Feuille TD 4: Fonctions à plusieurs variables

Exercice 1. Nous allons étudier la fonction $f(x,y) = y - x^2$.

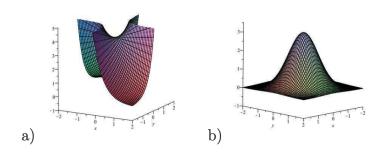
- a) Donner le plus grand domaine de définition possible pour f.
- b) Calculer f(1,2).
- c) Tracer les courbes de niveau z = 0, z = 1 et z = 2.
- d) Tracer l'intersection du Surface-graphe S_f avec le plan d'équation x=0.
- e) Donner une représentation de S_f dans l'espace.

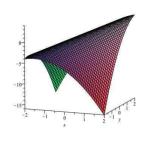
Exercice 2. Déterminer les extrema locaux des fonctions suivantes ainsi que les points selles:

- a) $f(x,y) = 2x^2 + 2xy + y^2 + 2x 3$.
- b) $f(x,y) = -5x^2 + 4xy y^2 + 16x + 10$.
- c) $f(x,y) = x^2 y^2 + 4x 4y 8$. d) $f(x,y) = xe^{-x^2 y^2}$.
- e) $f(x,y) = (x^2 + y^2)^{1/3} + 1$.
- f) $f(x,y) = x^2 + y^4$.

Exercice 3. En étudiant les extrema, associer à chaque figure la formule correspondante:

- (i) $f(x,y) = 3e^{-x^2-y^2}$
- (ii) $g(x, y) = x + y + 2xy x^2 y^2$
- (iii) $h(x,y) = 4e^{xy}$





c)

Exercice 4. Afin de traiter une infection bactérienne, l'utilisation conjointe de deux composés chimiques est utilisée. Des études ont montré qu'en laboratoire la durée de l'infection pouvait être modélisée par

$$D(x,y) = x^2 + 2y^2 - 18x - 24y + 2xy + 120,$$

où x est le dosage en mg du premier composé et y le dosage en mg du second. Comment minimiser la duréee de l'infection?

Exercice 5. Une boîte en carton rectangulaire (plus rigoureusement parallélepipédique) ouverte sur le dessus a un volume de $32m^3$. Quelles doivent être ses dimensions pour que sa surface totale soit minimale? (Autrement dit, quelles doivent être les dimensions pour obtenir une boite de $32m^3$ en utilisant le moins de carton possible?)

Exercice 6. Déterminer si les formes différentielles suivantes sont exactes et, dans les cas il est, chercher f tel que $df = w_i$.

- a) $w_1 = 2xy dx + x^2 dy$
- b) $w_2 = xy \ dx z \ dy + xz \ dz$
- c) $w_3 = 2xe^{x^2-y} dx 2e^{x^2-y} dy$
- d) $w_4 = yz^2 dx + (xz^2 + z) dy + (2xyz + 2z + y) dz$

Exercice 7. On considère la forme différentielle $w = (x^2 + y^2 + 2x)dx + 2y dy$.

- a) Montrer que w n'est pas exacte.
- b) Trouver une fonction $\varphi(x)$ telle que $\varphi(x)w=df$. Préciser alors f. (On dit que φ est un facteur intégrant.)

Exercice 8. On considère la forme différentielle

$$w = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

- a) Dans quel domaine cette forme différentielle est-elle définie?
- b) Calculer l'intégrale curviligne $\int_C w$ où C est le cercle de centre O et de rayon 1, parcouru dans le sens direct.
 - c) La forme w est-elle exacte?

Exercice 9. Calculer l'intégrale de la forme différentielle w le long du contour orienté C dans les cas suivants :

- a) $w = \frac{x}{x^2+y^2}dx + \frac{y}{x^2+y^2}dy$ et C est l'arc de la parabole d'équation $y^2 = 2x+1$ joignant les points (0,-1) et (0,1) parcouru une fois dans le sens des y croissants.
- b) $w = (x y^3)dx + x^3 dy$ et C est le cercle de centre l'origine et de rayon 1 parcouru une fois dans le sens direct.
- c) $w = xyz \ dx$ et C est l'arc $x = \cos t$, $y = \sin t$, $z = \cos t \sin t$, t variant en croissant de 0 à $\frac{\pi}{2}$.

Exercice 10. Calculer les intégrales multiples suivantes :

- a) $\int \int_D (x+y) \ dx \ dy$ où $D=\{(x,y)\in \mathbb{R}^2|x\leqslant 1,y\leqslant 1,x+y\geq 1\}$. Donner la représentation du domaine d'intégration D.
 - b) $\int_0^a \int_0^{\sqrt{a^2-x^2}} xy^2 dy dx$. Donner la représentation de la région d'intégration.

c) $\int \int_D xy \ dxdy$ où D est la partie du plan limitée par les paraboles d'équations respectives $y=x^2$ et $x=y^2$.

RÉVISSION ET APPROFONDISSEMENT

Exercice 11. Calculer les intégrales multiples suivantes :

- a) $\int \int_{[-1,1]^2} |x+y| \ dx \ dy$.
- b) $\int \int_{x^2+y^2 \leqslant 1} \frac{1}{1+x^2+y^2} dx dy$.
- c) $\iint \int_{0 \leqslant x \leqslant y \leqslant z \leqslant 1} xyz \ dx \ dy \ dz.$

Exercice 12. On considère le changement de variables en coordonnées sphériques suivant :

$$\begin{cases} x = r \cos \varphi \cos \theta \\ y = r \cos \varphi \sin \theta \\ z = r \sin \varphi \end{cases}$$

- a) Calculer dx, dy et dz.
- b) Vérifier que xdx + ydy + zdz = rdr. En déduire $\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}$ et $\frac{\partial r}{\partial z}$.