Generalized linear models

Jean-Michel Marin

University of Montpellier Faculty of Sciences

HAX912X - 2024/2025

э

Scalar exponential families

Exponential families with a nuisance parameter

In many applications, the response does not vary in all ${\mathbb R}$ but in ${\mathbb R}^+,$ in ${\mathbb N},$ in $\{0,1\}...$

The Gaussian model is not suited to this situation

 $y = (y_1, \dots, y_n)$ the vector of responses X the matrix of explanatory variables

The distribution of y_i , $(\mathbb{P}_{\theta_i})_{\theta_i \in \mathbb{R}}$ must be specified $\mathscr{P}(\theta_i), \mathscr{E}(\theta_i), \mathscr{B}(\theta_i), \mathscr{N}(\theta_i, 1), ...$

The link between θ_i and X must also be specified

A (1) > A (2) > A (2)

We assume that $\theta_i=\gamma(x_i\beta)$ $\gamma(\cdot)$ is called the link function

A GLM is fully specified by

- a probability family
- a link function

$$\begin{split} & \text{Gaussian linear model} \\ & \mathbb{P}_{\theta} = \mathscr{N}(\theta, \sigma^2) \\ & \gamma(x_i\beta) = x_i\beta \end{split}$$

(4) (5) (4) (5)

A b

Examples

- Gaussian linear model
- Logistic regression model
- Poisson regression model

A B F A B F

< 6 b

Let $\nu(dx)$ be a reference measure on \mathbb{R} ,

$$\mathsf{b}(\theta) = \mathsf{log}\left(\int \mathsf{exp}(\theta y) \nu(dy)\right)$$

and

$$\mathsf{D}_{\nu} = \{\theta | \mathfrak{b}(\theta) < \infty\} \subseteq \mathbb{R}$$

э

Definition

A family of probability distribution \mathbb{P}_{θ} is said to belong to the scalar exponential family if

• for each element of the family there exist a $\theta \in D_{\nu}$ such that the probability distribution can be written in the form

$$\mathbb{P}_{\theta}(dx) = \exp(\theta x - b(\theta))\nu(dx)$$

to any value of θ corresponds one and only one element of the family

 θ is called the natural parameter of the exponential family The exponential family is said to be regular if D_{ν} is open

If θ is an interior point of D_{ν} then

$$b'(\theta) = \mathbb{E}_{\theta}(y)$$

 $b''(\theta) = \mathbb{V}_{\theta}(y)$

The function $b(\theta)$ is strictly convex

The strictly convex nature of $b(\theta)$ means that $b'(\theta)$ is bijective

We can also consider $\mu = \mathbb{E}_{\theta}(\boldsymbol{y})$ as a parameter

< ロ > < 同 > < 回 > < 回 >

Examples

- Poisson distribution with parameter $\lambda > 0$
- ► Binomial distribution with parameters (m, p) where m is fixed and p ∈]0, 1[
- ▶ Gaussian distribution with parameters (μ, σ^2) where σ^2 is known and $\mu \in \mathbb{R}$

< 回 > < 三 > < 三 >

Maximum likelihood estimation of $\boldsymbol{\theta}$

Let y_1, \ldots, y_n be an n-sample from \mathbb{P}_{θ^*}

If \mathbb{P}_{θ} belongs to the scalar exponential family with θ as the natural parameter, then $\hat{\theta}_n$ the MLE of θ^* is such that

$$\frac{1}{n}\sum_{i=1}^n y_i = b'(\hat{\theta}_n)$$

< 同 ト < 三 ト < 三 ト

$$\mathsf{D}_{\nu,\varphi} = \left\{ \theta \left| \int \text{exp}\left[\frac{x\theta - b(\theta)}{\varphi} + c(x,\varphi) \right] \nu(dx) < \infty \right\}$$

Definition

A family of probability distribution $\mathbb{P}_{(\theta,\varphi)}$ is said to belong to the exponential family with nuisance parameter φ if

• for each element of the family there exist a $\theta \in D_{\nu, \varphi}$ and a $\varphi \in \mathbb{R}^+$ such that the probability distribution can be written in the form

$$\mathbb{P}_{\theta, \varphi}(dx) = \exp\left\{\frac{x\theta - b(\theta)}{\varphi} + c(x, \varphi)\right\} \nu(dx)$$

• to any pair of $\theta \in D_{\nu,\varphi}$ and $\varphi \in \mathbb{R}^+$ corresponds one and only one element of the family

We have

$$b'(\theta) = \mathbb{E}_{\theta}(y)$$
$$b''(\theta) = \frac{\mathbb{V}_{\theta}(y)}{\varphi}$$

Examples

- ▶ Gaussian distribution with parameters (μ, σ^2) where $\mu \in \mathbb{R}$ and $\sigma^2 \in \mathbb{R}^+$
- ► Gamma distribution with parameters $\alpha > 0$ and $\beta > 0$

• (10) • (10)

Maximum likelihood estimation of $\boldsymbol{\theta}$

Let y_1,\ldots,y_n be an n-sample from $f(y;\theta^*,\varphi^*)\nu(dx)$

For any $\varphi^*,\,\hat\theta_n$ the MLE of θ^* is such that

$$\frac{1}{n}\sum_{i=1}^{n}y_{i}=b'(\hat{\theta}_{n})$$

A (10) × (10) × (10)

Definition of generalized linear models

Consider the n-sample $(x_i, y_i)_{i=1,...,n}$ from (x, y) where x is the vector of explanatory variables and y the corresponding response

Definition

Choosing a generalized linear model corresponds to choosing a conditional probability distribution for y|x. For the class of generalized linear model this conditional distribution is such that

the distribution of y|x belongs to an exponential family with a nuisance parameter

$$\gamma(\mathbb{E}(\mathbf{y}|\mathbf{x})) = \mathbf{x}\boldsymbol{\beta}$$

 $\gamma(\cdot)$ is called the link function

Definition of generalized linear models

- Choosing the exponential family determined in most cases by the values taken by y; if several choices are possible, the plots of the residuals can be used to decide which family is the most appropriate
- 2) Choice of link function: we can use the canonical link: $\gamma(\cdot) = b'(\cdot)$ in this case we have $\theta = x\beta$ that is a natural and advantageous choice, many formulas are simplified

< ロ > < 同 > < 回 > < 回 >

Classical examples

$$\begin{split} & \text{Logistic regression} \\ & \mathbb{P}_{\theta} = \mathscr{B}(\theta) \\ & \gamma(u) = \text{log}(u/(1-u)) \\ & \mathbb{E}(y|x) = \text{exp}(x\beta)/(1+\text{exp}(x\beta)) \end{split}$$

$$\begin{split} & \text{Poisson regression } \mathbb{P}_{\theta} = \mathscr{P}(\theta) \\ & \gamma(u) = \text{log}(u) \\ & \mathbb{E}(y|x) = \text{exp}(x\beta) \end{split}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >