Integration of ODEs (1) Modélisation et Simulation en Physique (HAP708P)

INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS (1)

Objectives:
» Integrate a first-order ordinary differential equation numerically;
» Implement the forward Euler method,;

» Identify the order of convergence of an integration scheme by analysing how the global truncation error
changes with the timestep;

» Implement the Runge-Kutta 4 method,;

» Use the function solve_ivp of the sub-module scipy.integrate to integrate a first-order ordinary dif-
ferential equation;

» Implement the predictor-corrector (Heun's) method.

No list manipulation is allowed in this tutorial!

. Introduction

In this tutorial, we focus on the following first-order Ordinary Differential Equation (ODE):

{i%)) ztl[x(t)Q +1], teo, 1] O
whose exact solution is 2
z(t) = tan (2 + Z) . (2)

Question 1: Define a function exact_solution(t) which returns the exact solution to the above ODE given
by Eq. (2).

Question 2: Plot the function (make a readable plot).
You should note that the function is growing fast, this is why this Cauchy problem is an ideal test for the different
methods of integration presented in the lecture notes.

Question 3: Define a function derivative_ode(t,x) which returns the time derivative of the solution to the
above ODE given by the right-hand side of Eq. (1).

Il. Forward Euler method

We start the tutorial with the forward Euler method.

Question 4: Define a function euler(h, xi=1., ti=0., tf=1.) which takes as an input the timestep h,
implements the forward Euler method and returns two arrays t_arr (array of time values) and x_arr (array of
values of the solution). The other arguments represent the initial condition xi, the initial time ti and the final
time tf.

Question 5: For h = 0.01, plot on the same graph the numerical solution obtained from the forward Euler
method (with symbols) and the exact solution (with a straight line). The plot must be understood by anyone.



Integration of ODEs (1) Modélisation et Simulation en Physique (HAP708P)

Question 6: We define the relative global error at the end of the integration procedure as

z(1) —zu(1)

z(1) ’ (3)

€ =

where z(t) is the exact solution and zg(t) the solution obtained from the forward Euler method. What is the
value of € (in %) for h = 0.017 How should you change h to decrease the error by a factor of 10 approximately?

Question 7: For 13 values of h regularly spaced in logarithmic scale between 1075 and 10~! (look at the function
logspace from the NumPy package), compute €. Plot € as a function of i in a loglog plot. Make a readable plot.

Question 8: We recall that the order of convergence p of the integration scheme is defined as the integer p
such that € ~ hP. Extract the order of convergence pg of the forward Euler method by simple reading of the
plot obtained at the previous question.

I1l. Runge-Kutta 4 method

We now turn to the Runge-Kutta 4 method.

Question 9: Define a function rk4(h, xi=1., ti=0., tf=1.) which takes as an input the timestep h, im-
plements the Runge-Kutta 4 method, and returns two arrays t_arr (array of time values) and x_arr (array of
values of the solution).

Question 10: For h = 0.01, plot on the same graph the numerical solution obtained from the forward Euler
method and the Runge-Kutta 4 method (with symbols) and the exact solution (with a straight line). The plot
must be understood by anyone. Which solution is the best approximate of the exact solution?

Question 11: For 13 values of h regularly spaced in logarithmic scale between 107> and 10~!, compute €. Plot
€ as a function of & in a loglog plot and extract the order of convergence pr of the Runge-Kutta 4 method.

IV. Using SciPy

We now take advantage of the SciPy module.

Question 12: The package SciPy provides a function called solve_ivp which implements different methods to
integrate ODEs. Look at the documentation to understand how the function works: https://docs.scipy.org/
doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp. De-
fine a function python_solver(xi=1., ti=0., tf=1.) which uses the function solve_ivp to implement the
8t" order Runge-Kutta method with a high level of accuracy, and returns two arrays t_arr (array of time
values) and x_arr (array of values of the solution).

Question 13: Plot on the same graph the numerical solution obtained from the 8" order Runge-Kutta method
(with symbols) and the exact solution (with a straight line). The plot must be understood by anyone.

Question 14: What do you see on the graph? Can you explain why?
Hint: look at how time values are distributed.

Question 15: What is the value of € (in %) for the 8th order Runge-Kutta method? How does it compare with
the two previous methods?

V. Bonus: Predictor-corrector (Heun’s) method

We eventually turn to the predictor-correct method (or Heun's method).


https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivp

Integration of ODEs (1) Modélisation et Simulation en Physique (HAP708P)

Question 16: Define a function heun(h, xi=1., ti=0., tf=1.) which takes as an input the timestep h,
implements the predictor-correct method, and returns two arrays t_arr (array of time values) and x_arr (array
of values of the solution).

Question 17: For 13 values of h regularly spaced in logarithmic scale between 107> and 10~!, compute €. Plot
€ as a function of & in a loglog plot and extract the order of convergence py of the predictor-corrector method.



	Introduction
	Forward Euler method
	Runge-Kutta 4 method
	Using SciPy
	Bonus: Predictor-corrector (Heun's) method

