignment (GrAnnoT, vg inject and vg annotate) have
the exact same results for all the features. For ~32% of the features transferred by GraphAligner
(17,870 features out of 55,798), the output is different from the other tools (Figure 2a). However,
when allowing a difference of 1 bp on the position on the path, ~88% of the GraphAligner-
specific transfers (15,673 out of 17,870 transfers) are then considered identical to the transfers
from the other tools (Figure 2b). Further verification showed that these 1 bp differences from
GraphAligner are alignment errors, where 1 bp is missing in 5’ or 3’ in the transferred feature
sequence. Such differences are minor and acceptable for certain applications, but not in the
context of annotation. Because of that, the current version of GraphAligner does not seem to
be suitable for annotation transfer.

Genome to genome transfer:

Most of the transfers between genomes are identical between the four tools (663,665/918,973~72%).

GrAnnoT seems to be the most consensual tool as it has the least specific transfers (Figure 3a)
compared to the other tools.

When looking at the tool-specific transfers, VG stands out the most, with 73,134 specific
transfers. However, when allowing a difference of 10 bp between the transfers, VG has ~65.3%
less specific transfers. Some of these VG specific transfers were manually compared to the trans-
fers from the other tools for the same feature, and were identified as errors from VG (see supple-
mentary Figure S10 for an example). The 10bp difference tolerance revealed Liftoff and ODGI
as the most divergent tools (with 46,696 and 37,195 specific transfers, respectively; Figure 3b).
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Figure 3 - Genome to genome transfer comparison, Upset representation. Each vertical
bar represents the number of identical transfers between the different tools specified
below the bar. Two transfers are considered identical if they placed the feature either
at the exact same positions on the target genome (a) or at a distance of maximum 10
nucleotide (b).

Regarding the Liftoff-specific transfers, most are features that only Liftoff can transfer. In-
deed, ~56% of them are inter-chromosomal translocations, i.e. features that are on a differ-
ent chromosome between the source and the target genome (Figure 4). These transfers can-
not be performed with GrAnnoTl, VG or ODGI, as graphs are currently built chromosome-per-
chromosome to reduce complexity, and therefore cannot represent such events. Thus, features
on different chromosomes between Nipponbare and Azucena cannot be transferred by any of
the graph-based approaches, and are found only by Liftoff.
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Liftoff transfer vs Liftoff-specific transfers. The Liftoff-specific transfers are enriched in
translocations and in transposable elements compared to all the other Liftoff transfers.
Detailed data and p-value calculation are available in supplementary data (table Sé6 and
S7).

Furthermore, when the annotations of these Liftoff specific-transferred features were thor-
oughly looked at, it appeared that they are enriched in transposable elements (TE) (p-value <
0.01%,; Figure 4). This could explain why so many elements are on different chromosomes be-
tween the two varieties, since transposable elements are mobile in the genome and can jump
between chromosomes (Hayward and Gilbert, 2022; Wicker et al., 2007). The Liftoff-specific
transfers that are on the same chromosome are also enriched in transposable elements (p-value
< 0.01%,; Figure 5), as their ability to move in the genome makes them often not syntenic: en-
coding the relationships between such elements in the graph with the current pangenome graph
tools still seems complex. Since these relationships are not correctly encoded by the graph, the
TE annotation transfer cannot be reliably performed by tools such as GrAnnoT, which only uses
the structure of the graph.

Most of the ODGI-specific transfers place a feature on a very small interval on the target
genome. For instance, among the 37,195 ODGI-specific transfers, ~65% of the features (24,058)
are placed on an interval of length O nucleotide, and ~30% (11,320) on an interval of length 1
nucleotide. These transfers should be discarded, as they are of no biological meaning in terms
of genes.

Robustness

Back and forth transfer: Two consecutive transfers with Liftoff and GrAnnoT allowed to compare
how conservative these tools are. The first transfer was performed from Nipponbare to Azucena
with the two tools. Then, the resulting Azucena GFF was used as source to perform the second
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value calculation are available in supplementary data (table S8 and S9).

transfer, from Azucena back to Nipponbare. The resulting GFF for Nipponbare was compared to
its first original annotation to measure the loss of information during these transfers.

Liftoff loses less features during the two-round process (table 1). This can be explained by
the fact that Liftoff is better at finding non-syntenic features and handles interchromosomal
translocations, as shown previously. However, while GrAnnoT did not loose any more annotation
on the way back to the original sequence, Liftoff lost an additional 257 of them. In addition,
when comparing the positions of the features before and after the two transfers, GrAnnoT shows
better results that Liftoff, with only 3.8% of the features being located at a different position
compared to the original annotation, versus 10.4% of discrepancies for Liftoff. In addition, after
manual verification, it appeared that the features misplaced by GrAnnor in the second transfer
are features where an extremity was shortened during the first transfer due to a deletion. Thus,
the feature transferred during the second transfer was incomplete regarding the true annotation,
but the transfer itself occurred correctly.

Finally, some features found by Liftoff are placed on a different chromosome than the origi-
nal, as the transfer is alighment-based only and does not rely on synteny. In this regard GrAnnoT
is more conservative than Liftoff. Indeed, orthologous copies are sometimes considered to guar-
antee a better conservation of gene function compared to paralogous copies, according to the
ortholog conjecture (Nevers et al., 2020; Rogozin et al., 2014). As the graph conserves the syn-
teny, GrAnnoT is more likely to transfer annotations between orthologous copies than between
paralogous copies.

Impact of the reference genome for graph construction: The graphs used were built with Minigraph-
Cactus, which requires a reference genome as anchor, that can thus bias the graph structure
(Andreace et al., 2023). To test the replicability of the GrAnnoT approach, transfers through two
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GrAnnoT | Liftoff
Loss in first transfer 7,961 1,622
Loss in second transfer 0 257
Total loss 7,961 1,879
Same position 47,184 | 48,482
Different position 841 5,625
1-10bp difference 393 360
11-100bp difference 275 648
101-1000bp difference 165 776
>1000bp difference 8 1,210
Different chromosome 0 2,631
Total transfers 48,025 | 54,107

Table 1 - GrAnnoT and Liftoff comparison on back and forth transfer. The input annota-
tion for first transfer included 55,986 features. The loss corresponds to the number of
features not transferred in either transfer (Nipponbare to Azucena or Azucena to Nippon-
bare). The other rows show how many features were at the same or at different positions
before and after the two transfers.

Nipponbare reference | Natel Boro reference
Total transfers 48,025 45,946
Loss 7,961 10,040
Specific transfers 2,376 297
Comparison between the two graphs
Common transfers 45,256
Different transfers 393
1-10bp difference 169
11-100bp difference 87
101-1000bp difference 76
>1000bp difference 61
Different chromosome 0

Table 2 - Comparison of GrAnnol transfers using graphs with different reference
genomes. The input annotation for the transfer included 55,986 features. The loss cor-
responds to the number of features not transferred. The other rows show how many
features were placed at the same or at different positions when transferred with the two
graphs.

different graphs were compared. The two graphs have the same genomes embedded, but a dif-
ferent reference genome to initiate the graph. The reference genomes used for the two graphs
are the annotated genome IRGSP-1.0 (Nipponbare), and Os127652RS1 (Natel Boro) (Zhou et al.,
2020). Annotation transfer from genome to genome was performed with these two graphs, and
the positions of the common transferred features were compared.

Among the 48,322 features transferred on Azucena, 2,673 (~5.5%) were not transferred by
both graphs. Among the 45,649 features transferred by both graphs, only 393 (~0.9%) were not
transferred at the same location (table 2).

The amount of features not transferred by both graphs is not negligible, but it can be ex-
plained by the choice of the reference genome for the graph construction, Natel Boro. Indeed,
among the 11 genomes in the graph that are not involved in the transfer (not Nipponbare or Azu-
cena), Natel Boro is among the furthest genetically speaking, as shown in the phylogenetic tree
in the genomes original paper (Zhou et al., 2020). Thus, it makes sense that the graph centered
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Rice Human E.coli
Total features to transfer 55,986 282,668 9,467
Features transferred by GrAnnoT | 48,025 | 85.78% | 276,681 | 97.88% | 7,230 | 76.37%
GrAnnoT-specific transfers 72| 0.13% 4,647 | 1.64% 81| 0.86%
Features transferred by Liftoff 54,363 | 97.10% | 275,249 | 97.38% | 7,940 | 83.87%
Liftoff-specific transfers 6,410 | 11.45% 3,264 | 1.12% 790 | 8.34%
Features transferred by both tools | 47,951 | 85.65% | 258,092 | 91.31% | 7,146 | 75.48%
Same position 46,431 | 82.93% | 256,927 | 90.89% | 6,789 | 71.71%
Different position 1,520 | 2.71% 1,165 | 0.41% | 357 | 3.77%
1-10bp difference 795 | 1.42% 623 | 0.22% | 216 | 2.28%
11-100bp difference 284 | 0.51% 150 | 0.05% 60| 0.63%
101-1000bp difference 155 | 0.28% 46 | 0.02% 18 | 0.19%
>1000bp difference 164 | 0.29% 346 | 0.12% 63| 0.67%
Different chromosome 122 | 0.22% 0 0% 0 0%
Runtime Liftoff 00:23:45 00:10:27 00:00:08
Runtime GrAnnoT 00:08:11 00:14:47 00:00:20

Table 3 - Comparison between GrAnnoT and Liftoff in several species. Each feature in the
input annotation was transferred using GrAnnoT and Liftoff. When the feature has been
transferred by both tools, the two positions given were compared to see how different
they are.

around Nipponbare displays better performance for annotation transfer from Nipponbare. This
showcases the importance of the choice of the reference genome for the graph construction,
that must be adapted to the use case of the graph. In the case of annotation transfer, using the
annotated source genome is a good solution.

Comparison with other species: GrAnnol was compared to Liftoff using two other datasets: a
pangenome graph of the human chromosome 1 (Liao et al., 2023) and an E. coli pangenome
graph (Jangir et al., 2022). Both of these graphs were made with Minigraph-Cactus. For the
rice graph, the transfer was again made from Nipponbare to Azucena; for the human graph,
the transfer was made from CHM13 to GrCH38; for the E.coli graph, the transfer was made
from K_12_MG1655_09949b0 to O127_H6_E2348_69_193637c. These comparisons checked
if the positions of the features transferred by both approach are consistent, to see if the re-
sults observed in the rice pangenome graph were replicable with graphs from other type of
dataset/organisms/phylum.

It appears that for the three species, most of the features are transferred by both tools
(~85.7% for rice, ~91.3% for human and ~75.5% for E. coli) (table 3). Additionally, a large part
of these features are placed at the exact same position by Liftoff and GrAnnoT (~96.8% for rice,
~99.6% for human and ~95% for E. coli). As expected, some features are transferred only by
Liftoff, but for the human graph GrAnnoT-specific transfers appear in negligible quantities. This
better transfer capacity for the two tool in human may be due to the lesser diversity of human
genomes compared to rice (mean 15.6 millions SNP for 64 human haplotypes vs 9.4 millions
for only 16 rice ones, respectively; Ebert et al., 2021; Wei et al., 2024), and and even more so
compared to E. coli. In addition, the annotation of human genes is probably better curated than
in rice, with less hypothetical genes that may be false positive, also explaining the better transfer
for both tools on human reference.
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Figure 6 - Genome to genome transfer comparison. GrAnnoT and Liftoff run time for
1-12 transfers were measured using the command /usr/bin/time. Liftoff was run both in
GFF and DB mode. Detailed time points are available in supplementary data in table S10.

2.3. Time and memory usage results

The execution time for the transfer from genome to genome with the different tools was
measured using the command /usr/bin/time (table 4). The results show that GrAnnoT has the
best run time, and that ODGI and VG are substantially slower that GrAnnoT and Liftoff.

GrAnnoT was further compared to Liftoff in terms of run time and memory usage.

Several transfers were performed with both tools to compare the run times, because GrAnnoT
is advantaged when multiple transfers are requested, as GrAnnoTl starts by pre-processing the
graph and loading the graph annotation. These steps only need to be done once, no matter how
many annotation transfers to target genomes are performed.

Liftoff can be run in GFF mode or in database mode; the database mode needs less time
since the GFF annotation file has already been processed. Both of these mode were compared
to GrAnnol.

The results show that GrAnnoT is faster than Liftoff to perform one annotation transfer (~8
minutes vs ~22 minutes), and even more to perform twelve (~47 minutes vs ~5 hours and 30
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minutes, see Figure 6). However, this comparison doesn’t take into account the time needed to
build the graph. When adding the graph construction time (~4h55mn on our infrastructure) to
the GrAnnoT 12 transfers time, we still get a duration (~5h41mn) equivalent to Liftoff transfers
(~5h47min or ~5h29min). Additionally, GrAnnoT can give supplementary informative output that
describe the transfers performed, such as a presence-absence matrix or alignment files of the
transferred features.

For the human graph, GrAnnoT is not faster than Liftoff for one transfer (see the last lines of
table 3). However, as shown on Figure 6, for several transfers GrAnnol is more advantageous. We
tested the runtime of GrAnnoT for the annotation transfer on 10 haplotypes, and got ~45 min-
utes in total. This is significantly lower than the time for one transfer multiplied by 10 (~1h44min),
which is what we can expect of 10 Liftoff transfers from the results in Figure 6.

3. Applications

To assess the use of GrAnnol annotation transfer, in particular the informative outputs com-
plementary to the GFF itself, we analyzed a few characteristics of the annotation transfers be-
tween the Nipponbare and Azucena cultivars. More precisely, we verified that the variations in
the graph reported by GrAnnoT are distributed as biologically expected, in a way that does not
disrupt the proteins coded by the gene features.

3.1. Indel rate in different feature types

We looked at the positions of the indel variations (insertion or deletion) in the different fea-
ture types that correspond to different parts of the genes. These variations are expected to be
less present in the CDS compared to the rest of the gene due to selection pressure, because the
resulting changes in the coded protein are more important.

The feature types that were compared are:

e the whole gene feature itself
e the mRNA

e the 5’UTR

e the exons

e the CDS

e theintrons

e the 3’'UTR

These feature types have different average lengths, with the gene being the longest element
(since it contains all the others), and the CDS being shorter than the exon summed size, for
instance. This induces a bias in the number of indel found by feature type; if the indels are
randomly distributed, we expect more indels in the feature type that has the longest cumulated
length. To counter this bias, for each feature type we reported the number of indels found to its
cumulated length, obtaining the average number of indel per position.

The results displayed in Figure 7 show that, as expected, the CDS have the fewest indels and
the non-coding regions (UTR and introns) have the most. This confirms that the variations in the
graph reported by GrAnnoTl are consistent with the current understanding of genome variation
selection.
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Figure 7 - Indel distribution. Each bar represents the number of indels (insertion or dele-
tion) per position in the corresponding feature type. As expected, the CDS are the most
conserved and thus have the least indels, and the non-coding regions (UTR and introns)
are the least conserved and have the most indels. Detailed data and p-value calculation
are available in supplementary data (table S11).

3.2. Frameshit mutations in different feature types

Indels can modify the protein coded by a gene, but indels in CDS are particularly impact-
ful when they change the reading frame. We calculated the rate of frameshift mutations (indel
whose length is not a multiple of 3) among the indels, for all feature types. We expect to have a
lower ratio of frameshift mutations in the CDS compared to the non-coding regions, because of
the selection pressure.

The results displayed in Figure 8 show that the CDS have the lowest percentage of frameshift
variation from their indels, and that the introns have the highest.

3.3. Substitutions position in different feature types

The substitutions are smaller variations than the indels, so they are expected to have a smaller
impact. However their distribution in CDS is not expected to be uniform. Indeed, substitutions
on the third position of a codon is more likely to be silent than a substitution on the two other
positions. Because of that, in CDS the third codon position usually has more substitutions than
the two other positions (Sanchez et al., 2005).

On Figure 9, we show that the CDS indeed has more substitutions on the third codon po-
sition than the other two positions, while the other gene elements have more homogeneous
substitution distributions.
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Figure 8 - Frameshift indel distribution. Each bar represent the percentage of frameshift
variation (length not multiple of 3) among all the indels in each feature type. As expected,
the CDS have the least frameshift variation, since these variations impact significantly the
protein coded. Detailed data and p-value calculation are available in supplementary data
(table S12).

To find the codon positions we had to take into account the splicing of the mRNA. The CDS
elements in the annotation only correspond to a fraction of the real CDS in the mRNA. Thus
the substitution positions are not relative to the real CDS, and finding the third position of the
codon required to add the context of the preceding CDS fragments. Thus adjustment was only
done for the CDS elements in the annotation, since they were the only element of interest. This
explains why the exons do not follow the CDS tendency in Figure 9, contrary to Figures 7 and
8.

3.4. Pangene set analysis

The PAV matrix output was computed with all the genomes in the rice graph (minus the
source genome Nipponbare), and was used to compute the core, dispensable and shell gene set
from the Nipponbare cv in this pangenome.

We found ~58% of core genes and ~33% of dispensable genes (table 5) in our pangenome
graph, which is similar to what is seen in the literature when accounting for the different thresh-
old chosen in each study (with ~53-62% of core and ~38% of dispensable gene families for
instance; Wang et al., 2018).

Conclusion

In the present study, we presented the first tool able to efficiently transfer annotation on
a pangenome graph from one of its embedded genomes and reverse, GrAnnol. It relies on the
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Figure 9 - Substitution positions. For each feature type, the percentage of substitutions
that are on each of the three codon positions is displayed. In the CDS, the third position
has more substitutions than the two other positions. For the other feature types, we don’t
see that the positions multiple of 3 have more substitutions than the others. Detailed
data and p-value calculation are available in supplementary data (table S13).

Core genes | Dispensable genes | Shell genes
Presence percentage | 100% - 95% 95% - 10% 10% - 0%
Number of genes 32,537 18,403 5046
Percentages of genes 58.1% 32.9% 9%

Table 5 - Core, dispensable and shell gene set. The population size is 12, and there are
55,986 genes in total.

already performed alignment that created the graph. We benchmarked GrAnnoTl on rice and
human pangenomes, and showed that it is fast, reliable and efficient, compared to state-of-the-
art tools for linear genomes. It is a robust, replicable tool working on any type of species for
which a pangenome graph is available. In addition, GrAnnoT can provide useful outputs, such as
the alignments of the gene sequence between source and target, or a presence/absence matrix.
In the near future, we plan to optimize the transfer time through parallelization, and to implement
the inference of the impact of mRNA and CDS mutations on the resulting proteins.
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Supplementary data

Data and tools used :

e Data
- E.coli graph (built with data from Jangir et al., 2022)
- Human graph (from Liao et al., 2023)
- Rice graph (built with data from Kawahara et al., 2013a; Zhou et al., 2020)
e Tools
- minigraph-cactus v2.8.2 (Hickey et al., 2023)
Liftoff v1.6.3 (Shumate and Salzberg, 2021)
ODGlI v0.8.6-11-ga1f169cc (Guarracino et al., 2022)
VG v1.58.0 (Garrison et al., 2018)

(Rautiainen and Marschall, 2020)

Different chromosome | Same chromosome | P-value
Liftoff-specific transfers | 3604 2806 < 0.01%
Other Liftoff transfers 122 47831 ik

Table S6 - Interchromosomal translocation rates in Liftoff transfers. The p-value mea-
sures the enrichment in interchromosomal translocations in the Liftoff-specific transfers,
and was computed with Pearson’s Chi-squared test.

GraphAligner Branch master commit daec67f67a2f50d648a6aa30cbbe5a2949583061
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VG_transfer ACAAGTCACAGGGAGGAGTC 20

3k 3k 3k 3k 3k 3k >k >k >k >k 3k 3k 3k 5k 5k 5k >k >k >k k
LOC_0s01g01050 TCTAT----——-- CTATCTA 512
GrAnnoT_Lifotff_ ODGI_transfer tctatctatctatctatcta 520
VG_transfer tctatctatctatctatcta 520

%k kk ok k 3k kok ok k k ok
LOC_0s01g01050 TATACATGACGATATGATCC 4131

GrAnnoT_Lifotff ODGI_transfer  TATACATGACGATATGATCC 4139
VG_transfer TATACATGACGA-——————- 4131
stk ok ok ok ok sk ok ok ok ok ok

Figure S10 - Extract of the alignment of gene LOC_Os01g01050 and its transfers in
Azucena by different tools. VG transfer appears to have an error as the positions it gives
miss the last 8 bases of the gene. The gene total length is conserved in VG transfer
because there is an insertion in Azucena in the middle of the gene.

Transposable elements | Other features | P-value
Liftoff-specific transfers | 3919 2491 < 0.01%
Other Liftoff transfers 11053 36900 R

Table S7 - Transposable elements rates in Liftoff transfers. The p-value measures the
enrichment in transposable elements in the Liftoff-specific transfers, and was computed
with Pearson’s Chi-squared test.

Transposable elements | Other features | P-value

Liftoff-specific transfers
on the same chromosome 1263 1543 <0.01%

All Liftoff transfers 13709 46410

Table S8 - Transposable elements rates in Liftoff transfers. The p-value measures the
enrichment in transposable elements in the Liftoff-specific transfers on the same chro-
mosome, and was computed with Pearson’s Chi-squared test.

Transposable elements | Other features | P-value

Liftoff-specific transfers
on a different chromosome 2656 948 <0.01%

All Liftoff transfers 12316 38443

Table S9 - Transposable elements rates in Liftoff transfers. The p-value measures the
enrichmentin transposable elements in the Liftoff-specific transfers in interchromosomal
translocations, and was computed with Pearson’s Chi-squared test.
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19

GrAnnol | Liftoff GFF | Liftoff DB
1 transfer 00:08:11.64 | 00:23:45 00:22:08
2 transfers | 00:11:36.00 | 00:49:03 | 00:46:07
3 transfers | 00:15:04.47 | 01:20:34 | 01:16:18
4 transfers | 00:19:29.69 | 01:55:02 01:49:17
5 transfers | 00:22:59.03 | 02:25:29 | 02:18:16
6 transfers | 00:26:13.64 | 02:56:24 | 02:47:37
7 transfers | 00:29:41.71 | 03:29:06 | 03:18:38
8 transfers | 00:33:23.48 | 03:59:03 | 03:47:11
9 transfers | 00:37:06.03 | 04:23:31 04:10:16
10 transfers | 00:39:54.23 | 04:46:52 | 04:32:09
11 transfers | 00:43:50.98 | 05:17:58 | 05:01:38
12 transfers | 00:46:45.57 | 05:47:34 05:29:53

Table S10 - GrAnnoT and Liftoff time comparison for 1-12 transfers

Positions without indel | Positions with indel | P-value
Gene | 141980198 46148 <0.01%
CDS | 74201787 8762 ik

Table S11 - Indel rates in genes and CDS. Annotations were transferred between cv Nip-
ponbare and Azucena, and the number of insertions and deletions was analyzed. The
p-value measures the enrichment in indel in gene features, and was computed with Pear-
son's Chi-squared test.

Non-frameshift indel | Frameshift indel | P-value
Gene | 9959 36189 o
CDS | 3950 4812 <0.01%

Table S12 - Frameshift indel rates in genes and CDS. Annotations were transferred be-
tween cv Nipponbare and Azucena, and the insertions and deletions lengths were ana-
lyzed. The p-value measures the enrichment in indel causing a frameshift in gene features,
and was computed with Pearson’s Chi-squared test.

Substitutions on position 1 or 2 | Substitutions on position 3 | P-value

Gene | 171763 87638 < 0.01%

CDS | 73005 51562

Table S13 - Substitution positions in nucleotide triplets in genes and CDS. Annotations
were transferred between cv Nipponbare and Azucena, and the substitution positions
were analyzed. The p-value measures the enrichment in substitutions on position 3 of
the nucleotide triplets in CDS features, and was computed with Pearson’s Chi-squared
test.
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Abstract With the advent of complete genome assemblies, genome annotation has become essential for
the functional interpretation of genomic data. Long-read RNA sequencing (LR-RNAseq) technologies have
significantly improved transcriptome annotation by enabling full-length transcript reconstruction for both
coding and non-coding RNAs. However, challenges such as transcript fragmentation and incomplete iso-
form representation persist, highlighting the need for robust quality control (QC) strategies. This study
presents an updated version of ANNEXA, a pipeline designed to enhance genome annotation using LR-
RNAseq data while also providing QC for reconstructed genes and transcripts. ANNEXA integrates two
transcriptome reconstruction tools, StringTie2 and Bambu, applying stringent filtering criteria to improve
annotation accuracy. It also incorporates deep learning models to evaluate transcription start sites (TSSs)
and employs the tool FEELnc for the systematic annotation of long non-coding RNAs (IncRNAs). Additionally,
the pipeline offers intuitive visualizations for comparative analyses of coding and non-coding repertoires.
Benchmarking against multiple reference annotations revealed distinct patterns of sensitivity and precision
for both known and novel genes and transcripts and mRNAs and IncRNAs. To demonstrate its utility, AN-
NEXAwas applied in a comparative oncology study involving LR-RNAseq of two human and eight canine can-
cer cell lines. The pipeline successfully identified novel genes and transcripts across species, expanding the
catalog of protein-coding and IncRNA annotations in both species. Implemented in Nextflow for scalability
and reproducibility, ANNEXA is available as an open-source tool: https://github.com/IGDRion/ANNEXA.

Introduction

With the increasing availability of entire genome assemblies, i.e. telomere-to-telomere (T2T), one
challenge in genome research is to move from improving genome completeness to refining genome
annotation. High-quality genome sequences now enable a more precise characterisation of genes
and transcripts, especially in repetitive regions of the genomes, making transcriptome-based anno-
tation a critical step in the functional interpretability of the genomes [1]. To this end, RNA sequencing
(RNA-seq) plays a central role in this process by providing direct transcript-level evidence, essential
for defining gene structures, alternative splicing events, and non-coding RNA repertoires.

While short-read RNAseq (SR-RNASeq) has shown some limitations to reconstruct full-length tran-
scripts [2], long-read RNA sequencing (LR-RNAseq), provided by platforms such as Pacific Biosciences
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(PacBio) and Oxford Nanopore Technologies (ONT), has significantly advanced transcriptome anno-
tation by providing reads that span repeats and also by allowing direct connectivity between distant
exons of the same isoform [3]. However, despite these advantages, LR-RNAseq-based transcriptome
reconstruction still remains prone to artifacts such as transcript fragmentation and incomplete iso-
form representation [4]. To ensure accurate genome annotation, robust quality control (QC) strate-
gies are needed to evaluate and refine transcriptome reconstructions.

Several tools have been developed to assemble long reads from LR-RNAseq data. A recent bench-
mark study from the LRGASP consortium has compared fourteen transcriptome reconstruction and
quantification tools [5] and showed that choosing the best program depends on the biological con-
text of the study and the completeness of the reference annotation. Among the benchmarked tools,
Bambu [6] and StringTie [7] consistently demonstrated strong performance across multiple metrics.
However, one limitation of this benchmark is that it did not explicitly assess tool performance with
respect to RNA biotypes, particularly distinguishing between protein-coding transcripts (mMRNAs) and
long non-coding RNAs (IncRNAs). Given the complexity and heterogeneity of transcriptomes, this
distinction could be important since different RNA biotypes may vary in expression levels, structural
features, and evolutionary conservation, all of which can impact reconstruction accuracy. This con-
sideration is especially important in light of the substantial expansion of the human IncRNA catalogue
in recent Gencode releases [8], underscoring the need for tools that can accurately reconstruct and
annotate both known and novel transcripts across diverse RNA classes.

To address these limitations, we present ANNEXA, a novel pipeline designed to extend reference
annotation based on LR-RNASeq data and assess the quality of novel model transcripts. ANNEXA
integrates two transcriptome reconstruction tools, Bambu [6] and StringTie [7], and provides users
with stringent filters to improve annotation accuracy. It also incorporates a deep learning strategy to
potentially remove incomplete transcript models by evaluating transcription start sites (TSSs) of all
novel transcripts. ANNEXA is also designed to systematically annotate and evaluate the annotation of
IncRNAs by incorporating the FEELnc program [9]. It provides intuitive visual representations of the
annotation, facilitating comparative analysis of coding and non-coding repertoires. To illustrate the
usability of ANNEXA in a comparative oncology project, we sequenced two human and eight canine
cancer cell lines from mucosal melanomas, histiocytic sarcomas and osteosarcoma using ONT direct
cDNA sequencing, and identified novel human and canine genes/transcripts, some of which being
conserved in the two species.

By implementing a structured framework for quality control and annotation, ANNEXA enhances the
reliability of long-read transcriptomics, ensuring more comprehensive and biologically meaningful
extended genome annotations.

Methods
Overview of ANNEXA

ANNEXA is a pipeline that extends user-provided reference annotations with novel genes and tran-
script isoforms from long-read sequencing data. It only uses three parameter files: a reference
genome, a reference annotation and mapping files (Fig.1.A). Unlike technology-specific pipelines
such as nf-core/isoseq[10], which is tailored for PacBio data, ANNEXA is compatible with both Nanopore



and PacBio RNA sequencing technologies. The pipeline is organized into four main modules, de-
scribed below:

1. Transcriptome reconstruction
2. Coding potential evaluation and transcript classification
3. Transcript filtering and full-length assessment

4. Quality Control
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Fig. 1. A- Metromap of ANNEXA. B- Experimental design with species-specific input cancer cell lines
and experimental and computational analyses.

Transcriptome reconstruction As recently demonstrated by the LR-GASP consortium, the choice
of the bioinformatic tool to model known and novel genes/transcripts depends on the biological con-
text, and more particularly, on the expected levels of annotation precision (controlling the number of
novel false-positive transcripts) and sensitivity/recall (controlling the number of novel false-negative
transcripts). Ideally, users should be able to select the appropriate tool based on the expected num-
ber of novel transcripts and the quality or completeness of the reference genome and annotation. To
support this, ANNEXA enables the reconstruction and quantification of both known and novel tran-
scripts using two distinct tools: Bambu [6] and StringTie2 [7]. In ANNEXA, several options are available
for Bambu, including the ability to adjust the Novel Discovery Rate (NDR) threshold, a key metric that
balances sensitivity and precision [6] across multiple samples. For instance, users can enhance sensi-
tivity by increasing the default recommended NDR threshold with the ——bambu_threshold option,
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and/or include single-exon transcripts with the --bambu_singleexon option. Alternatively, users
can choose to use the NDR threshold recommended by Bambu by enabling the ~—bambu_rec_ndr
option, which replicates Bambu'’s default behaviour.

For StringTie2, ANNEXA uses the long reads assembly mode (-L) for the reconstruction step and the
(-merge) option to produces a unified transcript set, while gene and transcript quantification (raw
counts) are extracted using the extractGeneExpression function from the IsoformSwitchAnalyzeR
program [11].

At the end of this module, ANNEXA integrates all genes and transcripts from the reference annota-
tion along with the novel transcript models from StringTie2 or Bambu into an unfiltered annotation,
referred to as Extended_annotations.full.gtf.

Coding potential and transcript classification Among the newly assembled transcripts, it is es-
sential to annotate different RNA categories, particularly distinguishing protein-coding transcripts
(mRNAs) from long non-coding RNAs (IncRNAs). To achieve this, ANNEXA integrates the FEELnc pro-
gram [9] to predict the coding potential of all novel transcripts from novel genes (blue line, Fig. 1.A).
To accelerate the FEELNnc process, we previously demonstrated that training it with a subset of known
MRNAs and IncRNAs from the reference annotation maintains high predictive performance [9], there-
fore allowing ANNEXA to integrate FEELnc with 3,000 reference INncRNAs and mRNAs.

To assess the potential impact of genomic alterations (mutations) on newly identified protein-coding
transcripts, ANNEXA employs TransDecoder (https://github.com/TransDecoder/TransDecoder) with
the --single_best_only option, ensuring that only the single best ORF per transcript is retained
while reporting the corresponding CDS (Coding Determining Sequence) information in the final GTF
file. While FEELNc is used to predict the coding potential and assign biotypes to all novel transcripts
from novel genes (blue line in the metromap), TransDecoder is applied to both transcripts classified
as coding by FEELnc (i.e., blue line ) and for novel isoforms of known protein-coding genes (orange
line in the metromap). Additionally, to classify novel transcripts with respect to the input reference
annotation, ANNEXA uses Gffcompare [12], incorporating this information under the class_code at-
tribute in the extended GTF. This enables users to efficiently extract specific transcript classes, such
as class k corresponding to alternative isoforms extending known genes at the 5’ or 3' ends or
class x, corresponding to exonic antisense transcripts (often classified as antisense IncRNA bio-

type).

Transcript filtering and full-length assessment While long-read RNA sequencing (LR-RNAseq) has
significantly improved transcriptome reconstruction by capturing full-length isoforms, it still exhibits
biases that lead to fragmented transcript models, particularly at the 5" end/Transcription Start Sites
(TSSs) [13].

To filter the Extended_annotations.full.gtf and remove novel incomplete transcripts, ANNEXA imple-
ments two filtering strategies based on (i) the Novel Discovery Rate (NDR) cut-off from the Bambu
tool and (ii) the transforKmer cut-off, applicable to both Bambu and StringTie-derived transcripts. The
transforKmer cut-off in ANNEXA evaluates the likelihood of all novel transcript TSSs using a species
specific deep learning model pre-trained with DNABERT [14] and fine-tuned on a classification task
using labelled TSSs from the reference annotation [15].

To adjust the stringency of the filtering process, users can choose between two modes: (i) the union
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of the two filters (filtering operation = union), which retains transcripts passing at least one filter,
or (ii) the intersection (filtering operation = intersection), which retains only transcripts passing
both filters (See wiki ANNEXA).

At the end of this module, ANNEXA outputs an additional more stringent annotation, referred to as
Extended_annotations.filter.gtf.

Quality Control The two resulting annotation files (full and filtered) may contain thousands of novel
isoforms, including both mRNAs and IncRNAs, which require thorough inspection for final quality
control (QQ). Inspired by the SQANTI tool [16], ANNEXA computes multiple features by comparing
known (i.e., matching the reference annotation) and novel (i.e., reconstructed by Bambu or StringTie)
genes, transcripts, and exons, collectively referred to as annotated elements (AE) (See ANNEXA Wiki).

These features can be broadly categorized into two groups:

— Structural metrics of AEs: including the number of known and novel AEs, AE length distribution,
proportion of single- versus multi-isoform genes (at the gene level), and proportion of single-
versus multi-exonic transcripts (at the transcript level).

— Quantification-related metrics: such as the distribution of gene counts across input samples
or the breadth of expression of the AEs.

Additionally, an optional QC feature assesses gene body coverage by sample reads using the RSeQC
pipeline [17].

All QCindicators are generated as CSV files, which serve as input for ANNEXA to compile and visualise
the data in a comprehensive final QC report (for illustration in Fig.2).

ANNEXA implementation ANNEXA is implemented in Nextflow [18] and integrates scripts written
in multiple languages, including R, Python and Bash. The Nextflow framework is designed to facilitate
the development of reproducible, scalable, and portable analysis workflows. It is available as both
Docker and Singularity containers and has been successfully executed on standalone computers and
high-performance computing clusters using SGE or SLURM. The project is open-source, with its code
accessible on GitHub : https://github.com/IGDRion/ANNEXA/.

Long-Read Sequencing protocol of cancer cell lines

Experimental methods Ten LR-RNAseq experiments were conducted (Fig.1.B) with eight canine
cancer cell lines from three canine cancer types: Mucosal Melanoma (MM, n=4), Histiocytic Sarcoma
(HS, n=3) and Osteosarcoma (OS, n=1) and two human cancer cell lines also originating from MM
patients. For all samples, RNA was extracted from ~15 million cells using the NucleoSpin RNA kit
(Macherey-Nagel). Library preparation was performed according to manufacturer’'s protocol (Ox-
ford Nanopore Technologies, ONT) with the direct cDNA Sequencing Kit (SQK-DCS109). Sequencing
was done using MinlON Flow Cells (FLO-MIN106D) with GridION device from the IGDRION platform
(https://igdr.univ-rennes.fr/igdrion).

Computational methods Basecalling of fast5 files was done with guppy (version 6.0.0) and the
nf-core/nanoseq pipeline (version 3.1.0) from the nf-core community [19] was used to do all pri-
mary bioinformatic analyses. Briefly, this included the quality control (QC) of the reads with the
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Fig.2. Automatic QC report from ANNEXA. A- Number of known and novel genes. B- Gene length
distribution. C- Proportion of gene mono- versus multi-isoform(s). D- Distribution of gene counts.
E- Number of transcripts in known (K) and novel (N) genes. F- Proportion of transcript mono/single-
versus multi-exonic.

nanoplot (version 1.41.6) [20] and multigc (version 1.9) [21] programs and the mapping of the fastq
files onto human and canine genomes using minimap2 software (version 2.15-r905) [22]. For the ten
samples, we considered all reads having a Qscore >5 (Table1). Intersection between all genomics
features (i.e. TSS and CAGE data) was done using bedtools (version 2.27.1).

Sample |Total Reads Median Length Primary Mapped % Primary Mapped
CFA-MM1 4,002,891 806 3,408,273 85.15
CFA-MM?2 (8,843,341 769 6,253,908 70.72
CFA-MM3 (7,108,351 943 5,901,302 83.02
CFA-MM4 (6,877,092 896 5,696,283 82.83
CFA-HS1 (11,177,946 826 9,157,969 81.93
CFA-HS2 4,055,709 878 3,355,138 82.73
CFA-HS3 3,908,392 793 3,040,788 77.80
CFA-OS1 16,816,094 1,050 5,707,582 83.74
HSA-MM1 5,457,058 886 4,865,343 89.16
HSA-MM2 4,734,796 852 4,025,056 85.01

Tab. 1. Number of reads sequenced and aligned on canFam4 (CFA) and GRCh38 (HSA).
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Benchmark analyses

Reference annotations and genomes Depending on the species, we compiled reference genomes
and annotations downloaded from Ensembl [23], Refseq [24], Gencode [25] or original papers [26]
[27] (Table 2).

Species|Assembly|Reference Annotation|Genes|Transcripts
Dog canFam3 |Ensembl 30,951 60,994
Dog canFam4 |Ensembl 30,653| 56,403
Dog canFam4 |UU (University Uppsala)|29,535| 158,561
Dog canFam4 |Refseq 43,427 103,619
Dog canFam5 |Ensembl 26,037\ 48,737
Dog canFamé |Ensembl 29,992| 53,113
Human |GRCh38 |Gencode 86,402| 412,034
Human |GRCh38 |CHESS 63,755| 168,451

Tab. 2. Species, Assembly, Reference Annotation with Gene and Transcript Information

Transcriptome reconstruction benchmarking ANNEXA was run using Bambu and StringTie on ca-
nine samples with the canFam4 genome assembly and the Ensembl annotation, and on the human
samples with the GRCh38 assembly and CHESS or Gencode annotations. For the Bambu runs, we
discarded single exon transcripts and used the recommended NDR of the tool. The full and filtered
extended annotations produced after the runs were filtered to only keep genes and transcripts ex-
pressed in at least one of each sample (raw count >0) and were compared to the initial reference
annotations using the gffcompare tool version v0.12.6 ([12]) which provides sensitivity and precision
metrics at the exon, transcript and locus level. At each level, reconstructed elements matching the
reference annotation were considered true positives (TP), while those absent from the reference
were classified as false positives (FP). Conversely, features present in the reference but missing from
the extended annotations were considered as false negatives (FN). We thus defined Precision as TP
/(TP + FP) and Recall or Sensitivity as TP/(TP+FN).

Orthology analysis Canine and human novel genes and transcripts were mapped on target genomes
(GRCh38 and CanFam4, respectively) using the liftoff program [28] with default parameters. Then,
query elements were classified into three classes with respect to the target reference annotation
(Gencode and Ensembl, respectively): unmapped (query gene not mapped to target genome),

mapped_unknownGenes (query gene mapping to intergenic regions) and mapped_knownGenes (query

gene mapping to known genes from target annotation e.g. Gencode for query dog gene and Ensembl

for human query gene).

Results

In a comparative oncology study, we produced LR-RNASeq data from both human (n=2) and canine
(n=8) cancer celllines (Fig.1.B) and applied ANNEXA using different genome assemblies and reference
annotations for each species in order to test the robustness of the pipeline in its ability to extend and
to quality control these annotations.

Effect of species-specific reference transcriptome for the identification of known and novel
genes/transcripts Analysis of known and novel genomic features (genes and transcripts) recon-
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structed by Bambu and StringTie (with their default parameters) revealed striking differences with

respect to the tool used and the completeness of the input reference annotation (Fig.3).
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Fig.3. Benchmark analysis between Bambu and StringTie for dog (left panels) and human (right
panels) for known (top panel) and novel (bottom panel) genes/transcripts. For known elements
(top), number of genes/transcripts from the reference annotation (light bar) are separated from re-
constructed genes/transcripts (dark bar). A- Number of known canine genes/transcripts retrieved
from three reference annotations (Ensembl - red, refseq - blue and UnivUppsala - green). B- Num-
ber of known human genes/transcripts retrieved from two reference annotations (Chess - brown
and Gencode - purple). C- Number of novel dog genes/transcripts. Full set of elements (light bar)
are separated from ANNEXA's filtered (intersection) set (dark bar). D- Number of novel human
genes/transcripts. Full set of elements (light bar) are separated from ANNEXA's filtered (intersec-
tion) set (dark bar).

Known genes and transcripts For the canine genome (canFam4), Bambu reconstructed more known
elements than StringTie, consistently across all three reference annotations tested (Ensembl, Ref-
seq, UU), with this difference being the most noticeable for the University of Uppsala (UU) anno-
tation (21,416 genes and 106,378 transcripts reconstructed with Bambu, 15,163 and 59,422 with
StringTie) (Fig.3.A). For the human genome (GRCh38), Bambu also identified more known elements
than StringTie across the two annotations (CHESS and Gencode) with this difference being most pro-
nounced for Gencode (27,341 genes and 87,249 transcripts reconstructed with Bambu compared to
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18638 and 50,255 respectively with StringTie) (Fig.3.B). Compared to dogs, the relatively low percent-
age of features reconstructed from a reference annotation in human (for example, only 21% of Gen-
code transcripts are reconstructed by Bambu) could be explained by the fact that human reference
annotations are more complete than in dogs and also because our experimental design contained

more LR-RNAseq samples in dogs (n=8) versus human (n=2).

Novel genes and transcripts For the canine genome (canFam4), StringTie consistently identified more
novel elements than Bambu, independently of the three reference annotations tested (Ensembl, Ref-
Seq and UU). However, we observed that this difference is most pronounced using the Ensembl an-
notation, where Bambu detected 3,134 novel genes and 3,600 novel transcripts compared to the
StringTie set of genes and transcripts (12,671 and 20,184, respectively). Using the UU canine anno-
tation yielded the lowest number of novel genes and transcripts identified by both StringTie (7,791
and 11,900) and Bambu (1,070 and 1,150), likely due to the greater initial isoform completeness of
the UU reference annotation compared to Ensembl and RefSeq, thereby reducing the number of
newly detected transcripts (Fig.3.C). In the human genome (GRCh38), using the Gencode annotation
as reference produced substantially fewer novel elements than with CHESS, as expected given the
higher number of genes and transcripts cataloged in the latest version of Gencode (Fig.3.D). Yet, at
the gene level, we observed an intriguing pattern where StringTie annotates more novel genes with
CHESS compared to Gencode, whereas the opposite trend occurs with Bambu (~1000 novel genes
for Bambu and 1,800 for StringTie with the CHESS annotation as compared to 631 and 145 with
Gencode, respectively). Regarding ANNEXA filtering operations, which evaluated the full-lengthness
of reconstructed genomic elements (see Methods), we observed that it dramatically reduced the
number of novel elements identified by both tools. On average in dogs, 50% of Bambu and 16% of
StringTie novel genes are being conserved after ANNEXA's check for TSS validity. The proportion of
StringTie's filtered transcripts is more pronounced with Ensembl (dog) and CHESS (human) annota-
tions, suggesting that these novel transcripts may contain a higher proportion of incomplete tran-
scripts. Together, these findings highlight that reference annotation selection significantly impacts
novel element discovery, with StringTie demonstrating particular sensitivity to this choice, especially
in less well-annotated genomes such as canFam4. In addition, this shows that Bambu consistently
demonstrated stronger performance in terms of precision and recall, particularly after applying AN-
NEXA's filtering steps for gene and transcript completeness (Supp. Fig. 1)

Effect of species-specific reference transcriptome for the identification of known mRNAs and
IncRNAs Compared to protein-coding genes (mMRNAs), long non-coding RNAs (IncRNAs) are consid-
ered particularly challenging to annotate due to their low expression levels and tissue specificity [29]
[30]. As in our previous analyses, we evaluated the ability of Bambu and StringTie to reconstruct
known genes and transcripts starting from long-read RNA sequencing (LR-RNASeq) data, this time
distinguishing INcRNAs from mRNAs (Fig.4).

In dogs (canFam4, Ensembl annotation), we showed that Bambu reconstructed a greater number
of mMRNAs and IncRNAs from the reference annotation than StringTie, with 13,239 vs. 9,930 genes
for mRNAs and 3,314 vs. 2,525 for IncRNAs (Fig.4.A). At the transcript level, we also noticed that the
difference between Bambu and StringTie in term of reconstructed transcripts is more pronounced
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for mRNAs than for IncRNAs biotypes. A similar trend was observed in humans (GRCh38, Gencode
annotation), where Bambu identified more genes and transcripts from the latest Gencode annotation
than StringTie (Fig.4.B). However, the proportion of reconstructed known genes was lower in humans
than in dogs, again likely due to the smaller number of human LR-RNASeq data available as input.

Using ANNEXA's transcript classification module, we then categorized both known (class_code =)
and novel (all other class_code) mRNAs and IncRNAs annotated by the two tools from the eight ca-
nine and two human LR-RNASeq samples. Interestingly, this analysis revealed distinct patterns in the
classification of novel canine IncRNAs: Bambu predominantly assigned them to class_code u (in-
tergenic INcCRNAs or lincRNAs, 14%) and class_code x (antisense INncRNAs, 10%), whereas StringTie

Bambu

IncRNAs

(CanFam4)

StringTie
IncRNAs

(CanFamd)

48



primarily annotated novel IncRNAs as lincRNA (27%) and extension of known IncRNAs (2.4%), with
very few classified as antisense (n=4) in dogs (Fig.4.C and Fig.4.D).

Biological application of ANNEXA Over the past decade, canine models have gained recognition
as valuable spontaneous and immunocompetent systems for studying human cancers, particularly
histiocytic sarcomas (HS) [31] and mucosal melanoma (MM) [32]. For MM, although rare in humans,
it represents the most prevalent oral malignancy in dogs and exhibits notable clinical, biological,
and genetic parallels with its human counterpart [33]. Leveraging ANNEXA's ability to balance preci-
sion and recall, we applied it to both canine and human data. In dogs, using a relaxed Bambu NDR
threshold (NDR = 1) allowed to identify 9,612 novel genes (8,713 IncRNAs and 899 mRNAs) across the
eight long-read RNA-Seq datasets (see Methods). Applying ANNEXA's TSS validity filter significantly
reduced the number of novel genes to 749 (595 IncRNAs and 154 mRNAs), indicating a likely high
rate of false positives in the unfiltered set. Notably, the proportion of gene TSSs validated by orthog-
onal datasets, such as CAGE (Cap Analysis of Gene Expression) from the DogA consortium [34], was
significantly higher in the filtered set (52%, with 311 novel IncRNAs and 75 mRNAs validated) com-
pared to the full dataset (9.3%, with 903 novel IncRNAs and 186 mRNAs validated). We also sought
to assess whether novel genes in both humans and dogs could be conserved through evolution as
a proxy for functional evidence [35]. We thus mapped the 9,614 novel canine genes (Ensembl - can-
Fam4) on the human genome assembly used for the extended human annotation from Gencode
and found 3,709 (38.6%) that could be mapped to GRCh38. Among these, 3,268 (88%) correspond
to human genes from the Gencode extended reference annotation and thus represent novel orthol-
ogous relationships between novel dog and known human genes. Notably, we identified five novel
canine INcRNA genes that also map to novel human genes (Supp. Fig. 2), with two of them being
classified as protein coding in human. Although these genes were not supported by CAGE data, they
exhibited relatively high expression levels in both species, with mean read counts of 90.3 in dog and
66.1 in human MM samples. These conserved and expressed genes across species provide novel
candidates for future functional validation and underscore the value of cross-species annotation to
uncover novel, potentially functional elements.

Discussion

In this work, we introduce ANNEXA, an all-in-one tool that not only performs transcriptome recon-
struction but also simultaneously ensures quality control of extended annotations. In addition, by
uniquely integrating the comparative characterization of IncRNAs annotated from long-read RNA-
seq data, ANNEXA enhances the profiling of these non-coding elements and refines their potential
biological relevance. The comparison of two main transcriptome discovery tools and quantification
methods reveals distinct trends depending on the reference annotation used. Our results show that
Bambu consistently reconstructed more known genes and transcripts than StringTie, regardless of
the reference annotation or the species (dog and human) analysed in this study. It also confirmed
that the number of newly detected genomic elements is strongly influenced by the structure and
coverage of the reference annotations. These findings align with the Long-read RNA-Seq Genome
Annotation Assessment Project (LRGASP) Consortium’s observations, which demonstrated that tools
based on reference genomes perform optimally in well-annotated genomes [5]. The impact of ref-
erence annotation choice is also evident in the analysis of our human long-read RNASeq data. As
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expected, using the latest Gencode release as reference produced fewer novel elements due to the
higher number of genes and transcripts (86,402 and 412,034, respectively) already catalogued in its
latest version. This underscores the importance of a comprehensive curated reference annotation
to limit the detection of potentially artifact-driven elements.

Using ANNEXA's quality control module for known and novel long non-coding RNAs, we also observed
this consistent trend where Bambu reconstructed a greater number of non-coding genes and tran-
scripts than StringTie, both in dogs (canFam4, Ensembl) and humans (GRCh38, Gencode). However,
the proportion of reconstructed known genes was lower in humans than in dogs for both tools, likely
due to the more limited availability of human long-read RNA sequencing data in our study design,
combined with the higher completeness of human reference annotations [8].

Additionally, the classification of novel IncRNAs revealed distinct patterns between the two tools.
Bambu primarily categorised novel IncRNAs as intergenic (lincRNAs) or antisense, whereas StringTie
assigned a higher proportion to lincRNAs and novel isoforms of known IncRNAs, with only a few
IncRNAs classified as antisense. These differences in classification outputs underscore the impact of
transcriptome reconstruction tools and suggest that integrating multiple approaches may provide a
more comprehensive representation of IncRNA diversity. Consequently, the choice of reconstruction
tool should be guided by specific research objectives. For example, researchers focusing on natural
antisense transcripts (NATs) may benefit more from Bambu’s capabilities, whereas those aiming to
extend known IncRNA annotations might prefer StringTie.

Our analyses further emphasizes the need to carefully evaluate novel annotations generated by tran-
scriptome discovery tools. The increase in detected genes and transcripts should be considered
within the context of annotation robustness and biological validation. The LRGASP Consortium rec-
ommends incorporating additional orthogonal data and replicate samples when aiming to detect
rare and novel transcripts. In our comparative oncology project, we used CAGE data from both dog
and human samples to validate the full-length nature of novel transcripts. We found that only less
than 10% of unfiltered novel transcripts (both coding and noncoding) were validated by at least one
CAGE signal. Several factors could explain this relatively low proportion of TSS validation, includ-
ing the fact that the CAGE sample conditions did not match those of our LR-RNASeq cancer cell lines
and/or the earlier version of the Nanopore kit for library preparation (DCS109) could have led to trun-
cated reads and, consequently, incomplete transcripts [4]. However, the use of ANNEXA’'s module for
TSS validation increased the proportion of validated genes to over 50%, highlighting the importance
of combining complementary experimental and computational approaches to refine annotations.

In summary, this study highlights ANNEXA’s modularity in adjusting precision and sensitivity for ac-
curate, context-specific coding and non-coding annotation. This flexibility is essential for subsequent
experimental validation and for advancing our understanding of the role of the non-coding genome
in biological processes.

Availability and implementation

ANNEXA is written in Nextflow DSL2 [18]. ANNEXA can run each process in conda environments as
well as Docker or Apptainer containers, ensuring reproducibility and ease of use on different ma-
chines. The pipeline is available at https://github.com/IGDRion/ANNEXA. Input files and code to re-
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produce figures of this paper are also available here :
https://github.com/IGDRion/ANNEXA/tree/main/Paper_Figures
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Abstract SpecPeptidOMS directly aligns peptide fragmentation spectra to whole and undigested protein
sequences. The algorithm was specifically and initially designed for peptidomics, where the aim is to iden-
tify peptides that do not result from the hydrolysis of a known protein and therefore, whose termini cannot
be predicted. Thus, SpecPeptidOMS can perform alignments starting and ending anywhere in the protein
sequence. The underlying computational method of SpecPeptidOMS, which is based on a dynamic pro-
gramming approach, was drastically optimized. As a result, SpecPeptidOMS can process around 12,000
spectra per hour on an ordinary laptop, with alignment performed against the entire human proteome.
The performance of SpecPeptidOMS was first evaluated on a publicly available data set of (nontryptic)
synthetic mass spectra. Accuracy was estimated by considering the results obtained by MaxQuant on the
same data set as the “ground truth”. A second series of tests on a larger, well-known proteomics data set
(HEK293) highlighted SpecPeptidOMS’ additional ability to search for open modifications, a feature of in-
terest in peptidomics but also more broadly in conventional proteomics. SpecPeptidOMS is open-source,
cross-platform (written in Java), and freely available.

Highlight

Peptidomics is an emerging field of the omics sciences, that refers to the identification of the pool of
peptides present in a biological fluid or tissue. The field has grown rapidly in the past few years be-
cause endogenous peptides have been established as essential players in cellular processes (e.g.,
signaling, immune response, intercellular communication, homeostasis, etc.) and potential biomark-
ers for a number of cellular disorders. Nonendogenous peptides are another group of circulating
peptides that notably include food-derived peptides, and food peptidomics is arousing great inter-
est. From a bioinformatics perspective, interpreting MS2 spectra in peptidomics adds complexity
compared to proteomics because no assumption can be made about cleavage sites, meaning that
the peptide ends can lie at any amino acid of the protein. Another characteristic of peptidomics
is that peptides can be highly modified: this characteristic is almost inherent to their bioactivity, as
modifications protect them from overly rapid proteolysis in biological fluids.

56


https://pubs.acs.org/doi/full/10.1021/acs.jproteome.4c00870

SpecPeptidOMS is a major upgrade of the SpecGlobX algorithm, which our group has recently pro-
posed for the identification of multiple and unbiased modifications of tryptic peptides. Both algo-
rithms fall in the family of the so-called “open modification search” (OMS) methods that have
emerged over the past decade in proteomics. OMS methods have implemented advanced computa-
tional optimization techniques accelerating spectra comparison to a sufficient extent to widen the
mass window of spectra comparison. As a result, those methods can identify peptides carrying unan-
ticipated modifications. However, if the identification and localization of a single modification are
successful, the presence of multiple modifications in a mass spectrum remains problematic. Spec-
GlobX, based on an efficient dynamic programming algorithm, can align pairs of spectra quickly
while detecting several modifications. To limit execution time, SpecGlobX runs on a set of Peptide
Spectrum Matches (PSMs) generated by another OMS search engine (SpecOMS, for example).

Compared to SpecGlobX, SpecPeptidOMS incorporates two fundamental design changes that deeply
impact its capabilities. First, a new and condensed representation of experimental spectra al-
lows direct alignment of MS2 spectra to undigested proteins without preconceptions about where
the alignments should start and end in the protein. Second, a drastic optimization boosts the ex-
ecution time by several orders of magnitude while keeping the memory requirements low. Im-
portantly, SpecPeptidOMS retains the advantage inherited from SpecGlobX in identifying peptides
carrying multiple modifications that had not been anticipated. However, while the quality of the
SpecGlobX results were depending on the relevance of the set of PSMs used as input, SpecPep-
tidOMS is independent of any other tool and evaluates all possible PSMs. Then, the new design
of SpecPeptidOMS has opened the way for efficient identification of MS2 spectra arising from pep-
tidomics data sets.

The results obtained on two different data sets (one containing nontryptic peptides whose interpreta-
tion is approximately known, and the other corresponding to a large-scale proteomic data set already
analyzed by several well-established software) are convincing of the ability of SpecPeptidOMS to
interpret spectra corresponding to peptides whose extremities are unknown, and possibly
carrying modifications. Thus, SpecPeptidOMS appears as a promising algorithm to interpret spec-
tra in peptidomics, a field in which satisfactory tools are still lacking.

We believe this work to be relevant to the JOBIM community: first, because of the dedicated compu-
tational design of SpecPeptidOMS; second, because of its ability to identify peptide sequences
in the peptidomics context. Our work combines strong methodological aspects, consideration of
experimental conditions, and eagerness to accurately answer the biological problem at hand, which
is to increase knowledge in the emerging peptidomics field.

We encourage the interested community to test SpecPeptidOMS: it is an easy-to-use software with
few parameters to set up that does not require installation. With its command-line mode, SpecPep-
tidOMS is easy to integrate into a workflow.
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Abstract Structural Variants (SVs) are an important but overlooked aspect of genetic variation. In partic-
ular, inversions are known for their role in the evolution of biological diversity and particularly studied in
non-model species using population data. One of the major steps in the study of SVs is genotyping. Linked-
read data provide a cost-efficient alternative to long-reads to genotype many individuals, by combining the
low sequencing cost of short reads with long-distance information thanks to the use of barcodes tagging
long molecules. Whereas several methods have been proposed to discover SVs with linked-reads, there are
currently no tool for genotyping with this type of sequencing data. In this paper, we present SV/edi-Tag, the
first inversion genotyping method dedicated to linked-read data. We tested SV/edi-Tag on simulated and
real linked-read data in the seaweed fly Coelopa frigida, and showed that SV/edi-Tag is able to genotype
with high accuracy large inversions above 25 kb, with a read depth as low as 3X.

Introduction

Accurately detecting and characterizing genetic variation is essential for all aspects of genomics in-
cluding medical research, ecological and evolutionary genomics, application for food production, and
conservation. While most studies have long focused on nucleotide substitutions, recent research
showed that structural variants (SVs), i.e. changes in position, presence, and orientation of genomic
fragments from a few bases up to several megabases (Mb), represent an important but overlooked
aspect of genetic diversity [1]. Long-reads have made it easier to characterize SVs, demonstrating a
strong impact on phenotypes, including disease and traits of agronomical interest [2]. Inversions are
particularly important for the evolution of biodiversity and are extensively studied in a context of con-
servation and evolutionary biology [3,4]. Most of those applications, such as genotype-phenotype as-
sociation and population genomics, requires population studies with many individuals [5], for which
the use of long-reads is not cost-efficient while the use of short-reads is not accurate enough, raising
the need for alternative type of data. Linked reads combine both the high quality and low cost of
short-read sequencing with the long-distance information of long reads. This technology is based on
the attachment of barcodes to a long DNA molecule (usually from 5 to 100kb) during library prepara-
tion before fragmentation for short-read sequencing [6]. This long-distance information helps scaf-
folding during genome assembly and identifying large structural changes [7,8]. Several technologies
produce linked read data, such as stLFR [6], TELL-seq [9] and, Haplotagging [10]. Happlotagging was
optimized for multiplexing and it is thus particularly adequate for large datasets in ecological and
population studies.
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Structural variants are often studied in two steps: detection and genotyping. Detection aims at char-
acterising SVs present in an individual or population relatively to a reference genome. Genotyping,
on the other hand, seeks to determine the presence or absence of each allele of the SVs previously
identified in a genome. Detection is generally performed with the highest quality of data, such as
long-reads with high depth, which is usually available on a limited number of individuals. Conversely,
genotyping needs to be carried out on a larger number of individuals to provide stronger statistical
support for analysis and thus uses more cost-effective data such as short-reads [11]. From that point
of view, linked-reads thus provides a major advantage by combining a low sequencing cost, allowing
to accommodate a large number of individuals, high sequencing quality, and long-range information
allowing to capture kb-long molecules spanning over the breakpoints. Several tools exist to detect
structural variants with linked-reads data, such as LEVIATHAN [12], Valor [13], Aquila [14], NAIBR [15]
or Wrath [16], but there exists no tool for genotyping already discovered structural variants with
linked-read data.

This paper presents SV]edi-Tag, the first tool dedicated to inversion genotyping with linked-read data.
SVJedi-Tag analyses specific barcode (molecule tags) signals to estimate the presence or absence of
an inversion in each individual. We tested our tool on simulated and real haplotagging data from the
seaweed fly Coelopa Frigida, a species bearing adaptive polymorphic inversions [17].

Materials and methods
Method

Barcode signal for inversion genotyping Linked-reads are produced from long DNA molecules that
are individually associated with microbeads coated with unique barcodes. They are then fragmented
into barcode-associated short reads [6]. All reads originating from the same DNA molecule share
the same barcode. This sequencing technology is therefore characterised by the size of the long
DNA molecule (ranging from 1 to 100kb), the number of molecules per barcode (which is close to
1 for haplotagging data) and the average coverage of each molecule by reads (i.e. the number of
reads per molecule, usually ranging from 2 to 10). All these characteristics vary depending on the
dataset, the quality of the DNA and the library preparation. In linked-read data, the original long
molecule is typically covered by a few reads randomly distributed over it [10]. That means that the full
molecule cannot simple be re-assembled fromits barcoded reads. However, after mapping the reads
to a reference genome, long-range information can be recovered from the distribution of similar
barcodes (belonging to the same molecule). Hence, to determine if a DNA segment is inverted or not
in a sequenced individual, we can extractinformation from the long molecules that span the inversion
breakpoints. SVjedi-tag therefore looks for particular patterns of barcode distributions around the
inversion breakpoints to genotype each individual.

SVJedi-Tag is based on three major steps, as shown in Figure 1. First, a variation graph is created from
a catalogue of inversions and a reference genome. Then, linked-reads are aligned on this variation
graph. Finally, inversions are genotyped by analyzing the barcode distribution around the inversion
breakpoints on the graph.

Step 1: Variation graph Instead of mapping the reads to a linear reference genome, we chose
to represent the different SV alleles in a variation graph to better represent close and overlapping
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variants, following the approach used in the long read genotyper SV]edi-graph [18]. The first step
of our method constructs a variation graph (in GFA format) from a catalog of structural variants
and a reference genome. In this graph, each node represents a sequence, the edges symbolize the
adjacencies between sequences observed in an allele, and each combination of alleles is represented
by a path in the graph.

Step 2: Alignment As there is no read-to-graph alignment tool dedicated to linked-read data, we
use the short-read mapper VG Giraffe [19] (version 1.43.0), which ignores barcode information during
alignment. The alignment process generates a GAF file that contains alignment information for each

read on the graph (such as node, position on the node, size, quality, etc.).

Step 3: Genotyping To estimate which allele is present in the sample, we count the amount of
barcodes supporting each allele around the inversion breakpoints. For each inversion, we define
four regions on the inversion node and its adjacent nodes, in which we will register the observed
barcodes: Left for the region on the adjacent node at the left of the inversion, Begin for the start of
the inversion node, End for the end of the inversion node, and Right for the region on the adjacent
node at the right of the inversion. The length of the regions is fixed and is governed by a parameter,
whose default value is set to 10 Kb, which is a typical long molecule length (Figure 2).

Based on read alignments, we output a list of barcode found in each of the four regions. A given
barcode can belong to three classes of signal: Reference, Alternative and Undetermined. The ‘Ref-
erence’ and ‘Alternative’ classes are informative because reads which share this same barcode are
only found in two regions on either side of an arc of the graph, that is an allele-specific adjacency.
The ‘Undetermined’ class corresponds to barcodes that are found in more than two regions or in
both regions of the inversion node and are therefore non-informative. These ‘Undetermined’ signals
result from molecules either including in the inverted segment not spanning any breakpoint, or that
are larger than the inversion and span both breakpoints.

Depending on their proximity to other SVs, the adjacent nodes can be smaller than the region length
(10 Kb). In this case, a given region can be defined on more than one node, by traversing the graph
with a depth-first search so that each different paths has the wanted length (10 Kb). If the inversion
node is smaller than twice the region length, then the length of the Begin and End regions is reduced
to half the length of the inversion, so that these two regions do not overlap.

Finally, for each inversion, an allelic ratio is calculated as the number of barcodes supporting each
allele. The three possible genotypes for a diploid individual are then called using fixed thresholds:
below 0.2, the inversion will be genotyped as homozygous reference, above 0.8, homozygous alter-
native, and between these two thresholds, heterozygous.

Implementation SV]edi-Tag is implemented in Python 3. The code is available on GitHub (https:
//github.com/Mtemperville/SVJedi-Tag). SVJedi-Tag takes as input data: a file containing in-
versions in VCF format, which can also include other types of SVs that could impact genotyping (e.g.
insertion close to a breakpoint), a linked-reads file (fastq /fastq.gz /fq /fq.gz) and a reference genome
(fastg/fa/fna). The output file is a VCF file containing the predicted genotypes for all input inversions.
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SVJedi-Tag also produces intermediate files containing the variation graph (GFA) and the alignment
file (GAF), which can be used to launch the tool by skipping steps already performed.

Application data

We tested SV]edi-Tag on three types of datasets: (1) simulated linked-reads with simulated inversions;
(2) real linked-reads with simulated inversions and (3) real linked-reads with a real 3 Mb known inver-
sion. For the real linked-read data, we used haplotagging data from 14 individuals of Coelopa frigida
with different sequencing depths ranging from 1X to 7X and the associated reference genome of
Coelopa frigida (250Mb).

We simulated inversions in the Coelopa frigida reference genome, restricted to the first five chro-
mosomes (190Mb). For test (1), we first sampled uniformly 60 non-overlapping 50kb-long segments
along the genome. Then we generated 2 haploid C. frigida genomes using Visor hack [20], by invert-
ing segments from two different subsets of the 60 segments: 20 segments were inverted in both
haplotypes (expected homozygous alternative genotype), 20 other segments were inverted in only
one of the two haplotypes (expected heterozygous genotypes). The 20 remaining non-inverted seg-
ments represent expected homozygous reference genotypes. We then use both haploid genomes to
simulate linked-reads with Visor Xenia [20] using several linked-read parameters inspired from the
the characteristics of the real haplotagging data (estimated using the LR_Stat script included in the
SVjedi-Tag repository).

For test (2), we randomly determined the positions of 40 inversions and modified the C. frigida ref-
erence genome by inverting half of them in the genome using Visor Hack. Real individuals are thus
expected to be homozygous alternative for the 20 inversions put in the reference genome and ho-
mozygous reference for the 20 other inversions. We repeated this simulation for five fixed inversion
lengths: 10 kb, 25 kb, 50 kb, 100 kb, 500 kb and 1 Mb. Finally, for set of inversions, we ran SVjedi-Tag
with the VCF containing the 40 inversions of a given length and the empirical linked-reads from 14 C.
frigida samples.

For test (3), to assess the accuracy of the method on real data and real inversion, we genotyped a
known 3 Mb inversion of Coelopa Frigida [17] located on chromosome LG4 (Cf-Inv(4.1)), with coordi-
nates 1393751-4456396 determined using long-reads, and previously genotyped by PCR in the 14
individuals.

Results

Tests with simulated data and 50kb-long simulated inversions demonstrated that SV]edi-Tag has a
high genotyping rate (96%) and a high genotyping accuracy (92%) despite shallow sequencing depth.
In fact, we simulated linked-read data with characteristics comparable to real data obtained from
Coelopa frigida, i.e. an average sequencing depth of 2X, an original molecule length of 10kb and a
molecule coverage of 0.05 (around 6 reads on average per molecule). We were able to assign a
genotype to 57 out of the 60 simulated 50 Kb inversions. The remaining three inversions could not be
genotyped due to an unsufficient number of informative barcodes (here, minimal value of 1). Out of
the 57 genotyped inversions, 53 were assigned the true genotype, resulting in a genotyping accuracy
of 93 % (see also the distributions of the estimated allelic ratio for the three expected genotypes in
Figure 3).
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Genotyping performances depend on the linked-read sequencing characteristics: the more reads
per molecule, the better the accuracy, with 72 % and 100 % accuracy for molecule coverages of 0.02
and 0.3 respectively (Table 1). Genotyping performances also vary with the length of the region in
where barcodes are counted, a parameter which is optimal at values close to the molecule length
(Table 1).

To evaluate SV]edi-Tag on more realistic datasets, we simulated homozygous inversions in the ref-
erence genome (see Methods) and tested genotyping in empirical haplotagging linked-reads from
14 Coelopa Frigida samples. For simulated inversions of 50 Kb, at least 38 inversions out of 40 were
genotyped in all samples (min genotyping rate of 95 %), and 12 out of 14 samples obtain a 100 % geno-
typing accuracy (see Figure 4). The other two samples show a lower genotyping accuracy of 95-97%
probably explained by their lower sequencing depth (< 2X). It is worth noting that the ungenotyped
inversions were randomly simulated in low-mappability regions.

When varying the length of inversions to genotype, we obtained 100 % accuracy and rate for inver-
sions larger than 100 Kb for all real haplotagging samples (Figure 4). However, the accuracy drops
slightly to 87% for 25kb-long inversions, and strongly for 10kb-long inversions. This pattern is ex-
plained by a higher number of "uninformative” molecules spanning the whole inverted segment
when the inversions are shorter, as well as to the noise associated to the low coverage of reads
per molecule.

Last, genotyping with empirical haplotagging data a known 3 Mb inversion of Coelopa frigida located
on LG4 (CF-Inv-4.1) showed 100% accuracy for the 14 individuals previously genotyped by PCR.

Discussion

Our results on simulated and empirical data show that SV]edi-Tag performs very well for genotyp-
ing large inversions (>50kb) using haplotagging linked-reads, including for data with shallow depth
(2-5X). This is a real strength to perform future studies on chromosomal inversions in large popula-
tion datasets as used in genotype-phenotype studies (GWAS) and ecological genomics. In particular,
SV]edi-tag is able to genotype Mb-scale inversions with complex breakpoints, a type of variant which
is increasingly studied but hardly accessible with standard methods. Indeed, the inversions most
studied for their evolutionary or phenotypic impact are often at least several hundred Kb long and

contain several genes.

Genotyping accuracy is improved by different parameters, such as a higher sequencing depth, longer
DNA molecules, and well-adjusted length of the genotyping regions. Yet, the number of reads per
molecule seems to be the parameter with the greatest impact on genotyping accuracy, and further
molecular development to enhance this coverage would likely be beneficial to SV detection and geno-

typing.

Most genotyping errors were due to allelic ratio being just below or above the threshold. A future
improvement will therefore consist in relying on a probabilistic model to infer genotype likelihoods
instead. Future developments of SV]edi-tag include testing different parameters to improve geno-
typing of smaller inversions and exploring the impact of the distance between inversions. SVjedi-tag
will also be tested on other empirical linked-read datasets with known inversions to better optimize
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inversion genotyping in non-model species. Finally, in the future, we would like to extend the geno-
typing method to other types of structural variants.
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Percentage of molecule| Region length |Genotyping/Genotyping

covered by reads parameter value| accuracy rate

Molecule size 8 kb 0.02 10 Kb 80% 80%
0.05 10 Kb 85% 95%

0.1 10 Kb 89% 96%

0.2 10 Kb 89% 98%

Molecule size 10 kb 0.02 10 Kb 68% 88%
0.05 10 Kb 92% 96%

0.1 10 Kb 94% 98%

0.2 10 Kb 96% 98%

Molecule size 10 kb 0.05 1 Kb 72% 46%
0.05 5 Kb 92% 91%

0.05 15 Kb 93% 98%

Tab. 1. Accuracy and genotyping rate obtained with SVjedi-Tag on simulated linked-read data, for different
simulated molecule length (8 or 10 kb), molecule coverage (0.02, 0.05, 0.1 and 0.2, for each molecule length)

and
cove

different values for the region length parameter (on data with molecule length of 10 kb and molecule
rage of 0.05).
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Abstract Microbial ecosystems constitute complex yet information-rich environments whose character-
ization is crucial for understanding host health and disease. Among them, the human gut microbiome
has emerged as a key "super-integrator”, owing to its dense interactions with host physiology and its estab-
lished associations with a wide spectrum of pathologies. Driven by advances in high-throughput sequencing
technologies and the continuous decline in associated costs, metagenomic studies have expanded exponen-
tially, generating massive amounts of sequencing data and opening new avenues for data-driven disease
modeling. Conventional approaches to microbiome analysis predominantly rely on the alignment of DNA
sequencing reads against reference databases to infer microbial composition and profiling at the species
level. While effective, these methods are inherently constrained by reference bias and limited taxonomic
resolution. Recent advances in artificial intelligence—particularly in Natural Language Processing (NLP)
offer new methodological perspectives for metagenomic data representation. In this study, we present
MetagenBERT, a Transformer-based framework to embed metagenomes that relies on the foundational
models DNABERT-2 and DNABERT-S for the embedding of DNA sequencing reads. Our approach encodes
gut microbiome metagenome in a taxonomy-agnostic manner, enabling direct downstream application
to disease classification tasks. We demonstrate that MetagenBERT reaches similar performance to state-
of-the-art abundance-based models for cirrhosis prediction and surpasses them in the more challenging
context of type 2 diabetes. Furthermore, we introduce an alternative representation of metagenomes based
on read-level embeddings aggregated into abundance vectors, demonstrating their complementarity with

conventional species-level abundance metrics.

Introduction

The human gut microbiome, consisting of bacteria, fungi, viruses, archaea, and eukaryotes, outnum-
bers human cells tenfold [1]. Its diversity and composition are critical indicators of patient health
status [2] [3] [4]. Next-Generation Sequencing (NGS) has enabled cost-effective analyses of microbial
ecosystems, advancing fields like metagenomics, which profiles the whole DNA from a sample by
generating typically millions of short sequences per sample (100 to 300 bases) [5]. While long-read
sequencing is emerging [6], allowing to retrieve reads of thousands if not millions of bases, short-
read methods remain dominant due to cost-effectiveness and their ability to estimate quantification
profiles.
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Traditional bioinformatics methods for microbiome sample analysis involves identifying the species it
contains, computing their relative abundance tables, and eventually linking the species to health con-
ditions. They mostly rely on large reference catalogs, making them computationally expensive [7]. A
typical pipeline is described in Fig. 1. To reduce dependence on reference databases, Deep Learning
(DL) techniques—including sequence classification via TetraNucleotide Frequency (TNF) [8][9] or Nat-
ural Language Processing (NLP)[10][11][12] can be used, with the objective to automatically identify
abstract representations.

Recently, Large Language Models (LLMs) have been increasingly applied in genomics. Foundation
models such as Nucleotide Transformer [13] and DNABERT-2 [14] have demonstrated promising
performance in various classical gene analysis tasks. More specifically, DNABERT-2 has been further
fine-tuned into DNABERT-S [15] using contrastive learning to generate embeddings—mathematical
vector representations of sequences—by pulling together sequences from closely related species
while pushing apart those from more distant species. This approach enhances sequence-to-species
grouping (also known as binning).

Meanwhile, MetaTransformer [16], an attention-based model without pre-training, has exhibited
interesting performance in sequence classification tasks, highlighting the potential of transformer-
based models in genomics.

In order to link microbiome composition to patient health status, different DL approaches such as
PopPhy-CNN [17], MML4Microbiome [18], EnsDeepDP [19] and DeepMicro [20] have been developed
to extract abundance features, but still struggle with the high-dimensional, sparse nature of abun-
dance tables, risking overfitting. Solutions like data augmentation [21] or simulation can improve
training but may reduce diversity [22]. Some methods bypass abundance tables altogether, using
direct sequence embeddings and averaging those by species, as in Metagenome2Vec [23].

However, studies have identified several limitations in using species composition for predicting metage-

nomic disease associations. First, species detection relies heavily on reference catalogs, which, de-
spite their continuous expansion, still fails to capture a substantial portion of microbiome diversity
[24]. Additionally, the choice of taxonomic resolution significantly impacts prediction accuracy. Re-
search has demonstrated that individuals from the same species can exhibit varying, and sometimes
even opposing, effects on disease development. Consequently, alternative approaches, such as func-
tional guild-based representations, have been proposed to improve the representation of metage-
nomic samples [25].

A key challenge in metagenomic analysis is the nature of metagenomic data, which consists of vast
amounts of short reads—often numbering in the tens of millions per sample—while datasets typi-
cally comprise only a few hundred samples. As a result, metagenomic datasets are highly complex,
requiring feature extraction from a limited number of examples. This imbalance makes it difficult to
identify meaningful patterns that generalize well for classification tasks while mitigating the risk of
overfitting. [26]

For these reasons, we proposed to explore the feasibility an end-to-end and species-agnostic ap-
proach, based on Transformers architectures, leveraging powerful embeddings and aggregation
techniques for improved microbiome classification and disease prediction. These aggregations also
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propose a structure comparable to abundance tables but relying on a species-agnostic approach that
captures information different from the classic abundance table.

with Machine Learning
(SVM, RF...)

with alignment-based methods

-T
Classifying ﬂ

with Deep Learning
(DeepMicro, EnsDeepDP)

Genetic Sequences Abundance Table Diagnostic

Fig. 1. Typical bioinformatics pipeline for metagenomics analyses. The widely used approach to perform
disease prediction from WGS data is to bin each read into a reference catalog of genes or species. This
results in a data table of presence or relative abundance, which can be further used to classify samples in
disease groups. This table can then be analyzed to perform classification.

Materials and Methods

The primary objective of our approach is to develop a method that is both end-to-end and indepen-
dent of reference catalogs. This method directly processes all DNA reads from a metagenome (after
preprocessing) and performs classification without reducing the information to species-level propor-
tions. The underlying idea is that DNA reads contain valuable information beyond species identity,
and this information can be effectively extracted using DNA-based large language models.

Datasets

To train and evaluate our method, we used two metagenomic datasets, also employed in the MetaML
study [27]. These datasets are related to two clinical conditions, Liver Cirrhosis [28] and Type 2 Dia-
betes [29]. Both have a comparable proportion of disease and control samples. More information
on these datasets can be found in Tab. 1. We downloaded the raw fastq files from EBI (ERPO05860)
for cirrhosis and NCBI ( SRA045646 and SRA050230) for diabetes and cleaned them using fastp with
default parameters as illustrated in [30].

[Number of Samples (H/D)|Mean Number of reads per sample|Standard Deviation|Storage|Embedding Time (hours)|Storage of Embeddings|Global Clustering Time
Cirrhosis 232(114/118) 36,823M 23,396M 11T 12h 25201 T 18h
Type 2 Diabetes 344 (174/170) 34,467M 12;214M 808G 26h 34977 T 30h

Tab. 1. Summary of the two datasets used along with computational information

Pipeline for Metagenome Embedding

Our achitecture consists of several steps detailed in the next subsections. First, the reads from a sam-
ple are embedded using a Large Language Model (LLM). Then, depending on the method developed
later, this information will either be pooled to form a single vector, the metagenome embedding, or
some specific vectors will be selected to represent the metagenome as a smaller bag of vectors, thus
drastically reducing its complexity. Keeping in mind that a metagenome is composed of millions of
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reads, it is challenging to compress the information from millions of vectors to a single one, both for
computational reasons and because of the risk of information loss during aggregation.

Read embedding through Large Language Models The first step of our pipeline consists in trans-
forming the single reads into embeddings. This can be approached by using LLM models trained
on DNA data. We used DNABERT-2 [14], a model based on the MosaicBERT [31] architecture, which
learns the DNA features by performing Masked Language Modeling on genomic data extracted from
various species. For each model, and each sample of our datasets, we embedded the totality of the
available sequences, running inference with a batch size of 40000. The embeddings dimension was
768, and the maximum length of a sequence in token was 60 tokens. We then applied average pooling
of the embeddings on the token axis, therefore representing the sequences as vectors of dimension
768. Finally, we also used DNABERT-S [15], a fine-tuned version of DNABERT-2 that was explicitly
trained to differentiate sequences from different species through contrastive learning, thus learning
to generate close embeddings for reads from the same species and more different embeddings for
reads originating from different species. Our motivation in focusing in these two architectures, was
to obtain both species-specific embeddings with DNABERT-S and more general embeddings with
DNABERT-2. All the following steps were applied to both DNABERT-2 and DNABERT-S embedded
metagenomes separately. We employed nodes of the Jean-Zay cluster, composed of 96 A100 GPUs
to infer the embeddedings of the sequences from both datasets, with a batch size of 40000 reads.

Aggregating Read Information We can consider the read embeddings as local features of our
metagenome, we have then used aggregating, sub-sampling and clustering methods in order to rep-
resent the global structure of the microbiome.

s Machine
Learning

Metagenome Embedding

o

Diagnosis

Embedded Reads
Metagenome Of Metagenome
Multiple Instance

Learning

Bag of Embedded
Vectors

Fig.2. The Architecture of our pipeline : metagenomic samples are processed one at a time and their
reads embedded by a Transformer model. The metagenome is then represented as a set of embeddings of
reads. In order to use it for classification, its dimension is then either reduced to a single vector through
aggregation (3), or to a smaller set of vectors through clustering (4) or sampling operations (5). The resulting
object can then be used for classification respectively with Machine Learning algorithms or DeepSets [32]

Simple Aggregation Method As a baseline, we used a simple aggregation method that computes
the mean of all embeddings. However, this approach is inherently oversimplifying and leads to sig-
nificant information loss. For instance, reads with opposing embeddings in certain dimensions may
cancel each other out, erasing meaningful variations in the data. Additionally, this method is likely
to be biased toward highly represented species, as their read embeddings may cluster more closely
together, further limiting the effectiveness of the representation.
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Fig. 3. The Simple Aggregation Architecture : the set of embedded reads is transformed into one vector by
a simple mean operation, then used for classification.

Clustering Methods In order to reduce the size of our metagenome representation while keeping
different types of information, we decided to regroup our read embeddings in clusters, each cluster
representing a part of the metagenome. For clustering, we used FAISS Kmeans implementation for
rapid, efficient, GPU-optimized clustering [33][34]. We repeated the experiment with a number of
clusters ranging from 16 to 16384 (increasing by a factor of 2 each time). The clustering returns two
elements : the centroids of each cluster and the assignment of each vector populating the clusters.
These assignements can then be used to calculate the proportion of reads in each cluster for each

metagenome. We have used this method to develop two different types of clustering pipelines.

Local Clustering When using the method we called “Local Clustering”, or MetagenBERT-Local, we per-
formed the KMeans algorithm independantly on each sample of each dataset. A subsample of the
reads is used to train the KMeans, then each vector is assigned to its corresponding cluster. The cen-
troids of each cluster are then retrieved to represent the metagenome. In this case, the metagenome
is represented by an unordered set of vectors of dimensions number of clusters*embedding size. In
this case, each clustering being independent on the sample, calculating the abundance is not use-
ful, for the i-th cluster in the first metagenome is not linked at all to the i-th cluster of the second
metagenome. Only the centroids of the clusters are relevant here to represent a metagenome.

Global Clustering The method designated as "Global Clustering”, or MetagenBERT-Glob, although also
relying on clustering, is different both in its goal and final representation. The idea here is to create a
new abundance table representing the microbiome, but based on our embeddings instead of being
based on species. To achieve this, we need the different clusters to represent the same parts of the
microbiome across all samples from a dataset. To do so, we train our clustering method with reads
from 90% of the samples in the dataset (and leave the 10 last percent as holdout). We use 240,000
reads from each sample in the cirrhosis dataset and 180,000 from each sample in the Type 2 Diabetes
dataset (for memory considerations), so approximately 1% per sample. This ensures a good enough
coverage from every sample in the dataset. Once the KMeans is trained, we take each sample one by
one and assign all its reads to their corresponding cluster using nearest neighbors. In this situation,
as opposed to local clustering method, samples are not represented by their centroids (as those are
common to the whole dataset), but rather by a unique vector : the abundance of each cluster.

Combining Global Clustering Abundance with Species Abundance In order to compare our abundance
vector to species-based abundance, we retrieved the abundance vectors of each sample in the dataset
and trained a model for disease prediction with the following configurations : by using species-
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abundance alone, by using our clustering abundance alone for each number of clusters and by using
a concatenation of both for each number of clusters. This experiment allows to compare our method
to the baseline, but also to see if the combination of both information makes the results better. If so,
this might mean that both methods extract different features from the metagenome.

) Sel of metagenomes Set of reads Set of embedded reads Embeadding space
tion in
DNABERT-2 sdding
DNABERT-3
nbedding space Diagnostia
e Metagenome \ —_rr
Chustaring
ool ) Embedding
with FAISS Aggregation DeepSets  — —— DeepSets)
KMaans Centrold L L1
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Learning
Set of metagenomes Set of embedded reads Set of subsampled reads Clustersd subsamples
b) from all samples embedding space
Clustering
embedding
; space with
DNABERT-2 FAISS R
DNABERT-S KMeans
Diagnostic
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*
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vectors for Cluster ——rr Machina
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Fig.4. The Clustering Architectures : a) represents the Local Clustering method : each sample is inde-
pendently considered as a set of embedded reads and clusterized using KMeans algorithm from FAISS
implementation. The centroid of each cluster is then kept as a representative to produce a new subsample
bag that is classified with DeepSets. b) represents the Global Clustering method : a subsample of each
embedded metagenome is used to train a KMeans common to all the chosen dataset. Every embedding of
each sample is then assigned to its cluster, thus creating a new abundance vector based on embeddings
rather than species used for classification.

Subsampling Method The subsampling method is a simple baseline method that we tested in order
to make sure our local clustering method was relevant. To prove that our clusters were significant,
and their centroids were good representatives of the different parts of our metagenome, we also
tried selecting random reads from each of our samples, choosing as many as we had clusters and
treating these reads as if they were the centroids of our clusters. A sample is then represented by
a set of vectors and its dimensions are number of samples * embedding size. We expect to obtain
worse results with this method than with the local clustering method, thus showing that clustering
efficiently captures different relevant parts of our samples.
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Fig.5. The Subsampling Method : a random subsample is drawn from the set of reads, thus obtaining a
smaller set that we classify using a DeepSets network.

Classification from Metagenome Embedding

Once the aggregation methods have been applied, the resulting embedding can be utilized to train
a classification model. Two distinct scenarios can be considered based on the representation of the
metagenome.

— Single-Vector Representation: When employing Simple Aggregation or Global Clustering,
the metagenome is represented as a single feature vector. This allows for the application of
standard machine learning algorithms, such as Lasso regression, Random Forests, or Multi-
Layer Perceptrons (MLP) [35].

— Set-Based Representation (Multiple Instance Learning): On the other hand, the remaining
aggregation methods, local clustering and subsampling, yield a representation in which the
metagenome is characterized as an unordered set of feature vectors. This formulation aligns
with the Multiple Instance Learning (MIL) framework [36], wherein a sample is represented by
a collection of instances rather than a single feature vector.

To address this MIL problem, we adopt the DeepSets architecture [32]. DeepSets consists of
two neural networks, ¢ and p, separated by a permutation-invariant pooling layer. The first
network, ¢, processes each vector independently to extract relevant features. These extracted
features are then aggregated using the pooling layer, producing a global representation of the
metagenome. The second network, p, subsequently analyzes this global representation and
performs the final disease classification.

In both cases, we performed 10-fold cross validation and computed the standard classification error
for each experiment.

Global Clustering Pipeline with 10% data

A metagenomic sample consists of a vast collection of diverse reads, and our approach necessi-
tates a continuous balance between representativity and information aggregation. Embedding and
clustering all reads within each metagenomic sample demand substantial computational time and re-
sources. To improve efficiency and reproducibility, we explored a streamlined version of our method
by utilizing only a fraction of the data (10%) to assess whether comparable results could be achieved
relative to the full dataset : our global clustering model is trained using less than 10% of the available
data—specifically, 240,000 reads per sample for the cirrhosis dataset and 180,000 reads per sample
for the diabetes dataset. Subsequently, only 10% of the reads from each sample are assigned to the
resulting clusters, and cluster proportion vectors are computed based on this subset, rather than on
the full set of reads.
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Clusters Taxonomic Analysis

Our results suggest that the clusters identified by our method capture distinct dynamics compared
to those inferred from species composition. To further investigate this, we analyzed the content of
clusters in the T2D dataset derived from DNABERT2 under the global clustering setting with 2048
clusters. For each sample, we generated FASTA files for the 2048 clusters by mapping read assign-
ments back to the original sample FASTA files. We then used Centrifuge v1.0.4 to taxonomically bin
individual cluster reads to reference genome sequences from the UHGC1.0 catalog. Reads assigned
to species-level representative genomes were retained (min. 10 reads), from which cluster shannon

entropy was computed as:

Z(probGenomeBin x logy (probGenomeBin)

Where probGenome Bin is the ratio of the number of reads assigned to the Genome by Centrifuge
divided by the total number of reads assigned to species-level representative genomes. From this,
the mean value of the entropy for the 2048 clusters in each sample were retained as metric describing

the complexity of the sample in terms of sequence embeddings.

Results
Baseline Classification using Simple Aggregation

As a baseline, we performed classification on cirrhosis and diabetes datasets using the simple mean
of all vector representations. The results, presented in Tab. 2, indicate that while this approach pro-
vides some insights for cirrhosis, its performance is significantly lower compared to state-of-the-art
methods. This outcome is expected, as the aggregation process leads to substantial information loss
and fails to catch the diversity of the metagenome. Although the performances in classifying Type 2
Diabetes are weaker, they are better than could be expected when considering the difficulty of the
task and the State of the Art results.

Cirrhosis  Type 2 Diabetes

Accuracy DNABERT-2| 80.63% (2.56) 69.91% (2.31)
DNABERT-S| 82.3% (2.44)  70.94% (2.26)

AUC DNABERT-2|0.8797 (0.0210) 0.7711 (0.0219)
DNABERT-S|0.8827 (0.0206) 0.7860 (0.0232)

Tab.2. Performance of MetagenBERT-Aggreg on cirrhosis and type 2 diabetes using DNABERT-2 and
DNABERT-S embeddings. Metrics are Accuracy and AUG, in parenthesis is given the standard classifica-
tion error

Clustering methods allow valuable insights on microbiome dynamics
Local clustering methods compete with State-of-the-Art

As shown in Fig. 6, the local clustering method yields results that are competitive with state-of-the-
art approaches such as MetaML, PopPhyCNN, DeepMicro, MML4Microbiome, and EnsDeepDP on
the cirrhosis dataset. While performance is weaker for a small number of clusters, itimproves as the
number of clusters increases—enhancing the representativity of the sample until it reaches a plateau.
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The highest performance is achieved with 2048 clusters, with an AUC of 0.929 and an accuracy of
89.24%).

For the more challenging task of diabetes prediction, the best results are achieved with a smaller
number of clusters (128), generally outperforming other methods. In the best case, our approach
attains 80.28% accuracy and an AUC of 0.844. These findings suggest two non-exclusive conclusions.
First, the clusters generated by our method provide a different representation from species-based
approaches, which may be better suited for difficult classification tasks where species-level infor-
mation is insufficient. Second, the Transformer-based embeddings of reads, found in our centroids,
contain relevant features for classification, supporting the hypothesis that Transformers can capture
information relevant to the functional role of sequences in microbiome dynamics.

In general, we see the results obtained when using DNABERT-S are slightly weaker than with DNABERT-
2, although very close. We can only assume this means that DNABERT-2 creates more general em-

beddings in which some information different from the ones used to represent the specie of origin

are contained.
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Fig.6. Performance Comparison between various SOTA models and our MetagenBERT local clustering
classification. Local clustering results in comparable performance to SOTA models on cirrhosis and out-
perform them on Type 2 Diabetes. For cirrhosis, figure shows the importance of a high number of clusters
in prediction quality.

Global Clustering methods present a different source of information on microbiome
dynamics than specie abundance

As previously mentioned, we compared different configurations of our method against state-of-the-
art results, including classification using species abundance alone, our global clustering abundance
method alone, and a combination of both. We used a simple LASSO classifier, whereas other meth-
ods leverage additional sources of information — such as phylogeny in PopPhyCNN [17] and multi-
modal data in MML4Microbiome [18] — or more complex learning strategies, like CNNs or ensemble
learning in EnsDeepDP [19].

Our results indicate that, for a low number of clusters, the global clustering abundance method un-
derperforms due to an insufficient number of features to compete with species-based abundance.
However, as the number of clusters increases, it ultimately outperforms species abundance and
achieves performance comparable to state-of-the-art methods. These findings suggest that our
global clustering approach effectively captures important microbiome dynamics.



Additionally, using abundance features alone, rather than centroids, demonstrates that our method’s
performance is not solely reliant on the expressive power of Transformer-extracted centroids. In-
stead, the way reads are distributed within the embedding space also carries valuable information
for disease prediction. Lastly, we observe that combining global clustering abundance with species
abundance almost always improves classification performance, indicating that these two feature vec-
tors encode different and potentially complementary information.

We therefore conclude that MetagenBERT-Glob may represent a novel source of insight into micro-
biome data and can be used alongside species abundance to enhance our understanding of the
differences between healthy and diseased states.
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Fig.7. Performance Comparison between various SOTA models and Abundance, MetagenBERT-Glob and
the concatenation of both with LASSO model. MetagenBERT-Glob results in better performance than Abun-
dance alone and comparable to SOTA models when using a high enough number of clusters. Combining
both abundance and global clustering results in better performance than each by themselves, supporting
the idea that both carry different types of information. DNABERT-S embeddings result in better results than
abundance alone, but fall short to DNABERT-2 performances, especially for the harder task of Diabetes pre-
diction

Classification with a subsample of reads

We compare the results obtained using subsamples from our cirrhosis dataset to those obtained with
the local clustering approach to assess the relevance of the clustering step. The subsampling method
generally achieves poor results when using a small number of subsamples but improves as the num-
ber of reads increases. This is due to the fact that, when using a low number of samples,, there is a
high risk of omitting important regions of the metagenome or overemphasizing non-relevant parts
when the number of subsamples, this risk decreases when the number of subsamples increases.

A similar dynamic is observed in the local clustering results. However, the performance achieved
with subsampling remains nonetheless lower, acknowledging the importance of the clustering step
in our approach.

MetagenBERT-Glob remains accurate even when using a lower amount of data

As shown in Fig. 9, MetagenBERT-Glob achieves robust performance even when applied to a fraction
of the available read embeddings, without a substantial decrease in AUC. Across both datasets, and
regardless of whether DNABERT-2 or DNABERT-S embeddings are used, results remain stable for ev-
ery number of clusters. This resilience can be attributed to the compositional nature of the resulting
representation: given the high number of reads per metagenomic sample, a representative subset is
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Fig.8. Performance Comparison between the local clustering method and the subsampling method. Al-
though the performance increases with the size of the subset, we see that the local clustering method still
outperforms this method, underlining the relevance of the clustering process

sufficient to preserve the integrity of the embedding. This property significantly enhances the scala-
bility of our approach and reduces computational demands, making it more practical for large-scale
metagenomic analyses.
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Fig.9. Comparison of Prediction performance when using MetagenBERT-Glob with all reads assigned and
with only 10% assigned

Clusters analysis on a taxonomic and functional level

As we can see on Fig. 10, analysis of the clusters identified by our MetagenBERT-Glob algorithm re-
veals variations in the mean entropy of individual clusters across different groups, exhibiting trends
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similar to those observed in the number of genomes identified using Centrifuge. Furthermore, a
proportional relationship appears to exist between cluster entropy and the number of genomes re-
trieved within a sample. These observations support the notion that the clusters generated by our
method capture meaningful microbiome dynamics, potentially reflecting underlying diversity and

functional characteristics.
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Fig. 10. Analysis of Clusters composition obtained when using MetagenBERT-Glob with DNABERT-2 embed-
dings and 2048 clusters on Type 2 Diabetes (T2D) dataset. A) Mean entropy of clusters depending on their
group. B) Mean number of genomes retrieved. C) Scatterplot of samples per group comparing their mean
entropy and number of genomes retrieved

Discussion

In this study, we introduced MetagenBERT, an end-to-end, species-agnostic framework leveraging
foundational DNA language models to classify diseases from raw metagenomic reads. Our results
demonstrate that embedding millions of DNA reads with DNABERT-2 and DNABERT-S, followed by
tailored aggregation strategies, yields classification performance comparable to or exceeding state-
of-the-art models, especially in complex cases such as type 2 diabetes. Notably, the local clustering
approach captures latent structure in the metagenome that appears more predictive than species
abundance alone, suggesting that transformer-derived embeddings encode biologically meaningful
features beyond taxonomy—potentially reflecting functional guilds, compositional biases, or strain-

level genomic patterns.

Meanwhile, the MetagenBERT-Glob method constructs alternative abundance profiles that comple-
ment traditional species-based ones, with performance improving as the number of clusters in-
creases. This synergy between taxonomic and embedding-based representations hints at orthog-
onal and biologically relevant information being captured by the transformer space. Importantly,
the observed gains in prediction are not solely due to the expressive power of DNABERT-derived
centroids, but also from the topology of the embedding space itself, as shown by the effectiveness

of cluster-based abundance vectors.

While promising, our approach comes with limitations: the computational cost of embedding and
clustering tens of millions of reads remains significant - although our results with only a fraction of the
data show encouraging possibilities in simplifying the process by not embedding all the reads. More-
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over, the interpretability of transformer embeddings is limited, and the datasets used—although
standard—comprise relatively few samples, which could affect generalization. Future work will fo-
cus on scaling the method, improving biological interpretability (e.g. deeper functional annotation of
clusters), and extending the framework to other microbiome types or multi-omics integration.

While Transformer-based models for read embedding, such as DNABERT-2, have demonstrated im-
pressive performance, the field is rapidly evolving, with novel architectures and pretraining strate-
gies emerging regularly that may yield even more informative embeddings. Notably, DNABERT-2 is
trained on a diverse set of species, including humans, various animals, viruses, and fungi. This broad
training scope, while valuable, may not optimally capture the unique characteristics of metagenomic
sequences. Thus, there is potential in developing a model pre-trained specifically on metagenomic
datasets, which could provide embeddings better suited for this domain.

We emphasize the complexity of our embedding space: each metagenome consists of tens of mil-
lions of reads, embedded here in a 768-dimensional vector space. For clustering, we initially em-
ployed the K-Means algorithm due to its simplicity and scalability. However, K-Means relies on Eu-
clidean distance, which may encounter some issues in high-dimensional spaces due to the curse
of dimensionality [37]. This phenomenon often causes distance metrics to lose their discriminative
power, potentially impairing clustering performance. To address this limitation, we propose explor-
ing more suitable alternatives for high-dimensional clustering. In particular, HDBSCAN [38], a hierar-
chical density-based algorithm, offers improved sensitivity to varying local densities and is generally
more robust than K-Means in complex data landscapes. Additionally, subspace clustering techniques
such as CLIQUE or PROCLUS [39] [40] may uncover structure within meaningful low-dimensional sub-
spaces of the embedding space. Spectral clustering [41] also presents a compelling approach, espe-
cially when preceded by dimensionality reduction techniques such as PCA or UMAP. However, our
tests in reducing dimension with PCA showed low variance when dividing dimension by a factor of 3
to 12, suggesting the dimension reduction loses many valuable features and information.

Furthermore, in the case of MetagenBERT-Local, we decided to address the Multiple Instance Learn-
ing problem with the DeepSets architecture. We want to point out that this architecture can face
some issues like aggregation bottlenecks or lack of pairwise interaction. To better capture the struc-
ture of our clustered space, we suggest using more modern networks such as Set Transformers [42],
Graph Neural Networks [43] and PointNet++ [44].

Additionally, we envision that MetagenBERT could serve as a building block for more interpretable
and functionally grounded microbiome diagnostics, particularly in clinical contexts where species-
level methods fall short. Overall, our results suggest that language-model-based embeddings rep-
resent a novel and promising axis of representation for metagenomic data, capable of enriching or
even transcending conventional microbiome analysis pipelines.
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Abstract

Microbial translocation occurs when bacteria migrate from the gut to the blood due to gut
barrier alterations, potentially triggering persistent immune activation and affecting immune
responses. Translocation can be studied using whole blood RNA sequencing techniques to
analyze the “metatranscriptome”: all the RNA from bacteria, viruses and fungi from the blood.
However, a key challenge is reusing cohort data, which primarily consists of human sequences,
to characterize the non-human meta-transcriptome. Cohort studies typically focus on human
data while minimizing non-human contamination. From a translocation perspective, these non-
human sequences become the focus, requiring human sequences to be filtered out, leaving a
small fraction (~2%) to be analyzed. In previous work, Nganou-Makamdop et al. (1) used a
sequence assembly-based pipeline for translocation analysis. We compared this approach with
an assembly-free method and found that integrating both strategies into a “hybrid” pipeline
improved classification performance in simulations. While real-data validation remains

challenging, our results suggest this hybrid strategy enhances microbial translocation analysis.

(1) Nganou-Makamdop K, Talla A, Sharma AA, Darko S, Ransier A, ..., Douek DC. Translocated microbiome
composition determines immunological outcome in treated HIV infection. Cell. 2021 Jul 22;184(15):3899-
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Abstract

Modeling microbial interactions as sparse and reproducible networks is a major challenge in
microbial ecology. Direct interactions between the microbial species of a biome can help to
understand the mechanisms through which microbial communities influence the system. Most
state-of-the art methods reconstruct networks from abundance data using Gaussian Graphical
Models, for which several statistically grounded and computationally efficient inference
approaches are available. However, the multiplicity of existing methods, when applied to the
same dataset, generates very different networks. In this article, we present OneNet, a consensus
network inference method that combines seven methods based on stability selection. This
resampling procedure is used to tune a regularization parameter by computing how often edges
are selected in the networks. We modified the stability selection framework to use edge
selection frequencies directly and combine them in the inferred network to ensure that only
reproducible edges are included in the consensus. We demonstrated on synthetic data that our
method generally led to slightly sparser networks while achieving much higher precision than

any single method. We further applied the method to gut microbiome data from liver-cirrhotic
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patients and demonstrated that the resulting network exhibited a microbial guild that was

meaningful in terms of human health.

Highlight

Exploring how microbes interact within our intestines is a fascinating challenge at the interface
of microbial ecology, bioinformatics, and biostatistics. These interactions shape microbiota
composition and influence host health, yet inferring microbial association networks remains
methodologically challenging. Each year, new computational approaches for network inference
are proposed, yet different methods applied to the same dataset often yield inconsistent results,

with no consensus on the best approach.

Our study introduces OneNet a new approach that combines seven methods to create a unified,
more robust microbial network. On simulated data, OneNet demonstrated improved accuracy
and reduced network complexity compared to individual methods. Applied to real gut
microbiome data from liver cirrhosis patients, our approach identified a cirrhotic cluster—
composed of bacteria associated with degraded clinical status—highlighting its potential to

better understanding of the role of the gut microbiota on health.

By bridging statistical modeling, validated on both simulated and experimental data, and
biological interpretation, this work contributes to advancing microbiome network-based
research. It offers a flexible framework that can be leveraged by the JOBIM community to
enhance our understanding of host-microbiota interactions and allows applications to other

high-dimensional omics datasets.
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Abstract

Bioinformatics is increasingly used in various scientific works. Large amounts of heterogeneous
data are being generated by scientific teams or laboratories for research purposes. Sequencing
and other biological data are difficult to interpret and analyze effectively without dedicated and
adapted tools. Several software tools have been developed to facilitate handling and analyses
of these types of data. The Galaxy project web platform is one of these software tools that allow
free access to users and facilitates the use of thousands of bioinformatics tools. Other software
tools like Bioconda or Jupyter Notebook make it easier to install tools and their dependencies
for bioinformatics scripts or to offer a user-friendly web interface. In addition to these tools, we

can mention RStudio which is an integrated development environment (IDE) facilitating the use

87


mailto:dcouvin@pasteur-guadeloupe.fr

of R scripts. The aim of this study is to provide some guides (or helpers) to the scientific
community to perform some bioinformatics or biostatistics analyses in a simpler manner. We
also try with this work to democratize well-documented software tools to make them suitable
for both bioinformaticians and non-bioinformaticians. We believe that user-friendly guides and
real-life/concrete examples will provide end users with suitable and easy-to-use methods for
their bioinformatics analysis needs. Furthermore, tutorials and examples of use will be available
on our dedicated GitHub repository (https://github.com/karubiotools/AnssBin). These
tutorials/examples (in English and/or French) could be used as pedagogical tools promoting
bioinformatics analyses and potential answers to some bioinformatics needs. Platforms and/or
services play an important role in helping scientists with their bioinformatics data analysis work.
These facilities are the cornerstone of bioinformatics capacity building in the overseas islands

and support the growth of nascent networks such as KaruBioNet.
Sections of the main text
Introduction

Data analysis is a key method requiring constant updates and adaptations. Several bioinformatic
studies depend on robust data analyses and statistical methods to draw significant conclusions and
allow a clear understanding of the topic studied. Heterogeneous data is collected at a rapid pace in
different laboratories around the world. Regarding the broad field of biology, DNA sequencing data
represents a significant part of the biological data analyzed. Various areas and approaches can be used
to better understand real-life data, such as metagenomics/metabarcoding, genome assembly and
annotation, comparative genomics/data visualization, and gene or motif prediction (among others).
Bioinformatics can be used to better understand public health issues such as antibiotic resistance in

various pathogens (Escherichia coli, Klebsiella pneumoniae, Mycobacterium tuberculosis...) [1,2].

Several software tools have been developed to facilitate handling and analysis of biological data
such as SPAdes for genome de novo assembly and Prokka for prokaryotic genome annotation [3,4].
Concerted actions and developments are being performed to improve the usability of various software
tools. On the other hand, simple statistical analyses can be performed using the R software. Some
tools have been developed and maintained by a wide community of developers. The Galaxy Platform
is a good example of an open-source web tool curated by a large community of scientists [5]. Many
Galaxy instances are available for free worldwide (e.g. https://usegalaxy.eu/, https://usegalaxy.fr/,
https://galaxy.pasteur.fr/, etc...). Furthermore, Galaxy provides free and easy access to thousands of
bioinformatics tools. Other software tools like Bioconda (https://bioconda.github.io/) [6] or Jupyter

Notebook (https://jupyter.org/) make it easy to use command lines to run bioinformatics scripts
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directly through a terminal or using a web interface. Efforts are also being made to better describe
software tools and other digital life-science resources. A concrete example is the bio.tools platform

(https://bio.tools/) [7].

The UNIX environment is ideal for performing bioinformatics analyses. Virtual machines are important
tools allowing simplified use and access to bioinformatics codes. Several computer codes and
programs are already available on these operating systems. Although Microsoft Windows is a well-
used operating system, it does not allow for a command-line interface as intuitive and flexible as that
of Unix/Linux (for which many tools have been developed). The purpose of this work is to provide some
guides (tutorials/examples) to people wishing to perform certain bioinformatic or statistical analyses
in an easy way. Some examples of bacterial genomics and metagenomics analyses are shown in this
study. Our GitHub repository aims to bring together a huge amount of potentially useful information
regarding bioinformatics and biostatistics in one place (in French and/or English). With our approach,
we also intend to promote capacity-building in bioinformatics and growth of local bioinformatics

platforms like KaruBioNet [8].
Methods
Programming languages

Various programming languages were used to develop specific software tools in function of different
laboratories' needs. Some languages and tools were better used for statistical analyses (e.g. R language
via RStudio). Other languages, such as C/C++ and Java, have been used to build fast-running algorithms.
Furthermore, languages such as Perl and Python have been used to develop programs using a wide
variety of secondary modules/libraries and to easily manipulate bioinformatics input/output files. A
library like Biopython is notably intensively used for biological sequence analysis. Finally, Bash scripting

language could be used to easily run programs or codes in the terminal.

Language Pros Cons
- High performance & efficiency - Complex syntax
C/C++ - Fine control over memory - Manual memory management
- Widely used in system programming & - Harder debugging
game dev
- Platform-independent - Slower than compiled languages
Java - Strong memory management - Verbose syntax
- Large ecosystem & libraries - Requires Java Virtual Machine (JVM)
- Strong text processing capabilities - Readability issues
Perl - Versatile and fast scripting - Less modern usage
- CPAN module library - Slower than compiled languages
Python - Easy to learn & read - Slower execution speed
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- Extensive libraries - High memory usage

- Great for Al, ML, & data science - Not ideal for mobile development
- Best for statistical computing - Slower execution speed
- Rich visualization tools - Less suitable for general programming

- Steeper learning curve for non-

- Stron k tem e
Strong package ecosyste statisticians

Tab. 1: Comparison table of some popular programming languages (C/C++, Java, Python, Perl, and R).
Workflow management systems

Creating a workflow enables you to define a pipeline, i.e. a set of steps (or processes) that always
follow each other in the same order, with the same structure of inputs, outputs and defined
parameters. Thus, if someone recovers a workflow from a previous analysis and uses the same
identical input data in the workflow, it will produce identical output results (only if its working
environment is stable, as mentioned above). An example of a workflow framework is Nextflow

(https://www.nextflow.io/docs/latest/basic.html). Nextflow is a workflow manager which is also using

containers to ensure efficient operation and reproducibility [9]. Nextflow is based on a succession of
independent processes each having input and output. Each process can communicate with the other
via channels. Snakemake (https://snakemake.readthedocs.io/en/stable/index.html) is also another

workflow management system with a Python based language [10].

Programming languages, software tools and workflow languages were used to illustrate examples that
could be used for bioinformatics data analysis. Figure 1 illustrates some platforms, facilities and tools

that could be used to perform bioinformatics and biostatistical analyses.
Galaxy platform

Freely accessible online platforms such as the Galaxy Community Hub (https://galaxyproject.org/)

make it much easier for novice scientists and students to use bioinformatics tools. This open-source
platform offers a wide range of services, from data analysis and workflow implementation to training
and  education for scientists. Related pages such as the Galaxy Training

(https://training.galaxyproject.org/training-material/) offer structured learning environments and

inspiring tutorials for setting up bioinformatics analysis step by step.

90


https://www.nextflow.io/docs/latest/basic.html
https://galaxyproject.org/
https://training.galaxyproject.org/training-material/

il é ) @\\\
Java 9

\
ﬁ Python  @Perl [ @BASH |
Programming et b /
languages / /4
Algorithms HTML CES

Development
environments
/ Package
managers /
Worlflows

Software tools /
applications for
bicinformatics S .. =

workined manacer analyses / 1 *

S trainings R
Jupyter - nexiflow..
.\-/ docker

= clixir )

Galaxy ﬁm. tools « /

e -
el S S

TR

Fig. 1: Overview of platforms, facilities and tools used for bioinformatics analysis.
Results and Discussion
Long-read sequences analysis with Nanopore MinlON

Nanopore sequencing is a third-generation sequencing approach providing long-read sequencing. It
allows the sequencing of polynucleotides in the form of native DNA or RNA. This sequencing
technology is widely used in many laboratories (although other long-read sequencing technologies are
also available like Pacific Biosciences). The MinlON (https://nanoporetech.com/products/minion) is
one of the Nanopore sequencing devices and provides portable, real-time, flexible, and powerful

sequencing.

The FASTQ genomic reads generated can then be processed for de novo genome assembly using tools
such as Flye or Dragonflye (among others) [11]. If lllumina short-reads are also available, hybrid
assembly software tools such as Unicycler [12] can be used to complement the long-reads. For deeper
analyses, several dedicated bioin-formatics tools could be used from the Oxford Nanopore
Technologies GitHub repository (https://github.com/nanoporetech). Basecalling and demultiplexing
of the raw fast5/pod5 files can be performed directly using the MinKNOW software
(https://nanoporetech.com/about-us/news/introducing-new-minknow-app). However, dedicated
software tools can be used for basecalling: Guppy
(https://timkahlke.github.io/LongRead_tutorials/BS_G.html) or the newest released version Dorado
(https://github.com/nanoporetech/dorado) or Deepbinner (https://github.com/rrwick/Deepbinner)

[13]; and for demultiplexing, the EPI2ME software tool provided by Oxford Nanopore Technologies can
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be used (https://labs.epi2me.io/). Guppy can also perform the demultiplexing step in real time. Once
the sequence reads have been obtained and split into each barcode, software tools dedicated to
performing the quality control of the data, such as pycoQC (https://a-slide.github.io/pycoQC/) [14],
are used. Note that these quality control tools have been made available in our Galaxy instance. Figure
2 shows a simplified workflow for sequencing and processing data using the Nanopore MinlON

sequencer.

Specimens collected DA extraction MinlONM sequencing Driver

S Q&a —_— ’/

i

Basecalling

Sequencing information produced
can then be used in multiple data
analysis pipelines

N e

saquencing_summary it

! lity Chacki o &
barcoding_summary.txt Qiality ng

Fig. 2: MinlON sequencing and data processing workflow.
GitHub repository for capacity building and local training

Development of specific bioinformatic training materials and software is a key step for a better
understanding of real-life data surrounding us. Over the past three years, several training courses have
been set up in Guadeloupe to address the analysis of massive biological data from the island's various
ecosystems (marine, hospital, urban or rural, etc.), using a One Health approach. These data (generally
derived from high-throughput sequencing) are often studied using prokaryotic/eukaryotic genomics,
metagenomics or transcriptomics tools. Figure 3 shows some facilities, bioinformatics and biostatistics

themes and tools that could be used during training sessions.
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Conclusion

In summary, we present a GitHub repository (https://github.com/karubiotools/AnssBin) designed to

provide clear and accessible guides for non-bioinformatics users interested in performing their own
analyzes. Our repository features a learning framework that emphasizes practical examples. We aim
to continually improve this repository by adding more examples and tutorials that address the specific
needs of bioinformatics and biostatistics analyses. In the meantime, we also intend to promote
capacity-building in bioinformatics and growth of local bioinformatics platforms like KaruBioNet in

French overseas territories (http://www.pasteur-guadeloupe.fr/karubionet.html).
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Abstract

Favoured by global changes, freshwater cyanobacterial harmful blooms (HCBs) generate increasing
ecological, economical and public health challenges. Microcystis, one of the most pervasive genera of
cyanobacteria, grows within a phycosphere where specialised interactions with its microbiome occur,
and are suspected to influence bloom appearance and its potential toxicity.

Through metagenomic, metabolomic and metabolic modelling, we characterised twelve Microcystis
phycospheres cultured after isolation from a French pond. Metagenomics revealed that associated
bacteria introduce new functions to the phycosphere, while functional redundancy within and across
communities remains. Metabolic reaction presence in Microcystis is consistent with their genospecies,
whereas community-level metabolic landscape diverges from cyanobacteria’s phylogeny. On the other
hand, metabolomic results lean on metabolic output led by cyanobacteria. Metabolic modelling and
identification of toxic secondary metabolites biosynthetic gene clusters further highlighted differences
between phycosphere metabolic capabilities and the importance of manual curation of secondary
metabolism in metabolic networks. These findings deepen understanding of Microcystis’ phycosphere
functioning, demonstrate the relevance of multi-omics systems biology approaches, and lay the ground
for further characterisation of freshwater HCB’s microbial interactions and inter-species

complementarity.
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Abstract

Graph algorithms are essential tools for network analysis in various domains, including biology. Despite
successful applications to metabolic networks, including several developments specific to these
models, few implementations are openly available. Furthermore, the exchange format adopted for
most genome-scale models is incompatible with the main generic graph-analysis libraries. We present
Met4J, an open-source library dedicated to the structural analysis of metabolic models and their
manipulation, as well as a toolbox encompassing implementations of analyses relevant to metabolism-
related research. We exemplify the potential of Met4J by creating a workflow for the construction and
analysis of a holobiont network. Met4J’s source code, executable JAR and containers are available at
https://forgemia.inra.fr/metexplore/met4j and the library artifact is accessible through the Maven

central repository. High-level applications are also available on a Galaxy interface.
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Abstract

Climate change is intensifying summer droughts in Europe, significantly affecting plant growth and crop
yields.The flowering of maize happens during this high-risk period, and the water deficit stress results in
kernel abortion among other consequences, seriously impacting yield. Understanding the genomic basis of
maize responses to water deficit is therefore crucial for agricultural adaptation. Plants regulate gene
expression in response to environmental changes through signaling pathways, where transcription factors
(TFs) interact with cis-regulatory elements (CREs). Two main categories of CREs exist: (i) proximal CREs, or
promoters, and (ii) distal CREs (dCREs), which include enhancers and silencers. dCREs can regulate multiple
genes across various cell types and influence gene expression in a complex, context-dependent manner.
While promoters have been extensively studied, dCREs remain underexplored in maize due to genome
assembly challenges and the absence of specific epigenetic markers. However, recent technological
advances, including long-read sequencing and the discovery that most maize dCREs are unmethylated,
facilitate their identification and functional characterization.

Traditional gene regulatory network (GRN) analyses rely on co-expression networks, which assume that TF
effects are directly correlated with their expression levels. To address this limitation, we propose a co-
regulation approach that considers the physical interaction potential of TFs with CREs and the correlation
between the expression of target genes regulated by the same TF.

Our study focuses on identifying dCREs involved in maize responses to water deficit in the reference inbred
line B73. We constructed an initial regulatory network using methylation data and genome annotation,
which was refined using message-passing-based inference to generate tissue- and condition-specific
networks. Comparative analysis revealed differential gene regulation across tissues, particularly in leaves,
where genes associated with photosynthesis and stress responses were significantly affected. These findings
highlight the utility of CRE-based networks for identifying key regulatory elements in maize drought

responses.

Introduction

Climate change is increasing the risk of summer droughts in Europe, affecting plant growth and
development. The flowering of maize happens during this high-risk period, and the water deficit stress

results in kernel abortion among other consequences, seriously impacting yield [1]. Moreover, different
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maize lines exhibit various degree of tolerance to a similar water deficit, a trait that is polygenic, and often
inversely correlated to yield performance. This suggests that there is still space for water deficit tolerance
improvement in elite maize lines used to produce the cultivated maize hybrids. As the second most
cultivated crop in Europe, understanding the complex mechanisms governing environmental stress
response of maize and their genomic bases is thus of agricultural and economical interest.

Plants respond to their environment thanks to signaling pathways that alter the regulation of gene
transcription, ultimately affecting plant phenotypes. Last effectors of the response, transcription factors
(TFs) bind to cis-regulatory elements (CREs) and interact with the transcription machinery to modulate
target genes expression level. Cis-regulatory elements are thus good candidate to explain differences in
response to water deficit. In plants, two main categories of cis-regulatory elements (CREs) can be
distinguished: (i) proximal CREs, which correspond to promoters, and (ii) distal CREs (dCREs), located more
than 2 kb from the transcription initiation site, that encompass both the enhancers and the silencers, which
respectively increase or decrease the transcriptional activity of their target genes. A single dCRE can
regulate different genes in different cell types. Conversely, a gene can be regulated by multiple dCREs [2]. In
maize, it is estimated that 34% of dCREs potentially regulate multiple genes simultaneously, and 25% to 40%
do not target the nearest gene [3]. The interactions between TFs and genes through CRE are thus the basis
of a complex network that can be rewired in response to environmental cues such as water deficit.

While promoters are well studied for their role in gene expression regulation, dCREs play a major role in
controlling plant development [2] and environmental responses by regulating gene expression over time in
a cell-type-specific manner [4]. However, dCREs remain an unexplored component of transcriptional
regulation in maize response to environmental factors, due to both the difficulty to assemble the maize
repeats-rich intergenic regions and the lack of specific epigenetic marks. Advances in long-read
technologies, and the recent discovery that most maize dCRE are unmethylated [6] opened up a path to
identify them.

Assessing the effect of TFs in gene regulatory networks and their role in response to environmental cues
remains mostly achieved by building co-expression networks. While being accessible, requiring only gene
expression data, this method presents limits. Indeed, because it focuses on expression data, it relies
strongly on the hypothesis that the effects of TFs are correlated with their transcription level, which has
been invalidated [9,10]. In this study we propose a co-regulation approach which is not based on the
correlation between regulator and target but on the possibility of regulator to bind a CRE nearby its
potential targets, and on the correlation between the expression of the different targets of a same
regulator.

Here, we present an approach aimed at identifying dCREs involved in the regulation of gene expression
under water deficit conditions in the maize reference inbred line B73. A prior was built using methylation

data and genome annotation. This network was then refined through message-passing-based inference to
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generate tissue- and condition-specific networks. By comparing condition- and tissue-specific networks, we

identified genes and functions whose regulation was affected by watering conditions.

Materials and Methods

Biological material

Expression data
In this study we used genomic, transcriptomic and epigenetic data from the maize reference line B73, part

of the dent genetic group, from the Corn Belt (United States). The samples used for the mRNA data
correspond to five tissues: internodes, ears, mature leaves, panicles, and silks; under two water conditions:
no stress (well-watered, WW) and water defict (WD). Three biological replicates were sequenced for every
tissues and conditions, totaling 30 samples. All the tissues were sampled at the same developmental stage,
at pollen shed, corresponding to the flowering of the tassel, the male flower.

Tissues were sampled and RNA was extracted and sequenced according to the protocol described in Fagny
et al., 2021 [3]. Also the RNA-seq data were pre-processed and aligned following the method described in
Fagny et al., 2021 [3], but using the Zm-B73-REFERENCE-NAM-5.0 assembly of the B73 maize genome.

The expression data were normalized using the SNAIL method [5]. This quantile-based normalization
approach operates in groups, allowing the normalization of a dataset containing samples from different
tissues while preserving the tissue-specific gene expression distributions.

Methylation data

To identify low methylation region, we used already published analyse pipeline from Crisp et al., PNAS,
2020[6], on our own bisulfite sequencing data set. Bisulfite sequencing convert unmethylated cytosines into
uracil. After replication, the uracils are replaced by thymines, while only methylated cytosines are preserved
in the sequences [7]. After replication, the uracils are replaced by thymines, while only methylated
cytosines are preserved in the sequences. This alteration allow to identify unmethylated region (UMRs) by
mapping the reads using bsmap[8]. The predicted dCREs are low-methylation intergenic sequences, so genic
and promotor regions were removed from the dataset using the Zm-B73-REFERENCE-NAM-5.0 assembly.
Transcription factors data

The PlantTFDB website (https://planttfdb.gao-lab.org) is a database that catalogs transcription factors (TFs)
for various plant species, including maize, along with their binding motifs. For maize, 259 TFs are listed. In

addition to this data, binding motifs from Jaspar (https://jaspar.elixir.no), are also included, totaling 98

motifs for maize. Among these, 8 were already present in the PlantTFDB database. The detection of TFBS
was done using FIMO from the MEME suite [11] on promotor and UMR sequences. The detected sites were
considered significant if their Benjamini-Hochberg adjusted p-value was below 0.05 (5% false discovery
rate). This TFBS detection was performed on promotors and dCRE separately.

Network inference

The NetZooPy package [12] is used to infer and analyse gene regulatory networks. The package notably

includes the PANDA algorithm [13], which generates a weighted graph based on three types of data: a gene
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co-expression matrix, a protein-protein interaction matrix between transcription factors (TFs), and a prior
listing all possible TF-gene regulations relationships. The result represents the regulatory relationships
between TFs and genes at an organism scale, across all considered samples. To achieve this, PANDA
initializes the regulatory network based on the prior, which corresponds to all possible interactions in the
maize lineage. The edge weights of this initial network are then updated using a message-passing
procedure.

The LIONESS algorithm [14] produces tissue-condition specific networks through a linear combination of
two PANDA networks: the complete network, with all samples, and a network excluding a sample
corresponding. This process is repeated for each sample, resulting in a final matrix where each edge is
assigned a weight for each sample. The weights can either be positive or negative, as they represent the
contribution of the sample to the complete network. Positive edges thus show greater regulation by
transcription factors on genes in the sample than in the complete network, while negative edges show
lower regulation.

Prior

We built the prior network using all CRE. Promoter’s target genes were immediately deduced from the
genome annotation. The non-genic UMRs that contained at least one predicted TFBS were considered as
potential dCREs, and their candidate target genes were all the genes being located at less than 100 kb. This
threshold was chosen based on the results of Lu et al. 2019 Nature Plants [ 15], that shows that most dCRE
are located at about 60kb from transcription initiation site in maize.

Differential targeting analysis

Differential targeting analysis was performed using a generalized linear regression model and implemented
using the R Bioconductor limma package [16]. In this analysis, for each gene in the network, we defined the
indegree as the sum of the edges in the regulatory network targeting the gene, and we compared them
between the two watering conditions. The genes were considered differentially regulated if their Benjamini-
Hochberg adjusted p-value was below 0.05 (5% false discovery rate). The Fold Change (FC), usually
generated in differential analysis, is here used as indicative of the differences in regulations: logFC> 0 were
classified as more regulated in WD, and logFC < 0 were classified as more regulated in WW.

Those analysis are associated with a t-statistic, based the logFC and its standard error. This statistic is used
as a rank for genes in the fgsea analysis for gene ontology enrichment.

Gene ontology enrichement

Gene ontology enrichment analyses were performed using the FGSEA (Fast Gene Set Enrichment Analysis)
[17] algorithm implemented in the fgsea R package. Genes were ranked based on their t-statistic. The
functions were considered differentially regulated if their Benjamini-Hochberg adjusted p-value was below

0.05 (5% false discovery rate).
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Results

Prior and data description
In order to infer tissue- and condition-specific networks, we first built a prior regulatory network that

combines regulation from both types of CRE without distinguishing the source of the TFBSs (see Material
and Methods). It includes a total of 37,277 genes and 35,185 UMRs, for around 70k regulatory sequences
and 79 different motifs (Tab. 1). It leads to a total of 206302 edges between TFBSs and genes. The figure
showsWe observe a great variation in the number of TF targeting each gene, with an average of 23 TFs
targeting a given gene and a median at 26 TF (Fig. 1).

Conversely, some TFs were more connected in the prior network than others (Fig. 2). The proportion of CRE
containing the different TF shows great variations from 1.4x10° % to 50.5 % (Fig. 3). Comparing these
proportions to the number of targeted genes, The 4 TFs presenting the highest number of regulations are in
the 6 most abundant TFs in the network.

Expression data analysis

With the previously described prior, expressions data are second type of data used for the network
inference. We obtained normalized gene counts for five tissue in two watering conditions and three
replicates (see Material and Methods). We first visualized these data performing a principal component
analysis (PCA) and a correlation matrix analysis.

The figure shows a PCA of the expression data, with each dot corresponding to a different sample. The PCA
clusters expression profiles by tissue. This global analysis reveals a tissue-specific organization of gene
expression. The correlation matrix of the expression data shows a higher correlation between samples from

the same tissue.

Analysis of B73 network inferences

Global analysis of tissue-specific networks
We obtained sample-specific regulatory networks using PANDA to infer a global summary network, and

LIONESS to infer sample-specific networks, both from the NetZoo suite. The edges of these tissue-specific
networks can have either negative or positive weights. In the context of a specific edge in a specific sample,
a negative weight indicates a reduction in regulation compared to the global network, while a positive
weight indicates an increase. To ensure that the inferred networks accurately represent the specific
response of the different combinations of tissues and conditions, we performed preliminary analyses. These
included PCA and Spearman correlation analyses of sample-specific network edges.

Fig. 5A shows that the PCA clusters networks by tissue. This global analysis of the networks highlights a
tissue-specific organization of regulation. The correlation matrix of the networks shows a higher correlation
between samples from leaves, silks, and tassels, each forming distinct groups. Moreover, for leaves, both
the PCA and the correlation matrix distinguish the two watering conditions, separating them in the PCA and

associating them with lower correlation values.
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Because we were particularly interested in the role of dCRE, we extracted the edges associated with them
from the sample-specific networks, without the promoters. The PCA and correltion matrix restricted to the
dCRE regulations show similar results of those of the global network.

From expression to regulation profiles, leaves, silks, and tassels maintain their tissue specificity, as visualized
in the PCAs and correlation matrices. However, for ear and internode networks, this pattern is less clear,
with only slightly higher correlations within the same tissue compared to others.

Differential targeting between WW and WD by tissue

The significance of regulatory changes was assessed through a differential analysis of edge weights between
both watering conditions. Although a large number of edges changed between the two conditions, only 7%
were significant in the leaf, and 0,001% in the tassel. These tissues shared 3 significant edges. For other
tissues no edges presented significant variations. Considering this result, the next sections will focus
exclusively on leaf data.

The differential targeting analysis of regulatory relationships showed that only a fraction of regulations is
significant to each tissue (Fig 6A). The scatterplot in Fig 6B compares edge weights between both watering
conditions. Each dot represents an edge. Dots in red or blue correspond to significant regulatory variations
of a TF on a gene depending on water conditions. Red dots indicate an increase in regulation under water
deficit conditions, while blue dots indicate a reduction. To identify functions affected by drought, we
examined genes and their targeting scores, summing all regulatory edge weights per gene (indegree). As in
LIONESS networks, a negative value indicates a reduced regulation, positive values an increase. Indegree
values ranged from -1040 to 2288 across all networks and from -3017 to 6252 for dCRE-only networks.
Comparing these scores between watering conditions with limma identified 4k genes with significant
targeting variations in leaves. The differential analysis identified 4023 genes differentialy regulated in leaves,
and 16 tassels. Those tissues shared 1 significant gene. No differentially regulated gene was identified for
the other tissues.

The Fig 7 compare the difference in expression and regulation using the water deficit condition as refrence.
When the difference in regulation is positive, it show more regulation in the WD condition, (same with
expression level).Increased targeting in WD is thus associated with a decreased expression, and decreased
targeting with an increased expression. For both dCRE-only and CRE regulations, the regulation differences
primarily indicate inhibition mechanisms.

A gene ontology enrichment of the leaves results analysis, using fgsea, identified 28 enriched terms
including functions linked to photosynthesis, a function known to be altered by water deficit:
photosynthesis (G0O:0015979, p-value = 5,6x107%), light reaction (GO:0019684, p-value = 7,9x10%).
Responses to environmental factors were also enriched, including abiotic response (GO:0009628, p-value =
2,0x107), and response to temperature stimulus (GO:0009266, p-value = 1,1x10?). Endogenous responses

like response to hormone (GO:0009725, p-value = 2,3x10%) were also enriched. A similar analysis based
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solely on dCRE regulations showed enrichments for 6 terms, including those related to photosynthesis and

response to abiotic stress but not the ones related to endogenous response.

Discussion

This study, based on an analysis of gene regulatory networks derived from CRE regulation, aimed to capture
differences in gene regulation in response to water deficit across various maize tissues. The inferred
regulatory networks are tissue-specific, showing high correlation within tissue groups, particularly in silks,
tassels, and leaves. The latter two exhibit differentially regulated genes, particularly in leaves. Focusing on
the leaves, the relevance of the analysis is underlined by the gene ontology enrichment that revealed terms
associated with photosynthesis and stress response. These findings highlight the relevance of using CRE-
based networks to identify target genes involved in water deficit response, showing coherent regulations .
Because the prior network is based on the possibility of interaction of TF with target genes, it is highly
dependent of the detection of these TFs. Some of them present a higher number of edges that could be
attributed to the abundance of certain TFBS motifs compared to others. This abundance could be linked to a
more frequent identification of the specific motif in sequence by FIMO, or a higher abundance of this motif
in UMRs. In the last case, if a TF interacts with an higher number of dCREs than promotors, its number of
interactions is mechanically increased in the global network because of the higher number of candidate
target genes for each dCRE.

In the ongoing process of reconstructing dCRE-specific regulations, identifying a relevant set of edges is
crucial. Identifying differential regulation thus helps minimize the risk of including TFBS that were detected
with high confidence but are not relevant in the regulatory context. Nonetheless restraining the analysis to
dCRE regulation only reduced the number of enrichment or differential regulation. This could be explained
by the reduction of number of TF considered when focusing on dCRE only. This result shows the need to
adapt the regulatory score to be relevant when extracting regulation for those regulators.

Finally, the analysed regulation profiles are specific of a maize line, and our conclusions cannot be extended
across different lines. Similar analyses will thus be conducted on other maize lines to identify their specific
regulation profiles. The addition of lines from various genetic pools to the analysis will improve our
knowledge of gene expression regulation in response to water deficit. This will also allow us to link any
variation in the regulatory network structure to genetic variations in regulatory sequences, but also to

maize phenotypic response to water deficit.

Figures and tables

Promotors dCRE
Number of items 35276 35185
Number of regulation (CRE-gene) |35276 170996
Number of motifs 71 59
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Tab 1_: Description of the global caracteristic of the CRE depending of their type
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Script availability

Analysis and figures : https://forgemia.inra.fr/thomas.michaul/maize grn analysis jobim2025

NetZoo : https://netzoo.github.io/
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Abstract Genome-scale metabolic models (GEMs) are essential tools for studying metabolism, either for
comparative analyses or to investigate interactions between organisms. However, genome annotation,
biomass formulation, and network gap-filling are key steps in constructing a relevant GEM and ensuring
the biosynthesis of specialized metabolites. We present a pipeline to integrate extensive biological knowl-
edge (genomes of closely related species, metabolic profiling studies, potential interactions with microbiota)
about an eukaryotic organism in order to generate high quality GEMs. To manage genome annotation limi-
tations, the pipeline relies on a GEM reconstruction tool that propagates annotations across closely related
species through the identification of orthologous genes. It also pays particular attention to biomass formu-
lation, using a set of metabolomic studies to create a consensus biomass composition that seeks to closely
reflect biological reality, such as incorporating specialized metabolites and their precursors. The gap-filling
stage of the pipeline uses a semi-automated curation process for added reactions, taking into account the
presence of orthologous genes, occurrence in phylogenetically related species and potential interactions
with the organism’s microbiota. The final GEM applied to the brown alga Ascophyllum nodosum comprises
3,536 metabolites and 3,072 biochemical reactions, predicting the synthesis of 1,023 compounds from 38
seawater-derived metabolites. AlImost all reactions (99.98%) are linked to an enzyme supported in the algal
genome. This refined model provides a framework for studying host-microbiota metabolic complementar-
ity. This pipeline offers a scalable and robust method for reconstructing high-quality GEMs in emerging
eukaryotic model organisms, improving metabolic network accuracy and expanding our understanding of
species-specific metabolism. It also sheds lights on the various level of knowledge related to the synthesis
pathways of the biomass, paving the way to future studies to be undergone.
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Introduction

Genome-scale metabolic models (GEMs) are powerful tools used in various metabolic studies, in-
cluding predicting the production of target metabolites, assessing the metabolic variability of an or-
ganism under various conditions, identifying enzyme functions, and modeling interactions between
multiple cells or organisms [1]. However, their automatic reconstruction faces challenges due to var-
ious sources of uncertainty, such as the accuracy of genome annotation, biomass formulation, and
the network gap filling procedure [2]. Moreover, taking into account the biosynthesis of specialized
metabolites is a key challenge in improving the quality of a species-specific GEM [3]. To address those
limitations, we propose a semi-automatic pipeline designed to optimize GEMs reconstruction of an
eukaryotic organism by integrating as much as possible the available biological knowledge from sev-
eral sources : reactions databases, metabolomic data or literature-based biomass data, annotated
genomes from phylogenetically close species and associated microbiome MAGs or metabarcoding
data. This approach emphasizes explainability, ensuring that all elements integrated into the net-
work can be traced back to their sources, enabling an assessment of their relevance.

This pipeline was developed within the study of the macroalga Ascophyllum nodosum, a brown alga
abundant along the coasts of Brittany and of industrial interest due to its biostimulant properties [4].
Our method to reconstruct the GEM first involved the use of AuCoMe [5], a bioinformatics tool that
propagated functional annotations across a corpus of 62 closely related brown algae and outgroup
of other stramenopiles species[6]. Next, we identified a set of 75 weighted compounds supported by
a set of literature studies that were ponderated to define a generic algal biomass. To ensure network
functionality, we implemented both manual and automated curation procedures, leveraging a dis-
crete dynamical framework gap-filling tool (Meneco) and integrating data from both the associated
microbiota [7] and closely related brown algae [6].

The final network resulting from the pipeline includes 3,536 metabolites and 3,072 biochemical reac-
tions. It predicts the synthesis of 1,023 compounds by metabolic pathways initiated from 38 metabo-
lites reflecting seawater composition, almost each (99.98%) reaction catalyzed by an enzyme sup-
ported by a corresponding genetic sequence in the genome. All 75 biomass compounds have a
possible biosynthesis pathway described. The resulting GEM includes specific features that enable
studies on metabolic complementarity between the algal host and its associated microbiota while
minimizing false positives related to reactions potentially originating from microbial catalytic activity.

Methods

Genomic and metagenomic data. The method used WGS data related to A. nodosum obtained in
the Phaeoexplorer [6] project, sequenced with both Illumina and Nanopore technologies. To im-
prove annotations, additional data from 61 stramenopile genomes, including 45 brown algae, were
integrated using AuCoMe v0.5.1 [5], an automated tool designed to build GEMs while handling an-
notation heterogeneity. To predict metabolic pathway completions in A. nodosum, potentially arising
from holobiont complementarity, microbiota data were integrated from various sources. These in-
cludes bacterial and fungal 16S metabarcoding data [7], fungal LSU and SSU data [8], and bacterial
and fungal WGS datasets [9,10,11,12].
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GEMs reconstruction tools. We used AuCoMe [5] v0.5.1 to enrich poorly annotated species by
leveraging expertly annotated model species. Computations were performed on the GenOuest clus-
ter (https://www.genouest.org/) (22 CPUs, 200GB RAM) using “filtering” option for orthology. To in-
terpret metabarcoding and taxonomic data into GEMs, the EsMeCaTa [13] v0.2.12 tool (Estimating
Metabolic Capabilities from Taxonomic Affiliations) was employed to infer functional annotations
and protein sequences based on Uniprot knowledge. The microbiota GEMs were then produced us-
ing a command-line parallelized version PathwayTools (Mpwt python package) [14] from EsMeCaTa
outputs and WGS data.

Discrete-based simulation of the production of biomass compounds and gap-filling. Simula-
tions of producible metabolites, i.e., the metabolic modeling, were performed with Mene tools v3.3.0
[15]. The tool requires a list of available nutrient compounds, referred to as seeds, which initialize the
inference of other reachable, i.e., producible, metabolites in the network. This step is referred to as
network expansion, the formalism used in the dynamical system is the one of metabolic modeling as-
sociated with a Boolean semantic. It is used in the Meneco tool [16], which, in the genome-resolved
approach, takes into account the added-value brought by a set of additional reactions, therefore
suggesting the producibility of new metabolites resulting from adding reactions to the GEM.

In our case study, we used the full Metacyc database as a set of reactions. This set was further-
more enriched with artificial reactions linking all compounds to their higher-level (more generic) com-
pounds class. The 26,866 reactions added with this approach made it possible to connect pathways
described with various levels of precision in the Metacyc database.

Results

A pipeline for the construction and curation of eukaryotic genome-scale metabolic network
from multiple eukaryotic genomes and associated microbiomes. The pipeline starts with Au-
CoMe, which generates draft GEMs with PathwayTools [17] v26.0 which are then refined through
orthologous gene propagation and metabolic pathway completion with spontaneous reactions. The
final dataset comprises 62 GEMSs, averaging 2,986 reactions (2,902 for A. nodosum), with a standard
deviation of 335. In contrast, the draft GEMs before orthology-based enrichment contained an aver-
age of 2,200 reactions, with a standard deviation of 508 (Fig. 1A).

For the microbiota, a total of 449 GEMs were reconstructed. From unique taxonomic assignments
of metabarcoding data [7], 316 bacterial and 13 fungal networks were generated. An additional 15
fungal networks were obtained from taxonomic assignments from endophitic fungi isolated strains
[8]. Finally, 86 bacterial and 22 fungal networks were reconstructed from the WGS data [9,10,11,12]
(Fig. 1B).

To ensure the quality of the algal metabolic network, it is crucial to assess whether its topology en-
ables the biosynthesis of key biomass compounds from the available environmental nutrients. This
requires defining both the algal growth medium and a comprehensive biomass function that here
accounts for a wide range of molecules measured in the species, including both small molecules and
more complex macromolecules characteristic of its composition. In this study, since A. nodosum is not
cultivated but rather sampled from the seashore, the composition of seawater was used as the refer-
ence growth medium. The biomass function was specifically formulated based on metabolomic data
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from the literature (see below) to ensure the inclusion of a broad spectrum of known compounds. It
was then mapped to the MetaCyc database [18,19] (Fig 1C).

As an initial step in functional gap-filling, the defined growth environment (seawater) was used as
the input set of compounds (seeds), while the biomass function represented the target metabolites
for the discrete-dynamical gap-filling tool Meneco [16] (Fig 1 GFO). This approach first identified com-
pounds that remained non-producible even after integrating all reactions from the MetaCyc database
into the A. nodosum GEM reconstructed with AuCoMe. In this case, 6 out of the 75 biomass target
compounds were predicted to be unproducible. Their production was made possible by the addition
1 reaction from BIGG [20] intializing the L-carnitine biosynthesis pathway, 1 from KEGG [21] for the
biosynthesis of linolenic acid, and 1 from Rhea [22] for the biosynthesis of 2-hydroxymyristate. For
cellulose, the polymer chain extension reaction was already present, a chain initialization reaction
consuming UDP-alpha-D-glucose and producing UDP and cellulose was created. Additional 76 re-
actions were added for the transport of the 38 seeds compounds within the cell compartments, 1
defining the biomass function and 1 for the biomass export (Fig 1D).

A second functional gap-filling step was performed to assess the number of biomass compounds
that could be synthesized through reaction chains in the GEM (31 out of 75 target compounds) and
to identify additional reactions from the MetaCyc v26.0 database [18,19] required to maximize the
producibility of the biomass function. This process resulted in the prediction of 116 necessary reac-
tions. In order to evaluate and filter the reactions predicted to have an added value over the pro-
duction of the biomass function, several steps were performed before adding them to the network.
First (Fig 1 GF1), a proteome-based gap-filling step checks for orthologs (e-value<1e-10) between
UniProt protein sequences associated with MetaCyc reactions proposed and the algal proteome (via
BlastP) and genome (via TBlastN). Reactions with confirmed orthologs are integrated in the network
indicating the corresponding gene(s) in metadata. In our case study, 39 were included due to their
potential orthologous associated proteins with A. nodosum proteome (identified via BlastP). Second
(Fig 1 GF2), a phylogenetic gap-filling step adds candidate reactions if they are present in the GEMs of
one of the 45 closely related species (brown algae); the species is indicated in the GEM metadata for
the sake of tracability. Third (Fig 1 GF3), a microbiota gap-filling step adds candidate reactions found
in algal microbiota GEMs and flags them as potential microbial sources. In our case-study, 20 reac-
tions were added because they were found in brown algae and/or in the A. nodosum microbiota, five
of them being exclusive to the microbiota. The last black-box gap-filling step (Fig 1 GF4) consists in
incorporating reactions to complete the GEM without specific explanatory link to available genomes.
In our case-study, this corresponded to 29 reactions. All these steps are integrated in the MeneVal
pipeline which automates AuCome and Meneco executions and input files creation. The method it-
eratively re-executes Meneco between each validation and reaction addition step to refine the set of
candidate reactions, minimizing reactions functional redundancy for limiting unnecessary reactions
addition (Fig 1E).

Based on this gap-filling workflow, the initial number of 116 candidate reactions to be added to the
GEM was reduced to 88, among with 49 are associated with protein sequences linked to the initial
genome, and 29 reactions corresponds to biological processes for which biological evidences have
to be found with specific methods.
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Creation of tailor-made, species-specific algal biomass Biomass composition of A. nodosum was
established by aggregating data from multiple sources to form a consensus. Compound measure-
ments were primarily drawn from chemical quantification studies covering diverse conditions such
as seasonality and geographic location [23,24,25] and included data from Russia’s White Sea and
from Bodg, Northern Norway. Additional references included core metabolism compounds from Ec-
tocarpus sp.7 [26] and more specific metabolites such as fucoidans [27,28,29], phlorotannins [30], and
fucoxanthin [31]. Instead of focusing on specific conditions, the quantification was designed to cap-
ture general trends in the relative proportions of different compound classes, ensuring compatibility
with potential future quantitative analyses. Values were estimated using averages and proportion-
ality ratios. When specific measurements were available, averages were calculated, and quantities
in pmol/g dry weight were extrapolated based on the Ectocarpus sp.7 20 proteinogenic amino acids
ratios [26]. When only class-level data was available, the proportions of sub-compounds were esti-
mated based on reported ratios. Regarding proteinogenic amino acids, for example, quantities were
extrapolated based on the ratios observed in Ectocarpus sp. 7. When no such data were available,
we assumed an equal distribution across all compounds of the class.

The resulting biomass consists of a total of 75 compounds (Fig. 2), including 2.21% of all the 20 pro-
teinogenic amino acids, whose synthesis ensures enzymatic production autonomy. It also contains
a set of 12 carbohydrates, including 6 monosaccharides (Glucose, Galactose, Xylose, Mannose, Fu-
cose, Xylonate) and 2 more complex polysaccharides (alginate and cellulose), which make up approx-
imately 55% of the biomass. Additionally, a set of 12 fatty acids accounts for 5% of the composition.
Regarding the production of metabolites more specific to brown algae, GDP-L-fucose is included as
a precursor of fucoidan [28], along with a set of monosaccharides serving as its structural compo-
nents. UDP-glucose was also introduced as it a precursor in cellulose biosynthesis. For phlorotannins,
only the phloroglucinol precursor [30] was incorporated, as it has a well-documented biosynthetic
pathway. This final biomass function retained only major compounds, prioritizing those with known
biosynthetic pathways described in databases or supported by literature.

Analysing algal biomass according to the pathways information of the predicted algal and
holobiont GEMs.

Fig. 3 classifies the different compounds of the biomass according to the sources needed in the
GSM reconstructon process needed to predict their production. After the initial reconstruction of
the A. nodosum GEM using AuCoMe and before gap-filling, the model could produce 30 out of the
75 biomass compounds, primarily canonical amino acids (16 out of 20) and, more broadly, carboxy-
lates (28 out of 30). Following gap-filling, including the addition of 4 manually curated reactions, 39
reactions from genomic validation, 15 from phylogenetic validation, and five from microbiota vali-
dation, 20 additional biomass compounds became producible, with a predominance of fatty acids,
carotenoids, and more generally, carboxylates. The final set of 29 reactions added to enable the
synthesis of the remaining 25 biomass compounds introduced a more diverse range of metabolites,
with a higher proportion of sugars, amines, chlorophyll derivatives, and vitamins.

Discussion

Tailor-made biomass function to refine network qualitative analyses. The biomass function
built in this study is based on estimated quantities derived from a consensus of multiple studies. The

114



%age

70

60

10

Fig.2. Ascophyllum nodosum biomass compounds approximated percentage quantities according to
MetaCyc ontology compounds hierarchical classification.

Classification of compounds distributed according to their producibility stage

B A Base producible M B. Post GF sourced producible C. Post GF not sourced producible

Proteinogenic Amino Acids
Other Amino Acids
Amines

Fatty Acids

Other Carboxylates
Sugars
Polysaccharides
Vitamins

Chlorophyll derivatives
Fucosterol
Carotenoids

Phloroglucinol

20

Fig. 3. Classification of biomass compounds producible from seawater components. (GF=Gap-Filling). A.
(blue) 30 compounds producible before gap-filling - Biosynthetic reactions linked to algal genes. B. (red) 20
additional compounds producible after adding 24 candidate gap-filling reactions - Supported by genomic
information. C. (yellow) 25 remaining biomass compounds producible after adding the final 29 candidate
reactions - Completing the gap-filling process.

115



latter enabled the application of advanced gap-filling methods, revealing genomic information that
is present or missing for the biosynthesis of a wide range of characteristic compounds. It allows for a
more in-depth qualitative refinement of the GEM compared to biomass formulations previously ap-
plied in quantitative analyses applied to brown algae like Ectocarpus sp.7 [26] and Saccharina japonica
[32]. This approach still retains the weighted compounds necessary for such analyzes assuming the
addition of RNA, DNA, and the required biosynthetic energy (ATP) [33,34]. However, these values
should not be considered fixed or universal, as significant fluctuations have been reported through-
out the algal life cycle, influenced by factors such as seasonality [23], temperature, and geographic
location. Additionally, it is important to note that the described compounds vary in complexity, rang-
ing from small molecules to macromolecules. As a result, the reported quantities may not always
be mutually exclusive, as some compounds could be structural components of others. To take into
account such variability, MDF approaches integrating ranges of metabolite concentrations [35] may
be closer to the biological reality, and are indeed used for plant genome-scale modeling [36].

A Gap-filling approach to maximize the number of reactions linked to genomic information
and promote explicability While the acceptable level of uncertainty in introducing reactions through
gap-filling remains debated [2], the iterative reconstruction method presented here helps minimize
false-positive reactions while assigning metadata to support hypotheses on their biological rele-
vance. Notably, 39 reactions were linked to genes present in the A. nodosum genome but missed
during automated gene prediction. An additional 15 reactions, found in other brown algal genomes,
may also exist in misassembled regions of the A. nodosum genome. Meanwhile, five reactions origi-
nating from associated microbiota offer a limited yet valuable set of candidates for further study of
potential symbiotic interactions at the holobiont level. In addition, the number of reactions added
without a clear origin was reduced from 116 to 29. Despite these advantages, certain limitations
remain. For validation via BlastP, not all reactions in databases are linked to protein sequences, pre-
venting comprehensive testing. Additionally, matches within closely related enzyme families do not
guarantee identical metabolic functions. Alternative approaches, such as AlphaFold, could provide
deeper insights by analyzing structural-functional similarities rather than relying solely on sequence

alignments.

Database knowledge dependency A limitation of GEM reconstruction based on genomic data is its
reliance on existing database knowledge associating functional annotations with genomic sequences,
which primarily covers well-characterized core metabolism and lacks specificity. When applied to un-
derstudied species like brown algae, these automated methods fail to capture a significant part of
their unique metabolic features. This highlights a major challenge: the need to explore the “omics
dark matter” [37,38]. Developing alternative methodologies capable of suggesting biosynthetic path-
ways for compounds without known biosynthesis pathways, particularly in poorly studied species or
metabolites, will be essential to further enhance metabolic network reconstruction.

Availability and Implementation

The network reconstructed with AuCoMe before gap-filling has been made accessible via Wiki on the
Phaeoexplorer project website (https://phaeoexplorer.sb-roscoff.fr/metabolic_networks/). However,
the final network after gap-filling is not yet available. The code for the MeneVal pipeline is available
on GitHub (https://github.com/AuReMe/MeneVal).
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Abstract

Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation
involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic
Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting
oncoproteins block the haematopoietic differentiation program promoting aberrant
proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA

patients, while PLZF::RARA patients frequently become resistant and relapse.

Recent studies pointed to various underlying molecular components, but their precise
contributions remain to be deciphered. We developed a logical network model integrating
signalling, transcriptional and epigenetic regulatory mechanisms, which captures key features

of the APL cell responses to RA depending on the genetic background.
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The explicit inclusion of the histone methyltransferase EZH2 allowed the assessment of its role

in the resistance mechanism, distinguishing between its canonical and non-canonical activities.

The model dynamics was thoroughly analysed using tools integrated in the public software
suite maintained by the CoLoMoTo consortium (https://colomoto.github.io/). The model serves
as a solid basis to assess the roles of novel regulatory mechanisms, as well as to explore novel

therapeutical approaches in silico.

Highlight

This article presents a predictive logical model capturing and explaining key features of the
regulatory network underlying the responses of two main subtypes of Acute Promyelocytic

Leukaemia (APL) cells to Retinoic Acid (RA) therapy.

The stable states of the model recapitulate the phenotypes of differentiated and aberrant
proliferative cells induced by RA treatment for two different APL genetic backgrounds, while a
commitment analysis identifies the crucial components underlying the decision between cell

differentiation and aberrant proliferation.

The simulations of different EZH2 perturbations and a parameter sensitivity analysis enables
the characterisation of the components of the network underlying cell fate decisions,
distinguishing the canonical versus non-canonical activities of EZH2, highlighting the key role of
the non-canonical activity of EZH2 in the maintenance of the resistance to RA treatment, and

pointing to potential targets for novel combinatorial therapy strategies.

Finally, the model analysis relies on a robust computational workflow combining four different
tools, developed by different groups but seamlessly integrated in the CoLoMoTo software
environment (https://colomoto.github.io/). The integration of these tools in a common
framework together with the use of Jupyter notebooks foster the reproducibility of our
computational results, and simultaneously ease further refinements or extensions of this
modelling study. The software GINsim, the CoLoMoTo environment, as well as the model file
and the Jupyter notebook enabling the reproduction of the results of this study are all available

online (http://ginsim.org/node/256).
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Abstract

Rheumatoid arthritis is a complex disease marked by joint pain, stiffness, swelling, and chronic
synovitis, arising from the dysregulated interaction between synoviocytes and immune cells.
Its unclear etiology makes finding a cure challenging. The concept of digital twins, used in
engineering, can be applied to healthcare to improve diagnosis and treatment for complex
diseases like rheumatoid arthritis. In this work, we pave the path towards a digital twin of the
arthritic joint by building a large, modular biochemical reaction map of intra- and intercellular
interactions. This network, featuring over 1000 biomolecules, is then converted to one of the
largest executable Boolean models for biological systems to date. Validated through existing
knowledge and gene expression data, our model is used to explore current treatments and

identify new therapeutic targets for rheumatoid arthritis.
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Highlight

Digital twin implementation in healthcare has the potential to advance biomedical research
with applications for personalised medicine, pharmaceutical development, and clinical trials
[1]. Current tangible implementations of digital twins can be found in precision cardiology [2],
type 1 diabetes [3], cancer [4], and epidemic outbreaks [5]. In these applications, researchers
combine several cutting-edge technologies, including mathematical modelling. This work
initiates the development of a virtual twin of the arthritic joint, first by constructing a
comprehensive large-scale map that depicts both the intra- and intercellular interactions
involved in RA pathogenesis. The map incorporates the four cell-specific maps of the RA Atlas

[6], describing the synovial fibroblast, M1 and M2 macrophages, and CD4 + Th1 cell types.

Furthermore, it integrates bidirectional cellular communication between these cell types,
providing a detailed multicellular representation of the RA synovium. The map is modular,
allowing for future expansion with additional cell-specific maps. We employed the Boolean
formalism to explore the system's emergent behaviour. Boolean models can handle large-scale
systems and do not require quantitative parameters. We used the map to model translation
framework and the tool CaSQ described in Aghamiri et al., 2020 [7] to translate the
multicellular map to a fully executable, large-scale Boolean model. The dynamic behaviour of
the RA multi-cellular model was tested against prior knowledge to assess its capacity to
reproduce known biological mechanisms. The RA multi-cellular model is significantly larger in
scale compared to the two macrophage models tested in Zerrouk et al., 2024 [8],
demonstrating the scalability of the proposed computational framework. The model was then
used to study the mechanism of action of current RA treatments and identify new potential
therapeutic targets and drug combinations via single- and double-knockout in silico

simulations.
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Abstract

RNA tertiary structure prediction is a problem that is far from being solved, as shown in [1]. The tertiary
structure depends very strongly on particular types of interactions, known as non-canonical
interactions. These interactions form dense networks, called structural motifs, which recur in RNA
structures and are characteristic of certain local three-dimensional shapes [2]. There are several
families of such motifs; some of them are well known, such as the kink-turn and the A-minor families.
RNA structures can be represented in a strictly topological manner, i.e., without taking geometric
information into account, by labeled graphs in which the vertices are the nucleotides and the edges or
arcs are the interactions between them, labeled by the kind of interaction. In recent years, several
studies have focused on discovering, classifying, and predicting structural motifs in RNA molecules
represented by such graphs. In this way, a close relationship can be established between the topological
representation and the tertiary structure of RNA, taking a step towards predicting the latter. One of the
main difficulties of such studies is the large variability of motifs within the same family: subgraphs
corresponding to members of the same family can be rather different although their 3D shapes are
similar. And, in fact, only a few works attempted to tackle this variability problem by developing

sophisticated fuzzy subgraph search algorithms in RNA graphs [3,4].
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Abstract While of primary importance in both the biomedical and therapeutic fields, peptides suffer from
a relative lack of dedicated tools to predict efficiently and accurately their 3D structures despite a crucial
step in understanding their physio-pathological function or designing new drugs. In recent years, deep-
learning methods have enabled a major breakthrough for the protein 3D structures prediction approaches,
allowing to predict protein 3D structures with a near-experimental accuracy for nearly any protein se-
quence. This present study aims at confronting some of these new methods (AlphaFold2, RoseTTAFold2
and ESMFold) for the peptides 3D structure prediction problem, and to evaluate their performance. All
methods produced high quality results, but their overall performance is lower as compared to the predic-
tion of proteins 3D structure. We also identified a few structural features that impede the ability to produce
high-quality peptide structure predictions. These findings point out the discrepancy that still exists between
the protein and peptide 3D structure prediction methods, and underline a few cases where the generated

peptide structures should be used very cautiously.

Introduction

Chemically, peptides are short polymers of amino acids (typically ranging from 2 to 50 residues), and
their structure may exhibit diverse structural features: they can be highly flexible (i.e. have multiple
low-energy conformations) with transient meta-stable secondary structures, display multiple cycles,
etc. Characterizing the three-dimensional structure of peptides is essential to understanding their
functions or predicting their biological effects. This structural knowledge is also important for de-
signing effective and specific therapeutic peptides capable of modulating biological processes [1].

Computational methods have emerged as complementary tools for studying the three-dimensional
structure of biological macromolecules, such as proteins and nucleic acids. Recent deep learning
algorithms have demonstrated their ability to accurately predict the three-dimensional structure of
proteins [2]. Among these, AlphaFold2 [3,4] has already been compared to alternative computational
methods dedicated to peptide structure prediction and has outperformed them [5].

In this article, our objective is to extend previous work by comparing the performance of several non-
peptide-specific algorithms to predict the three-dimensional structure of peptides. More specifically,
we have chosen to evaluate the performance of AlphaFold2 (AF2) [3,4], RoseTTAFold2 (RF2) [6], and
ESMFold (ESMF) [7,8], three of the most popular open-source algorithms. The purpose is not only
to compare the performance of each algorithm, but also to better decipher the features associated
with lower/higher quality predictions, and their current limitations. To achieve this goal, we selected
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a dataset of 765 peptides from the Protein Data Bank [9,10] (PDB) and performed structure predic-
tion calculations with each three-dimensional structure prediction algorithm. Then, we analyzed the
quality of predicted structures considering various structural features such as the number of cycliza-
tions, the type of secondary structure, the size, etc. To carry out this work, we used open-source tools
that not only enable large-scale structure prediction but also provide for advanced users the flexibil-
ity to modify algorithms. In this work, our goal is to identify the current limitations of these methods
in terms of structural features as well as to highlight their successes despite being initially designed
for proteins. These results may also help the development of new methods specifically dedicated to
peptide structure prediction, by leveraging the limitations observed in this work.

Methods
Creation of the peptide dataset

All chains of the Protein Data Bank [9,10] (PDB as of October 24, 2023) were clustered using MM-
Seqs2 [11] using settings adapted to small sequences and a similarity threshold of 70%, resulting in
67,623 clusters of 3D structures with distinct sequences. We retained monomeric protein structures
from 10 to 50 residues solved by solution NMR spectroscopy, excluding non-standard residues (e.g.
post-translational modifications, non-canonical residues, D-amino acids, etc). Peptides belonging to
PDBTM [12], mpstruc [13], MemProtMD [14] and OPM [15] membrane databases were excluded.

As aresult, a total of 765 structures were included in our dataset. This selection process ensures that
only a minimal number of peptides are likely to be present in the training datasets of the compared
methods [3,4,6,7,8].

Three-dimensional peptide structure prediction algorithms

AlphaFold2 (AF2), RoseTTAFold2 (RF2), and ESMFold (ESMF) - three of the most popular and effective
tools for protein structure prediction at the time our study began - were evaluated (specific versions
are shown in Tab. 1). AF2 and RF2 use evolutionary patterns extracted from Multiple Sequence Align-
ments (MSA) to derive spatial relationships between residues. These alighment-based algorithms
deeply integrate the MSA into the neural network architecture through an attention mechanism to
iteratively refine the predicted structure. The databases used by AF2 and RF2 to construct MSA and
identify structural templates are presented in Tab. 2. ESMF uses a language model that enables rapid
and accurate prediction directly from a unique sequence, capturing evolutionary couplings without
using MSA while simplifying neural architecture and reducing alignment-based pipeline costs. For
each peptide predicted by AF2, we selected the model with the highest average pIDDT, the confi-
dence score used by all the methods compared. This choice allows a fair comparison, as RF2 and
ESMF produce a single model by default.

Tool Version Download date Link

AlphaFold2 v2.3 05 Apr 2023 https://github.com/google-deepmind/alphafold
RoseTTAFold2 v1.0 12 Apr 2024 https://github.com/uw-ipd/RoseTTAFold2
ESMFold v1.0 Nov 2022 https://github.com/facebookresearch/esm

Tab. 1. Summary of structure prediction algorithms compared.
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Databases Version — Download date Used by

BFD Only version available AF2 & RF2
MGnify v2022 05 AF2
UniRef30 v2021.03 AF2 & RF2
UniRef90 v2022_05 AF2
PDB 2023-02-09 AF2
PDB70 v2020Apr01 AF2
PDB100 v2021Mar03 RF2

Tab. 2. Sequence and structural databases used by AF2 and RF2.

Structural-based features analysis

The GDT_TS score [16] was used to assess the similarity between predicted peptide models and ex-
perimental structures obtained by NMR. Each predicted model was superposed to each reference
NMR model and scored using the Local Global Alignment (LGA) algorithm [16]. The highest GDT_TS
was retained for each predicted model.

We examined the quality of predictions (GDT_TS scores) according to the (a) number of disulfide
bridges, (b) sequence length, (c) secondary structure topology and (d) flexibility as estimated by the
average IDDT-Ca computed between all models of the NMR reference structures (ID DT R).

Statistical comparisons of GDT_TS scores between peptide groups (e.g. 0 versus 3 disulfide bridges)
were performed using Kruskal-Wallis H tests (one-way ANOVA on ranks) followed by Dunn’s post-
hoc tests to assess significant differences between groups. Wilcoxon signed-rank tests were used to
compare scores between algorithms within each peptide class (e.g., GDT_TS scores for peptides with
30 to 39 residues predicted by AF2 and RF2).

In our dataset, 436 peptides are linear, while 329 peptides are cyclized by disulfide bridges. For linear
peptides, we evaluated whether disulfide bridges were found in the predicted models. For peptides
with disulfide bridges, we evaluated whether the predictions reproduced these bridges as observed
in the experimental NMR structures. We applied a threshold of 3 A between the SG atoms of cysteine
residues to determine whether the prediction was compatible with a disulfide bridge.

For AF2 and RF2, previous studies have shown that the quality of the MSA can significantly influence
the accuracy of the predicted structures. To explore this effect, we analyzed the relationship between
MSA quality, evaluated by the number of effective sequences (Neff) [17], and the final model accuracy,
measured using the GDT_TS.

Results and Discussion
Predictive methods produce good-quality models consistently, on average.

AF2 and RF2 displayed comparable overall results, and achieved higher average, median and mini-
mum GDT_TS values than ESMF (Tab. 3): p = 1.00 - 10~3! for AF2 versus ESMF; p = 2.70 - 10~'8 for
RF2 versus ESMF. AF2 and RF2 showed a small but significant difference in GDT_TS values (p = 0.033).
Spearman’s correlation tests indicate a strong correlation between GDT_TS scores for AF2, RF2, and
ESMF predictions: p = 0.822 between the GDT_TS scores of AF2 and RF2, p = 0.831 between AF2
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and ESMF and p = 0.74 between RF2 and ESMF. Overall, Spearman'’s correlations indicate that all
algorithms are able to generate predictions that are consistent with each other.

Summary statistics AF2 RF2 ESMF
Average 75.63 75.73 71.88
Median 79.17 78.57 74.31
Standard Deviation 17.11 16.43 17.89
Minimum 26.14 27.27 26.09
Maximum 100.00 100.00 100.00

Tab. 3. Descriptive statistics of the GDT_TS scores for the models predicted by AF2, RF2 and ESMF
over our dataset of 765 peptides.

Our results show that AF2 and RF2, two methods based on MSA, outperform ESMF, an approach
relying solely on polypeptide sequences. These results align with those obtained for the prediction
of protein structures, where AF2 and RF2 usually perform better than ESMF [3,6,8]. However, while
these MSA-based algorithms excel in predicting monomeric proteins (median GDT_TS > 90) [3,6],
their performance decreases for the peptides from our dataset (median GDT_TS ~ 79, Tab. 3). All
three methods were mostly trained on sequences longer than peptide sequences (i.e., >50 residues).
This may explain the lower performance of these algorithms in predicting peptide structures com-
pared to protein structures.
1004 1 1 . -.isi/  Algorithm
/ AR2

RF2
® ESMF

Pearson’s r = 0.653 Pearson’sr = 0.493 Pearson’s r = 0.666
0 T T T 1 T T T 1 T T T 1
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Average pIDDT Average pIDDT Average pIDDT

Fig. 1. Comparison of the average pIDDT and GDT_TS scores of the dataset models predicted by AF2
(left panel), RF2 (middle panel) and ESMF (right panel).

We found a moderate, positive correlation between GDT_TS and average pIDDT for all methods
(Fig. 1), suggesting that the pIDDT score is overall reliable, and can be used to estimate the accu-
racy of the peptide structure predictions.

Detailed analysis based on peptide structural features.

Peptide length. GDT_TS scores improve with increasing peptide size for AF2 and RF2, with the higher
scores observed for peptides in the class of size 30-39 residues. In contrast, ESMF predictions are
hardly affected by peptide sequence length. AF2 and RF2 consistently produced higher GDT_TS scores
than ESMF for peptides in the 20-29 and 30-39 residues ranges (Fig. 2a).

Peptide secondary structure topology. Random coil (RC) peptides achieved significantly lower
GDT_TS scores than peptides with a defined secondary structure (helix - H, sheet - S or mixed he-
lix and sheet - H+S). Among structured peptides, helix-bearing peptides scored lower than either
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Fig. 2. Comparison of GDT_TS scores based on peptide sequence length ranges (a) and peptide sec-
ondary structures (b). Wilcoxon signed-rank tests p-values below 0.05 are indicated on the top.

sheet peptides or peptides with helices and sheets. RF2 consistently outperformed ESMF in terms
of GDT_TS for all types of secondary structure (Fig. 2b). AF2 also showed significantly higher GDT_TS
values than ESMF for peptides with helices, sheets or combined H+S secondary structures. Addition-
ally, AF2 performed better than RF2 for helical peptides (Fig. 2b). This discrepancy in performance
for portions of peptides structured in helix and sheet is in line with the results observed for proteins
during CASP14 [18].

Disulfide bridge-based cyclization. We observed that AF2's predictions are more consistent with
the experimentally observed disulfide bridges, followed by RF2's predictions, and finally ESMF's (Tab. 4).
All methods found putative disulfide bridges in the 436 linear peptides (21, 20 and 24 for AF2, RF2
and ESMF, respectively).

Predicted models for peptides with two or more disulfide bridges exhibited significantly higher GDT_TS
scores than linear peptides. For AF2 and RF2, peptides cyclized by three or more disulfide bridges
also displayed higher scores than those cyclized by a single bridge. For peptides with 0, 3 and 4+
disulfide bridges, RF2 outperformed ESMF in terms of GDT_TS scores (Fig. 3a). Similarly, AF2 demon-
strated greater predictive accuracy than ESMF for peptides with 0 and 3 disulfide bridges. AF2 and

Disulfide bridge Number of peptides AF2 RF2 ESMF

1 48 35 32 30

2 59 44 38 39

3 177 151 136 124
>4 45 39 40 35
Total 329 269 246 228

Tab. 4. Comparison of the number of experimental disulfide bridges found in structures predicted by
three different algorithms. Only predicted models consistent with all experimental disulfide bridges
were considered as successful.
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RF2 showed comparable performance in most categories, with the exception of linear peptides, for
which RF2's GDT_TS scores were significantly lower than those of AF2 (Fig. 3a).
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Fig.3. Comparison of GDT_TS scores based on peptide disulfide bridges number (a) and peptide
flexibility (b). Wilcoxon signed-rank tests p-values below 0.05 are indicated on the top.

Peptide flexibility. Flexible peptides (I D DT nyrr < 70) displayed significantly lower GDT_TS scores.
Among peptides with IDDTnprr values between 70 and 100, AF2 and RF2 outperformed ESMF
in terms of GDT_TS scores (Fig. 3b). These results are in line with the observations made during
CASP14 [2], where flexible regions of proteins were predicted with lower quality.

Advances have already been made to overcome these limitations. Several methods [19,20] can pre-
dict alternative conformations of proteins via MSA clustering, for instance. Such new methods could
benefit peptide structure predictions as well.

Peptides with structural features similar to proteins’ are associated with high-quality predic-
tions. Peptides with lesser flexibility are often larger (in terms of the number of amino acids), more
structured (with a greater number of secondary structure elements) and cyclized through multiple
disulfide bridges. All these features are associated with higher quality predictions (Fig. 2, 3) and re-
semble the features found in the protein structures used to train AF2, RF2, and ESMF algorithms: the
more protein-like the peptide, the better the predicted model. This overall observation was expected
given the training datasets used by these methods. These results underline the difficulty these meth-
ods have in extending their field of application beyond structures similar to those in their training
data.

The quality of the MSA drives the quality of the predicted model.

Peptides 6CKF and 7YRW (Fig. 4) share similar structural features (mainly helical, 30-39 residues, three
disulfide bridges, IDDTnrr 80-90), but their prediction accuracy differs. 6CKF is well-predicted
(GDT_TS > 95), while 7YRW is poorly predicted (GDT_TS < 50) by all methods. This discrepancy may
be linked to the quality of the MSA: the 6CKF sequence resulted in a deep alignment (1023 sequences
for AF2, 8663 for RF2) with high diversity (Neff = 163.1 for AF2, 965.3 for RF2), whereas the 7YRW
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Fig.4. Visualization of predicted structures for peptides 6CKF (left) and 7YRW (right), which share
similar structural features but differ in prediction accuracy.

sequence resulted in a shallow alignment (4 sequences for AF2, 3 for RF2) with low diversity (Neff =
0.36 for both). The depth, diversity and coverage of the MSA allow the identification of coevolutionary
information, providing robust spatial constraints that allowed for structural prediction of high quality
by both AF2 and RF2. The shallower the MSA, the lower the algorithm’s ability to extract reliable
coevolutionary information. A quick analysis can reveal whether MSA are sufficiently rich and diverse
to enable accurate structure prediction.
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Fig.5. Influence of MSA quality on structural prediction accuracy across methods. Significant differ-
ences (p < 0.05), assessed using Dunn'’s test with Bonferroni correction, are indicated on the top.

To better understand the impact of MSA quality on prediction accuracy, we analyzed the distribution
of GDT_TS scores across different Neff ranges (Fig. 5). For AF2, significant differences were observed
between the 0-1 and 100+ Neff ranges, as well as between the 6-20 and 100+ ranges (Dunn's test
with Bonferroni correction, p < 0.01 and p < 0.05, respectively). For RF2, a significant difference was
found between the 0-1 and 21-50 ranges (p < 0.05).

In cases where the MSA are particularly poor, sequence-based methods such as ESMF may be as
effective as MSA-based methods to generate high-quality predictions. Specifically, for peptides where
AF2 generated an empty MSA (depth = 1, i.e., only the query sequence), the GDT_TS scores were not
significantly different from those of ESMFold (Fig. 6a). Similar results were observed for RF2 (Fig. 6b).
As an example, Fig. 4 also shows the predictions of ESMF for 6CKF (GDT_TS =96.54) and 7YRW (GDT_TS
= 57.26), which are similar to the scores obtained with the MSA-based methods AF2 and RF2.
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Conclusion and future perspectives

Current methods, designed for protein structure prediction, perform slightly lower on peptide struc-
ture prediction, particularly for flexible peptides, whose conformational diversity remains challenging
to capture. Our results hence show a range of performance spanning high quality peptide struc-
ture prediction (for peptides with protein-like structural features) and medium to low quality peptide
structure prediction (for flexible peptides or predictions based on shallow MSA). Retraining these al-
gorithms with high-quality peptide NMR structures [21] and additional NMR data could enhance accu-
racy and better capture the flexibility of peptide structures, particularly given the under-representation
of these data in the current training datasets.

For MSA-based algorithms, the quality of the alignments remains a key factor in their performance.
As peptides are shorter, it is essential to have MSA with high coverage, depth and diversity to allow
the neural networks to extract maximum information on the spatial relationships between residues
and subsequently make high-quality predictions. Adapting these alignments to shorter sequences

would be a promising improvement option for these models.

Availability and Implementation

The dataset sequences in FASTA format and the scripts used for structure prediction, as well as the
predicted model for each peptide from each tool can be downloaded at the following url: https:
// zenodo. org/ records/ 14887666.
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Abstract

A growing body of evidence shows that RNA function depends not only on primary and secondary
structures but also on its 3D conformation. As the experimental determinations are costly and
uncertain processes, computational prediction methods are essential. A critical task in such
prediction is identifying substructures that can be modeled independently before assembling the

global fold. In proteins, these are “structural domains” - yet no equivalent concept exists for RNA.

In this work, we present RNA3DClust, an adaptation of the Mean Shift algorithm for partitioning RNA
3D structures into compact, distinct regions, akin to protein domains. To evaluate the method, we
built a reference dataset of annotated RNA 3D domains and developed a custom scoring scheme. We
also show that RNA3DClust’s segmentations align with biologically and evolutionarily defined
domains. Finally, with the emerging interest in long non-coding RNAs (IncRNAs), which likely contain
folded substructures, we created a second dataset using predicted IncRNA models. RNA3DClust’s

results on these models further demonstrate its potential for RNA domain analysis.
Introduction

Analysis involves breaking down a whole into parts to gain a better understanding. In structural
biology, this means decomposing macromolecules into substructures. For proteins, these include: (i)
secondary structures (local folds), (ii) supersecondary structures (assemblies of adjacent elements),
and (iii) structural domains - independently folding or functional units [1]. Domains are essential to
understanding protein function and are used in prediction tools like AlphaFold [2], which improves
multimeric structure prediction by ~20% when domain boundaries are included [3,4]. RNA also

follows a hierarchical structure: base pairing forms secondary structures; long-range interactions
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form 3D structures, which are essential for biological roles such as catalysis, recognition, and
regulation [5]. Despite of that, RNA 3D structural data remains scarce in databases like the PDB [6]
and NAKB [7], and a formal notion of RNA structural domains is still missing. This is especially limiting
for long non-coding RNAs (IncRNAs), which are biologically important and can span thousands of

nucleotides, and thus, likely contain independently folded subregions similar to protein domains [8].

Here, we introduce the first computational study of RNA 3D domains, defined as compact, spatially
distinct regions, inspired by Wetlaufer’s definition for proteins [9]. We tested several clustering
algorithms using RNA atomic coordinates to delineate domain boundaries. Due to the absence of
reference datasets, we created our benchmark, using geometric and functional criteria. Our method,
RNA3DClust, adapts the Mean Shift algorithm [10] for RNA-specific domain detection. While testing

on a limited number of RNAs, RNA3DClust offers a basis for future RNA structure analysis.
Methods

We define RNA 3D domains as compact, spatially distinct regions [9], identified through the
clustering of atomic coordinates. We retain only the C3’ atom per nucleotide - part of the
sugar-phosphate backbone and present in all residues. C3’ is also used in alignment tools like

RNA-align [11] and US-align [12], similar to the use of Ca [13] or C3 [14] atoms in protein parsing.

To determine RNA 3D domains, a clustering algorithm for RNA 3D structures should meet three key
criteria: (1) robustness to outlier, allowing detection of linker regions as outliers; (2) be able to
identify clusters with irregular shapes, since RNA folds into diverse, non-globular conformations; and
(3) non-parametric behavior, as the number of domains are unknown and varies across RNAs. We
evaluated common clustering methods: k-means [15], hierarchical clustering [16], DBSCAN [17],

Mean Shift [10], GMM [18], spectral clustering [19], and SOM [20] based on these criteria (Table 1).

Only DBSCAN and Mean Shift are the two methods that met all three criteria, as they define clusters
based on point density rather than predefined shapes or counts. DBSCAN uses two hyperparameters:
€ (neighborhood radius) and MinPts (minimum neighbors). A core point has at least MinPts within €;
clusters grow by linking core points and their neighbors. Points that are neither core nor reachable
are marked as noise/outlier. Thus, selecting suitable € and MinPts is crucial for effective clustering.
Mean Shift locates dense regions by shifting each point toward the weighted center of its neighbors,
using a kernel function. It depends on two hyperparameters: kernel type (uniform or Gaussian) and
bandwidth h (search radius). Larger h merges clusters, smaller h resolves finer ones. We used

scikit-learn’s library [21] with a 10 convergence threshold and added Gaussian kernel support.

Since density-based clustering may vyield spatially valid but scattered clusters along the RNA

sequence, which is not biologically meaningful, we developed a post-clustering procedure to refine
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results. It involves two main steps: processing outliers and processing labeled clusters. We defined

eight rules (Fig. 1) and applied them iteratively until no changes occurred.

To assess RNA3DClust result, we used three metrics: Normalized Domain Overlap (NDO) [22],
Domain Boundary Distance (DBD) [23], and our new index: Chain Segment Distance (CSD). Although
have been widely used, both NDO and DBD have limitations. NDO can remain high even with the
wrong number of domains, as it only reflects residue overlap. DBD, conversely, may be low despite
near-correct boundary results due to strict thresholding [23]. It also assumes that only the reference

has linkers and does not apply for single-domain cases, limiting its reliability in certain scenarios.

Therefore, we present CSD to offer a compromise between the NDO and DBD. Like the DBD, the
scoring follows a decreasing pattern based on a distance threshold. However, rather than just
boundaries, this distance is calculated between domains, like the NDO. For each computed domain i

and true domain j, a score S;; is calculated as:
1 7 5 3’
Sij = 5 max {QT - (d?;j + d,;_j) ,{J}

where dijs' or dij3' is the distance (in nt) between the 5’ or 3’ end of the domain i and that of the
domain j. The threshold T was set to T = 20 residues. Regarding linkers, their length is added to that
of the adjacent domain, only if it lowers the value of dif' + dif'; otherwise, the length of the linker is
not counted. Finally, the chain segment distance (CSD) score is calculated by this function:

{ m

> max Sj;
i—1 1=i=n .
ifm>n
. T xm
CSD =4
> max S;
i=11=t<=m
i .
_ otherwise
T xn

where m and n are the total numbers of computed and true domains, respectively. The CSD score
ranges from 0.0 to 1.0, with higher values indicating better segmentation. While developed for RNA

domain evaluation, the CSD is more broadly applicable to other biological molecules.

Since RNA structural domains are not defined in the literature, we built our own two datasets by: (i)
representative experimental RNA structures, and (ii) annotating domain boundaries using
Wetlaufer’s compactness and separation criteria [9]. For algorithm tuning, we created “Dataset 1”
from experimental RNA structures in the PDB, and for benchmarking, we generated “Dataset 2” using
predicted IncRNA 3D models. For Dataset 1, we extracted 4492 RNAs from the PDB. Domain
annotation was semi-automated: initial Mean Shift clustering on C3’ atoms followed by manual
refinement in PyMOL. This yielded 163 two-domain and 4329 single-domain RNAs. To reduce

redundancy, we selected 22 two-domain and 21 single-domain RNAs, resulting in 43 representative
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entries. RNA under 30 nt were excluded. Given IncRNAs' emerging biological importance, Dataset 2
was generated with 69 predicted 3D IncRNA structures from LNCipedia [24], using RNAfold [25] for

secondary structure prediction and RNAComposer [26,27] or AlphaFold3 [2] for 3D structures.
Results and Discussion

To evaluate the feasibility of hyperparameter tuning, we selected 8 arbitrary RNAs from Dataset 1: 4
single-domain (PDB: 3J3W, 5ZWN, 6MEO, 7BOI) and 4 two-domain (PDB: 3J29, 5XYI, 6NQB, 3JD5). For
DBSCAN, we tested 1560 (&, MinPts) combinations (€: 5-30; MinPts: 1-60), but none of them gave
the correct domain counts for more than 4 RNAs, indicating the need for finer and computationally
intensive tuning. Thus, DBSCAN was excluded. For Mean Shift, we tested 2 kernel types (Gaussian,
uniform) and 10 bandwidths (0.1-1.0), totaling 20 combinations. 4 settings yielded correct domain

predictions for all 8 RNAs. Thus, we choose to refine the kernel type and bandwidth for Mean Shift.

For Mean Shift, larger bandwidths would yield fewer and larger clusters, therefore overly large
bandwidths can bias results by producing single clusters for all single-domain RNAs. To mitigate this,
we split Dataset 1 into 21 single-domain RNAs and 22 two-domain RNAs and tuned the two-domain
RNAs subset. We observed that the results were more influenced by bandwidth than kernel type. No
significant performance difference was observed between Gaussian and uniform kernels at the same
bandwidth. A uniform kernel with 0.2 quantile bandwidth yielded the best scores: NDO = 0.806 +
0.189, DBD = 0.308 * 0.330, and CSD = 0.635 * 0.297. Therefore, we selected a bandwidth = 0.2

guantile and uniform kernel as a default setting for RNA3DClust and used it for the rest of the article.

Across Dataset 1, RNA3DClust achieved average scores of NDO, DBD and CSD of 0.792 +0.173, 0.227
1 0.350, and 0.700 + 0.266, respectively.

To evaluate the strengths and limitations of RNA3DClust, we visualized in Fig.2 eight representative
cases from Dataset 1: four correct (Fig. 2A-D) and four incorrect (Fig. 2E-H). For 4ADV and 6MEO (Fig.
2A-B), RNA3DClust accurately segmented domains and removed outliers. For single-domain structure
(2AAR - Fig. 2C), it identified one cluster with some outlier labeling. For 3JD5 (Fig. 2D), two domains
were correctly found but slightly fragmented. These segmentations align well with assigned domains,

and fragmented linkers may reflect actual domain flexibility.

The first two incorrect cases presented in Fig. 2 concern the same O. cuniculus 18S rRNA, captured at
different stages of translation initiation: late (6YAN) and early (4KZZ). Interestingly, the mispredicted
partitions are very different: one is over-segmented, the other is under-segmented (Figs. 3E and 3F,
respectively), likely due to conformational changes during assembly of the pre-initiation complex. For

5ZWN (Fig. 2G), Mean Shift identified two clusters that post-processing failed to merge, causing
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over-segmentation. For 5MY1 (Fig. 2H), both the clustering and post-clustering stages produced a

two-domain partition inconsistent with the assigned domains.

In proteins, domains may also be defined by functional or evolutionary independence, which often
aligns with 3D geometry. However, these criteria sometimes cause annotation inconsistencies [28].
Here, we examined how RNA3DClust’s output compares with RNA functional domains in the
literature. The first example is the 16S rRNA, known to consist of four functional domains: 5’, Central,
3’ Major, and 3’ Minor [29] (Fig. 3A). Visual analysis of the E. coli 16S rRNA (PDB: 3J29) led us to
annotate two structural domains - one corresponding to the 3’ Major, and the other overlapping the
remaining functional domains (Fig. 3B). RNA3DClust reproduced this two-domain partitioning, with

one cluster aligning well with the 3’ Major functional domain (Fig. 3C).

|II

Rfam [30] annotates “Domain of the Oceanobacillus iheyensis group Il intron RNA as
“group-11-D1D4-3" based on conserved sequence and secondary structure (Fig. 3D). In our reference
(PDB: 4Y1N), this RNA is split into 2 structural domains, one of which overlaps that domain (Fig. 3E).
RNA3DClust correctly identified this region, producing a cluster spanning residues 94—-232 (Fig. 3F).
This agreement between structural and evolutionary definitions highlights RNA3DClust’s ability to

detect biologically meaningful RNA substructures.

We then applied RNA3DClust to the 69 IncRNA 3D models in Dataset 2, obtaining average scores of
NDO, DBD and CSD values of 0.617 + 0.206, 0.379 + 0.290, and 0.354 + 0.294, respectively. These
values are generally lower than those for Dataset 1, likely due to Dataset 2’s non-native, predicted

structures, which may lack of proper hierarchical organization.

Based on those scores, we selected 4 correct cases (Fig. 4A-D) and 4 with limitations (Fig. 4E-H). In
the correct ones, post-clustering improved continuity by extending clusters over outliers. RNA3DClust
successfully detected the compact and helical domains in AADACL2 (Fig. 4A) and ADGRL3-AS1:5 (Fig.
4B). RERG-AS1:1 (Fig. 4C) was well segmented after extending over an outlier and removing a
redundant cluster. For LINC01016:6 (Fig. 4D), the compact domain was identified, with partial

detection of the helical region.

In this study, helices were treated as domains, though it’s hard to separate them from unfolded
linkers. Therefore, segmentation struggled with helix-rich RNAs. In Fig. 4E, most of the helical domain
was mislabeled as outliers. In Fig. 4F-G, multi-domain RNAs were under-segmented. Conversely, Fig.

4H shows an over-segmented two-helix RNA, split into four clusters and outliers.

In conclusion, RNA3DClust performed well across both datasets, though it still has some limitations
when dealing with the structural diversity in Dataset 2. The Mean Shift algorithm with adaptations

also shows promise for partitioning biological structures like RNAs and potentially proteins.

141


https://www.zotero.org/google-docs/?Zm6vm9
https://www.zotero.org/google-docs/?zFIc66
https://www.zotero.org/google-docs/?mJLHOl

k-means Hierarchical DBSCAN Mean Shift GMM Spectral SOM

Robust against noise v 4 4 (4 (%4
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Tab. 1: Comparison between widely-used clustering algorithms for partitioning RNA 3D structures.
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Fig. 1: The eight rules for the post-clustering procedure. (A, B, and C) The rules for outliers; (D, E, F, G,
and H) The rules for labeled clusters. The gray color indicates outlier regions. The yellow, magenta
and cyan colors indicate cluster regions. The sequence length of the left, middle and right regions are
symbolized by “L1”, “L2” and “L3”, respectively. On each panel, the segments on the left represent the
clustering result before the post-clustering procedure, the segments on the right represent the

clustering result after the post-clustering procedure.
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Fig. 2: Examples of segmentations for experimental RNA 3D structures (Dataset 1). For each RNA, the
reference segmentation is presented on the left panel; on the middle and right panels are
RNA3DClust results, before and after the post-clustering procedure, respectively. Labeled clusters are
colored in blue and yellow, while outliers are in gray. Domain positions are below the structures. (A)
E. coli 16S rRNA (PDB entry: 4ADV), (B) T. vestitus Th.e.I3 group Il intron RNA (6 MEO), (C) D.
radiodurans 23S rRNA (2AAR), (D) B. taurus mitochondrial 28S rRNA (3JD5), (E) O. cuniculus 18S
rRNA, part of the 80S initiation complex (6YAN), (F) O. cuniculus 18S rRNA, part of the 48S
pre-Initiation complex (4KZZ), (G) S. cerevisiae U1 spliceosomal RNA (5ZWN), (H) E. coli 16S rRNA
(5MY1).
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Fig. 3: Comparison between domain annotations based on (A) biological function, (D) evolution, (B, E)

RNA 3D structure, and (C, F) the clustering performed by RNA3DClust. Two examples are shown: (A,

B, C) the E. coli 16S rRNA (PDB entry: 3J29), and (D, E, F) the O. iheyensis group Il intron domain | RNA

(4Y1N). The labels “Central”, “5°”, “3’ Major”, and “3’ minor” are the names given to the functional

domains in the literature. The label “group-1I-D1D4-3” is the name of the RFO2001 family in Rfam.
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Fig. 4: Examples of segmentations for predicted 3D structures of IncRNAs (Dataset 2). For each RNA,
the reference segmentation is presented on the left panel; on the middle and right panels are
RNA3DClust results, before and after the post-clustering procedure, respectively. Labeled clusters are
colored in blue, yellow, orange and magenta, while outliers are in gray. Domain positions are below
the structures. The LNCipedia entries are: (A) AADACL2-AS1:1; (B) ADGRL3-AS1:5; (C) RERG-AS1:1; (D)
LINC01016:6; (E) ADORA2A-AS1:16; (F) ADGRA1-AS1:2; (G) AADACL2-AS1:6; and (H)
Inc-AADACL2-1:5.
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Abstract

Understanding the genetic basis of phenotypic adaptations poses a significant challenge in
evolutionary genomics. Despite the morphological and physiological diversity in mammalian traits,
their coding genomes exhibit a high degree of conservation, implying that changes in gene expression
and regulation are pivotal in driving phenotype evolution. This study aims to identify shifts in gene
expression and cis-regulatory activity and their potential role in phenotypic adaptation. Using African
mole-rats as a model, renowned for their unique phenotypic adaptation traits like cancer resistance
and hypoxia tolerance, we aimed to elucidate the genome-wide gene expression patterns underlying
these traits that have been mainly characterised at the level of candidate genes and in individual
species. Profiling gene expression in heart and liver tissues across two mole-rat species and two rodent
outgroups, we used a phylogenetic comparative approach to identify genes with expression shifts
within the mole-rat clade and in specific genera. These shifted genes are associated with functions
pertinent to known adaptations in naked mole-rats, such as cellular respiration and glycolysis in the
heart. Furthermore, our analysis revealed concordant changes in the regulatory landscape of these
genes. By employing a phylogenetic comparative approach, we offer new insights into the interplay
between gene expression, regulation, and phenotypic evolution in mammals. Our findings shed light
on the molecular mechanisms driving the evolution of unique traits in mole-rats and potentially other

mammalian species.
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Abstract

The characterization of centromeric DNA has recently seen a major breakthrough thanks to advances
in sequencing technologies, reaching complete resolution for several human cell lines and other
primates through Telomere-to-Telomere (T2T) assemblies. New bioinformatic tools have been
developed to describe the main DNA type composing the centromere in most Primates, alpha satellite
(AS) DNA. However, both the tools and the resulting annotations often rely on the human genome to
interpret the evolutionary dynamics of other species. One example is the use of human AS families to
annotate AS sequences in other species, despite the rapid evolution of these sequences. Moreover,
the current model of alpha satellite evolution, which is primarily based on observations in humans,
needs to be tested against data from other primates. As T2T sequencing remains costly and technically
demanding, we propose an alternative approach that directly leverages long-read sequencing data. In
the present study, we identified AS-containing reads within a Pacbio HiFi dataset for a Cercopithecini
species, Cercopithecus cephus. Through a de novo annotation of these sequences, we identified two
families that we previously detected in two related species, as well as a new family, which is the least
abundant but also the most ancient. These three families also appear to be spatially segmented across
the genome, corresponding to distinct evolutionary layers. To investigate the organization of alpha
satellite monomers within these layers, we developed a tool designed to detect higher-order repeat
(HOR) structures without relying on predefined family classifications. Unlike humans, C. cephus
exhibits a predominantly monomeric-like organization of its AS, with only 1.6% of sequences forming
HORs. Interestingly, these HORs are mainly found in the oldest evolutionary layers, suggesting a
potential transition from HOR to a monomeric organization in this species. These findings support the
idea that HOR organization is not a unique or highly specialized structure and could arise

independently in multiple clades.
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Abstract

Inverted repeats (IRs) are genetic elements with a DNA motif (left arm) followed by a gap, or spacer,
and its reverse complement (right arm) — e.g., ATACGGnnnCCGTAT. They play a key role in many
biological functions, including gene regulation, DNA replication, and genome plasticity. In this study,
we aim to systematically investigate the distribution of short IRs (with gap lengths up to 20 bp) in all
completely sequenced prokaryotic species by confronting observed statistics to expected ones
computed by permuting DNA sequences under specific constraints. Through this systematic approach,
we reveal complex patterns of IR biases with five main observations: (i) a systematic enrichment of IRs
with arm lengths longer than 6 bp, (ii) a systematic depletion of palindromes (IRs with a zero-length
gap) shorter than 6 bp, (iii) qualitatively different biases between coding and non-coding regions, (iv)
in non-coding regions, the most frequent enrichment over bacterial species occurs for gap length of 4
bp similar to the most common loop size of RNA hairpins associated with known transcription
terminators in model organisms, and (v) biases in coding regions that strongly depend on the species
considered. Altogether, these findings — both corroborating and further deepening previous analyses
— highlight universal evolutionary constraints as well as species-specific selective pressures that act

on genome sequences, particularly on IRs.
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Abstract

5’ and 3’ RNA-end sequencing protocols have unlocked new opportunities to study aspects of RNA
metabolism such as synthesis, maturation and degradation, by enabling the quantification of exact
ends of RNA molecules in vivo. From RNA-Seq data that have been generated with one of the
specialized protocols, it is possible to identify transcription start sites (TSS) and/or endoribonucleolytic
cleavage sites, and even co-translational 5’ to 3’ degradation dynamics in some cases. Furthermore,
post-transcriptional addition of ribonucleotides at the 3’ end of RNA can be studied at the nucleotide
resolution.

While different RNA-end sequencing library protocols can vary, and each have their specificities, the
generated RNA-Seq data are very similar and share common processing steps. Most importantly, the
major aspect of RNA-end sequencing is that only the 5’ or 3' end mapped location is of interest,
contrary to conventional RNA sequencing that considers genomic ranges for gene expression analysis.
This translates to a simple representation of the quantitative data as a count matrix of RNA-end
location on the reference sequences. This representation seems under-exploited and is, to our
knowledge, not available in a generic package focused on the analyses on the exact transcriptome
ends.

Here, we present the rnaends R package which is dedicated to RNA-end sequencing analysis. It offers
features for raw read pre-processing, RNA-ends mapping and quantification, RNA-ends count matrix
post-processing, and further count matrix downstream analyses such as TSS identification, fast Fourier
transform for signal periodic patterns analysis, or differential proportion of RNA-ends analysis. The use
of rnaends is illustrated with applications in RNA metabolism studies through selected workflows on
published RNA-end datasets: (i) TSS identification, (ii) ribosome translation speed and co-translational

degradation, (iii) post-transcriptional modifications analysis and differential proportion analysis.
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Abstract

Circular RNAs (circRNAs) are unique non-coding RNAs with covalently closed loop structures formed
through backsplicing events. Their stability, tissue-specific expression patterns, and potential as
disease biomarkers have garnered increasing attention. However, their circular structure and diverse
size range pose challenges for conventional sequencing technologies. Long-read Oxford Nanopore
(ONT) sequencing offers promising capabilities for capturing entire circRNA molecules without
fragmentation, yet the effectiveness of bioinformatic tools for analyzing this data remains
understudied.

This study presents the first benchmark comparison of three specialized tools for circRNA detection
from ONT long-read data: CIRI-long [1], IsoCIRC [2], and circNICK-Irs [3]. To address the lack of
standardized evaluation frameworks, we developed a novel computational pipeline, open-source and
freely available, to generate realistic simulated circRNA ONT long-read datasets. Our pipeline
integrates several molecular features of circRNAs extracted from established databases - circAtlas [4]
and circBase [5] and real datasets into NanoSim tool [6] and outputs FASTQ reads reflecting therefore
biological diversity and technical properties.

We assessed tool performance across key metrics, including precision, recall, specificity, accuracy, and
F1 score. Our analysis revealed distinct performance profiles: while all tools exhibited high specificity,
they varied in precision and their ability to detect different circRNA subtypes, often showing limited
sensitivity and precision. Notably, the overlap in detected circRNAs among tools was relatively low.

Additionally, computational efficiency varied significantly across the tools. This suggests that relying
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on a single tool might not be ideal, and combining tools or improving algorithms could be necessary
for more accurate circRNA detection from ONT data.

This benchmark provides valuable insights for researchers selecting appropriate tools for circRNA
studies using ONT sequencing. Furthermore, our customizable simulation framework, offering a
resource to optimize detection approaches and advance bioinformatic tool development for circRNA

research is freely available at: https://gitlab.com/bioinfog/circall/nano-circ.

Introduction

Non-coding RNAs (ncRNAs), which make up a significant portion of the transcriptome, have emerged
as critical players in various cellular processes, ranging from gene regulation to disease pathogenesis
[7]. Among them, circular RNAs (circRNAs) represent a unique class of ncRNAs, formed through
non-canonical backsplicing events, resulting in a covalently closed loop structure. Since their
discovery, circRNAs have garnered increasing attention due to their stability, tissue-specific
expression, and potential roles as biomarkers in diseases, including cancer [8,9]. However, their
circular structure and diverse size range—spanning from less than 100 to almost 100000
nucleotides—pose significant challenges to conventional sequencing technologies, particularly

second-generation sequencing methods, which often rely on read fragmentation.

Recent advancements in third-generation sequencing technologies, such as Oxford Nanopore
sequencing, have provided novel opportunities to explore circRNAs in greater detail [10]. Unlike
second-generation methods, Nanopore sequencing offers long-read capabilities that can capture
entire circRNA molecules without the need for fragmentation, making it a promising approach for the
comprehensive characterization of circRNAs. However, the full potential of long-read sequencing for
circRNA discovery and annotation depends on bioinformatics tools that can accurately detect and

quantify circRNAs from these datasets.

Despite the growing number of bioinformatics tools developed for circRNA detection [11], a
comprehensive benchmark comparing their performance on long-read Nanopore sequencing data
remains absent. To address this gap, we performed a systematic comparison of three circRNA
detection tools — CIRI-long[1], IsoCIRC[2] and circNICK-Irs[3]. We selected these tools because they
represent the three major methodological approaches to long-read circRNA detection, each with
distinct experimental protocols and computational pipelines: rolling circle reverse transcription

(CIRI-long), rolling circle amplification followed by nanopore sequencing (isoCirc), and direct circRNA
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linearization approaches (circNick-LRS). This selection provides comprehensive coverage of the
current landscape of long-read circRNA detection methodologies, enabling evaluation of how
different experimental and computational strategies affect detection performance across various

circRNA characteristics.

The complexity of circRNA detection requires a robust and reproducible evaluation framework that
goes beyond traditional wet-lab datasets. Experimental data inherently suffers from limitations such
as biological variability, sequencing biases, and the challenge of definitively establishing ground truth.
Simulated datasets offer a solution to these challenges, providing a controlled environment with
precisely known circRNA and linear RNA annotations. By generating in silico reads that mimic the
molecular and sequencing characteristics of Nanopore technologies, we can create a comprehensive

ground truth dataset that allows for assessment of performance by each of circRNA detection tools.

In this study, we provide a first framework for the generation of simulation data of long-read
sequencing of circRNA and present the first benchmark analysis of these 3 tools using simulated
datasets. By evaluating their performance across different metrics, we aim to provide valuable
insights into the strengths and limitations of each tool, guiding researchers in selecting the most

appropriate software for their circRNA studies (Fig.1).

Material & Methods

Benchmarking framework

Overview of a benchmark study
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Fig. 1: Overview of the benchmarking study. Schematic representation of the benchmarking
framework for circular RNA (circRNA) detection tools using mouse brain nanopore sequencing data as
the training model. The workflow progresses through five stages: (1) Input data preparation including
FASTA sequences from circRNA databases and FASTQ files from real wet-lab protocols for training; (I1)
Ground truth preparation from simulation parameters; (lll) In silico read simulation using NanoSim
version 3.1.0; (IV) Computational analysis using three long-read circRNA detection tools: CIRI-long,
isoCirc, and circNick-LRS; (V) Comprehensive performance evaluation through multiple metrics

including sensitivity, precision, specificity, accuracy, and F1 score, calculated across different overlap

thresholds.

CIRI-long [1]: is a computational method designed for profiling circRNAs using nanopore long-read
sequencing data based on a rolling circle reverse transcription approach. The algorithm reconstructs
full-length circRNA sequences through a multi-step process: (1) Data preprocessing: demultiplexing,
quality control, and adapter removal; (2) Repetitive pattern identification: k-mer-based detection of
circular patterns using k=8 and k=11 with homopolymer-compressed k-mers; (3) Consensus sequence
generation: partial order alignment (SPOA) to create cyclic consensus sequences with 80% similarity
threshold between repetitive segments; (4) Mapping and BSJ detection: alignment using minimap2
for sequences >150 bp and bwa mem [12] for shorter sequences, followed by iterative alignment
strategy; (5) Filtering and validation: canonical splice signal detection (GT/AG, GC/AG, AT/AC) and
clustering based on genomic coordinates. The method validates circRNAs against the circAtlas

database. More details can be found at [https://github.com/bioinfo-biols/CIRI-long].

isoCirc [2]: is a method for sequencing and characterizing full-length circular RNA isoforms using
rolling circle amplification followed by nanopore long-read sequencing. The computational pipeline
involves: (1) Data preprocessing: demultiplexing, quality control, and adapter removal; (2) Repetitive
pattern identification: tandem repeat detection to identify multiple copies of circRNA sequences
within reads; (3) Consensus sequence generation: construction of consensus sequences from
detected tandem repeats with copy number-dependent error correction (average copy number of
14.5); (4) Mapping and BSJ detection: alignment of consensus sequences to reference genome using
minimap2, with BSJ identification through split-read analysis; (5) Filtering and validation: multi-tiered
alignment scoring, stringent validation of back-spliced junctions (BSJs) and forward-spliced junctions

(FSJs), requiring high mapping quality and fidelity. The method characterizes alternative splicing
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events and validates against circBase and MiOncoCirc databases. More information can be found at

[https://github.com/Xinglab/isoCirc].

circNick-LRS [3]: is a computational workflow for profiling circRNAs from linearized circRNA nanopore

long-read sequencing data. The pipeline consists of: (1) Data preprocessing: demultiplexing, quality

control and length filtering; (2) Mapping: direct alignment to reference genome using pblat with

parallelized implementation; (3) BSJ detection: identification of back-splice junctions through

split-read analysis, requiring minimum Blat score of 30 on both BSJ sides; (4) Filtering and validation:

retention of reads mapping to same strand, within 1 Mb distance, non-overlapping by 250 bp, and in

reverse genomic order; (5) Annotation and classification: assignment to RefSeq genes, correction to

nearest annotated exons (within 30 bp), and validation against multiple databases (295% overlap

with annotated circRNAs). The method validates against circBase, circAtlas, and CIRCpedia databases.

Further details can be found at [https://github.com/omiics-dk/long_read_circRNA].

Feature CIRI-long IsoCirc circNick-LRS

Input RCRT-based ONT reads RCA-based ONT reads Linearised circRNA
ONT reads

Mapping tool mappy (v2.17) minimap2 (v2.17) pblat (v35)

Circular pattern
detection

BSJ detection

Reference
databases

k-mer matching

SPOA,
mappy (v2.17), bwapy
(v0.1.4)

circAtlas

Tandem Repeat Finder (v
4.0.9)

minimap2 (v2.17)

circBase, MiOncoCirc

pblat (v35),
bedtools (v2.29.2)

circBase, circAtlas,
CIRCpedia

Tab. 1: Comparison of key features and computational components across three long-read circular

RNA sequencing methods.
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Tool for ONT in-silico generation of long-read sequencing data

NanoSim [6]: is a fast and scalable read simulator that captures the technology-specific features of
Oxford Nanopore Technologies (ONT) data. The tool analyzes ONT reads from experimental data to
model read features such as length, error profiles, and k-mer biases. In its latest version (v3.0),
NanoSim supports the simulation of genomic, transcriptomic (cDNA and direct RNA), and
metagenomic reads, accommodating features like intron retention events and chimeric reads. The
simulation process involves characterizing the input data to learn these features and then generating
synthetic reads that mimic the observed characteristics. NanoSim is implemented in Python and
utilizes tools such as minimap?2 for alignment and HTSeq for efficient reading of SAM alignment files.
Pre-trained models for organisms like E. coli and S. cerevisiae are available, and users can also train
NanoSim on their own datasets to tailor the simulation to specific applications. More details and

access to the software can be found at [https://github.com/bcgsc/NanoSim].

Wet-lab dataset

Mouse brain dataset:

We selected the CIRI-long protocol and mouse brain dataset from CIRI-long study as our basis to
establish a robust foundation for our benchmarking study. The CIRI-long paper has the highest
number of citations and provides the most comprehensively described wet-lab conditions, making it
an ideal reference point for comparative analysis. Additionally, mouse circRNA databases contain over
one million well-curated annotations, providing robust ground truth data essential for reliable feature

extraction and validation of detection accuracy across all three methods.

The FASTQ file from the Zhang et al. study [1] was obtained from the National Genomics Data Center
(China National Center for Bioinformation) under the accession number CRA003317

[https://ngdc.cncb.ac.cn/gsa/browse/CRA003317]. This dataset, containing 1,760 total sequences

spanning 2 Mbp with read lengths ranging from 110 to 4,635 base pairs and a GC content of 48%,
with no sequences flagged as poor quality, served as the foundation for our simulation parameters

and error modeling.

Ground truth construction

Our framework integrated two complementary circRNA databases selected for their comprehensive

coverage, multi-organism support, and provision of mature circRNA sequences:
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circAtlas v.3 (Wu et al., 2020) [4]: An integrated resource cataloging over 3 million circRNAs across 33
tissues and 10 vertebrate species. circAtlas 3.0 provides full-length isoform sequences with extensive
functional annotations, including conservation profiles, expression patterns, miRNA and RBP binding
sites, and coding potential predictions. It integrates both Illumina and Nanopore sequencing data
using standardized nomenclature, facilitating cross-database comparisons and evolutionary studies.
Its comprehensive tissue and species coverage provides robust reference data for feature extraction

and validation.

circBase (GlazZar et al., 2014) [5]: A foundational database that merges and unifies publicly available
datasets of circular RNAs identified in eukaryotic cells. circBase provides comprehensive access to
circRNA data within genomic context, supporting queries by identifier, gene, or genomic position. The
database includes validation scripts for identifying known and novel circRNAs from sequencing data,
making it an essential resource for circRNA research and candidate validation. Its broad taxonomic
coverage and condition-independent curation make it ideal for establishing general circRNA feature

baselines.

We selected these databases based on four key criteria: (1) Multi-organism support - both databases
provide extensive mouse and human circRNA annotations; (2) Condition-independent curation -
entries represent general circRNA populations rather than condition-specific datasets; (3) Sequence
availability - both provide mature circRNA sequences in FASTA format enabling direct feature
extraction; and (4) Comprehensive coverage - high numbers of validated entries (circBase: >140,000;
circAtlas: >3 million) ensure robust statistical analysis. Importantly, we used the intersection of these
databases to enhance confidence in our reference dataset, as circRNAs supported by both
independent databases are less likely to represent study-specific artifacts and more likely to

constitute authentic circRNA sequences.

Genome assembly and annotations: We utilized the GRCm38.p4 mouse genome assembly as our
reference genome, selected for compatibility with the circNick-LRS pipeline requirements. Reference
genome sequences and genomic annotations were obtained from the GENCODE consortium [13],
specifically using the GENCODE version M10 mouse gene annotation file. This version provides
comprehensive gene models including protein-coding genes, long non-coding RNAs, and
pseudogenes, ensuring complete coverage for circRNA classification and validation across all genomic

contexts (exonic, intronic, and intergenic regions).
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Data simulation

Feature extraction from databases: To understand the composition of circular RNAs, we have
analysed circRNAs found at an intersection between circRNA databases. We developed a
computational pipeline to extract comprehensive features from circRNA annotations using
Python-based bioinformatics tools (pybedtools, pysam, pandas). The analysis integrated genomic
coordinates, sequence information, and transcriptomic context from input BED files, reference
genomes (FA), and gene annotation (GTF) files. Our methodology extracted key circRNA
characteristics, including genomic location (chromosome, start, end, strand), mature RNA length, and
splice site details. We classified splice sites based on canonical motifs (GT-AG, GC-AG, AT-AC) and

performed intersectional analysis to annotate gene and transcript types.

Feature extraction from nanopore sequences: To understand the effect of wet lab protocol on
sequencing data, we developed a Python-based computational pipeline to extract and visualize
detailed sequencing characteristics from FASTQ files. The analysis quantified read metrics including
length distributions and repeat patterns present in the wet lab data. Data processing and statistical
analysis were performed using Python libraries including pandas and NumPy for handling structured
datasets and numerical operations, while visualization utilized Python plotting libraries matplotlib
and seaborn for generating distribution plots and statistical comparisons. Rolling circle amplification
characteristics were analyzed using Tandem Repeats Finder (TRF v4.09) integrated within our Python

framework to detect rolling circle periods, estimate copy numbers and identify repeat patterns.

in-Silico circRNA generation: Building upon our database and wet-lab protocol feature extraction
pipelines, we developed an approach to simulate circular RNA types (Fig. 2B). Leveraging genomic
features extracted from exonic, intronic, and intergenic regions, we generated four circRNA types:
exonic circRNAs (ecircRNAs), circular intronic RNAs (ciRNAs), exon-intron circRNAs (EIciRNAs) and
intergenic circRNAs. Key generation features included random sequence extraction,

length-constrained generation, splice site preference and rolling circle amplification.

To capture the biological complexity of circRNA isoforms, our simulator incorporates alternative
splicing patterns that reflect natural circRNA diversity. For eciRNAs, we implemented exon skipping
events with 10% probability for each exon, allowing generation of multiple isoforms from the same
genomic locus with varying exonic compositions. EIciRNAs exhibit more complex splicing patterns

with 15% probability of exon skipping and 70% probability of intron retention for each intron,
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reflecting the characteristic exon-intron structure that defines this circRNA class. ciRNAs are
generated from intronic sequences with predominantly single-exon structures (59.4%) representing
complete intron circularization, while multi-exonic ciRNAs result from combining multiple intronic
regions within the same gene. Intergenic circRNAs are generated from non-genic genomic regions
with random positioning and exhibit variable exon counts (35% single-exon, 65% multi-exonic) based
on the extracted distribution patterns from our database analysis. These type-specific structural
probabilities were derived from our database analysis and ensure that simulated circRNAs exhibit the
structural diversity observed in real biological systems, including the presence of multiple isoforms

per locus that challenge detection tools differently.

We implemented sequence quality filtering to exclude sequences with more than 10% unidentified
nucleotides (N bases or gap in the assembly). The generation process dynamically selected sequence
start positions, controlled rolling circle replication defined by user parameters, and captured detailed
metadata including transcript identifiers, gene coordinates, and strand information. To validate the
simulated circRNAs, we employed BLAT [14] for quality control validation of backsplice junctions.
While BLAT is less optimal for long-read alignment compared to minimap2, we selected it for this
validation step because its output format displays clearly in genomic browsers (e.g. UCSC [15], IGV
[16]), enabling straightforward manual validation of back-splice junctions and visual identification of
the characteristic "tail-before-head" pattern of circRNA reads during quality control. It is important to
note that BLAT served solely as a quality control validation tool for our simulated data and was not
used for precise genomic mapping in the benchmarking analysis, where minimap2 was employed for
its superior optimization with nanopore data. This validation step ensures that our simulated
circRNAs maintain the structural characteristics necessary for downstream tool evaluation while
incorporating the isoform complexity that distinguishes transcriptome-level detection (general
boundary identification) from full-length isoform detection (complete sequence reconstruction with

accurate internal structure).

in-silico circRNA long-reads data simulation: We utilized NanoSim version 3.1.0 to simulate
Nanopore sequencing reads from the circRNA sequences generated in our previous simulation step to
use as positive ground truth and from linear RNA sequences to use as negative ground truth (Fig.2C).
The simulation uses multiple input files: a control FASTQ file (CRR194180.fq), reference genome
(GRCM38.p4), and transcriptome annotation (gencode.vM10). The NanoSim simulation process

involved four stages: read analysis for characterizing sequencing properties using the control FASTQ
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file with minimap2 alignment, circRNA read simulation generating 200,000 reads from our previously
created circRNA.fa file, transcriptome quantification for analyzing expression levels, and linear read

simulation generating 200,000 linear RNA reads from transcriptome annotation.

We selected the Guppy basecaller because it represents the most accurate basecaller for ONT data,
ensuring our simulated reads reflect contemporary sequencing quality compared to older
alternative(Albacore). The cDNA 1D read type was chosen to match the library preparation method
used by all benchmarked tools and represents the current ONT standard. We chose minimap2 for
alignment during characterization because it provides superior accuracy for long-read transcriptome
data compared to alternative LAST aligner. Importantly, we disabled NanoSim's intron retention
modeling to prevent conflicts with our custom circRNA-specific simulation scripts, allowing us to
control splicing patterns precisely according to our circRNA type-specific generation rather than
relying on generic intron retention models. The simulation generated a comprehensive dataset that
captured the molecular and sequencing characteristics of circular and linear RNAs, providing a
computationally derived representation of Nanopore sequencing data with realistic error profiles and

read characteristics.
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Fig. 2: Computational Workflow for Nanopore Sequencing circRNA Simulation. The workflow
consists of two main phases: circRNA sequence generation (Panels A, B) and nanopore read
simulation (Panel C). (A) Feature Extraction: Analysis of circRNA databases and experimental
nanopore reads to extract biological parameters including length distributions, splice site patterns,
and rolling circle characteristics. (B) CircRNA Generation: Our custom simulator creates biologically
realistic circRNA sequences based on extracted features, generating FASTA files with proper circRNA

types (eciRNA, EICiRNA, ciRNA, intergenic) and rolling circle structures. (C) NanoSim Read Simulation:
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Conversion of generated circRNA sequences into realistic Oxford Nanopore Technology (ONT) FASTQ
reads using NanoSim, incorporating authentic error profiles, quality scores, and read length

distributions from control datasets.

Benchmark Dataset

Our generated in silico benchmark dataset incorporates the following quantitative and qualitative

properties:

Biological properties:

e Organism: Mus musculus

e Simulated circRNA count: 7,503 unique circRNAs across four major types (eciRNA, EICiRNA,
ciRNA, intergenic)

e Linear transcript reference: 117,667 unique transcripts (GENCODE vM10)

e Total simulated read output: 400,000 reads

Technical parameters (Modeled by NanoSim):

e Sequencing platform: Oxford Nanopore Technologies (ONT)

e Library preparation: cDNA 1D protocol

e Basecaller: Guppy

® Error characteristics: Derived from authentic ONT mouse brain sequencing data

e Homopolymer modeling: Based on actual ONT sequencing artifacts and base-calling
limitations

e Mean sequence quality: Q12

Standardisation of tool output

To ensure comprehensive and standardized evaluation, we converted all tool prediction results to
BED12 format, which provides a consistent representation of genomic features including
chromosomal location, exon structure, and strand information. This normalization allowed for precise

comparative analysis across different circRNA detection tools despite different output formats.

Performance metrics
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The bedtools intersect approach utilized three parameters to ensure precise genomic feature
comparison. The -f (fraction overlap) parameter controls matching stringency by specifying minimum
overlap requirements between predicted and ground truth circRNA annotations. We tested three
overlap thresholds: 0.25 (lenient, 25% minimum overlap), 0.5 (moderate, 50% overlap), and 0.75

(stringent, 75% overlap) to capture a comprehensive range of detection scenarios.

Our evaluation framework operates at two distinct levels through the -split and -r parameters.
Exon-level evaluation, enabled by the -split option, treats each BED12 block as a separate feature,
testing whether tools can accurately reconstruct complete internal circRNA structure including proper
exon boundaries and splice junction patterns. This stringent approach requires precise isoform
reconstruction with correct internal splicing. Transcriptome-level evaluation, conducted without
-split, assesses overlap at the whole transcript level, focusing on back-splice junction detection
regardless of internal exon structure. The -r (reciprocal overlap) parameter ensures symmetric

overlap requirements, preventing asymmetric matches where only partial features overlap.

We utilized bedtools version v2.31.1 to systematically compare BED12 format annotations of in silico
ground truth against tool outputs. This dual-level approach distinguishes tools that excel at general

circRNA boundary detection from those capable of accurate full-length isoform reconstruction.

Performance assessment employed standard metrics across both evaluation levels. True Positives (TP)
represent correctly identified circRNAs meeting reciprocal overlap criteria, False Positives (FP)
indicate computational artifacts or misannotations predicted as circRNAs, and False Negatives (FN)
comprise undetected circRNAs from the simulated dataset. We calculated Precision (TP / [TP + FP]) to
measure specificity in avoiding spurious predictions, Recall (TP / [TP + FN]) to assess comprehensive
detection capability, and F1 Score as the harmonic mean providing balanced evaluation of overall

detection performance across different structural accuracy requirements.

Results

datasets results

Our circRNA simulation pipeline integrates Nanopore sequencing data from Zhang et al., database

annotations, and computational modeling. (Fig. 3).
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Fig. 3: Characterization of Circular RNA molecular features across circRNA types from CircAtlas and
CircBase databases. Panels A-D depict: (A) Splice site composition across circRNA types, (B) Exon
count distribution, (C) mature length (exonic concatenation) distribution, and (D) circRNA type

distribution.

Among 11,791 circRNAs common to the two databases, canonical GT-AG splice sites dominated the
junction boundaries of exonic, exon-intronic, and intronic circRNAs (100%, 99.8%, and 91.2%,
respectively), while intergenic circRNAs showed significantly higher usage of non-canonical splice

sites (49.5%) (Fig. 3A).

The exon composition analysis demonstrated substantial variation in complexity across circRNA types
(Fig. 3B). Notably, intronic circRNAs (ciRNAs) were predominantly single-exon structures (59.4%),
whereas exonic circRNAs (ecircRNAs) showed more diverse exon count distributions with significant
proportions containing 2 exons (32.3%) and 3 exons (22.1%). Exon-intron circRNAs (EIcCiRNAs)
exhibited the highest complexity, with 34.3% containing 5 or more exons. Intergenic circRNAs showed
an intermediate distribution pattern, with substantial representation across various exon count

categories.

Mature length distribution analysis revealed that EIciRNAs possessed the highest median length,

followed by ecircRNAs, intergenic, and ciRNAs (Fig. 3C). This pattern reflects the fundamental
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structural differences between these circRNA subtypes, with EICiRNAs incorporating both exonic and

intronic sequences, contributing to their increased overall length.

When examining the overall distribution of circRNA types in the reference databases (Fig. 3D),
ecircRNAs constituted the majority (54.5%, n=6421), followed by EICiRNAs (37.0%, n=4364),
intergenic circRNAs (7.1%, n=836), and ciRNAs (1.4%, n=170). This distribution highlights the
predominance of exon-derived circular RNAs in the current reference datasets and reflects potential

biases in detection methodologies favoring exonic circRNA identification.

These different features were incorporated in our simulation framework based on NanoSim to
generate circRNA molecules reflecting biological variations. We verified that the simulated data
accurately reflected the characteristics of the input parameters. Specifically, the distributions of
circRNA types, splicing patterns, and repeat number variability observed in real Nanopore data and

database annotations were preserved in the simulated output

Descriptive comparison of circRNA outputs across tools

We performed a comparison of three circRNA detection tools (CIRI-long, isoCirc, and circNick-Irs) run
on a simulated dataset (N ,nas = 7503, Nye.qs = 400000), to evaluate their performance characteristics

and detection biases (Fig. 4).
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Fig. 4: Descriptive comparison of circRNA outputs across tools. Panels A-C depict: (A) intersection
analysis showing shared and unique isoform detection across tools, (B) boxplots of circRNAs mature
length distribution found by each tool, and (C) proportional distribution of circRNA subtypes identified

by each tool compared to ground truth.

The intersection analysis revealed significant differences in detection capability among the three tools
(Fig. 4A). Notably, circNick-Irs demonstrated the highest unique detection capability, identifying 1317
circRNAs not found by other methods. CIRI-long uniquely detected 377 circRNAs, while isoCirc
showed the lowest unique detection with only 24 circRNAs. The consensus between all three tools
was limited to 272 circRNAs (11.85% of total detections), highlighting the complementary nature of
these detection approaches. Additional intersection patterns included 233 circRNAs detected by both
circNick-Irs and CIRI-long but missed by isoCirc, and 58 circRNAs identified by both CIRI-long and

isoCirc but not by circNick-Irs.

Analysis of mature length distribution revealed differences between the tools (Fig. 4B). CircNick-Irs
demonstrated substantially greater capability in detecting longer circRNAs, with a much wider
interquartile range extending beyond 3000 bp, and a significant proportion of detections in the
higher ranges (25.97% between 1-5 kb, 8.44% between 5-10 kb, and 9.04% above 10 kb). In contrast,
both CIRI-long and isoCirc predominantly detected shorter circRNAs. CIRI-long showed an
intermediate range capability with 66.60% of detections under 500 bp and 14.47% in the 1-5 kb
range, but none above 5 kb. IsoCirc exhibited the most restricted length distribution, with 89.71% of
detections under 500 bp, nearly no representation (0.26%) in the 1-5 kb range, and none above 5 kb.
This severe limitation in isoCirc can be attributed to its built-in length cutoff at 4000 nucleotides,
making it incapable of detecting longer circRNAs without modifying the original code in the TRF

(Tandem Repeat Finder) section.

When examining the proportional distribution of circRNA types (Fig. 4C), we observed substantial
variation in type bias across tools compared to ground truth. Ground truth composition revealed a
distribution of 72.1% EIciRNAs, 7.7% ecircRNAs, 1.1% ciRNAs, and 19.1% intergenic circRNAs.
However, all three tools showed significant detection biases. CircNick-Irs demonstrated extreme bias
toward EIciRNAs (90.7%) with limited ecircRNA detection (9.3%). CIRI-long showed better balance
between EIciRNAs (70.2%) and ecircRNAs (28.1%), with minimal ciRNA detection (1.7%). IsoCirc
exhibited a more balanced detection of EICiRNAs (64.5%) and ecircRNAs (35.5%) but completely
missed ciRNAs and intergenic circRNAs. Notably, intergenic circRNAs were missed by all three tools

despite representing 19.1% of the ground truth, while ciRNAs were detected only by CIRI-long,
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suggesting limitations in current circRNA detection methodologies. These findings highlight the
importance of tool selection based on the specific circRNA types of interest and suggest that

combining multiple tools may provide the most comprehensive circRNA detection.

Performance evaluation of circRNA detection Tools

To evaluate the three circRNA detection tools, we assessed their performance across multiple
dimensions including detection accuracy, expression profiling, computational efficiency, and resource

requirements (Fig. 5).
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Fig. 5: Performance Evaluation of circRNA Detection Tools on Simulated Datasets. Panels A-D depict:
(A) quantitative comparison of performance metrics, (B) quantitative comparison of performance
metrics on combinations and union of tools, (C) violin plot distribution of circRNA expression levels
(TPM) detected by each tool compared to ground truth, (D) dot plot showing peak memory usage
requirements for each computational approach and displaying processing time per read when

analyzing a standardized dataset of 400,000 reads.

Performance metrics analysis revealed varying detection capabilities across different tools and
overlap fractions (Fig. 5A). At the 0.25 fraction, IsoCirc demonstrated the highest precision (99%),
followed by CIRI-long (0.97) and CircNick-LRS (0.89). Notably, all tools exhibited low recall, with
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CircNick-LRS performing significantly better (0.22) compared to IsoCirc (0.05) and CIRI-long (0.12). As
the overlap fraction increased to 0.5, a consistent decline in precision was observed: IsoCirc dropped
to 0.98, CIRI-long to 0.97, and CircNick-LRS to 0.83. Recall remained persistently low across all tools:
CircNick-LRS at 0.20, CIRI-long at 0.12, and IsoCirc at 0.05. At the 0.75 fraction, the precision decline
continued: IsoCirc decreased to 0.98, CIRI-long to 0.94, and CircNick-LRS further dropped to 0.78,
with recall values remaining consistently low across all tools: CircNick-LRS at 0.19, CIRI-long at 0.12,
and IsoCirc at 0.05. Based on this, we can see that each tool exhibits unique performance profiles.
CircNick-LRS shows the most balanced approach with relatively higher recall, CIRI-long maintains

consistent performance, while IsoCirc prioritizes extreme precision at the cost of sensitivity.

Performance metrics analysis revealed subtle changes in detection capabilities when implementing
the -split option (see M&M for more details) across different tools and overlap fractions (Fig. 5A). The
observed performance decline with the -split option reflects the critical challenge of precisely
mapping circRNA isoform exon structures. This stringent criterion dramatically reduces detection
sensitivity by enforcing a more rigorous matching of exon structures, essentially demanding that the
computational tools precisely align with the ground truth of circRNA splicing events. The substantial
drops in precision and recall across all tools—most notably for CircNick-LRS—highlight the

fundamental difficulty in computationally reconstructing exact circRNA isoform boundaries.

When we merged the circRNA sets of the three tools, significant performance variations emerged
(Fig. 5B). The union of all three tools produced the highest recall values across all fractions,
substantially outperforming any individual tool or pairwise combination. However, this
comprehensive approach came at the cost of reduced precision (0.90) compared to any individual
tool or two-tool combination. This trade-off highlights the complementary nature of these detection
methods, where combining all tools captures more true positives but introduces additional false

positives.

The expression level analysis (Fig. 5C) revealed that all three tools demonstrated significant bias
toward detecting highly expressed circRNAs. While the ground truth dataset had a median expression
of 6.34 TPM, the detected circRNAs showed substantially higher median expression levels:
CircNick-Irs (20.55 TPM), CIRI-long (19.0 TPM), and IsoCirc (16.36 TPM). This observation aligns with
detection capabilities, as highly expressed circRNAs generate more supporting reads, making them
easier to identify. Minimum expression values were similar across tools, with CIRI-long, CircNick-Irs,
and the ground truth dataset showing a minimum expression of 1.0 x 102 TPM, while IsoCirc had a

slightly higher minimum TPM of approximately 6.0 x 102 TPM.
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Resource utilization varied dramatically between tools (Fig. 5D), reflecting genuine architectural
differences observed under identical testing conditions with 8 threads and identical input datasets.
CIRI-long exhibited exceptionally high memory consumption (269.95 GB), representing a substantial
computational burden that likely stems from its approach to 1) simultaneous processing of multiple
consensus sequences per thread, 2) maintenance of large genome index structures for detecting
repetitive patterns, and 3) rolling circle detection algorithms that require extensive k-mer matching
operations across all available threads. In contrast, isoCirc (16.28 GB) demonstrated memory-efficient
design characteristics, while circNick-LRS (3.46 GB) showed the most efficient memory utilization.
Importantly, circNick-LRS's low memory footprint is partly attributable to its single-threaded
architecture, which prevents the memory multiplication that occurs with multi-threaded processing,
making it more accessible for researchers with limited computational resources but at the cost of

processing speed.

Processing speed analysis also revealed significant performance differences that reflect distinct
computational architectures. IsoCirc emerged as the clear performance leader, processing 5,454,545
reads per hour (0.66 milliseconds per read), demonstrating superior computational efficiency through
optimized multi-threading. CIRI-long demonstrated intermediate efficiency at 1,061,947 reads per
hour (3.39 ms/read), while circNick-LRS required substantially more processing time at 669,145 reads
per hour (5.38 ms/read), making it the slowest of the three tools. These metrics provide researchers
with practical expectations for processing large-scale datasets and help inform tool selection based

on computational resource availability, time constraints, and infrastructure capabilities.

Discussion

Our benchmarking study reveals the current state of circRNA detection tools for long-read Nanopore
sequencing, highlighting both the promising capabilities and significant challenges in accurately
identifying circular RNAs. The analysis underscores the complementary strengths and limitations of
current computational approaches, providing critical insights for researchers navigating circRNA
detection. Each tool demonstrated distinct performance characteristics that warrant careful

consideration.

IsoCirc emerged as the computational efficiency leader, requiring only 0.66 milliseconds per read,
making it an attractive option for researchers with limited computational resources. However, this
efficiency came at the cost of significant limitations, including a built-in length cutoff at 4000

nucleotides that severely restricts its ability to detect longer circRNAs.
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CIRI-long offered a more balanced approach to circRNA detection, with intermediate performance
across metrics. However, it imposed a substantial computational burden, consuming an exceptional

269.95 GB of memory—a significant constraint for many research environments.

CircNick-Irs distinguished itself by demonstrating the most comprehensive circRNA detection,
particularly for longer circRNAs. It uniquely identified 1,317 circRNAs not found by other methods,
with a notable capability to detect circRNAs across diverse length ranges—25.97% between 1-5 kb,
8.44% between 5-10 kb, and 9.04% above 10 kb. However, the tool came with significant limitations,
most notably its restriction to only built-in mouse and human reference genomes (mm10 and hg19)
with predefined annotation files, preventing its use with custom or alternative genome annotations.
Despite its extensive detection capabilities, the tool also required the most processing time at 5.38
ms/read, presenting an additional performance challenge for researchers with large datasets and

struggled the most with predicting correct exon structure.

Notably, the extremely low intersection between tools—with only 272 circRNAs (11.85% of total
detections) identified by all three methods—strongly suggests that relying on a single detection tool
is suboptimal. This stark divergence in detection capabilities demonstrates the methodological
challenges in circRNA identification. Each tool essentially acted as a unique lens, capturing distinct
aspects of the circRNA landscape that other tools missed. The tools also exhibited significant bias
towards detecting highly expressed circRNAs, with median expression levels substantially higher than

the ground truth dataset, further complicating comprehensive circRNA characterization.

Our analysis suggests that the choice of tool combination should be guided by specific research
priorities. For maximum sensitivity (recall), the union of all tools provides the highest likelihood of
detecting true circRNAs, though with more false positives than other approaches. For highest
precision, the combination of CIRI-long and isoCIRC maintains the highest precision values across all
settings, making it ideal for applications requiring high confidence in detected circRNAs. For balanced
performance, while no combination achieves ideal balance, the union approach offers the best
compromise between precision and recall, as reflected in its superior F1 scores compared to any

two-tool combination.

The study also revealed notable limitations in current detection methodologies when tools can not
rely on database validation or standard circRNA composition. All three tools completely missed

intergenic circRNAs, which represented 19.1% of the ground truth dataset. Similarly, ciRNAs were
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detected only by CIRI-long, suggesting significant gaps in comprehensive circRNA identification across

types.

Performance metrics consistently demonstrated low sensitivity across all tools. This highlights the

formidable challenge of accurately identifying exact exon structures in circRNA detection.

Our results show mixed consistency with the original publications, reflecting differences in evaluation
approaches. CIRI-long's original paper (Zhang et al., 2021) reported higher performance metrics (F1
score of 0.92 for read-level analysis) in simulation studies, but these focused on relatively simple
eciRNA structures generated from inner exons without modeling other circRNA types or complex
features like exon skipping or intron retention and analysis was conducted on read-level, not on
exon/transcriptome level approach we employed here. Our more complex simulation framework,
incorporating four circRNA types with alternative splicing patterns, may explain the performance
differences from their original validation. The isoCirc publication (Xin et al., 2021) used real datasets
for validation, demonstrating high accuracy for full-length circRNA reconstruction across 12 human
tissues and HEK293 cells, with emphasis on detecting alternative splicing events within circRNAs that
aligns with our observation of isoCirc's precision capabilities. The circNick-LRS study (Rahimi et al.,
2021) focused on characterizing circRNA diversity in human and mouse brain samples, with validation
primarily through RT-PCR of selected candidates rather than systematic benchmarking metrics.
Importantly, none of the prior studies used the similar simulation framework or standardized
evaluation metrics across all three tools, making our simulation environment with known ground
truth suitable for revealing performance characteristics and tool overlaps that were not systematically

evaluated in the original publications.

Limitations of the current study include the exclusion of the circFL-seq [17] tool from the
benchmarking analysis. This tool was initially considered for inclusion but was ultimately omitted due

to unresolved dependency issues that prevented its execution on cluster.

Notably, other circRNA detection tools in the study also presented significant installation challenges,
lacking container environments and experiencing varying difficulties during cluster deployments.
These installation difficulties can pose substantial barriers to researchers without bioinformatics
expertise, potentially limiting the broader adoption and comparative evaluation of emerging circRNA
detection methodologies. This highlights a broader challenge in bioinformatics tool comparison: the
practical difficulties of integrating different computational approaches, especially those with complex

dependencies or limited ongoing maintenance. Future iterations of this benchmarking study should
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continue efforts to incorporate additional circRNA detection tools, potentially developing more

standardized approaches to tool integration, documentation, and user accessibility.

In conclusion, this study provides a comprehensive evaluation of circRNA detection tools,
emphasizing the need for continued methodological refinement. Researchers must carefully consider
the specific requirements of their studies—computational resources, circRNA length, and detection
sensitivity—when selecting circRNA detection tools and are advised, when possible, to use their

combination.

By integrating wet-lab data, database annotations, and computational modeling, our framework
captures circRNA biogenesis complexity and provides a valuable resource for studying circular RNA
function and regulation. Our study comes with a customizable framework that allows researchers to
analyse database features given mature circRNA sequences from any database as an input or
protocol-specific features given .fastq files corresponding to a protocol and tailor circRNA simulation
parameters to  their specific needs. Our scripts are freely available at

https://gitlab.com/bioinfog/circall/nano-circ.
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Abstract Genomes from bacteria of interest to the food industry exhibit significant functional variability,
yet evaluating this characteristic remains challenging. As public repositories continue to accumulate more
genomes, large-scale assessment of metabolic potential emerges as a promising method to highlight this
functional variability. The primary challenge lies in automating a workflow to construct metabolic networks
from genomes on a massive scale, with enzyme identification in sequences being a critical bottleneck. Here,
we present Prolipipe, a pipeline designed for the large-scale assessment of metabolic potential in bacte-
ria, focusing on specific pathways. Given a large dataset of hundreds to thousands of bacterial genomes
with known taxonomy and a list of targeted pathways, Prolipipe identifies gene functions through a com-
prehensive annotation step using three different tools. Then it builds genome-scale metabolic networks
for each genome. These networks are then parsed to document the presence or absence of each reaction
across all processed genomes and queried for reactions specific to particular pathways. By doing so, the
pipeline evaluates the metabolic potential of each genome to carry out the pathway according to its gene
content and highlights the best candidates among the large-scale set of genomes. In this study, Prolip-
ipe was applied to 1,494 genomes of lactic acid bacteria, assessing the completion ratio of 761 pathways.
We classified pathways according to their maximum completion rate, revealing that 137 pathways can
be operated by at least one strain in our dataset. By mapping the identifiers of these pathways onto the
pathway ontology graph of the Metacyc database, we highlighted four functional classes of Metacyc (toxin
biosynthesis, degradation of aromatic compounds, lipopolysaccharide synthesis and O-antigen biosynthe-
sis) without any of their pathways entirely completed at least once by the strains in the dataset. We then
investigated infraspecific variability, a strong indicator of functional variability, and compared the species
in our genome dataset based on their tendency to exhibit infraspecific variability. This analysis revealed
species potential for strain-dependency, where phenotypes differ among strains of the same species -a

feature observable in Prolipipe outputs.
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Introduction

Bacterial genomes of interest to the food industry exhibit a wide range of functional variability, fa-
cilitated by mechanisms such as horizontal gene transfer or genomic islands [1]. However, precisely
determining the functional roles of these genomes and identifying which species exhibit variabil-
ity remain challenging. To address these questions, public repository databases are increasingly
consolidating more and more genomes ; the NCBI database [2] features 255,669,865 annotated se-
guences in GenBank format and 4,152,691,448 sequences from WGS studies as of February 2025.
This vast amount of data enables large-scale analyses of metabolic capabilities, including studies
aimed at selecting organisms encoding enzymes catalyzing specific reactions of interest. By focusing
on the reactions within a given pathway, we can identify organisms capable of addressing specific
challenges through their metabolism—either by synthesizing valuable compounds or degrading un-
wanted metabolites. The latter approach requires linking a specific pathway to its reactions, the en-
zymes catalyzing them, their genes, and identifiers—information stored in databases such as KEGG
[3,4,5] or MetaCyc [6].

Although none of these databases provide direct indicators of strain-level metabolic capacities, the
greatest challenges lie in the large-scale analysis of potential capabilities using tools designed to con-
struct genome-scale metabolic networks. Few such tools can process thousands of genomes simulta-
neously, although numerous solutions exist, such as Bactabolize [7], which relies on ModelSEED [8],
CarveMe [9], and AutoKEGGRec [10]. Converting annotated genomes into metabolic data requires
extensive computational parallelization, which tools such as Mpwt [11] can achieve. However, the
primary obstacle remains enzyme detection within genomes. This computationally intensive step
can be performed via annotation, as in the RAVEN Toolbox [12], or through targeted searches like
BLAST [13], as implemented in GapSeq [14]. Working with large datasets enables the identification
of metabolic specificities but requires strictly standardized processing of raw data to prevent anno-
tation biases or inconsistencies arising from non-homogeneous datasets.

To address these challenges, we present Prolipipe [15], a tool for large-scale metabolic profiling of
bacteria, focusing on specific pathways. Its strategy is based on raw genomes as input, which are
processed through a robust annotation step, followed by targeted and standardized metabolic net-
work construction. To evaluate its scalability and accuracy, Prolipipe was applied to a dataset of 1,494
bacterial genomes, analyzing 761 MetaCyc pathways. The results revealed infraspecific variability in
strains of the same species, demonstrating Prolipipe’s capacity to uncover strain-specific metabolic

capabilities.
Methods

Creation of a large catalogue of bacterial genomes. A dataset of lactic acid bacteria’s genomes
(LAB) is built in compliance with the following restrictions : the genomes had to be qualified as pre-
sumptively safe (QPS) according to the EFSA agreement [16], display no ability for sporulation, or
have any known pathogenic effects on plants. As a result, 1,494 LAB genomes were retrieved from
the NCBI FTP server in the fna FASTA format. Taxon and strain files were built to complete Prolip-
ipe's inputs by linking species names and taxonomic identifier to files and strain name and status to
files, respectively. The list of considered strains is available at (https://github. com/NoeRobert1/
prolipipe_on_LAB).
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Selection and creation of Prolipipe-compatible pathways files. All pathways from the MetaCyc
database [6] were extracted, totalizing 3,489 pathways for which the pathway's common name and
reactions, the number of reactions, and the taxonomy affiliated with the pathway were referenced.
Pathways containing three or more reactions and classified as “observed in bacteria” within MetaCyc

were selected, leading to a final set of 761 pathways for analysis.

Prolipipe, a glance of the workflow. We implemented Prolipipe, a Python package whose steps
are summarized in Fig. 1. Given a large number of genomes along with a taxon file, a strain file
and a list of metabolic pathways, the first step of Prolipipe consists of genome annotation using
a homogeneous structural and functional annotation approach. This step relies on three tools that
have demonstrated their individual role in gene annotation : Prokka version-1.14.6 [17] using the
Prokka database (version 20/02/2023) with the -compliant flag ; EggNOG-mapper v2.1.12 [18] rely-
ing on the eggNOG 5.0 database [19] and using the -itype genome and -genepred prodigal options ;
Bakta 1.8.2 [20] with its own database (version 20/02/2023). Each of these tools generates output
files in GenBank format, resulting in three annotation versions per strain. The second step consists
of generating draft genome-scale metabolic networks (GSM). To achieve this, GBK files are pro-
cessed via a parallelized application of the PatholLogic algorithm from Pathway Tools [21] using the
Python package Mpwt [11]. The previously generated taxon file is provided to refine the analysis,
and the -patho flag is used to allow PatholLogic inference and the integration of all reactions from
the MetaCyc database. At this stage, draft GSMs (three per genome) contain sets of .dat files, the na-
tive format of Pathways Tools. These files are managed through the PADMet toolbox [22], a Python
package offering a comprehensive suite of tools for metabolic pathway reconstruction and annotated
genome comparison. For this study, we used the pgdb_to_padmet command along with the -extract-
gene, -no-orphan, and -source options for downstream benchmarking, as well as -padmetRef option
to retain only reactions associated with gene sequences from the draft GSMs and spontaneous reac-
tions. This command generates a single .padmet file per strain and annotation tool. Finally, padmet
files corresponding to the same strain are merged to create a consensus GSM per strain using the

padmet_to_padmet command.

Prolipipe’s GSM post-analysis and metabolic networks database generation. GSMs are then
queried to assess the metabolic profile of each strain based on the input pathways. Prolipipe com-
piles a database from all GSMs described within the Padmet files, enabling further comparisons us-
ing the compare_padmet command from the PADMet toolbox [22]. All results are aggregated into
four files, including one named reactions.tsv which documents the presence or absence of reac-
tions across all processed strains. This file is analyzed by Prolipipe to produce pathway-specific re-
sult tables, which are then used to generate heatmaps that highlight strain dependency. Alterna-
tively, Prolipipe can produce output files compatible with a SPARQL-endpoint, facilitating the gener-
ation of a queryable database. The pipeline is available on GitHub (https://github.com/AuReMe/
prolipipe).
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Fig. 1. Prolipipe application to our dataset. 1,494 genomes along with a taxon file, a strain file and 761
metabolic pathways were processed using Prolipipe, which first annotated the genomes before constructing
their genome-scale metabolic networks (GSM). These GSMs were then aggregated into a database and
queried to assess the metabolic ability of each strain for each given pathway ; the results were stored in
pathway-specific tables which were subsequently used to generate heatmaps.

Results

Benchmarking of annotation tools used. A catalogue of 1,494 bacterial GSMs has been built using
Prolipipe, which records the annotation source when annotating genomes using Eggnog-mapper,
Prokka and Bakta. Genomes were grouped by species and the number of reactions ranged from
845 to 1,918 reactions, as shown in Fig. 2. The variance in the number of reactions for each species
varied from zero to 13,744, suggesting relative homogeneity within each species group. A bar chart
illustrates the contribution of the three annotation tools across all 1,494 GSMs. We observed that
the three annotation tools generate consensus predictions accounting for 30 to 43% of the size of
the GSMs. Additionally, each tool produced unique predictions that enriched the GSMs.

histogram af betveen 3 annotation tooks for 1,94 straing

Fig. 2. Annotation tools benchmark by evaluating the number of annotations from each tool com-
bination within all 1,494 strains. Species are labelled on their last individual.
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Maximum completion rate per pathway. Prolipipe pipeline was executed on 1,494 bacterial genomes

to assess the completion rate of 761 bacterial metabolic pathways for each genome. This rate is cal-
culated as the ratio of reactions within the pathway linked to a gene, as identified by at least one
annotation tool, to the total number of reactions in the pathway.

The bar chart in Fig. 3A illustrates the distribution of pathways according to their maximums comple-
tion rate, grouped into 10% completion intervals, with a dedicated column for pathways achieving
100% completion. Since placement within the intervals depends heavily on the number of reactions
in each pathway, bars are color-coded accordingly. A total of 187 pathways exhibited low completion
rates below 10%. This corresponds with the fact that the 1,494 genomes catalogue is composed of
lactic acid bacteria which are known for their specialized metabolic properties and inability to per-
form all known metabolic pathways. Conversely, 137 pathways achieved full completion in at least
one strain, as indicated by the [100%] interval column. Furthermore, 29 pathways exhibited a com-
pleteness between 80% and 100%, prompting further analysis. Among them, 10 pathways contained
at least one lacking an affiliated EC identifier.

Focusing on the 137 pathways completed by at least one strain, the sunburst diagram from Fig. 3B
illustrates their distribution within the Metacyc database ontology for all 761 bacterial pathways.
Ontology classes shown in color indicate the presence of at least one fully completed within that
class, such as galactose degradation (MetaCyc ID : PWY-6317). This pathway aligns with the expected
metabolic profile of lactic acid bacteria LAB - known for being able to catabolize this sugar presentin
milk - used in this study [23]. Prolipipe’s table output reveals that 1,384 strains out of 1,494 contain
all reactions necessary for this pathway. In contrast, ontology classes depicted in gray indicate cate-
gories with no fully completed pathways. These include toxin biosynthesis, degradation of aromatic
compounds, lipopolysaccharide synthesis and O-antigen biosynthesis.

Infraspecific variability assessment. Given a pathway, differences in completion rates between
strains of the same species indicate the potential for infraspecific metabolic variability. These differ-
ences reflect variations in genes annotation related to a specific pathway among strains of the same
species. The bar chart depicted in Fig. 4 shows the percentage of infraspecific variability observed
over 761 pathways per species (45 species represented by 1,485 strains of the catalogue have more
than 1 individual, out of 54 species). This percentage ranges from 0 to 43.9% of all pathways with on
one hand Brevibacillus brevis's B showing 334 pathways out of 761, suggesting intra-species metabolic
variability. On the other hand Bifidobacterium longum shows less variability with a ratio of 25.8% (196
out of 761) while being the most represented species with 145 individuals. This example illustrates
that, even though species are not equally represented in the genome catalogue, differences in intra-
species metabolic variability potential can still be detected. Infraspecific variability may occur when
only a subset of a species’ strains complete a given pathway, leading to phenotypic differences be-
tween these strains. This phenomenon, known as strain dependency, is discussed further below.

Focusing on L-arginine biosynthesis through acetyl cycle. The heatmap in Fig. 5 depicts the com-
pletion rate of the L-arginine biosynthesis through the acetyl cycle, a metabolic pathway enabling
organisms to produce L-arginine from L-glutamine and L-glutamate through 9 different reactions.
Completion ratios were obtained for the 1,494 strains (covering 54 species) of our dataset using
Prolipipe. The X-axis divides completion percentage values into 10%-intervals, strains are ordered
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Distribution of bacterial pathways by reactions per completion level (761 pathways)

loi10% [10:20%] [P T 34| aocs0%| [5080] (o0, Ta%| (RGN T [ENESE (900100 [100%]
0

Completian intervals (%

Fig.3. A) Bar chart of pathway completion rate distribution. 761 pathways are dealt depending on
their completion rate which is splitted into 10%-completion brackets, with an eleventh column for strictly
complete pathways. The number of reactions per pathway is indicated with the shade of color.

B) Sunburst diagram on pathways ontology. 137 pathways are found completed by at least one of the
dataset’s strain and their repartition in the MetaCyc ontology is screened on all the 761 processed pathways,
with colored areas having at least one of these completed pathways.
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Percertage of pathmnys (among 7611 for which the completion rate differs for at keast 2 Siraims in the considered species

Fig.4. Bar-chart of infraspecific variability frequency. Each species represented by more than one
individual is represented by a bar, with the horizontal axis indicating the ratio of observed infraspecific
variability across all 761 analyzed pathways. Infraspecific variability is identified when two strains within
a species exhibit completion rates for a given pathway that differ by at least 10%. This suggests that the
strains in question have different enzymatic capabilities associated with the metabolic pathway.

taxonomically and grouped into the 54 species of the dataset, and color shade represents the pro-
portion of strains within a species whose completion rate falls within a specific interval.

A total of 23 species exhibited a fully colored cell in the 100% completion column, indicating that all
their representative strains achieved full pathway completion. These species are strong candidates
for carrying out the pathway and producing L-arginine under suitable environmental conditions. For
example, Streptococcus thermophilus (70 strains) achieved 100% completion, confirming its status of
candidate for carrying out the pathway entirely.

In contrast, 28 species did not contain any strain with 100% completion rate. Among these, some
exhibited high variability in completion rates. Lactobacillus delbrueckii, for instance, displayed five dif-
ferent completion rates represented by several cells of different shades on a same line : two strains
have genomes annotated with the genes of one reaction; 21 strains are associated with two reactions
; nine strains are associated with three reactions ; six strains are associated with four reactions and
36 strains are associated with five reactions. For these 28 species, the ability to synthesize L-arginine
through the acetyl cycle is considered unlikely.

Finally, three species -Leuconostoc lactis, Lactobacillus fermentum and Lactococcus cremoris- displayed
infraspecific variability. In Leuconostoc lactis, 6 out of 7 strains (85.7%) achieved 100% completion.
Similarly, in Lactobacillus fermentum and Lactococcus cremoris, 87.1% and 90% of strains, respectively,
reached full completion. These findings indicate that most strains within these species have the ge-
netic potential to synthesize L-arginine through the acetyl cycle. However, other strains associated
with these species have low completion rates. This suggests that the considered species are candi-
date to be strain-dependent with respect to the phenotype of arginine production [24].

Discussion

From the previous figures, we demonstrated that Prolipipe has significant potential for studying
large-scale datasets of bacterial genomes and enables two key analyses. The first key analysis is
a large-scale detection of pathways which are promising candidates for the effective production or
degradation of metabolites based on their genome content. In this context, Prolipipe can be used for
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Species

Fig.5. Completion heatmap of ARGSYNBSUB-PWY (Metacyc ID of L-arginine biosynthesis pathway
through acetyl cycle) within all 1,494 genomes. Completion ratio among the 54 species (represented
in line, headcount given in label) is dealt on 10%-completion brackets, proportion of individuals inside a

species in shades of purple.
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genome mining by identifying bacteria with the highest potential for pathways of interest, such as
biosynthesis of target compounds or degradation pathways. This process is facilitated by the use of
sunburst diagrams that utilize pathway ontology to identify over- and under-represented functional
classes. An example was provided with galactose degradation, where Prolipipe output indicated that
this pathway is predominantly present in our strains' genomes, which corroborates the literature [23]
and demonstrates its compatibility with genome mining approaches.

A second key analysis is the detection of infraspecific variability in pathway completion rate within
large-scale genome catalogues. This analysis can be extended to comparison between species, pro-
vided that the dataset is homogeneous in terms of species representation. Indeed, in our current cat-
alogue, species headcounts range from 1 individual to 145, thereby complicating the discrimination
between true infraspecific variability, known to exist within LAB [25] and biases arising from unequal
species representation. Nevertheless, these two aspects -the detection of accessible pathways and
infraspecific variability- are directly visualized in readily available, pathway-specific heatmaps which
serve as valuable tools for more detailed studies of metabolic profiles related a given metabolic path-
way within a bacterial dataset. Moreover, such displays can reveal candidates for strain-dependency,
defined as differences in pathway completion rate among strains of the same species, with a subset
of the specie's strains achieving 100% completion of the pathway. It is important to note that, since
this analysis is based solely on genomic data, the associated phenotypic traits must be validated
experimentally.

The investigation of nearly completed pathways revealed the risk of false negatives due to gaps in the
MetaCyc database, as some reactions lack an Enzyme Commission (EC) number to link annotation
to metabolic data. This limitation persists despite the explicit inclusion of spontaneous reactions
during the construction of metabolic networks. Additionally, there is a risk of false positives arising
from the triple annotation process, where pseudogenes may be erroneously identified as functional
genes. Such risk can be mitigated by adjusting the annotation tools’ parameters and increasing the
stringency of gene coverage criteria during gene detection. However, due to these potential errors,
Prolipipe should be considered as a preliminary tool for assessing diversity potential. Its primary role
is to filter out the least promising strains, without guaranteeing quality or exhaustiveness -questions
that can be addressed once the genomes catalogue is significantly reduced.

Prolipipe’s capabilities are currently being extended to metagenomics, where metabolic capability
assessment would not be limited to individual organisms but would encompass entire bacterial
communities, facilitating research on metabolic complementarity. This extension is expected to be
valuable for the development of bacterial consortia to address challenges that single strains cannot
overcome. Additionally, Prolipipe is being adapted for eukaryotic analysis, specifically for assessing
metabolic machineries in yeasts.
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Abstract

MethMotif (https://methmotif.org) is a publicly available database that provides a
comprehensive repository of transcription factor (TF)-binding profiles enriched with DNA
methylation patterns. Since its inception in 2019, the platform has evolved to incorporate
expanded datasets and advanced functionalities, deepening our understanding of context-
specific TF functions. In its 2024 release, MethMotif expands its initial collection from 509 to
over 700 position weight matrices (PWMs), all annotated with DNA methylation profiles. A key
advancement of this update is the segregation of TF-binding motifs based on cofactors and DNA
methylation status, allowing researchers to explore how gene ontology (GO) annotations and TF
target genes can differ under varying cofactor contexts. MethMotif now supports two additional
species: Mus musculus and Arabidopsis thaliana, broadening its applicability for comparative
and translational research. By incorporating cofactor-based binding motifs, methylation profiles,

and precomputed GO enrichments, MethMotif stands out as the first and only TF-binding motif
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database to integrate context-specific PWMs with epigenetic information, thus enabling deeper

insights into the regulatory mechanisms governing gene expression.

Highlight

MethMotif [1,2] bridges a critical gap in epigenomic gene regulation analysis by integrating

transcription factor binding profiles with DNA methylation patterns, offering a unified

framework for exploring context-specific regulatory mechanisms. For the JOBIM community,

this resource offers three principal advantages:

Context-Specific Integration: MethMotif incorporates TF-DNA interaction data and DNA
methylation patterns, highlighting how cofactors and epigenetic states modulate TF
binding. This integrative view is vital for understanding dynamic regulatory events in

health and disease.

Enhanced Species Coverage: In addition to Human, the 2024 release includes data for
Mus musculus and Arabidopsis thaliana, in addition to human cell lines, enabling cross-
species comparisons of DNA methylation effects on TF binding and regulatory network

evolution.

User-Focused Tools and Batch Querying: New data visualization modules and batch-
query functionalities allow users to systematically explore transcription factor binding
sites (TFBS) methylation status, cofactor interactions, and gene ontology enrichments.

The TFregulomeR R package [3] further extends these capabilities for custom analyses.

By expanding PWMs, integrating cofactor-based motif segregation, and incorporating pioneer TF

annotations, MethMotif 2024 remains a unique and powerful platform for dissecting the

epigenetic dimensions of transcriptional regulation.
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Abstract Antibodies play a crucial role in the humoral immune response against health threats, such
as viral infections. Training Al (Artificial Intelligence) models, for example to assist in developing sero-
diagnostics or antibody-based therapies, requires building datasets according to strict criteria, to include as
many standardized antibody sequences as possible. However, the available sequences are scattered across
partially redundant databases and compiling them into a single non-redundant standardized dataset has
hitherto remained a challenge.

Here, we present ABSD (AntiBody Sequence Database, https: // absd. pasteur. cloud) which con-
tains data from major publicly-available resources (abYbank, CATNAP-HIV, CoV-AbDab, GeneBank, IMGT,
KABAT, OAS, PDB, PLAbDab, PairedNGS, SACS, SAbDab, UniProt...), creating the largest standardized, au-
tomatically updated and non-redundant (i.e., each antibody sequence stored in the database is unique)
source of public antibody sequences for different species.

While ABSD contains over 1,350,000 antibody sequences today, trillions of them may circulate in the human
population. This limitation is unlikely to be resolved anytime soon, but diversity might matter more than
sheer number. In the article, we demonstrate that, at least regarding IGHV regions, our methodology does
not seem to have introduced a strong bias in the selection of antibody sequences towards specific gene

clusters, compared to a classic human repertoire.

When training deep learning models, the uniqueness and representativeness of the input data is likely
essential for most applications. In this regard, ABSD will help mirror the human repertoire by providing,
as broadly as possible and without bias, unique antibody sequences with realistic proportions.

Finally, ABSD is a dynamic and adaptive database, designed for automatic updates and easy upgrades.
This user-friendly and open website enables users to generate lists of antibodies based on selected criteria
and download the unique sequence pairs of their variable regions.

Highlight

For Al training and validation in biology, quality of the data likely matters more than quantity. How-

ever, the required standards are not always met, as for the plethora of data accumulating in databases,
the accuracy and the relationship with biological dimensions are not always ascertained, probably

rendering the accessed information not always as pertinent as it should.

To gain insight into the diversity of antibody sequences mobilized in response to specific biological
processes or diseases, we wanted to train Al models. We therefore asked ourselves: what is required
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to properly train these models? We identify the need for non-redundant and standardized sequence
data with clean annotation. Furthermore, it was essential to have trust in these data (acquisition
methods, origin of sample, species, 3D structure, etc.), hence, to keep a record of the origins of each
sequence. The goal was not necessarily to accumulate as much sequences as possible —the amount
of data accumulated so far being anyway very limited compared to reality— but rather to organize a
vast amount of data to extract a subset that retains the original diversity, complexity and biological

information.

The pertinence of a data source is as important as the quality of biological information it contains.
Starting with the merge of high-quality databases (e.g., IMGT and the PDB), we gradually included
more databases while refining potential use-cases and addressing the challenges posed by new ad-
ditions. Ultimately, we developed a fully automated pipeline where adding new databases is straight-
forward, regardless of their original data quality. This pipeline ensures that each antibody in ABSD is
unique, standardized, annotated, and has a direct link to each database from which it was sourced.

We believe ABSD is of interest to the JOBIM community because : 1/ it is a new resource that is
directly useful for the bioinformatics and immunology communities, 2/ it introduces a large dataset
that, because of its quality and scalable representativeness, is likely well-suited for Al training, and
3/ it demonstrates the challenges, engineering, and methodologies used to achieve a homogeneous
and coherent merge of heterogeneous data from numerous public databases, potentially applicable
to other bioinformatics domains.
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Abstract

The Pfam protein families database is a comprehensive collection of protein domains and
families used for genome annotation and protein structure and function analysis
(https://www.ebi.ac.uk/interpro/). This update describes major developments in Pfam since
2020, including decommissioning the Pfam website and integration with InterPro, harmonization
with the ECOD structural classification, and expanded curation of metagenomic, microprotein
and repeat-containing families. We highlight how AlphaFold structure predictions are being

leveraged to refine domain boundaries and identify new domains. New families discovered
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through large-scale sequence similarity analysis of AlphaFold models are described. We also
detail the development of Pfam-N, which uses deep learning to expand family coverage,
achieving an 8.8% increase in UniProtKB coverage compared to standard Pfam. We discuss plans
for more frequent Pfam releases integrated with InterPro and the potential for artificial
intelligence to further assist curation. Despite recent advances, many protein families remain to
be classified, and Pfam continues working toward comprehensive coverage of the protein

universe.

Highlight

The recent enhancements to Pfam, an invaluable, open-source, and widely recognised resource in
the scientific community, offer significant benefits for the JOBIM community. For decades, Pfam has
served as a cornerstone for protein research, earning widespread trust across disciplines. The
integration with InterPro and alignment with ECOD structural classification further strengthens this
essential resource for structural and functional genomics investigations. In particular, the application
of AlphaFold structure predictions to refine domain boundaries and identify novel domains
demonstrates how cutting-edge Al technologies can advance protein annotation. The development
of Pfam-N, which achieves an impressive 8.8% increase in UniProtKB coverage through deep learning
approaches, represents a meaningful advancement in our understanding of the protein universe.
These Al-driven approaches exemplify the type of interdisciplinary integration that the JOBIM
community values. Additionally, Pfam's expanded curation of metagenomic and microprotein
families addresses key emerging areas of interest. These developments provide the JOBIM
community with enhanced tools for genome annotation and protein characterisation, facilitating

discoveries across the molecular life sciences.
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Abstract Reproducibility and reuse of digital bioinformatics resources are essential for the development
of open and cumulative science, in line with FAIR principles. To search and reuse bioinformatics tools,
scientists need to be confident enough with the reliability of their annotations. Our study focuses on the
quantitative and qualitative evaluation of semantic annotations in the bio.tools registry, which serves more
than 30,000 bioinformatics tool descriptions, annotated with the EDAM ontology. In this work we propose
to study how the EDAM ontology is used to categorize software based on scientific disciplines and the kind
of data processing they allow. We also evaluate how qualitative are the annotations based on Shannon en-
tropy. We emphasize that a particular attention should be given to the whole set of inherited annotations,
from the used ontology. Our results underline the need for automatic tools to support annotation cura-
tion, reducing the annotation cost for domain experts. This study is a preliminary work aimed designing
novel annotation approaches based on the combination of knowledge graphs and large language models
towards more findable and reusable bioinformatics tools.

Introduction

Ensuring reproducibility in data-driven sciences is critical for the continuous development of open
and cumulative sciences. In line with the FAIR principles, this requires for digital scientific resources
to be openly accessible and reusable by a wide community of researchers [1,2].

Many registries have been developed to facilitate the discovery and reuse of digital scientific re-
sources. For instance, Zenodo and Dataverse enable the sharing of datasets and increase their dis-
coverability through significant amount of descriptive metadata. These metadata rely on ontologies
and generic controlled vocabularies such as Schema.org, DCTerms, or DCAT [3,4,5]. However, the
scope of these metadata is generally limited to attribution, citation, or licensing information. They
are not sufficient for searching a set of resources annotated with precise concepts, specific to certain
scientific disciplines, such as “mobile genetic elements”, or “protein-protein interactions”.

In the field of life sciences, research communities have developed specialised registries dedicated to
training materials (e.g. TeSS [6]), software tools (e.g. bio.tools [7]), or analysis pipelines (e.g. Work-
flowHub [8]). These registries rely on EDAM [9], an ontology aimed at improving interoperability in
bioinformatics by formally defining the nature and format of data produced and managed, differ-
ent kinds of data processing, as well as the associated scientific disciplines. This ontology enables,
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for example, the retrieval of algorithms dedicated to analyse a specific type of data, as well as rel-
evant training materials. Beyond data findability, semantic indexing allows for the development of
computational approaches aimed at assisting scientists in workflow composition [10] or data anno-
tation [11]. These registries, with their growing adoption and extensive collection of resources (e.g.,

30k+ bioinformatics entries in bio.tools), are key to address FAIRification challenges.

However, researchers lack insights into the reliability of their annotations. For instance, is a bioinfor-
matics software tool sufficiently annotated? Are the chosen terms precise enough with respect to the
terms hierarchy of the domain ontology? To further promote the usage of these domain-specific an-
notations, we need a detailed quality assessment. In this paper, we address the following question:
What is the quality of semantic annotations associated to bio.tools bioinformatics software ?

For assessing the quality of annotations, a gold standard is required, but it does not exist yet for
bioinformatics software. One approach would then consist in measuring the quality of an annotation
according to its rarity: a specific annotation would be less frequent and more informative than a
generic annotation, that could be assigned to a large collection of softwares.

Our main contributions are i) a characterisation of the usage of the EDAM ontology when annotating
a large collection of bioinformatics software and ii) an evaluation of the specificity of the annotations
through the Shannon entropy metric.

Motivating use case

Here we present a small example with two tools to illustrate the EDAM ontology's term hierarchy
and its impact on tool search. We selected Qiime2 [12] and Vsearch [13] as two reference bioinfor-
matics tools used in metagenomics data analysis. QiimeZ2 is annotated with topics {Microbial ecology,
Phylogeny, Metatranscriptomics, Metagenomics}, and Vsearch with topics {Metagenomics, Sequence anal-
ysis}. The two tools share only one directly assigned annotation {Metagenomics}, accounting for 16%
of all direct annotations, which is relatively low given their use in the same application domain.

Figure 1 shows the topic annotations for these two tools, as declared in bio.tools, along with inferred
annotations from the EDAM class hierarchy. Shared topics between the tools are highlighted by a red
border. There are 7 shared topics out of 17 total annotations from the combined sets, representing
41% of the annotations. This highlights the importance of considering inferred annotations when
retrieving tool's annotations. This illustrates that some tools have few annotations, and have direct
annotations with various levels of precision.

Material and methods

Bio.tools dataset. We leverage the bio.tools registry which now categorizes 30k+ bioinformatics
tools using the EDAM ontology. In this work, we rely on the bio.tools RDF metadata available as of
January 5, 2025°. Based on the collected metadata, we used SPARQL queries and Python scripts to
compute statistics on tool annotations /. From the extracted version, there are 30,025 tools described
in bio.tools.

6. Available at: https://github.com/research-software-ecosystem/content/blob/master/datasets/
bioschemas-dump.ttl
7. Available at: https://github.com/ulysseLeclanche/Abso_bio-tools
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Fig.1. Direct and inferred EDAM annotations for the scientific topic of Qiime2 and Vsearch, two
metagenomics tools. Dotted blue arrows indicate direct topics, while solid black arrows represent
inferred topics inherited through the EDAM hierarchy. The topics shared by both tools are highlighted
by a red border. Topics colors saturation is proportional to the number of tools annotated by the
topics.

EDAM. The EDAM ontology is structured into four main branches covering bioinformatics Opera-
tion, Data, Format and Topic at different levels of precision. We used EDAM version 1.25, and focused
only on Operation and Topic annotations, the most used annotations in bio.tools (100k+ topics, 70k+
operations, 11k+ data and 10k+ formats). Data and Format EDAM classes are not well instantiated
(used) in the bio.tools registry, even though they are as important as Topic and Operation. On the
extracted version of bio.tools, we observed that branches have a different number of unique classes
(331 classes Format, 569 classes Data) than Topics (258 classes Topic) and Operations (527 classes
operation). Unfortunately, fewer tools are annotated by elements from these branches (among the
30 025 annotated tools 98.64 % Topics, 94.25 % Operations, 9.64 % Formats, 12.95 % Datas). There
are 98,870 topic annotations for 29,616 tools with at least one topic, and 68,886 operation annota-

tions for 28,299 tools with at least one operation.

Entropy. We used Shannon entropy as an information measure to quantify annotation quality [14],
as it takes into account annotation rarity and distribution of EDAM annotation. The formula for en-
tropyis: H = — ) . p(a) x logy p(a), where p represents the probability of an annotation a oc-
curring. Itis defined as the number of tools annotated by a divided by the total number of annotated
tools. A low entropy for a tool indicates either that the annotations is general, or that is annotates
few tools. A high entropy indicates a balanced distribution in the attribution of annotations to the
tool and more specific annotations. For a tool, topic and operation entropy are respectively the sums
of their annotation entropy values.
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Fig. 2. Distribution of the number of tools in bio.tools according to number of topics and operation.
Two conditons are tested: with direct assigned annotations, and with inherited annotations.

Results and Discussion
Topics and operations in bio.tools: basic statistics and curation needs

Basic statistics were computed on the whole bio.tools dataset, comprising 30,025 software descrip-
tions. Figure 2 shows the distribution of the number of tools annotated with a given number of EDAM
topics or operations, considering both directly assigned annotations and inherited annotations. Fig-
ure 2 shows a very narrow distribution for directly assigned annotations, with a discrete distribution.
This suggests that some annotations are assigned in a very standardized way and are concentrated
around a small number of topics and operations. Taking inherited annotations into account yields
a wider and more continuous distribution. We observe that the mean number of directly annotated
topics is 3.29 + 1.45, which is comparable for operations with a means equals to 2.29 + 1.43. When
inherited annotations (ancestors) are taken into account, the mean number of topics rises to 9.73
4 4.71 and to 8.31 £ 5.12 for operations. The EDAM hierarchy of terms helps to enrich assigned
annotations for all tools, taking ancestors into account. These numbers show that the a particular
attention should be given to the hierarchy of ontologies classes and not only classes typically used
at resource annotation time.

Based on this dataset, we evaluated that 1,965 tools (6.54%) are not annotated with EDAM topic
or operation, clearly showing the need for involving user communities to better annotate bioinfor-
matics software. We also computed the number of tools annotated with redundant EDAM classes.
For example, the magnet tool has two direct topic annotations: Protein interactions and Molecular
interactions, pathways and networks. These two annotations share the same branch since Molecular
interactions, pathways, and networks is a subclass of Protein interactions. Adding the Protein interactions
annotation does not provide any additional information, as it is inherited from the ontology. We es-
timated that 3,405 tools (11.34%) have redundant direct topic annotations, and 2,055 tools (6.84%)
have redundant direct operation annotations. This highlights the need for better curation in the tools
database. Finally, there are 1,114 deprecated annotations, 54 tools with at least 1 deprecated topic
and 347 tools with at least 1 deprecated operation, also highlighting the need for database curation.
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Are bioinformatics software annotated with informative enough classes ?

We computed the entropy of tools annotated with EDAM topics and operations. By only considering
direct annotations, the mean topic entropy is 0.57 £ 0.32, but when considering inherited classes,
the entropy grows to 2.98 + 1.72. We observed the same increase for operations with 0.23 4+ 0.18 for
direct annotations and 2.01 &£ 1.32 for inherited ones. The entropy of topics for direct and inherited
annotations is greater than the entropy of operations. This reflects both a greater diversity in the
assignment of topic annotations compared to operation annotations and the size difference of these
two branches. We calculated a Pearson correlation coefficient of 0.96 showing a positive correlation
between the number of annotations and their entropy. The current entropy measurement can only
be increased by adding annotations, even if the annotations are not very informative. However, if we
take two tools with a similar number of annotations but different rarity in term annotation, the tool

with the most rare terms will have a higher entropy.

Law information
10 Medium information
High information

Total Entropy of operation by tool (operationEntropy)

0 2 a 6 B 10
Total Entropy of topics by tool (topicEntropy)

Fig. 3. Distribution of topic and operation entropy for bio.tools software taking into account inherited
classes. The total entropy S, of a tool is the sum of the topic entropy and the operation entropy.
Red dots represent tools with low information (S, < 5), gray dots represent tools with medium
information 5 <= S, < 10, and green dots show tools annotated with highly informative annotations
(Se >= 10).

Figure 3 shows how informatively tools are annotated with inherited classes, considering both the
topic entropy and the operation entropy. Tools are grouped into three categories based on an arbi-
trary threshold on the sum of these two metrics (max(S.) = 15.65). The majority of tools - 29,061
(96.78%) - belongs to the low or medium information categories. A few tools (964) have an entropy
sum greater than 10, indicating a high information level for their annotations. 53.05% of tools (in
red), i.e. 15,929 tools, are annotated with a low level of information, suggesting that they should be
prioritized for database curation.

Increasing the number of annotations has a positive impact on the quality of tool information. The
distribution of tools with redundant annotations is similar in each group, with 2,369 (14.87%) redun-
dant tools in the low information level, 2,193 (16.70%) in the medium level and 86 (8.92%) in the high
level. However, among the top 10 tools with the highest entropy sum, 60% of tools have redundant
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annotations. Redundant annotations should be removed, as they artificially increase entropy. A met-
ric that penalizes, more than entropy, annotation generality and redundancy would be interesting.

Conclusion

In this work, we have shown that considering inherited annotations from the ontology increases the
number of annotations for topics and operations in the whole set of tools, making the tools more
searchable and reusable. To quantify annotation quality, we used Shannon entropy, which takes
into account annotation rarity and the distribution of EDAM annotations. This measure enabled us
to compare the annotation quality of the tools with each other, and to identify a set of 15,929 tools
(53.05%) with a low level of information annotations. This set of tools should be prioritized for future
database curation activities. The main limit of our approach is the lack of ground-truth to assess the
accuracy of annotations, Shanon entropy assess the rarity of annotations, which does not mean that
they are correct. To address this issue, we are currently working with bioinformatics experts to define
a reference dataset of highly curated annotations. Through this study, we have also seen the impact
of EDAM ontology evolution on annotation quality, with the identification of redundant or obsolete
annotations. The more limited usage of the Format and Data branches suggest that even if they have
a smaller impact on tools annotation, the margin for improvement is also higher than for Topic or
Operation.

This opens for new research directions we will pursue as future works. We are currently working on
implementing more suited metrics to better assess the quality of EDAM annotations. To support cu-
ration tasks, we aim at combining large language models and knowledge graphs [15] as a means to
suggest more informative annotations, or to identify possibly missing classes in the ontology. Eval-
uating the benefits of enriched annotations and new EDAM classes requires an expert-approved
gold standard. Identifying and quantifying missing classes in ontologies remains a challenge. Over-
representation of certain domains in ontologies, as seen in Gene Ontology, can stem from factors
like research focus, annotation specificity, or ontology structure. This imbalance complicates en-
tropy normalization and requires expert analysis, as annotation rarity is not equivalent to accuracy.
Although this work is grounded to bio.tools, it aims at being generalized to other application domains
also using ontologies and registries for annotating and sharing FAIR digital resources.

Availability and Implementation

All the code for extracting metadata from the RDF schema, creating article figures and calculat-
ing tool annotation statistics is available on the following github repository: https://github.com/

ulysseLeclanche/Abso_bio-tools.
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Abstract

Since 2014, a collaborative and interdisciplinary dynamic has emerged in West Africa to

build lasting capacities in bioinformatics. Driven by the growing need to analyze locally
produced sequencing data, this initiative has led to the development of regional infrastructures
and training programs through strong partnerships between academic and research
institutions, including Joseph KI-ZERBO University (UJKZ), INERA, IRD, and the LMI
PathoBios. Key milestones include the establishment of bioinformatics platforms in
Ouagadougou (Burkina Faso) and, more recently, in Bingerville (Cote d’Ivoire) within the
WAVE-CI framework.

These platforms have served as training hubs, enabling a wide range of hands-on and
theoretical training—from basic GNU/Linux usage to advanced metagenomics data analysis.
A major achievement of this initiative is the launch of the International Certificate in
Bioinformatics and Genomics (CIBiG) in 2023-2024. This intensive program combines
154 hours of in-person courses and practical sessions with laboratory work, project-based
tutoring, and personalized coaching. It covers the entire data lifecycle, from sequencing using
Oxford Nanopore Technologies (ONT) to data analysis workflows including assembly,
annotation, SNP detection, phylogenetics, and transcriptomic analyses.

Anchored in a participatory and inclusive model, CIBiG addresses two main objectives: (1)
strengthening local expertise in bioinformatics applied to agriculture and health, and (2)
structuring a regional community of practice. The program is supported by committed
institutional stakeholders (UJKZ, IRD, WAVE), a broad network of trainers, and a strong
ambition to sustain the initiative through curriculum reforms, long-term funding strategies,
and regional thematic working groups.
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This paper presents a ten-year retrospective on capacity-building activities, the impact of the
co-constructed training programs, the pedagogical innovations used (e.g., JupyterBook, Slack,
supervised internships), and the perspectives for scaling up this pioneering experience in West
Africa.
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Abstract

Madbot is a tool designed to help researchers manage and share their scientific data more easily. As
research data continues to grow in volume, it becomes harder to ensure that data is accessible,
reusable, and easy to understand. While other tools exist to help with parts of this process, they often
lack automation, standardization, or flexibility. Madbot solves these issues by providing a simple and
comprehensive solution that follows international data standards, making it easier for researchers to
publish their data. It automates much of the work involved in organizing and describing data, which
saves time and effort for researchers. Madbot also helps ensure that data is described correctly and
consistently, following well-established standards. This makes it easier for others to find and use the
data in the future. The tool connects to various global platforms like Zenodo and ENA (European
Nucleotide archive), allowing researchers to submit their data directly to these repositories without
hassle. Madbot’s easy-to-use interface allows users to interact with the system even if they don't have
technical expertise. Behind the scenes, the tool keeps everything organized, automatically checks for
mistakes, and helps researchers create accurate and high-quality metadata. Madbot’s architecture is
designed to be easily extensible, enabling integration with various data storage solutions, data
repositories, and metadata standards. This flexibility allows researchers to adapt the tool to their
specific needs, ensuring seamless interoperability with different research infrastructure. By
simplifying the process of submitting research data, Madbot encourages researchers to adopt open

science principles, making their work more accessible to others. In the end, Madbot helps reduce the
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barriers to sharing research data and makes it easier for scientists to contribute to the global scientific

community.
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Introduction

The exponential growth of data production across scientific disciplines presents a major challenge for
metadata and data management. To ensure long-term usability, data must be well-documented,
discoverable, and interoperable. However, researchers often perceive metadata creation as tedious,
leading to incomplete descriptions that hinder data reuse and integration. Additionally, the
heterogeneity of standards complicates interoperability across disciplines and repositories.
International platforms like the European Nucleotide Archive (1), Zenodo (2) and Dataverse (3) ensure
data preservation and accessibility, but their submission processes can be complex and
time-consuming. This additional workload discourages researchers, limiting the impact of open data
initiatives. There is a pressing need for a tool that supports researchers in managing data and
metadata while streamlining submission to repositories. Such a solution should facilitate metadata
enrichment, automate submissions, and improve data visibility while reinforcing the adoption of FAIR

principles (Findable, Accessible, Interoperable, Reusable).

Existing tools address parts of this challenge but lack comprehensive solutions (Tab. 1). Data
managers like Onedata (4) or iRODS (5) do not handle metadata submission, while metadata
managers such as FAIRdom Seek (6) do not integrate data storage. Automated submission tools like
MARS (7) require specific formats that researchers may not use. All-in-one tools like athENA (8),
METAGENOTE (9) or Maggot (10) are often restricted to specific disciplines or repositories with less

stringent metadata requirements.

To bridge this gap, we developed Madbot, a Metadata And Data Brokering Online Tool (Fig. 1). Our
tool offers a hierarchical structure for projects, which facilitates the organization and description of
research data. However, Madbot is not a data storage tool. Research data remains in its usual storage
location, and Madbot accesses it through a collection of connectors. Once data is associated with a
project, users have access to an interactive dashboard that provides an overview of the data's status
and accessibility, helping to optimize their management. These data can be described using metadata
fields from Madbot’s own referential or from internationally recognized standards widely adopted by
the scientific community. Implementing a metadata referential ensures standardized and consistent
descriptions, making interoperability between data sources and submissions to international
repositories easier. Automatic quality control further ensures metadata compliance with standards,
thereby facilitating data sharing. Finally, Madbot enables the publication of both metadata and data
to various repositories, whether they are general or specialized. By integrating these features, we aim
to reduce researcher's workload, improve metadata quality, and promote the adoption of FAIR

principles. Each of these points will be discussed in more detail in the results section.
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1. Methods
1.1.  Architecture of the tool
The tool follows a modular, scalable architecture, integrating frontend and backend components (Fig.
2). The backend is built with Django, serving as the core APl and interacting with a SQL database for
data storage. Celery (11) manages asynchronous tasks, with Redis (12) as the message broker. A key
feature is the integration of HashiCorp Vault (13), which securely stores user credentials required for
authentication with external repositories (Galaxy (14), NAS, cluster...), enabling dynamic data link
maintenance. The Django application uses the ASGI (15) protocol with WebSocket support, and the
Green Unicorn (16) server efficiently handles multiple workers. On the frontend, Nuxt.js (17) and
Vuetify (18) create a dynamic, user-friendly interface. The development lifecycle is automated with
GitLab CI/CD pipelines, for both frontend and backend. These pipelines ensure code quality via Ruff
(19) or Eslint (20), check for security vulnerabilities with Safety (21) and bandit (22), build the
backend (Python) and frontend (JavaScript), and store the package in a registry. They also generate
Docker (23) images, create a new release with semantic release, and automatically update the

changelog. Deployment is containerized and orchestrated for high availability, scalability, and security.

1.2. Design considerations
For Madbot’s development, special attention was given to its architecture to ensure a modular,
accessible, and user-friendly solution. On the backend, the goal was to create a simple,
well-documented, and reusable APl (Application Programming Interface), enabling seamless
integration with potential clients like automated scripts or Laboratory Information Management
Systems (LIMS). The API follows the Open API Specification v3 (24) and is fully documented with
Swagger (25), ensuring easy understanding for developers. Madbot features its own identity provider
built using the Django OAuth Toolkit (26), enabling connection management via OAuth2. Additionally,
authentication can be delegated to external IDPs through Django Allauth (27), supporting any OIDC
and SAML providers such as ORCID (28), LS login (29) or other identity federation. On the client side,
the focus was on creating a clear, intuitive interface to simplify metadata management, particularly
during submissions to international repositories. In this regard, Madbot’s interface is intended for all
users (researchers, IT, ...), offering an accessible environment that doesn’t require advanced technical
skills. Features include contextual input assistance, advanced search, real-time validation, and a

guided tour system to help users navigate the tool.

1.3. Metadata in JSON Schema Format
Madbot uses the JSON Schema (30) format to structure and validate metadata, ensuring rigorous
formalization and interoperability with other tools and infrastructures. This standardized format

defines data types, constraints, and relationships between object elements, enabling automatic
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metadata validation. With this approach, Madbot offers an interactive interface that guides users.
Additionally, the structured format simplifies converting and transmitting metadata to external
repositories while ensuring compliance with their specific requirements. By adopting JSON Schema,
Madbot facilitates metadata models evolution, allowing administrators and developers to introduce

new fields or modify validation constraints without requiring major changes to the core application.

2.  Results
2.1. Workspaces and nodes organization
Madbot provides a customizable workspace system for users to create dedicated workspaces, invite
collaborators, and manage permissions with granular access control. This ensures secure
collaboration and clear separation of projects and contributors, maintaining structure and
independence. Each workspace includes a dashboard offering insights into data, activities, updates,
submission status, and metadata evolution, enhancing data management efficiency and research
integrity. To describe projects, Madbot uses tree structures based on nodes, each representing a
specific part of the research project, including titles, descriptions, and data associations. Additionally,
each node can contain metadata, biological samples and subnodes. This structure follows the ISA
framework (Investigation, Study, Assay) (31), organizing research hierarchically and improves data
traceability and interoperability, especially in life sciences. While the model’s flexibility can cause
inconsistencies across projects, it offers researchers freedom while maintaining structure. Future

plans include adding other hierarchical structures to improve project management.

2.2, Connectors
Madbot's connectors are plugins designed to enhance its functionalities and facilitate interactions
with data sources and submission repositories (Tab. 2). Currently, there are two types of connectors:
data connectors and submission connectors. Data connectors generate a link which locates a file
owned by the user and enables its download. Currently, Madbot includes two operational data
connectors: Galaxy and SSHFS, with future plans for Omero (32), DeepOmics (33), GitHub (34), GitLab
(35), Nextcloud (36), ENA, Zenodo, and Dataverse. Submission connectors streamline the collection
and organization of metadata for submission to remote databases. As of now, Madbot supports
Zenodo and ENA, with plans to add connectors for PRIDE (37) and Dataverse. Special attention has
been given to designing a connector API for optimal flexibility, allowing quick integration of new

connectors and external contributions. Several extensions are planned for future developments.

2.3. Dashboard
Research data production often involves multiple contributors, making it difficult to track data

location and metadata provenance, especially in integrative bioinformatics. Madbot addresses this by
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providing a comprehensive dashboard that offers real-time insights into data storage, accessibility,
and metadata quality. Users can monitor submission progress and evaluate metadata completeness
with visual indicators and automated validation checks. The platform streamlines the submission
workflow, automating metadata curation, data retrieval, and validation before submission to ensure
compliance with repository standards and FAIR principles. It securely retrieves datasets, checks data

integrity, and facilitates submissions.

2.4. The metadata reference
As of mid-2025, the FAIRsharing (38) catalog lists over 1,830 metadata standards. Each international
repository offers its own metadata fields reference framework and makes distinct choices regarding
data format control or the adoption of ontologies. For instance, fields such as a list of collaborators or
associated publications are structured differently across major repositories like ENA, Zenodo, or
Dataverse. When it comes to more technical details, such as a sequencing method or sample
collection procedure, the disparities between repositories become even more pronounced. To
address this, Madbot has designed a central metadata reference framework that integrates widely
adopted scientific frameworks. This framework provides a standardized structure, ensuring that each
submission connector can interpret metadata correctly. Madbot maps these metadata fields to the
corresponding fields in submission repositories, helping users understand how their data aligns with
each platform’s requirement. Through the Madbot API, external fields and their mapping to the

central reference framework are made accessible, ensuring consistency in metadata handling.

2.5.  Streamlining data description with inheritable and connected metadata
Madbot reduces metadata entry effort by implementing inheritance in its tree structure, allowing
higher-level metadata to automatically propagate to related datasets. This eliminates redundancy
while ensuring consistency, with the option for researchers to override inherited values. This feature
is especially useful for collaborative projects and submissions to multiple repositories, enabling
platform-specific customization. Madbot also enhances metadata by integrating with authoritative
external sources like ROR (39), ORCID, DOI (40), PubMed (41), and NCBI Taxon ID (42), improving the
quality and discoverability of datasets. It supports multiple repositories and metadata standards

while maintaining versioning and traceability, facilitating compliance and interoperability.

2.6.  Data brokering
Once the user has linked data and provided the necessary metadata, a submission can be initiated to
either a thematic repository (e.g., ENA for sequencing data) or a general-purpose repository (e.g.,
Zenodo). Madbot ensures metadata interoperability by converting it into the required format for the

target repository and verifying data integrity and accessibility. The submission connectors organize
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metadata into batches, which are automatically updated when data is added or removed. Users can
adjust metadata values as needed. This flexible architecture accommodates both simple (Zenodo)
and complex (ENA) metadata structures. The system retrieves data, generates necessary files (e.g.,
manifests, validation reports), and submits asynchronously for efficiency. Upon successful
submission, Madbot stores persistent identifiers (e.g., DOIs, accession numbers) for easy referencing,

streamlining the process and ensuring repository compliance with minimal effort for researchers.

3. Discussion & conclusion
Madbot is a powerful tool for metadata and data management, offering several key advantages in
research and open science environments. Its flexible architecture simplifies data flow, enabling the
seamless collection, integration, and management of metadata from various sources. The intuitive
dashboard enhances decision-making by providing real-time visualization of data and metadata.
Additionally, Madbot’s connected metadata system ensures consistency and traceability across
different platforms, crucial for transparency and reproducibility in research. Its hyper-flexible

connector system enhances compatibility and scalability by easily adapting to new integration needs.

Despite these strengths, Madbot has some limitations that need to be addressed. The current
number of available connectors is limited, which may restrict its use in specific contexts (Table 1).
Additionally, the tool has not been tested under heavy load, which could pose challenges in
large-scale environments. To address these issues, future improvements will focus on expanding the
connector ecosystem, including new connectors for metadata import/export, data management
plans, and specialized tools like iRODS. Additionally, repository feedback will be processed and
integrated into the dashboard, enhancing tracking and troubleshooting capabilities. These updates
will help meet the needs of the scientific community, particularly in fields like biology. Madbot's
current architecture, while effective, presents some operational and security challenges. Its reliance
on directly integrated connectors limits access to internal storage systems and creates potential
security risks due to broad access permissions. To resolve these issues, Madbot’s connector layer will
be separated into a standalone Connector API, improving security and flexibility. This change will also
allow users to deploy the Connector API locally, enabling access to private storage systems while
maintaining strict compartmentalization. As part of ongoing developments, Madbot will soon
integrate a feature that automatically generates metadata sets based on node descriptions, using
advanced text generation tools from Large Language Models. These updates will further enhance
Madbot’s usability, security, and overall functionality, paving the way for broader adoption in

research data management.
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Fig. 1: Madbot architecture and workflow for data and metadata management in an integrative
bioinformatics context. The diagram illustrates the integration of various data sources (data storage,
electronic lab notebooks, data management plans) through input connectors. Madbot standardizes,
validates, and enriches metadata using external repositories and recognized standards to ensure
integrity and FAIR compliance. Output connectors automate submission to public and shared

repositories, promoting data accessibility and traceability. The hierarchical structure of information

and validation indicators provide real-time monitoring of stored data and associated metadata.
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Fig. 2: Overview of the Madbot technical architecture, integrating backend and frontend components
for secure and efficient data management. The backend, based on Django, handles authentication,
data orchestration, and metadata management. Asynchronous tasks are managed via Celery and
Redis, while Vault ensures secure handling of sensitive information. The SQL database stores
structured data, and Gunicorn manages HTTP requests. The frontend, built with Nuxt and Vuetify,
interacts with the backend through REST API and IDP (Identity Provider) authentication using ORCID.
The entire system is deployed and maintained using GitLab CI/CD for continuous integration and

deployment.
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Data Submission Node Node Metadata Metadata

connector  connector  importer exporter Importer exporter
Galaxy Ready - - - Planned -
SSHFS Ready - - - Planned -
ENA Planned Ready Planned - Planned -
Zenodo Planned Ready - - - -
Dataverse Planned Planned - - - -
iRODS In progress - - - - -
OMERO In progress - Planned - Planned Planned
Labguru (43) - - In progress  In progress - -
ElabFTW (44) - - Planned Planned - -
DeepOmics In progress - In progress - In progress -
Seafile (45) In progress - - - Planned -
DMP OPIDoR (46) - - Planned Planned Planned Planned
DSW (47) - - Planned Planned Planned Planned
ROCrate (48) . - Planned Planned Planned Planned
JSON-LD (49) - - - - Planned Planned
GitLab Planned - - - - -
GitHub Planned - - - - -
Amazon S3 (50) Planned - - - - -

**All non-referenced tools are cited within the article

*A hyphen represents “Not applicable”

Table 2: Current and prospective connectors of Madbot.
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Availability and Implementation
All links were verified on the 2025/03/12.

- Project name: Madbot

- Project homepage: https://ifb-elixirfr.gitlab.io/madbot/madbot-doc/

- Project code repository:

- Back: https://gitlab.com/ifb-elixirfr/madbot

- Client: https://gitlab.com/ifb-elixirfr/madbot/madbot-client

- Documentation: https://ifb-elixirfr.gitlab.io/madbot/madbot-doc/

- Operating system(s): Platform independent

- License: BSD 3-Clause License

- Programming languages (all versions are available in different repositories):
- Back: Django Python
- Front: Vue3, Typescript, Nuxt
- Doc: Mkdoc & Material

- Other repositories:
- Software Heritage:
- APL:
https://archive.softwareheritage.org/swh:1:dir:41825e65674d7d5de78f4336

5a36aec4b76c8ab3;origin=https://gitlab.com/ifb-elixirfr/madbot/madbot-api

;visit=swh:1:snp:fa90259e758590d6093a2346024d1123d636514d;anchor=s

wh:1:rev:05cda75f6e7aa373cf04fb6882f600aa4bf35a8e

a94e3e92172e7fe;origin=https://gitlab.com/ifb-elixirfr/madbot/madbot-clie

nt;visit=swh:1:snp:c66e0b05732295ecd8b8be82felead7ae460080d;anchor=

swh:1:rev:edbc02d9454a1a649611772e6ebefd760e8751f8

- Doc:

https://archive.softwareheritage.org/swh:1:dir:b78f8317d203d4d938a4443f

edc4e69de0740ae8;origin=https://gitlab.com/ifb-elixirfr/madbot/madbot-do

cvisit=swh:1:5snp:05f27157f0281e911596c7f200e0cc8d1037f357;anchor=sw

h:1:rev:400cc56fcaa7adbdcdd7ed8256e13699683d4d17
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Abstract

In recent years, Knowledge Graphs (KGs) have gained significant attention for their ability to organize
complex biomedical knowledge into entities and relationships. Knowledge Graph Embedding (KGE)
models facilitate efficient exploration of KGs by learning compact data representations. These models
are increasingly applied to biomedical KGs for link prediction, for instance to uncover new therapeutic
uses for existing drugs. While numerous KGE models have been developed and benchmarked for link
prediction, existing evaluations often overlook the critical issue of data leakage. Data leakage leads the
model to learn patterns it would not encounter when deployed in real-world settings, artificially
inflating performance metrics and compromising the overall validity of benchmark results. In machine
learning, data leakage can arise when (1) there is inadequate separation between training and test sets,
(2) the model leverages illegitimate features, or (3) the test set does not accurately reflect real-world
inference scenarios. In this study, we implement a systematic procedure to control train-test separation
for KGE-based link prediction and demonstrate its impact on models’ performance. In addition, through
permutation experiments, we investigate the potential use of node degree as an illegitimate predictive
feature, finding no evidence of such leveraging. Finally, by evaluating KGE models on a curated dataset
of rare disease drug indications, we demonstrate that performance metrics achieved on real-world
drug repurposing tasks are substantially worse than those obtained on drug-disease indications

sampled from the KG.
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Abstract

A holobiont is made up of a host organism together with its microbiota. In the context of animal
breeding, the holobiont can be viewed as the single unit upon which selection operates. Therefore,
integrating microbiota data into genomic prediction models may be a promising approach to improve
predictions of phenotypic and genetic values. Nevertheless, there is a paucity of hologenomic
transgenerational data to address this hypothesis, and thus to fill this gap, we propose a new
simulation framework. Our approach, an R Implementation of a Transgenerational Hologenomic
Model-based Simulator (RITHMS) is an open-source package, builds upon simulated transgenerational
genotypes from the MoBPS package and incorporates distinctive characteristics of the microbiota,
notably vertical and horizontal transmission as well as modulation due to the environment and host
genetics. In addition, RITHMS can account for a variety of selection strategies and is adaptable to
different genetic architectures. We simulated transgenerational hologenomic data using RITHMS
under a wide variety of scenarios, varying heritability, microbiability, and microbiota heritability. We
found that simulated data accurately preserved key characteristics across generations, notably
microbial diversity metrics, exhibited the expected behavior in terms and correlation between taxa
and of modulation of vertical and horizontal transmission, response to environmental effects and the
evolution of phenotypic values depending on selection strategy. Our results support the relevance of
our simulation framework and illustrate its possible use for building a selection index balancing genetic
gain and microbial diversity. RITHMS is an advanced, flexible tool for generating transgenerational
hologenomic data that incorporate the complex interplay between genetics, microbiota and

environment.
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Abstract

The emergence of new sequencing technologies has facilitated the acquisition of large amounts of
biological data, which has proven to be a useful tool for better understanding biological systems. One
way to take advantage of the potential of sequencing data is to use them to identify the relationship
between biological units (e.g. genes) and phenotypical characteristics (e.g. disease outcomes). This
qguestion, formulated as a variable selection problem, remains difficult because of the size of the data
(n < p) and their correlation structure. To address these challenges, we studied the applicability of the
knockoff (KO) procedure focusing on transcriptomic data in a classification setting. Introduced by
Candeés et al. in 2015, the KO variable selection procedure has shown promising results on real
biological data. This method seeks to identify the truly important predictors by overcoming the
correlation structure between variables while controlling the false discovery rate even in high
dimensional settings. We conducted an extensive simulation study using real data to evaluate the
relevance of recent methods in the context of high-dimensional classification. We also analyzed the
benefits of a KO aggregation scheme to mitigate the effect of stochasticity, which is intrinsic to the KO
procedure. In addition, we studied the stability of the KO framework as a measure of the reliability of

variable selection. Finally, we applied the KO framework to real transcriptomic data.
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Abstract

Predicting the functions of proteins remains a critical yet challenging task in computational biology.
Advances in high-throughput sequencing, the expansion of protein databases, and the continuous
development of artificial intelligence have led to the emergence of many computational methods
dedicated to protein function prediction. In this study, we evaluated the performance of four state-of-
the-art models — DeepGOPlus, DeepGraphGO, DeepGOZero, and DeepGOSE — using experimentally
annotated proteins from the UniProt-KB/Swiss-Prot database. We also trained and tested these models
on species-specific datasets from Arabidopsis thaliana and Oryza sativa to investigate their potential
and applicability in plant protein studies. Our results showed that DeepGOPIlus consistently achieved
the best evaluation scores across all datasets. DeepGOSE and DeepGOZero performed comparably and
only marginally outperformed DeepGraphGO in certain training attempts. Further analysis revealed
that dataset stratification into training, validation, and testing sets introduced variations in Gene

Ontology annotation specificity, which may have influenced model performance.
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Abstract

Spatial Transcriptomics (ST) uncovers gene expression patterns within the structured spatial layout of
tissues, a level of detail absent in single-cell transcriptomics analysis, which enhances our
comprehension of cell-environment interactions. Accurate spatial information is critical for clustering
cell domains and for a better understanding of their functional connections in intricate biological
tissues. In this study, we propose a novel approach, joint spatial principal component analysis (jsPCA),
to efficiently reveal complex gene expression profiles while preserving the spatial context of tissues in
multi-slices or multi-samples ST. Our approach consists in identifying the principal components (PCs)
that best maximize the product of spatial autocorrelation (Moran’s Index) and transcriptomic
covariance, reflecting both the structure of genetic expression and its spatial distribution. By
combining dimensionality reduction and emphasis on spatial correlations, jsPCA refines the ability to
detect spatial gene expression patterns and variations, thereby improving the outcome of domain
clustering. We take advantage of sparse matrices to improve scalability, which makes it ideally adapted
to the analysis of large-scale ST datasets. The interpretability of jSPCA arises from its linear structure,
which provides a clear understanding of the impact of each variable on the clustering results, in
contrast to current more complex approaches based on Graph Neural Networks. jsPCA handles multi-
slice or multi-sample analysis. Spatial domains are obtained by Gaussian mixture clustering in this joint
space. We evaluated our approach using the Visium 10x dataset of human dorsolateral prefrontal
cortex (DLPFC), featured in numerous benchmarks. Our approach demonstrated robust performance,
comparable or better to various state-of-the-art methods, while being fast, interpretable and

parameter free.
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Abstract

Background : Childhood trauma, including abuse or neglect, has profound effects on mental health,
increasing susceptibility to psychiatric disorders. Bipolar disorder, marked by extreme mood swings
encompassing manic and depressive episodes, disrupts daily functioning. Despite the growing interest
in molecular psychiatry, the etiology of bipolar disorder remains unclear, with no established blood

biomarkers [1]. This gap of knowledge is partially due to the complexity and heterogeneity of the
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disorder. Additionally, environmental factors, particularly early-life trauma, are suspected to play a
significant role in the onset and progression of bipolar disorder [2,3,4].

Recent advances in Next-Generation Sequencing (NGS) have generated extensive genomic data, yet
the integration of multi-omic data with advanced machine learning techniques remains underutilized
in psychiatric research[5]. As seen in cancer research, the application of multi-omics approaches that
combine genetic, transcriptomic, and epigenomic data with machine learning holds potential for
advancing our understanding of psychiatric disorders.

Material and Methods : This study aims to determine the minimum sample size required to accurately
predict trauma exposure and identify potential biomarkers of childhood trauma in peripheral blood
samples from bipolar patients. We utilized transcriptomics (RNA-seq), and epigenomics (miRNA-seq
and DNA methylation) datasets from a cohort of bipolar disorder (n = 274) patients, all of whom were
assessed using the Childhood Trauma Questionnaire (CTQ). After quality control and preprocessing the
final dataset included 200 individuals with DNAm data, 122 individuals with mRNA and miRNA data,
and 102 individuals with data from all three omics modalities.

We derived train/test subsets by gradually increasing the sample size in the training set. Using an
advanced joint reduction dimension method, named Regularized Generalized Canonical Correlation
Analysis (RGCCA) [6], we evaluated the prediction error rates as a function of sample size in the training
set.

Results and Discussion : The analysis revealed that N80% = 81 individuals in the training set (i. e. 80%
train-test split), for at least 2 modalities over 3 and from 3 components per block, achieved the best
prediction performances. However, almost no feature survived the multiple testing procedure when
assessing model stability, suggesting that further investigations are needed to obtain a biologically

interpretable sparse model.
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Abstract

Protein embedding consist of producing a mathematical representation of a protein based on data
such as sequence or structure. Protein embedding is widely use thanks to the last advances in artificial
intelligence that allow embedding to resume proteins information (such as function, biochemical
properties, ...). One of the setback to protein embedding is the dimensionality of the latest, often very
large, leading to difficulties to manipulate them efficiently (the so called Curse of Dimensionality). We
present here our work on protein embedding based on protein domain architecture. A protein having
less domains than amino acids we hope to produced embedding of lower dimensionality that would
be easier to use. We trained two models based on the Bert architecture on different training datasets
using the mask language modeling objective. Our training datasets were obtained by annotating
Uniprot (Trembl + SwissProt) and BFD proteins using PFAM domains and Low Complexity Region. Our
models show good performances on some training sets and seems to be able to learn a good protein

representation from their domains architecture.
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Abstract

Leptin is an adipokine that regulates energy expenditure and calory intake by acting on the hypothalamic
leptin-melanocortin pathway. It has known effects on obesity, inflammation, and neurodevelopment,
hence carrying high pleiotropic potential. Using the Genome-Wide Association Study (GWAS) Catalog, we
identified the single nucleotide polymorphisms (SNPs) associated with fluctuations of leptin in the blood,
which we expanded into wider genetic blocks, and explored their associations and effect sizes with leptin

levels. We then investigated the genetic pleiotropy linked with these genomic regions.

Starting from 35 GWAS studies on leptin levels with @ minimum discovery sample size > 1000 individuals,
we selected 25 SNPs reaching genome-wide significance (p < 5.10-8). This led to the aggregation of 15
genetic blocks with SNPs in high linkage disequilibrium with the leptin SNPs. The blocks were also
associated with 574 pleiotropic phenotypes, which were then grouped into 22 categories, including the
enriched “other adipokines”, “obesity-related”, “inflammation-related”, “cancer-related”, “body fat”,
“type-2-diabetes-related”, and “addiction-related” cross-traits. The list of genes overlapping with the
genetic blocks was used to map a protein-protein interaction network surrounding leptin with which we
identified functional modules enriched in ontological terms such as the leptin-melanocortin pathway,

embryogenesis, immunity and transcription regulation.

This study extends the genetic architecture behind leptin levels to its wider roles in human physiology by

deciphering molecular pathways and gene modules implicated in its end effects.
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Introduction

Obesity is a pandemic that affects more than 38% of the global population (World Obesity Atlas 2023
report (1)). It is defined as an abnormal accumulation of body fat and is associated with complexities and
morbid diseases, such as type 2 diabetes (T2D) (2,3), cardiovascular diseases (4) and cancers (5-8). A key
player in the pathophysiology of obesity is leptin, a small adipokine produced from the LEP gene (9) almost
exclusively by the adipose tissue, and released in the serum after energy intake (10,11). Leptin acts
primarily in the hypothalamus to activate neuroendocrine pathways that will insure its main functions of
satiety and lipid metabolism control (12). In order to understand the factors that affect serum leptin levels
and decipher the pleiotropic effects surrounding its physiological expression, we developed a method that
exhaustively identifies all the leptin-associated single nucleotide polymorphisms (SNPs) reported by
Genome-wide associations studies (GWAS) and infers genotype-phenotype correlations (13) between
leptin and a number of related traits, such as obesity (14,15), T2D and insulin levels (15,16), cardiovascular
diseases (17), and inflammation (3). Among these associations, some involve pleiotropic genes, i.e.
influencing multiple functions and/or multiple phenotypes. Current GWAS and pleiotropy analyses can
identify associations among traits and variants but lack the resolution to untangle the links between
groups of genetic variants and causal genes as well as biological pathways. The original approach
presented in this study calculates genetic blocks of linkage disequilibrium SNPs aggregated from the GWAS
leptin loci and extracts cross-phenotypes associations, effect sizes and directions as compared to leptin. It
then identifies protein-coding genes within these genomic regions and maps out their pleiotropic potential
using a functional enrichment method based on protein-protein interactions, method that also infers new

genes associated with leptin while excluding non-interacting genes.
Methods

Genome-wide association studies catalog. The NHGRI-EBI Catalog of Published Genome-Wide
Association Studies (GWAS Catalog) (18), up to date from March 11th, 2024, and annotated for the

GRCh38/hg38 human reference genome, was used extensively during this study.

R and its packages. GWAS Catalog data were downloaded for local use, handled, and manipulated using
R4.3.2 (19). Key packages such as ggplot2 (used for graphs and data visualization), dplyr (used for data
cleaning), karyotploteR (20) (used for blocks and genes visualization on chromosomes), and LDIinkR (21)

(used for linkage disequilibrium analysis) were used.

LDlink. Within the LDlink suite (https://Idlink.nih.gov/?tab=home, February 7th, 2024) (22), LDproxy is a

tool allowing for an exploration of proxy variants associated with an input query SNP. We used GWAS
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leptin-associated SNPs as query/lead SNPs (ISNPs) for the calculations, with the 1000 genome project data
as reference. Leptin ISNPs were defined as reaching genome-wide significance (p < 5.10-8) in a study using
a minimum discovery sample size > 1000 individuals. LDproxy outputs report variants associated to each
ISNP ranked by their LD correlation value (r?) in their respective populations, encoded by ethnicity (EUR:
European, AFR: African, AMR: Ad-mixed Americans, EAS: East-Asians, SAS: South Asians) according to the

discovery cohorts of the ISNP.

Genetic blocks, variants, and cross-traits. Using the ISNP (r? = 1), proxy SNPs (pSNPs) (r? > 0.9), and non-
independent SNPs (r? > 0.1), genetic blocks of LD were aggregated. If multiple ISNPs were mapped to the
same block, we retained a main lead variant as the one with the smallest association p-value. Block
ethnicities were assigned based on combined ethnicities for the lead SNPs. Using every ISNPs + pSNPs, we
compiled a table of cross-traits (phenotypes/traits/diseases also associated with the variants, but not

leptin, p < 5e-8), which was hierarchized into general traits used to form categories of traits.

Fold-enrichment analyses were conducted for traits and categories, giving insight on their representation
and distribution within the leptin blocks as compared to what is expected from the background.
Enrichments were calculated following the relation: frequency of the observed trait / expected frequency,
where the observed frequency represents the number of reported occurrences for the trait in the leptin
selection among the total number of reported leptin cross-trait occurrences, and the expected frequency
represents the overall significant occurrences for the same trait among the total number of significant

associations in the complete GWAS Catalog (p < 5e-8).

Occurence of trait in leptin pSNPs
Occurence of trait in GWAS catalog
Total number of cross — traits
Total number of traits in GWAS catalog

Fold Enrichment (e) =

Two-way Fisher’s exact test was used to evaluate the enrichment statistical significance (p < 0.05).

Gene-based functional annotations and pleiotropic networks. Using the list of protein coding genes
overlapping with the genetic blocks of LD and reported as “mapped genes” with each ISNPs, we formed a
network of significantly enriched protein-protein interactions (PPI, enrichment p-value 1e-05) with
STRING-db (https://string-db.org/), a repository of functional and physical PPI data (23,24). The generated
network was then augmented with first-shell interactors (n = same number as input genes) with a
confidence score of 0.5, and clustered using the k-means algorithm for functional module identification.
Each cluster was subject to functional annotations using the databases found in EnrichR (25-27) for

pathway (Reactome, KEGG, BioPlanet and BioCarta), ontology (GO biological process, cellular component,
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and molecular function), and disease (PhenGenl) enrichment. Each cluster was then isolated and

augmented with 10 additional first-shell interactors for further characterization (workflow in Figure 1).

[ Ad.d e ]—»[ Confidence score > 0.5 ]
interactors

y
Multiple Am< { Confidence score > 0.7 ]
[ Input N protein ] _,// x

Coding Genes
Add 10 first-shell
Is "Leptin" Phenotype interactors
Annotation Lost ? P
End of PPI Network Cluster using Isolate interacting
Augmentation Analysis k-means subgroups

Figure 1. Flowchart describing the algorithm used for constructing and annotating the pleiotropic network around Leptin.

Results

Leptin genetic pleiotropy. Upon selecting significant SNPs mapped to “leptin measurement” and “BMI-
adjusted leptin measurement” in the GWAS Catalog (discovery cohort > 1000 individuals; p-value < 5e-8),
we obtained a list of 25 lead leptin SNPs (ISNPs) (Figure 2A). The list was then used for the LD analysis,
which resulted in 343 proxy SNPs (pSNPs; r? > 0.9) and 3714 non-independent SNP (r? > 0.1). All variants
were aggregated under their ISNPs into 15 genetic blocks of highly correlated structure (Figure 2B-C). Main

characteristics for the genetic block constitution is summarized in Table 1.
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Figure 2. Workflow and Genetic Blocks. (A) Flowchart illustrating the step-by-step extraction of adiponectin SNPs and cross-trait
associations, (B) Close-up on the structure and LD SNPs of the blocks surrounding the LEP gene.
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Table 1. Leptin genetic bloc characteristics. See Methods for ethnicity encodings.

Cross-trait analysis. Using the list of ISNPs + pSNPs, we associated 574 pleiotropic phenotypes (or cross-
traits) within these blocks, which we categorized into 22 main items. The cross-trait occurrences were
checked for over-representation against background (the entire significant GWAS Catalog associations),
which uncovered a number of significantly enriched categories containing traits related to “diet or taste”
(fold-enrichment e = 4.4), “other adipokines” (e = 3.5), “addiction” (e = 2.4), “body fat” (e = 2.3),
“inflammation” (e = 2), “lipids” (e = 1.7) and “cancer-related” (e = 1.7), as well as some depleted categories
related to “brain” (e = 0.1), “blood pressure” (e =0.2), “sleep” (e = 0.3) and “age” (e = 0.3) (Figure 3A). This
summary, however, is not representative of each unique trait, as the specific obesity trait, belonging to
the “anthropometric measurement” category, is highly over-represented (e = 15) among other under-
represented traits (Figure 3B). Next, we summarized cross-traits with their respective associated-SNP beta
coefficients to study the direction of effect of each phenotype as compared to leptin (Figure 3C).
Consistent monodirectional effects with leptin were determined with body mass index (mean effect with

leptin (me) = +0.063), body fat percentage (me = +0.342), BMI-adjusted hip circumference (me = +0.024),
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bone mineral density (me = +0.025), and obesity (me = +0.277). Opposite directions, however, were found
with hyperlipidemia (me = 0.253), insulin-like growth factor-binding protein 1 (me = -0.134), insulin
sensitivity measurement (me = -0.200), and the other adipokines, adiponectin (me = -0.107) and leptin
receptor measurements (me =-0.114). Finally, some traits present mixed effects with leptin levels, such as
type-2 diabetes, addiction-related traits (intakes of alcohol and coffee, smoking behavior, substance use),
high density lipoprotein cholesterol, and some taste preferences such as sweetened drinks and sugar

intake. The distribution of the cross-trait across leptin genetic blocks was heterogeneous (Table 1).

237



Diet or taste-

Adipokines-
Addiction-related-

Body fat-
Inflammation-related-

Lipids-

Cancer-related-
Hepatic-related-

Type2 diabetes-related-
Kidney-related -

Sex-related-

Energy metabolism-
Cardiovascular-related-
Aminoacid/protein measurement-
Blood Formula-

Physical activity -
Boneljoint-related-
Anthropometric Measurement-
Age-related-

Sleep-related-

Blood Pressure-

Brain-related- 3 §q—m———

SNP Block Beta (95 % CI)
rs7798566-G B11 -0.423 (NA to NA)
rs1482853-A B6 -0.099 (-0.115 to -0.082)
rs780094-C B2 0.010 (0.006 to 0.013)
r$1260326-C 82 0.015 (0.011 t0 0.018)
rs7202116-G B14 0.036 (0.025 to 0.047)
rs17817449-G B14 0.068 (0.052 to 0.084)
rs1421085-C 814 0.068 (0.061 to 0.076)
rs1121980-A B14 0.072 (0.069 to 0.075)
rs9937053-A B14 0.072 (0.069 to 0.075)
rs7193144-C B14 0.073 (0.069 to 0.076)
rs57292959-T B14 0.073 (0.068 to 0.078)
rs11642015-T B14 0.075 (0.071 to 0.080)
rs9940128-A B14 0.083 (0.067 to 0.099)
rs55872725-T B14 0.104 (0.083 to 0.126)
rs11075980-G B14 0.300 (NA to NA)
rs8939608-A B14 0.345 (0.305 to 0.427)
SNP Block Beta (95 % CI)
rs1128248-T BS -0.079 (-0.094 to -0.063)
rs10195252-C BS -0.068 (-0.077 to -0.058)
1s10184004-T 85 -0.061 (-0.072 to -0.050)
rs13322435-G B6 0.048 (0.032 to 0.063)
rs1260326-C B2 0.063 (0.050 to 0.076)
rs780094-C B2 0.069 (0.053 to 0.085)
rs1421085-C B14 0.120 (0.112 to 0.135)
rs55872725-T B14 0.122 (0.110 to 0.140)
rs9936385-C B14 0.127 (0.095 to 0.157)
rs8050136-A B14 0.182 (0.139 to 0.238)
SNP Block Beta (95 % Cl)
rs8043757-T B14 0.207 (NA to NA)
rs1558902-A B14 0.223 (NA to NA)
rs7185735-G B14 0.285 (NA to NA)
rs9941349-T B14 0.392 (0.285 to 0.507)
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Figure 3. Cross-traits associated with leptin levels. (A) Normalized fold-enrichment values for the 22 categories of traits

associated with leptin measurement and BMI-adjusted leptin measurement. (B) Raw counts for “adipokines”,

n o«

anthropometric

measurement”, “brain-related”, “cancer-related”, “body fat” and “type-2-diabetes-related” cross-trait categories. (C) Forest plots
showing the direction of effect of the traits as compared to leptin levels in each genetic block. Beta coefficients represent the
increase or decrease per unit in the outcome for each significantly associated trait (p<5e-08).
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Gene-based pleiotropic network. Concomitantly to the cross-trait analysis, we conducted a protein
network reconstruction around leptin. We first extracted 57 protein-coding genes overlapping the genetic
blocks of leptin (Table 1, 4 genes were associated with consecutive blocks). These input genes were used
in STRING-db to map out the functional protein modules involved in leptin molecular functions (Figure 1,
see Methods). A preliminary functional annotation of the network was done using the Phenotype-
Genotype Integrator (PheGenl) library, to explore the diseases and traits associated with the input genes
(Figure 4A). The analysis confirmed a highly significant association with the leptin phenotype (e = 19), and
revealed other enriched associations with phenotypes including type-2 diabetes, body-mass index,
obesity, abdominal fat and metabolic syndrome X. This initial network was augmented with 57 first-shell
interactors at a confidence score of 0.5, and clustered using the k-means algorithm. This network
expansion identified newly enriched or depleted, as well as gain/loss of PhenGenl terms (Figure 4B), with
a noticeable decrease in the leptin phenotype (e = 9.5), and increases in metabolic syndrome X, type-2

diabetes, and glucose tolerance test (term gain).
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Figure 4. PPl network augmentation allows for biological term exploration. (A) PheGenl trait/disease enriched terms with the
57 leptin-related proteins. (B) PheGenl trait/disease enriched terms after 1-rank PPI stepping with 57 additional 1st-shell
interactors, highlighting enriched and depleted terms after augmentation. Red arrows show the evolution of traits after the
addition of interactors. Green asterisks (*) show new enriched traits.
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On the other hand, the expanded PPI network was clustered into 9 PPl modules by k-means clustering,
and each module was functionally annotated for biological pathways, ontological terms and diseases.
Leptin-related proteins not interacting with the network were discarded. Each of the 9 resulting PPI
modules governed specific biological functions, the central-one related to leptin and body-mass index, and
others linked with either ciliary function and development, triglycerides and cardiovascular diseases,

neuronal signaling and related disorders, or endocrine cell differentiation (Figure 5).
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Figure 5. Augmented PPI network around leptin-related proteins. PPl network of the initial query proteins plus the 1st-shell
interactors, clustered using the k-means algorithm. Leptin-related proteins are highlighted in black. Detached nodes (non-
interacting proteins) were removed. Annotations for the main associated function, pathway, or disease accompany each cluster.

Discussion

Conducting the cross-traits analysis allowed for the identification of the phenotypes sharing unique
genetic associations with serum leptin levels. Their uneven distribution among the 15 blocks of LD serves
as a reminder that pleiotropy does not depend on block size, but rather on functional density. It also
underscores the genomic architecture of blocks, where some regulatory elements hotspots (e.g., eQTLs,
enhancers), while others are functionally dense regions — overlapping pleiotropic genes (e.g., GCKR, FTO).
The disparity between blocks also highlights the Eurocentricity of GWAS arrays, which lead to under-

tagging and limited coverage in African genomes (28).
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These traits could be organized into 22 distinct categories impacting diverse functions and tissues,
underlying leptin high pleiotropic effects in human. Specific categories showed depletion against
background (brain-related, blood pressure, sleep and age-related), potentially indicating function
specificity for distinct SNPs within general and/or subjective categories regrouping heterogeneous traits,
or that leptin is functionally distant or indirectly linked with these traits and is hence less associated with
them than random GWAS loci. On the other hand, high enrichment values were observed for diet,
adipokines, addiction or obesity -related traits, suggesting shared underlying mechanisms with leptin
levels and extended genetic overlap, pointing to potential functional regrouping and biological relevance

of these traits in leptin’s pleiotropy.

Functional consequences of these traits are highlighted by their effect directions with leptin serum levels,
which largely confirmed physiological and mechanistical scientific literature in patients and animal models:
homodirectional effects between leptin and body mass index (29) and obesity (30), and opposite effects
with hyperlipidemia (29) and the long-guessed reverse balance with other adipokines such as adiponectin,

which we confirm at a genetic level with this study.

We also provide a network of biological functions and pathways explaining these pleiotropic phenotypes.
Upon expanding the PPl network around the leptin gene, we identified pathways linking leptin signaling
and obesity to a cluster of proteins specialized in development and embryogenesis (especially
ciliogenesis), a module of proteins governing metabolism regulation, a cluster implicated in endocrine
regulation and cellular function, and a module of genes responsible for neuronal signaling and disorders.
This echoes previous studies conducted on the implications of leptin in neuronal development, specifically
that in the hypothalamus (31) where postnatal leptin acts as a neurotrophic factor and helps axonal growth
within the arcuate nucleus, constructing the leptin-melanocortin neuronal pathway, which they will

activate later in life to control satiety, energy intake and subsequent lipid metabolism.

A notable feature of network expansion is that it helps prioritize genes linked with the GWAS variants. This
augmentation allows i) for a discard of the proteins that cannot interact with the PPl modules, which could
stem from a wrong mapping of the corresponding genes in the GWAS studies, and ii) for a recovery — by
adding functional interactors, till loss of “Leptin” phenotype — of genes that were not associated by GWAS
or mapped in later stages. Losing the phenotype of interest (Leptin) marks the point beyond which
augmentation becomes excessive, as new functional associations stop leading back to the main trait of the

study.
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The conducted study paves the way for further research aiming to elucidate obesity’s physiopathology. A

global correlation analysis by LD regression score between leptin and some of the identified cross-traits

would hint at the overall genetic association between the traits. Moreover, causality between modifiable

risk factors in a disease or phenotype and the individual’s health outcomes can be deciphered with

Mendelian randomizations (32). By conducting systematic MR between all possible cross-traits identified

with leptin, one would be able to reconstruct the causal inference network, with the direction of causality

between each linked trait. MR could be achieved using GWAS summary statistics for leptin and a number

of traits and is also made possible with access to large cohorts like the UK BioBank, for which genomes

and exomes are available for more than 500.000 individuals.
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Background

Twenty-Twenty Five celebrates the 10'" anniversary of the Hub of Bioinformatics and Biostatistics of
the Institut Pasteur (henceforth “the Hub”). The rationale of the Hub's creation was to centralize
bioinformaticians and biostatisticians who were previously scattered in different research lab Units
within the campus, to mutualize support and create synergies. Since then, the Hub has become a
central group on Pasteur campus, with the main objective of creating an environment of excellence in
computational biology in support of research. It encompasses expert support on research projects,

coaching scientists, training, methods and tools development and expert community building.

Results

Over the years, the Hub staff contributed to more than 800 projects (10% of which required more than
3 month-time effort), coming from 200 research units, covering all departments on campus, where
multiple Hub’s skills are often combined. It resulted in around 550 peer-reviewed publications, nearly
50 computational tools and 30 websites and portals deployed. The Hub created a dedicated PhD-
training program and delivered trainings to more than 3000 participants. In addition, it has developed
tailored courses and mentoring programs for Institutes that are part of the Pasteur Network. It has
fully integrated into the bioinformatics French landscape, as exemplified by the co-organisation of the
école de Bioinformatique IFB (EBAII) and the workshop on single-cell data analyses (SincellTE) since

2018, as well as by the establishment of an open-access Galaxy instance designed to support the
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community in their bioinformatics analyses and the numerous contributions to the Tools platform of
the ELIXIR european infrastructure.

The Hub adopted a hub-and-spoke structure with currently more than 40 core Hub members being
distributed in five poles and 30 engineers being detached in research/technology units and in the
transmissible disease surveillance labs (“Centre Nationaux de Reference (CNR)”) under Pasteur’s
responsibility. Such detachments are renewable five-year assignments and research engineers (the
spokes) dedicate 20% of their time to the Hub. Sets of tools, meetings and governance rules have been
set up to address at best the diversity of scientists needs: weekly open-desks, a web-based in-house
project management tool to handle short requests, coaching and small projects, and a steering
committee to assess and grant “long projects” (>3 month-time effort) and detachment renewals. To
ensure methodological developments, expertise growth and collaborations with the bioinformatics
communities and networks, 20% of each engineer’s time is dedicated to innovation work. In addition,
The Hub is affiliated to the computational biology department to create a stimulating scientific

environment and foster collaborations in methodology development and assessment.

Conclusion

The initial promises and expectations raised at the Hub’s creation have been fulfilled and the Hub does
impact Pasteur’s research. Importantly, it must be underlined that such a large and diverse group
offers the opportunity for computational biologists to quickly address questions outside their area of
expertise, learn from experts and grow their expertise. It prevents expertise silos and the “miss/mr

|ll

does it all” situation of isolated bioinformaticians. Finally, detachment periods with affiliation to the
Hub offer more flexible career experiences to the computational biology research engineers’
community.

Beyond the rich human endeavour the ten years represent, we will share our experience in setting up
and leading a large computational biology platform. We will discuss methods to overcome the
resistance to a complex support model, and key lessons regarding governance, operational model,
methodology development and outreach in such a structure. We will highlight challenges such as

career development, thriving through diversity, time-management, sustained innovation in an ever-

faster evolving field and finally our perspectives for the next ten years!
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Abstract Assessing ecological quality (EQ) is crucial for marine biodiversity monitoring. With the advent of
High-Throughput Sequencing technologies, metabarcoding has enabled large-scale microbial community
analysis through Operational Taxonomic Unit (OTU) tables, providing an alternative for EQ assessment.
Machine learning (ML) models have been successfully applied for this task, but they often treat microbial
abundance as the sole predictor, overlooking environmental meta-data (e.g., pH, salinity, temperature)
and diversity indices (alpha and beta diversity). This study integrates metadata and diversity indices into
an explainable ML framework for EQ prediction. Using SHapley Additive Explanations (SHAP), we assess
the contribution of these features to model predictions across five genetic markers (V1V2, V3V4, V4, 37F,
and V9). Our results highlight marker-dependent feature importance, demonstrating that while OTU-based
models remain dominant, incorporating metadata improves accuracy for certain markers. This work en-
hances interpretability in Al-driven biomonitoring, fostering more reliable marine ecosystem assessments.

Introduction

The integration of machine learning (ML) for predicting the Biotic Index (BI) to assess the Ecological
Quality (EQ) of marine environments using environmental DNA (eDNA) metabarcoding data repre-
sents a significant advancement in biomonitoring. This assessment often involves computing Bl val-
ues, which can be translated into five ecological quality classes ranging from "very good" to "very
bad". Bl values can be calculated using benthic macroinvertebrate data or through metabarcod-
ing data obtained from high-throughput amplicon sequencing of eDNA. The former method is time-
consuming and requires extensive taxonomic expertise, while the latter relies on reference databases,
limiting its applicability to sequences that have known taxonomic or ecological annotations.

Recent studies have proposed an alternative approach that uses supervised machine learning (SML)
to generate predictive models for Bl values or EQ classes directly from eDNA data. The first study by
[1]1in this category tested two SML approaches to predict Bl values by focusing on specific taxonomic
groups, using benthic foraminifera as features to infer four commonly used Bl values for benthic
monitoring (AZTI Marine Biotic Index (AMBI) [2], Indicator Species Index (ISI) [3], Norwegian Sensitiv-
ity Index (NSI) [3], and Norwegian Quality Index 1 (NQI1) [4]). Their results demonstrated that SML
approaches could provide accurate Bl predictions, reducing or even eliminating the time and cost
constraints associated with morphology-based assessments. In a follow-up study ([5]), the same au-
thors trained Random Forest (RF) models using five different genetic markers—eukaryotic markers
(V1V2, V4, and V9), ribosomal bacterial markers (V3V4), and foraminifera markers (37F) to evaluate
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how predictive accuracy varies across markers. Their findings indicated that all tested markers pro-
duced reliable predictive models, outperforming conventional taxonomic classification approaches.
Additionally, the study suggested that the predictive performance of the 37F marker was slightly
lower than that of the eukaryotic and bacterial markers, confirming that biomonitoring models per-

form better when a broader taxonomic spectrum is used as features.

More recently, [6], introduced a simplified approach to predicting EQ, demonstrating that directly
predicting EQ classes yielded better results than focusing on individual Bl values. This finding rein-
forces the growing recognition of ML's potential in biomonitoring, particularly for EQ assessment.

However, none of the previously mentioned studies have examined how environmental conditions
contribute to ecological quality. Building on [6]'s work, this study integrates model explainability
to explore the influence of environmental variables, the role of diversity, and how ML algorithms
capture these relationships. Feature importance methods quantify each variable's contribution to
predictions, with global methods ranking features overall and local methods assessing their impact

on specific cases.

We implement an explainable artificial intelligence (XAl) framework using microbiome data, meta-
data, and alpha diversity indices to enhance marine EQ predictions. Specifically, we apply SHapley
Additive Explanations (SHAP) to identify key variables driving model decisions. By improving inter-
pretability, this study strengthens the reliability and transparency of ML-based ecological assess-
ments, facilitating better-informed marine monitoring efforts.

Background
Alpha Diversity Indices in Marine Microbiome Analysis

Biodiversity assessment depends on diversity metrics to quantify species richness and distribution.
In marine ecology, these metrics, or indices, characterize microbial community composition under
varying environmental conditions, offering insights into ecosystem health. Diversity indices are math-
ematical measures that summarize species-abundance distribution within a community as a single
value, offering a snapshot of diversity and its fluctuations over time ([7]). The three primary diversity
categories are Alpha Diversity (measure within-sample), Beta Diversity (measure between-sample),
and Gamma Diversity (measure in landscape-level). Alpha diversity, one of the most widely used
metrics for characterizing communities at a local scale, consists of two main components: species
richness, which represents the number of different species, and equitability, which measures the

uniformity of species abundances ([8]).

Species Richness (.5) quantifies species count but does not consider distribution. To address this,
evenness indices are used.

We begin by introducing some notations that are used in the formulas of the indices introduced later
on. Consider S as the species richness, and let p; = %+ the proportional abundance (or percentage
abundance) of the i-th species present, where n; is the number of individuals for species 7, and N is
the total number of individuals counted, across all species.
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Shannon-Wiener Index (H) ([9]) quantifies alpha diversity by considering both species richness and
evenness. A higher Shannon index suggests evenly distributed species, while lower values indicate

the dominance of a few species ([8]). It is computed as follows 1:

S
H ==Y (p;i-logy(ps)) ()
i=1
Pielou’s Evenness Index (P) ([10]) measures species distribution independence from richness, mak-

ing it useful for dominance comparisons ([8]). It is given by 2:

H
P=— 2
log,(S) )

Values range from 0 (one species dominates) to 1 (equal distribution).

Simpson'’s Index (D) ([11]) estimates the probability that two randomly chosen individuals belong to
the same species, giving more weight to abundant species ([8]). It is defined as 3:

S

D=1-% () (3)

i=1
Unlike the Shannon index, Simpson'’s Index is less sensitive to rare species, making it more suited for
habitat comparisons.

Multivariates Analysis of Microbiome Data

Multivariate analysis refers to a collection of statistical techniques that examine three or more vari-
ables simultaneously, in order to identify or clarify the relationships between them. Unlike univariate
analysis, which focuses on a single observation or variable, multivariate analysis acknowledges the
complexity of real-world phenomena, where multiple factors influence outcomes ([12]).

We may investigate individual measurements, in simple cases, using measures of location and dis-
persion, or explore relationships between two variables using bivariate analysis. However, most
datasets involve numerous variables, and understanding the interrelationships between them re-
quires a multivariate approach. This type of analysis is applicable to both metrical and categorical
data, and offers a variety of methods to uncover meaningful patterns and associations ([13]).

Using correlation and Canonical Correspondence Analysis, we will explore the relationships between
environmental variables (metadata) and microbiome data, while SHAP will be used to examine the
connection between ecological quality, environmental factors, microbiome, and diversity.

Correlation and Canonical Correspondence Analysis Correlation measures the strength and di-
rection of the linear relationship between two variables, quantifying the extent to which they change
together. While the linear relationship between each pair of independent variables in the metadata
can be measured by correlation, a more insightful approach to explore the multivariate relation-
ships between community composition and multiple explanatory environmental variables is Canon-
ical Correspondence Analysis (CCA).
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CCA is a multivariate analysis technique designed to relate community composition directly to envi-
ronmental variation. It works by imposing the restriction that ordination axes be linear combinations
of environmental variables, allowing community variation to be directly linked to environmental fac-
tors. The environmental variables can be either quantitative or nominal, and as many axes as there

are environmental variables can be extracted ([14]).

CCAis particularly useful for analyzing data when species exhibit bell-shaped response curves to en-
vironmental gradients, making it more appropriate for examining the relationship between commu-
nity composition and environmental variables than other methods like canonical correlation analysis.
The technique produces an ordination diagram in which species and sites are represented as points,
and environmental variables are shown as vectors. This diagram helps visualize the patterns of vari-
ation in community composition explained by environmental variables and identifies the "centers"
of species distributions along each environmental gradient. CCA has been effectively applied to vari-
ous ecological studies, such as hunting spiders, dyke vegetation, and algae along pollution gradients
([141).

Explainability in Machine Learning and SHAP Understanding why a model makes a specific pre-
diction is often just as important as how accurate that prediction is—especially in fields where inter-
pretability matters. Complex models like ensemble methods or deep learning can perform very well
with large datasets, but they're often difficult to understand. This creates a tension between achiev-
ing the highest performance and maintaining a model that users can understand. In response to
this issue, various methods have been proposed to help interpret the predictions of complex mod-
els. However, it is often unclear how these methods relate to one another and in which contexts one
method may be more suitable than another ([15]).

To address this challenge, SHapley Additive Explanations (SHAP) ([15]) was introduced as a unified
framework for interpreting model predictions. SHAP assigns an importance value to each feature
based on its contribution to the model’s output. This method is grounded in cooperative game theory
and introduces a novel class of additive feature importance measures, which is theoretically proven
to have desirable properties. These properties unify several existing methods and ensure that SHAP
provides both global and local interpretations of model behavior. SHAP's distinctive advantage lies in
its ability to provide consistent, interpretable feature importance, while also offering computational
efficiency compared to earlier approaches ([15]).

In this study, we apply SHAP to explain the predictions of the Random Forest (RF) ([16]) model, which
is an ensemble method that constructs multiple decision trees through bootstrapping and random
feature selection. RF predictions are made by averaging (for regression) or majority voting (for clas-
sification) across the trees. SHAP is used to assess the influence of operational taxonomic units
(OTUs), metadata, and diversity indices on EQ predictions. This helps make our machine learning
models more transparent, offering clearer insights into how different factors—like environmental
conditions and microbial diversity—affect ecological assessments.
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Material and Data Analysis
Material

In this study, we analyze five datasets that are publicly available on zenodo* from [5] study, corre-
sponding to five genetic markers used in marine biodiversity research: Eukaryotic markers ( V1V2,
V4, and V9), Ribosomal bacterial marker (V3V4) and Foraminifera marker (37F). The dataset is divided
into two types. The first type includes metadata files that list the sample names along with four Bls,
namely AMBI, ISI, NSI, and NQI1. Other columns in these metadata files contain environmental data,
such as sampling location, station, grab, distance from the farming cage, depth, and pH. The second
type consists of five files, each representing an OTU-sample matrix for a different marker. These files
contain the sample names and the corresponding abundance of each OTU in those samples. This
data serves as the basis for analyzing the relationships between OTU abundance and environmental
factors.

The pipeline code of this study is available on zenodo°.
Alpha diversity Analysis

To better understand the microbial community structure across the five datasets (V1V2, V3V4, V4,
37F, V9), we conducted alpha diversity analyzes. The results for each dataset are visualized in Figure
1, which provides a comparative box plot highlighting the variation of the alpha diversity indices.

Species_Richness Shannon_Index

3000

2500

Species_Richness
- L)
un o
=1 (=]
=] =]
Shannon_Index
w F w

=
o
[=1
(=}

L

-

- N

viv2 vivd vd 37F vivz v3vd v 37F
Dataset Dataset

Simpson_Index Pielou_Evenness

1.0 - —_ =
W 0.8 —_

0.81 L -

L e

0.2+ &

(=]
i=3

o
o

o
=

Pielou_Evenness

0.2

viv2 vivd w4 37F vivz v3vd w4 37F
Dataset Dataset

Fig. 1. Box Plot Comparison of Alpha Diversity Indices Across Datasets.
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— Species Richness: The species richness box plots reveal significant differences in the number
of species detected by each marker. The medians of V1V2 and V3V4 are close, both below 1000,
reflecting a moderate number of species captured in these datasets. In contrast, the V4 dataset
has an even lower median, below 500, indicating a reduced species richness, while 37F shows
the lowest median overall, highlighting its limited capacity to capture species. On the other
hand, V9 stands out with the highest median, ranging between 2000 and 2500, suggesting
that this marker captured the most species. Outliers are visible in the V3V4 and V9 datasets,
indicating some extreme values outside the typical range.

When examining the interquartile range (IQR), V9 shows the largest IQR, reflecting the greatest
variability in species richness across its samples. The other datasets display more similar IQRs,
indicating a more consistent distribution of richness values. The whiskers further clarify the
spread: V1V2 has balanced, moderately long whiskers, while V3V4 and V9 show longer lower
whiskers, suggesting a wider range of lower values. In contrast, V4 and 37F have longer upper
whiskers, indicating greater variation in higher richness values. These trends are consistent
across the box plots and highlight key differences in species richness captured by each marker.

— Shannon Index: The Shannonindex, which accounts for both species richness and evenness,
reveals a relatively consistent pattern across the datasets. Among them, V3V4 stands out with
the highest median value, suggesting it captures the greatest overall species diversity. This
dataset also includes a notable outlier, indicating the presence of an exceptionally low diversity
value.

V1V2 displays whiskers of roughly equal length, with a median close to those of V4 and 37F,
implying a similar central tendency in diversity across these three markers. The V4 dataset,
with a median just below 3, has the widest IQR, reflecting greater variability in diversity among
its samples. The lower half of the box is longer, indicating more spread in samples with lower
diversity.

Likewise, 37F exhibits a longer lower whisker than the upper one, highlighting greater variabil-
ity at the lower end of its diversity distribution. As for V9, it has a higher median than V1V2,
V4, and 37F, and shows a longer lower whisker as well—again pointing to more dispersion in
samples with lower diversity scores.

— Simpson Index : The Simpson index, which emphasizes dominance and evenness in species
distribution, supports earlier observations. V9 and V3V4 show values very close to 1, suggest-
ing a highly even distribution with no dominant species. V3V4 has the highest median and
an extremely small IQR, indicating both high evenness and low variability across samples. In
contrast, V4 displays the lowest median and the largest box, with a longer lower half, pointing
to lower evenness and greater variation among samples—suggesting that some species may
dominate.

V1V2 and 37F have close medians, indicating comparable diversity levels. The IQR is partic-
ularly narrow for V3V4, showing consistent values across its samples. Most datasets contain
outliers. The longer lower whiskers in V1V2, 37F, and V9 suggest greater dispersion among
the samples with lower diversity scores.
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— Pielou’s Index : Finally, Pielou’s evenness index shows that V3V4 has the highest evenness
values and median, reflecting a uniform distribution of species across its samples. In con-
trast, V1V2 and V4 exhibit the lowest evenness and the greatest variability, suggesting a more

uneven distribution where certain species may dominate.

As with the other indices, V4 displays a large box, with the lower portion being larger, indicat-
ing more variation in samples with low evenness. 37F and V9 have similar medians and show
longer lower whiskers, reflecting greater variability among samples with lower evenness val-

ues.

Multivariate Analysis

Exploring Relationships Among Environmental Condition Variables We start to explore the rela-
tionship between environmental variables and Bls. To achieve this, we use the metadata table, which
includes columns such as Sample Names, Locality, Station, Grab, Distance from the Cage, Depth, pH,
AMBI, NSI, ISI, and NQI1. Depth, pH, AMBI, NSI, ISI, and NQI1. To ensure clarity and focus in our
analysis, we retained only the columns relevant to our research objectives: Sample Names, Distance
from the Cage, Depth, pH, AMBI, NSI, ISI, and NQI1. We also addressed any null values to maintain
the integrity of the dataset. We then calculated the correlation between each environmental variable

and each BI.

We calculated the correlation between each environmental variable and each Bl. The heatmap in Fig-
ure 2 shows a strong correlation between Distance Cage and the four Bls, with coefficients exceeding
0.7 (a negative correlation with AMBI and positive correlations with the others). Additionally, there is
a relatively strong correlation between Depth and the four Bls, with coefficients above 0.5, while the
correlation between pH and the four Bls is weaker, with coefficients above 0.4. The corresponding
p-values showen in table 1 for all Pearson tests are very small, indicating that these correlations are

statistically significant.
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Fig. 2. Heatmap showing correlations between environmental variables and Bls.
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Variable AMBI NSI IS NQI1

Distance from Cage 4.176 x 10726 9.462 x 10=23 1.912 x 10~?Y 1.850 x 10~2?

Depth 2.037 x 10719°3.929 x 10713 1.258 x 10715 2.934 x 1010

pH 1.594 x 1077 2.253 x 107 3.012 x 107* 7.948 x 10~
Tab. 1. P-values of Pearson correlation tests between environmental variables and ecological quality
indices.

Canonical Correspondence Analysis of Environmental Variables and Ecological Quality To fur-
ther explore the relationship between environmental variables and EQ, we applied CCA. This analysis
was performed using three environmental variables including pH, distance from the cage, and depth.
The EQ variable used here was inferred from AMBI scores based on the threshold values defined in
Borja et al. [2]. We then visualized the results by projecting the samples onto a 2D space defined by
the first two axes of the CCA (Figure 3). To examine how EQ is distributed, the samples were color-
coded according to their EQ classes derived from AMBI values, allowing us to assess the influence of
environmental factors on ecological status.

The resulting plot revealed that the samples grouped primarily by their EQ classification, with clear
clusters. The arrows representing the environmental variables showed the direction of influence for
each factor. Notably, pH, distance from the cage, and depth all demonstrated a clear relationship
with the samples’ ecological quality. The arrows for pH and depth point toward areas with higher
ecological quality, indicating that higher pH levels and deeper sampling depths are associated with
better EQ status. In contrast, the distance-from-cage variable shows a negative relationship: sam-
ples located closer to the cage tend to have lower ecological quality. These patterns suggest that
environmental conditions like higher pH and greater depth may support healthier ecosystems, while
proximity to aquaculture structures could be linked to ecological degradation.

These results from the CCA reinforce the conclusions drawn from the correlation analysis, highlight-
ing the importance of environmental variables in influencing marine ecosystem health and providing
avisual representation of how these factors contribute to variations in ecological quality across sam-
ples.

Results and Explainability In orderto explore the relationships between explanatory variables—diversity,
environmental variables, microbiome data—and the explained variable, ecological quality, we im-
plemented an SML pipeline that takes the explanatory variables as input to predict the explained
variable.

This pipeline is organized into three steps. First, the data in OTU tables, along with their metadata,
are preprocessed to generate the training/testing datasets. The OTU tables were normalized using
the Trimmed Mean of M-values (TMM) method, then reduced using Singular Value Decomposition
(SVD) to five dimensions to adress the issue of the curse of dimensionality (a high number of features
relative to the number of samples) and avoid overfitting. As in [6], SVD and TMM proved to be the best
approach for these data. The number of components to retain for SVD is determined by maximizing
both the variance between features and the accuracy of the RF model while using the minimum
number of components possible.
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Fig. 3. Canonical Correspondence Analysis plot ordination plots for five datasets.

For the environmental variables, we retained "Distance from cage", "Depth", and "pH", which were
scaled using "StandardScaler()" python function. As for the explained variable, following [6], we kept
the AMBI index, which was converted into EQ classes.
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The second phase is the learning step. We trained our RF model, with 200 trees, on three tasks: (1)
OTU data extended with metadata and diversity indices, (2) metadata only, and (3) diversity indices
only. These RF models are used to generate predicted EQ classes for each sample in the test set.

The third step quantifies the contribution of all explanatory variables in EQ predictions using SHAP
values and RF feature importance. The objective is to determine whether richness, evenness, meta-
data, or community composition shifts play a more significant role in ecosystem health.

The models are evaluated using the kappa statistic, and the results are presented in Table 2 for
each dataset. This table first presents results from the literature, specifically those of [5] and [6],
respectively, followed by our results for extended data, metadata, and diversity data. The best results
are highlighted in bold.

Cordier et al. first predicted AMBI values, then converted them into EQ classes before calculating
the Kappa score to assess the agreement between predicted and reference EQ classes. Unlike our
approach, they did not apply dimensionality reduction. Braikia et al., on the other hand, directly
predicted EQ classes using only normalized and reduced OTU tables (non extended data).

Our results indicate that the effect of adding metadata and diversity indices varies across markers.
For V3V4 and V4 markers, our approach outperforms Braikia et al.'s results. When compared to
Cordier et al., our method surpasses their results for the V1V2, V4 and 37F markers. These find-
ings suggest that the contribution of metadata and diversity indices depends on the specific marker,
affecting the predictive power of the models in different ways.

Upon further analysis, we observe that predictions based solely on metadata perform relatively well.
This suggests that the environmental or contextual information captured in the metadata is valuable
for predicting ecological quality. On the other hand, predictions using only diversity indices show
bad performance, indicating that diversity alone may not provide sufficient information to accurately
assess ecological quality.

Tab. 2. Kappa results comparison

Markers Literature Kappa Non extended data Extended data Meta data Diveristy data

V1V2 0.866 0.956 0.889 0.889 0.389
V3v4 0.918 0.834 0.863 0.713 0.514
V4 0.877 0.916 0.928 0.893 0.552
37F 0.832 0.889 0.859 0.816 0.771
V9 0.927 0.881 0.837 0.836 0.468

To verify these hypotheses and better understand the role of metadata and diversity indices in the
prediction of EQ, we analyzed feature importance using both RF and SHAP values. The feature impor-
tance histograms, first generated by the RF model and then by the SHAP method for each dataset,
are displayed in Figure 4.

The order of feature importance is generally consistent between RF and SHAP, except for some of the
least important attributes. Otherwise, the ranking of important features remains similar across all
markers. We note that the most influential features For markers V1V2, V3V4, V4, and V9 include OTU
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attributes (reduced) and the meta-variable "Distance to the cage.", and that the diversity indices con-
tribute minimally to the prediction of EQ. In particular, for V1V2, diversity indices do not significantly
explain ecological quality, a result confirmed by the kappa value when testing predictions using only
diversity data (table 2).

However, the case of 37F stands out. According to both SHAP and the feature importance scores from
RF, diversity indices play a much more significant role in explaining EQ compared to OTU data. This
finding suggests that, for 37F, diversity indices may be more informative than OTU-based features in
predicting EQ.

As demonstrated in our results, the performance of V4 was enhanced by integrating environmental
variables and diversity measures, followed by V1V2, which showed the second-best results. To fur-
ther explore the impact of each variable and identify key drivers of good and poor ecological quality,
we analyzed SHAP values for the "Very Good" and "Very Bad" classes in both datasets (Figure 5).

Focusing on the five mostinfluential variables, we observe that in V1V2, high values of environmental
variables strongly drive the classifier toward good quality. Similarly, the reduced OTU components
2 and 1 exhibit a pattern where low values contribute to good quality, whereas OTU component 4
has the opposite effect (Figure 5 (a)). Conversely, for the Very Bad class (Figure 5 (b)), SHAP values
confirm these trends: high values of depth and distance from the cage push the classifier towards
bad quality, while pH appears to have a mitigating influence.

For V4, a similar trend is observed. The five most important variables (Figure 5 (c)(d)) include environ-
mental factors and reduced OTU components. As in V1V2, higher values of distance from the cage
are associated with good ecological quality, whereas lower values tend to indicate poorer quality.

These findings highlight the strong influence of environmental parameters and microbial diversity on
ecological quality classification, reinforcing the relevance of integrating these variables into predictive
models.

Conclusion

The goal of this study was to examine the contribution of environmental, diversity, and microbiome
variables in predicting EQ. We assessed this by evaluating an RF model on these data and, to verify
and understand the model’s predictions, we used SHAP.

We developed an explainable ML framework for predicting marine EQ from eDNA metabarcoding
data. Our pipeline, based on SVD and RF, was tested across five genetic markers (V1V2, V3V4, V4,
37F, and V9), and we evaluated the model on three tasks: (1) OTU data extended with metadata and
diversity indices, (2) metadata only, and (3) diversity indices only. For the environmental variables,
we retained "Distance from cage," "Depth," and "pH," while for diversity indices, we calculated rich-
ness, Shannon, Simpson, and Pielou. We then applied SHAP to measure the contribution of different
features to the model's predictions.

The results showed that predictive performance varied by genetic marker, with OTU-based features
consistently being the most important. The contribution of metadata was significant, while diver-
sity indices showed mediocre performance, differing substantially across datasets. These additional
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features improved EQ predictions for V1V2, V3V4 and V4, had minimal impact on V9, and negatively
affected the predictions for 37F.

SHAP and RF feature importance analyses confirmed these trends, revealing that OTUs and meta-

data—particularly distance from the cage—played a dominant role in EQ predictions, except for 37F,

where diversity indices were more informative.

These findings emphasize that the predictive power of metadata and diversity indices is marker-

dependent, highlighting the need for marker-specific feature selection strategies in future studies.
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Abstract

The importance of protein amyloidogenesis, associated with various diseases and functional
roles, has driven the creation of computational predictors of amyloidogenicity. The accuracy of
these predictors, particularly those utilizing artificial intelligence technologies, heavily depends
on the quality of the data. We built Cross-Beta DB, a database containing high-quality data on
known cross-f3 amyloids formed under natural conditions. We used it to train and benchmark
several machine-learning (ML) algorithms to predict amyloid-forming potential of proteins. We
developed the Cross-Beta predictor using an Extra trees ML algorithm, which outperforms
other amyloid predictors with the highest F1 score (0.852) and accuracy (0.844) compared to
existing methods. The development of the Cross-Beta DB database and a new ML-based
Cross-Beta predictor may enable the creation of personalized risk profiles for
neurodegenerative diseases and other amyloidoses—especially as genome sequencing

becomes more affordable.
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Highlight

A significant number of neurodegenerative diseases remain without effective treatments. This
is particularly true for conditions triggered by amyloid proteins, collectively known as
amyloidoses. These disorders include, but are not limited to, Alzheimer’s disease, Parkinson’s
disease, and type 2 diabetes. The class of protein structures responsible for these conditions is
referred to as amyloids, which are characterized by their distinctive structure and aggregation
behavior. While amyloid proteins in their normal functional state are typically highly disordered
(meaning they lack a stable three-dimensional structure) they can adopt a stable cross-beta
structure when forming amyloids. In this fibrillar arrangement, polypeptide chains assume
beta-conformations and align perpendicularly to the fibril axis. This unique structural
organization makes amyloid fibrils remarkably resistant to degradation, including by proteases
and extreme temperatures. Notably, amyloids are also prone to polymorphism, meaning a
single amyloid sequence can give rise to diverse structural forms, even under identical

environmental conditions [1].

Advancements in machine learning have enabled the analysis and classification of large
datasets. Supervised models, such as the Random Forest and Extra Trees classifiers, are
particularly notable examples. These models can effectively handle moderate-sized datasets,
unlike unsupervised learning methods like neural networks, which often require millions of
data points to perform optimally. This ability to operate efficiently with smaller datasets makes
supervised models especially valuable for studying small protein populations involved in

amyloid formation.

In our study, we highlight the importance of data selection in training effective models. For the
positive dataset, we selected a group of proteins that form cross-beta amyloids under
physiological conditions, specifically in terms of pH, temperature, and concentration. Since no
existing database covered this range of data, we created our own: Cross-Beta DB. For the
negative dataset, we included intrinsically disordered regions (IDRs) and intrinsically disordered
proteins (IDPs) known to remain soluble under the same conditions. These negative data were
sourced from the DisProt database [2]. A crucial next step was the development of features
based on protein sequences. We designed a set of features that incorporated amino acid
composition, di-peptide composition, and predicted structural properties. To refine our model,
we identified key features by analyzing their relative importance in prediction performance. By
leveraging these features, we optimized various supervised classifiers and ultimately selected

the model that demonstrated the best performance for this task.
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To evaluate our predictor's performance against similar models, we selected six established
predictors: ArchCandy2.0 [3], AMYPredFRL [4], Aggrescan [5], PASTA2.0 [6], AmyloGram [7],
and Tango [8]. We assessed these predictors using the same data we employed to create our
testing sets: 10 subgroups, each containing 13 positive samples (cross-beta-forming amyloids)
and 13 negative samples (soluble IDRs or IDPs). The F1 score was calculated as the average
result across these 10 subgroups and compared to the performance observed during our
predictor's testing phase. Our model, Cross-Beta Predictor, achieved an F1 score of 0.852,

outperforming the other predictive models for amyloidogenicity.

These results highlight the importance of selecting an appropriate methodology for effectively
addressing classification problems. With a well-designed approach, machine learning
techniques can be successfully applied even to small datasets. This methodology can also be
extended to other types of protein aggregation, such as liquid-liquid phase separation, gelling
proteins, or more specific cases like examining the impact of missense mutations on protein

amyloidogenicity [9].
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Abstract

Background: Interpretability is a topical question in recommender systems,
especially in healthcare applications. An interpretable classifier quantifies
the importance of each input feature for the predicted item-user association
in @ non-ambiguous fashion. Results: We introduce the novel Joint
Embedding Learning-classifier for improved Interpretability (JELI). By
combining the training of a structured collaborative-filtering classifier and an
embedding learning task, JELI predicts new user-item associations based on
jointly learned item and user embeddings while providing feature-wise
importance scores. Therefore, JELI flexibly allows the introduction of priors
on the connections between users, items, and features. In particular, JELI
simultaneously (a) learns feature, item, and user embeddings; (b) predicts
new item-user associations; (c) provides importance scores for each feature.
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Moreover, JELI instantiates a generic approach to training recommender
systems by encoding generic graph-regularization constraints. Conclusions:
First, we show that the joint training approach yields a gain in the predictive
power of the downstream classifier. Second, JELI can recover feature-
association dependencies. Finally, JELI induces a restriction in the number of
parameters compared to baselines in synthetic and drug-repurposing data
sets.

Highlight

This paper proposes a flexible and scalable approach to, first, incorporating
prior biological knowledge as a graph (e.g., protein-protein interaction
networks, or generic knowledge graphs such as PrimeKG [1]) to a semi-
supervised classification task of drug repurposing; and, second, to provide
interpretability on the classification scores by relating them to specific
nodes in the knowledge graph. In particular, we show that traditional
pathway enrichment analyses (e.g., Gene Set Enrichment Analysis [2]) can
be applied after classification to connect disease-perturbed gene expression
to relevant functional pathways in melanoma, using the inferred importance
scores. We propose an extensive experimental study, as JELI is compared to
three strong baselines in drug repurposing, on four open-source datasets
and with seven types of prior knowledge graphs. Furthermore, once trained,
the proposed model JELI can be used without further training on unseen
drugs and diseases thanks to the structure of the newly introduced classifier
model. Moreover, JELI can be applied for any matching task, for instance,
connecting genes to diseases instead of drugs as done in [3]. Finally, the

method is available as open-source code on PyPl and on GitHub [4].
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Abstract

Ce mini-symposium transversal initie la discussion sur le sens de nos activités professionnelles au
regard de la crise environnementale actuelle et de son évolution. Aprés un exposé introductif sur les
impacts environnementaux dont le numérique, Stéphanie Mariette, chercheuse en génétique des
populations a INRAE au sein de 'UMR Biogeco partage ses réflexions [1] quant a I’évolution récente
de leur discipline, la génétique des populations, et a ses devenirs possibles, dans un scénario de

résistance aux impératifs de la croissance, du big data et de I'innovation perpétuelle.

Dans un second temps, et avant une restitution en pléniére, a lieu des ateliers participatifs en groupe

plus restreint :

e Al - Usage du numérique au sein du domaine de la bioinfo

® A2 - Prospective de nos domaines scientifiques sous contraintes de ressources (énergie, eau,
processeurs, etc.)

® A3 -Intégrer les enjeux environnementaux dans la conduite de la recherche en bioinfo - une
responsabilité éthique (avis du COMETS CNRS [2])

® A4 - Cartographie des valeurs et attachements (selon la philosophie des ateliers SEnS [3])
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Description

The advent of large-scale sequencing initiatives, such as those coordinated by the Earth BioGenome

Project (EBP), is transforming the field of comparative genomics. Major challenges include integrating
this unprecedented volume of data, managing its inherent complexity, and leveraging its vast taxo-

nomic breadth to deepen our understanding of genome evolution and biodiversity.

Several pioneering projects exemplify these efforts. The Vertebrate Genome Project (VGP) is near-

ing completion of its first phase, delivering one genome per vertebrate order, totaling almost 600 high-

quality assemblies, the Darwin Tree of Life (DTolL) , which aims to sequence all eukaryotic species in

the British Isles and Ireland, has produced almost 2,000 genome assemblies and the European Refer-

ence Genome Atlas (ERGA) brings together a diverse European research community to sequence con-

tinental Europe’s biodiversity. In France, the ATLASea program is building capacity to sequence 4,500

marine species over the next seven years, with the aim of better understanding the evolution of marine

species, the function of their genomes and the dynamics of marine ecosystems. To address the scien-

tific and technical challenges posed by these transformative initiatives, the BYTE-Sea project within
ATLASea proposes a mini-symposium on biodiversity genomics, with a specific focus on eukaryotic

comparative genomics.

Invited speakers Josefin Stiller (University of Copenhagen), Matthieu Muffato (Welcome Sanger
Institute), Yannis Nevers (University of Strasbourg) and Elise Parey (University College London) will
present their work on Bioinformatics developments needed to scale up methods to analyse thou-
sands of genomes simultaneously and applications that embrace the complexity of multi-genome da-

tasets to uncover novel insights into genome evolution, organisation, and function.
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Mini-symposium : Al in Healthcare: From Fundamentals to the Clinic

Artificial Intelligence (Al) is transforming healthcare, from early diagnosis to personalized treatment.
This mini-symposium explores the real-world impact of Al in clinical practice, with a focus on its
integration into diagnostic and therapeutic workflows. By bridging fundamental research and clinical
application, the event brings together researchers, clinicians, and Al experts to promote
interdisciplinary exchange on both the promises and limitations of Al in medicine. Topics include
methodological rigor, regulatory requirements, and the evolving role of healthcare professionals in an

increasingly data-driven environment.

Jean-Marc Alliot is a Scientific Director of Al & Data in Toulouse University Hospital. He provides a
critical historical overview of Al in medicine, highlighting both major advances and the importance of
methodological soundness in clinical translation. Title: Artificial Intelligence and Medicine: A “Success

Story”

Daniel Racoceanu is Professor at Sorbonne University & Paris Brain Institute (ICM) and presents two
use cases: PhagoStat, an interpretable deep learning pipeline for quantifying phagocytosis in
neurodegeneration studies; Virtual Staining, a generative Al system replacing traditional chemical
stains with multi-stain prediction from H&E slides. Both tools are open-source and aim to make Al
robust, interpretable, and sustainable. Title: Explainable Al in Biomedical Imaging — From PhagoStat

to Virtual Staining

Simon Cabello-Aguilar is Bioinformatics Engineer in Montpellier University Hospital and presents a
validated clinical pipeline for identifying MET amplification in NSCLC patients. Based on data from
1,932 patients, the tool supports therapeutic stratification and trial inclusion decisions. Title:

Al-assisted NGS Detection of MET Amplification in Lung Cancer
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Abstract

The development of genome sequencing offered many opportunities to explore the
function and evolution of species. A standard emerged in the 2000s: omics studies, in all their
diversity, were contextualized with a reference genome, allowing the identification of
variations held by new sequences relative to this shared reference. The limits of this approach
appeared rapidly in procaryote species and led to the concept of pangenomes. With the recent
availability of highquality, telomere-to-telomere, genome sequencing, the concept of
pangenome can now be applied even to the most complex eukaryotes. More generally, new
models such as pangenome graphs or pangenome databases allow to compare new sequences
to the whole diversity of genome variation known for a species or a species complex. This
approach reduces analysis biases, and is promising for extended exploration of complex
structural variations (SV), a family of variations that remains poorly explored when compared

to SNPs.

The paradigm change of “pangenomes as the new reference” opens a range of new
challenges in our community. Many bioinformatic analyses are oriented towards a reference
and not pangenome-based. Since a few years, tools are nevertheless diversifying and

pangenome research and engineering is spreading in many fields, from microbiology, health,
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agronomy to environmental sciences.

This mini-symposium aims to gather the research community interested in the many
methodological and computational challenges related to pangenome models and in particular
graph-based models. Via short talks and a contribution from an invited speaker, leader in
pangenome graph developments, we will discuss some identified problems such as
pangenome construction scalability, visualisation, and exploitation. We will also run an open
table discussion where beginners & specialists will discuss their own problematic and
expectations for pangenomes approaches, and how they could help to explore further their

scientific question.
Program overview

The objective of this mini-symposium is to bring together both new and experienced researchers
engaged in, or simply curious about computational pangenomics, with some emphasis on graph-

based models.

INVITED SPEAKER: JANA EBLER, Institute for Medical Biometry and Bioinformatics, Heinrich

Heine University Disseldorf, Germany

Pangenome-based genome inference. Typical analysis workflows map reads to a reference
genome in order to genotype genetic variants. Generating such alignments introduces
reference biases and comes with substantial computational burden. In contrast, recent k-mer
based genotypers are fast, but struggle in repetitive or duplicated genomic regions. We
introduced a new algorithm, PanGenie, that leverages a haplotype-resolved pangenome
reference in conjunction with k-mer counts from short-read sequencing data to genotype a
wide spectrum of genetic variation — a process we refer to as genome inference.
Improvements are especially pronounced for structural variants (SVs) and variants in
repetitive regions. We studied SVs across large cohorts sequenced with short-reads, using
pangenome graphs generated by the HGSVC and HPRC consortia, which enables the

inclusion of these classes of variants in genome-wide association studies.
FLASH TALKS: Highlights of JOBIM posters related to pangenomic approaches.

ROUND TABLE: Do we need a pangenome graph? What is a good pangenome? A debate
moderated by a panel of developers and users. Everyone is welcome, from experienced

developers to researchers wondering if these approaches may be beneficial to their research.
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