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10
ONE-DIMENSIONAL MAPS

10.0 Introduction

This chapter deals with a new class of dynamical systems in which time is discrete, 
rather than continuous. These systems are known variously as difference equa-
tions, recursion relations, iterated maps, or simply maps.

For instance, suppose you repeatedly press the cosine button on your cal-
culator, starting from some number x0. Then the successive readouts are 
x1 ��cos x0, x2 ��cos x1, and so on. Set your calculator to radian mode and try 
it. Can you explain the surprising result that emerges after many iterations?

The rule xn���l ��cos xn is an example of a one-dimensional map, so-called because 
the points xn belong to the one-dimensional space of real numbers. The sequence 
x0, x1, x2, . . . is called the orbit starting from x0.

Maps arise in various ways:

1. As tools for analyzing differential equations. We have already encoun-
tered maps in this role. For instance, Poincaré maps allowed us to 
prove the existence of a periodic solution for the driven pendulum and 
Josephson junction (Section!8.5), and to analyze the stability of peri-
odic solutions in general (Section!8.7). The Lorenz map (Section!9.4) 
provided strong evidence that the Lorenz attractor is truly strange, 
and is not just a long-period limit cycle.

2. As models of natural phenomena. In some scienti"c contexts it is natu-
ral to regard time as discrete. This is the case in digital electronics, in 
parts of economics and "nance theory, in impulsively driven mechani-
cal systems, and in the study of certain animal populations where suc-
cessive generations do not overlap.

3. As simple examples of chaos. Maps are interesting to study in their own 
right, as mathematical laboratories for chaos. Indeed, maps are capable 
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356 ONE-DIMENSIONAL MAPS

of much wilder behavior than differential equations because the points 
xn hop along their orbits rather than #ow continuously (Figure!10.0.1).

x x x0 2 1

Figure 10.0.1

The study of maps is still in its infancy, but exciting progress has been made 
in the last few decades, thanks to the growing availability of calculators, then 
computers, and now computer graphics. Maps are easy and fast to simulate on 
digital computers where time is inherently discrete. Such computer experiments 
have revealed a number of unexpected and beautiful patterns, which in turn have 
stimulated new theoretical developments. Most surprisingly, maps have generated 
a number of successful predictions about the routes to chaos in semiconductors, 
convecting #uids, heart cells, lasers, and chemical oscillators.

We discuss some of the properties of maps and the techniques for analyzing 
them in Sections 10.1–10.5. The emphasis is on period-doubling and chaos in the 
logistic map. Section!10.6 introduces the amazing idea of universality, and summa-
rizes experimental tests of the theory. Section!10.7 is an attempt to convey the basic 
ideas of Feigenbaum’s renormalization technique.

As usual, our approach will be intuitive. For rigorous treatments of 
one-dimensional maps, see Devaney (1989) and Collet and Eckmann (1980).

10.1 Fixed Points and Cobwebs

In this section we develop some tools for analyzing one-dimensional maps of the 
form xn���l ��f  ( xn ) , where  f  is a smooth function from the real line to itself.

A Pedantic Point

When we say “map,” do we mean the function  f  or the difference equation 
xn���1 ��f  ( xn ) ? Following common usage, we’ll call both of them maps. If you’re 
disturbed by this, you must be a pure mathematician . . . or should consider 
becoming one!

Fixed Points and Linear Stability

Suppose x * satis"es  f  ( x * )  ��x *. Then x * is a !xed point, for if xn ��x * then 
xn ��1!��f  ( xn )  ��f  ( x * )  �� x  * ; hence the orbit remains at x * for all future iterations.

To determine the stability of x *, we consider a nearby orbit xn ��x *���In and 
ask whether the orbit is attracted to or repelled from x *. That is, does the deviation 
In grow or decay as n increases? Substitution yields
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x x f x f x f x On n n n n* ( * ) ( *) ( *) ( ).+ = = + = + ++ +I I I I1 1
2′

But since  f  ( x * )  ��x *, this equation reduces to

I I In n nf x O+ = +1
2′( *) ( ).

Suppose we can safely neglect the O ( In
2 )  terms. Then we obtain the linearized map 

I In nf x+ =1 ′( *)  with eigenvalue or multiplier M � af x( *) . The solution of this lin-
ear map can be found explicitly by writing a few terms: I1 ��MI0, I2 ��MI1 ��M

2I0, 
and so in general In ��M

nI0. If |  M�| ��| af x( *) |���1, then In l 0 as n l d and the 
"xed point x * is linearly stable. Conversely, if | af x( *) | ��1 the "xed point is unsta-
ble. Although these conclusions about local stability are based on linearization, 
they can be proven to hold for the original nonlinear map. But the linearization 
tells us nothing about the marginal case | af x( *) | ��1; then the neglected O ( In

2 )  
terms determine the local stability. (All of these results have parallels for differen-
tial equations—recall Section!2.4.)

EXAMPLE 10.1.1:

Find the "xed points for the map xn���1 ��xn
2 and determine their stability.

Solution: The "xed points satisfy x * �� ( x * ) 2. Hence x * ��0 or x * ��1. The 
multiplier is M � af x( *)  ��2x *. The "xed point x * ��0 is stable since |  M | ��0 ��1, 
and x * ��1 is unstable since | M�| ��2 ��1. ■

Try Example 10.1.1 on a hand calculator by pressing the x2 button over and over. 
You’ll see that for suf"ciently small x0, the convergence to x * ��0 is extremely 
rapid. Fixed points with multiplier M ��0 are called superstable because perturba-
tions decay like I In

n

~ ( )
0

2 , which is much faster than the usual η λ ηn
n~ 0  at an 

ordinary stable point.

Cobwebs

In Section! 8.7 we introduced the cobweb construction for iterating a map 
(Figure!10.1.1).
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Figure 10.1.1

Given xn���l ��f  ( xn )  and an initial condition x0, draw a vertical line until it inter-
sects the graph of  f  ; that height is the output x1. At this stage we could return to 
the horizontal axis and repeat the procedure to get x2 from x1, but it is more con-
venient simply to trace a horizontal line till it intersects the diagonal line xn���l ��xn, 
and then move vertically to the curve again. Repeat the process n times to generate 
the "rst n points in the orbit.

Cobwebs are useful because they allow us to see global behavior at a glance, 
thereby supplementing the local information available from the linearization. 
Cobwebs become even more valuable when linear analysis fails, as in the next 
example.

EXAMPLE 10.1.2:

Consider the map xn���l ��sinxn. Show that the stability of the "xed point x *!���!0 
is not determined by the linearization. Then use a cobweb to show that x * ��0 is 
stable—in fact, globally stable.

Solution: The multiplier at x * ��0 is  f a ( 0 )  ��cos ( 0 )  ��1, which is a marginal 
case where linear analysis is inconclusive. However, the cobweb of Figure!10.1.2 
shows that x * ��0 is locally stable; the orbit slowly rattles down the narrow chan-
nel, and heads monotonically for the "xed point. (A similar picture is obtained for  
x0 ��0. ) 

To see that the stability is global, we have to show that all orbits satisfy xn l 0. 
But for any x0, the "rst iterate is sent immediately to the interval �1 b�x1 b�1 since 
| sinx |  b�1. The cobweb in that interval looks qualitatively like Figure!10.1.2, so 
convergence is assured. ■
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Figure 10.1.2

Finally, let’s answer the riddle posed in Section!10.0.

EXAMPLE 10.1.3:

Given xn���1 ��cos xn, how does xn behave as n l d�?
Solution: If you tried this on your calculator, you found that xn l�0.739. . . , 

no matter where you started. What is this bizarre number? It’s the unique solu-
tion of the transcendental equation x ��cos x, and it corresponds to a "xed point 
of the map. Figure!10.1.3 shows that a typical orbit spirals into the "xed point 
x * ��0.739 . . . as n l�d. ■

n

n

x

xx*

+1

n nx +1 = cos x

Figure 10.1.3

The spiraling motion implies that xn converges to x * through damped oscillations. 
That is characteristic of "xed points with M ��0. In contrast, at stable "xed points 
with M ��0 the convergence is monotonic.
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10.2 Logistic Map: Numerics

In a fascinating and in#uential review article, Robert May (1976) emphasized that 
even simple nonlinear maps could have very complicated dynamics. The article 
ends memorably with “an evangelical plea for the introduction of these difference 
equations into elementary mathematics courses, so that students’ intuition may be 
enriched by seeing the wild things that simple nonlinear equations can do.” 

May illustrated his point with the logistic map

x rx xn n n+ = −1 1( ) ,  (1)

a discrete-time analog of the logistic equation for population growth (Section!2.3). 
Here xn p 0 is a dimensionless measure of the population in the nth generation and 
r p 0 is the intrinsic growth rate. As shown in Figure!10.2.1, the graph of (1) is a 
parabola with a maximum value of r / 4 at x� 1

2  . We restrict the control parame-
ter r to the range 0 b�r b�4 so that (1) maps the interval 0 b�x b�1 into itself. (The 
behavior is much less interesting for other values of x and r—see Exercise!10.2.1.)

nx

r
4

1

0 1
nx

+1

Figure 10.2.1

Period-Doubling

Suppose we "x r, choose some initial population x0, and then use (1) to generate 
the subsequent xn. What happens?

For small growth rate r ��1, the population always goes extinct: xn l�0 as 
n l�d. This gloomy result can be proven by cobwebbing (Exercise!10.2.2).

For 1 ��r���3 the population grows and eventually reaches a nonzero steady 
state (Figure!10.2.2). The results are plotted here as a time series of xn vs. n. To 
make the sequence clearer, we have connected the discrete points  ( n, xn )  by line 
segments, but remember that only the corners of the jagged curves are meaningful.
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Figure 10.2.2

For larger r, say r ��3.3, the population builds up again but now oscillates about the 
former steady state, alternating between a large population in one generation and 
a smaller population in the next (Figure!10.2.3). This type of oscillation, in which 
xn repeats every two iterations, is called a period-2 cycle.
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Figure 10.2.3

At still larger r, say r ��3.5, the population approaches a cycle that now repeats 
every four generations; the previous cycle has doubled its period to period-4 
(Figure!10.2.4).
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Figure 10.2.4
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362 ONE-DIMENSIONAL MAPS

Further period-doublings to cycles of period 8, 16, 32, . . . , occur as r increases. 
Speci"cally, let rn denote the value of r where a 2n-cycle "rst appears. Then com-
puter experiments reveal that

r1 ��3 (period 2 is born)
r2 ��3.449 . . .  4
r3 ��3.54409 . . .  8
r4 ��3.5644 . . .  16
r5 ��3.568759 . . . 32

#  #
rd ��3.569946 . . . d

Note that the successive bifurcations come faster and faster. Ultimately the rn con-
verge to a limiting value rd. The convergence is essentially geometric: in the limit 
of large n, the distance between successive transitions shrinks by a constant factor

E =
−
−

=−

+
→ ∞

lim . .
r r
r r
n n

n n
n

1

1

4 669  . . .

We’ll have a lot more to say about this number in Section!10.6.

Chaos and Periodic Windows

According to Gleick (1987, p. 69), May wrote the logistic map on a corridor 
blackboard as a problem for his graduate students and asked, “What the Christ 
happens for r ��rd?” The answer turns out to be complicated: For many values of 
r, the sequence {xn} never settles down to a "xed point or a periodic orbit—instead 
the long-term behavior is aperiodic, as in Figure!10.2.5. This is a discrete-time 
version of the chaos we encountered earlier in our study of the Lorenz equations 
(Chapter!9).

1.0
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r

xn

n

=

Figure 10.2.5

The corresponding cobweb diagram is impressively complex (Figure!10.2.6).
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Figure 10.2.6

You might guess that the system would become more and more chaotic as r 
increases, but in fact the dynamics are more subtle than that. To see the long-term 
behavior for all values of r at once, we plot the orbit diagram, a magni"cent picture 
that has become an icon of nonlinear dynamics (Figure!10.2.7). Figure!10.2.7 plots 
the system’s attractor as a function of r. To generate the orbit diagram for yourself, 
you’ll need to write a computer program with two “loops.” First, choose a value of 
r. Then generate an orbit starting from some random initial condition x0. Iterate 
for 300 cycles or so, to allow the system to settle down to its eventual behavior. 
Once the transients have decayed, plot many points, say x301, . . . , x600 above that 
r. Then move to an adjacent value of r and repeat, eventually sweeping across the 
whole picture.

Figure! 10.2.7 shows the most interesting part of the diagram, in the region 
3.4 b�r b�4. At r ��3.4, the attractor is a period-2 cycle, as indicated by the two 
branches. As r increases, both branches split simultaneously, yielding a period-4 
cycle. This splitting is the period-doubling bifurcation mentioned earlier. A cascade 
of further period-doublings occurs as r increases, yielding period-8, period-16, and 
so on, until at r ��rd x 3.57, the map becomes chaotic and the attractor changes 
from a "nite to an in"nite set of points.

For r ��rd the orbit diagram reveals an unexpected mixture of order and chaos, 
with periodic windows interspersed between chaotic clouds of dots. The large win-
dow beginning near r x 3.83 contains a stable period-3 cycle. A blow-up of part of 
the period-3 window is shown in the lower panel of Figure!10.2.7. Fantastically, a 
copy of the orbit diagram reappears in miniature!
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Figure 10.2.7 Campbell  ( 1979 ) , p. 35, courtesy of Roger Eckhardt

10.3 Logistic Map: Analysis

The numerical results of the last section raise many tantalizing questions. Let’s try 
to answer a few of the more straightforward ones.

EXAMPLE 10.3.1:

Consider the logistic map xn���l ��rxn ( 1 � xn )  for 0 b�xn b�1 and 0 b�r b�4. Find 
all the "xed points and determine their stability.

Solution: The "xed points satisfy x * ��f  ( x * )  ��rx *  ( 1 � x * ) . Hence x * ��0 or 
l ��r! ( l � x * ) , i.e., x r* = −1 1 . The origin is a "xed point for all r, whereas x r* = −1 1  
is in the range of allowable x only if r p 1.

Stability depends on the multiplier f a  ( x * )  ��r � 2rx *. Since f a  ( 0 )  ��r, the 
origin is stable for r ��l and unstable for r ��1. At the other "xed point, 
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f x r r rr′( *) ( ) .= − − = −2 1 21  Hence x r* = −1 1  is stable for �1 �� ( 2 � r )  ��1, i.e., 
for 1 ��r ��3. It is unstable for r ��3. ■

The results of Example 10.3.1 are clari"ed by a graphical analysis (Figure!10.3.1). 
For r ��1 the parabola lies below the diagonal, and the origin is the only "xed 
point. As r increases, the parabola gets taller, becoming tangent to the diagonal at 
r ��1. For r ��1 the parabola intersects the diagonal in a second "xed point 
x r* = −1 1 , while the origin loses stability. Thus we see that x *  bifurcates from the 
origin in a transcritical bifurcation at r ��1 (borrowing a term used earlier for dif-
ferential equations).

1

*

1

1

>r

r

r

x

x

x

+1n

n

=

<

Figure 10.3.1

Figure!10.3.1 also suggests how x * itself loses stability. As r increases beyond 1, 
the slope at x * gets increasingly steep. Example 10.3.1 shows that the critical slope 
af x( *)���1 is attained when r ��3. The resulting bifurcation is called a "ip 

bifurcation.
Flip bifurcations are often associated with period-doubling. In the logistic map, 

the #ip bifurcation at r ��3 does indeed spawn a 2-cycle, as shown in the next 
example.

EXAMPLE 10.3.2:

Show that the logistic map has a 2-cycle for all r ��3.
Solution: A 2-cycle exists if and only if there are two points p and q such 

that  f  ( p )  ��q and  f  ( q )  ��p. Equivalently, such a p must satisfy  f  ( f  ( p ) )  ��p, 
where  f  ( x )  ��rx ( 1 � x ) . Hence p is a "xed point of the second-iterate map 
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f 2  ( x )  w�f  ( f  ( x ) ) . Since  f  ( x )  is a quadratic polynomial, f 2 ( x )  is a quartic poly-
nomial. Its graph for r ��3 is shown in Figure!10.3.2.

f
p

q

x

x*

x(   )2

Figure 10.3.2

To "nd p and q, we need to solve for the points where the graph intersects the diag-
onal, i.e., we need to solve the fourth-degree equation f 2 ( x )  ��x. That sounds 
hard until you realize that the "xed points x * ��0 and x r* = −1 1  are trivial solu-
tions of this equation. (They satisfy  f  ( x * )  ��x *, so f 2 ( x * )  ��x * automatically.) 
After factoring out the "xed points, the problem reduces to solving a quadratic 
equation.

We outline the algebra involved in the rest of the solution. Expansion of the 
equation f 2 ( x )  � x ��0 gives r2x ( 1 � x ) [1 � rx ( 1 � x ) ] � x ��0. After factoring 
out x and x r� �( )1 1  by long division, and solving the resulting quadratic equa-
tion, we obtain a pair of roots

p q
r r r

r
,

( )( )
,=

+ ± − +1 3 1
2

which are real for r ��3. Thus a 2-cycle exists for all r ��3, as claimed. At r ��3, the 
roots coincide and equal x r* ,= − =1 1 2

3  which shows that the 2-cycle bifurcates 
continuously from x *. For r ��3 the roots are complex, which means that a 2-cycle 
doesn’t exist. ■

A cobweb diagram reveals how #ip bifurcations can give rise to period-doubling. 
Consider any map  f , and look at the local picture near a "xed point where 
af x( *)x!�1 (Figure!10.3.3).
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Figure 10.3.3

If the graph of  f  is concave down near x *, the cobweb tends to produce a small, 
stable 2-cycle close to the "xed point. But like pitchfork bifurcations, #ip bifurca-
tions can also be subcritical, in which case the 2-cycle exists below the bifurcation 
and is unstable—see Exercise!10.3.11.

The next example shows how to determine the stability of a 2-cycle.

EXAMPLE 10.3.3:

Show that the 2-cycle of Example 10.3.2 is stable for 3 1 6 3 449< < + =r . . . . .    
( This explains the values of r1 and r2 found numerically in Section!10.2.)

Solution: Our analysis follows a strategy that is worth remembering: To analyze 
the stability of a cycle, reduce the problem to a question about the stability of a 
"xed point, as follows. Both p and q are solutions of f 2 ( x )  ��x, as pointed out in 
Example 10.3.2; hence p and q are "xed points of the second-iterate map f � ( x ) . The 
original 2-cycle is stable precisely if p and q are stable "xed points for f � .

Now we’re on familiar ground. To determine whether p is a stable "xed point of 
f � ,  we compute the multiplier

M� � ��
d
dx x pf f x f f p f p f q f p( ( ( ))) ( ( )) ( ) ( ) ( ).′ ′ ′ ′

(Note that the same M is obtained at x ��q, by the symmetry of the "nal term 
above. Hence, when the p and q branches bifurcate, they must do so simultane-
ously. We noticed such a simultaneous splitting in our numerical observations of 
Section!10.2.)
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After carrying out the differentiations and substituting for p and q, we obtain

M= − −

= − + +[ ]
= − + + +




r q r p

r p q pq

r r r r r

( ) ( )

( )

( ) ( )

1 2 1 2

1 2 4

1 2 1 4 1

2

2 2


= + −4 2 2r r .

Therefore the 2-cycle is linearly stable for 4 2 12+ + <r r , i.e., for 3 1 6< < +r . ■

Figure!10.3.4 shows a partial bifurcation diagram for the logistic map, based on 
our results so far. Bifurcation diagrams are different from orbit diagrams in that 
unstable objects are shown as well; orbit diagrams show only the attractors.

x

+13
r

1 6

Figure 10.3.4

Our analytical methods are becoming unwieldy. A few more exact results can be 
obtained (see the exercises), but such results are hard to come by. To elucidate the 
behavior in the interesting region where r ��rd, we are going to rely mainly on 
graphical and numerical arguments.

10.4 Periodic Windows

One of the most intriguing features of the orbit diagram (Figure! 10.2.7) is the 
occurrence of periodic windows for r ��rd. The period-3 window that occurs near 
3.8284 . . . b�r b�3.8415 . . . is the most conspicuous. Suddenly, against a backdrop 
of chaos, a stable 3-cycle appears out of the blue. Our "rst goal in this section is 
to understand how this 3-cycle is created. (The same mechanism accounts for the 
creation of all the other windows, so it suf"ces to consider this simplest case.)

First, some notation. Let f  ( x ) ��rx ( 1 � x )  so that the logistic map is 
xn���1!��� f  ( xn ) .
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Then xn���2 ��f   ( f   ( xn ))  or more simply, xn���2 �� f 2 ( xn ) . Similarly, xn���3 �� f 3 ( xn ) .
The third-iterate map f 3 ( x )  is the key to understanding the birth of the 

period-3 cycle. Any point p in a period-3 cycle repeats every three iterates, by de"-
nition, so such points satisfy p �� f 3 ( p )  and are therefore "xed points of the 
third-iterate map. Unfortunately, since f 3 ( x )  is an eighth-degree polynomial, we 
cannot solve for the "xed points explicitly. But a graph provides suf"cient insight. 
Figure!10.4.1 plots f 3 ( x )  for r ��3.835.

xf 3(   )

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1

x

1

Figure 10.4.1

Intersections between the graph and the diagonal line correspond to solutions of 
f 3 ( x )  ��x. There are eight solutions, six of interest to us and marked with dots, 

and two imposters that are not genuine period-3; they are actually "xed points, or 
period-1 points for which  f   ( x * )  ��x *. The black dots in Figure!10.4.1 correspond 
to a stable period-3 cycle; note that the slope of f 3 ( x )  is shallow at these points, 
consistent with the stability of the cycle. In contrast, the slope exceeds 1 at the cycle 
marked by the open dots; this 3-cycle is therefore unstable.

Now suppose we decrease r toward the chaotic regime. Then the graph in 
Figure!10.4.1 changes shape—the hills move down and the valleys rise up. The 
curve therefore pulls away from the diagonal. Figure! 10.4.2 shows that when 
r ��3.8, the six marked intersections have vanished. Hence, for some intermediate 
value between r ��3.8 and r ��3.835, the graph of f 3 ( x )  must have become tan-
gent to the diagonal. At this critical value of r, the stable and unstable period-3 
cycles coalesce and annihilate in a tangent bifurcation. This transition de"nes the 
beginning of the periodic window.
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Figure 10.4.2

One can show analytically that the value of r at the tangent bifurcation is 
1 8 3 8284+ = . . . .  (Myrberg 1958). This beautiful result is often mentioned in 
textbooks and articles—but always without proof. Given the resemblance of this 
result to the 1 6�  encountered in Example 10.3.3, I’d always assumed it should 
be comparably easy to derive, and once assigned it as a routine homework prob-
lem. Oops! It turns out to be a bear. See Exercise!10.4.10 for hints, and Saha and 
Strogatz (1994) for Partha Saha’s solution, the most elementary one my class could 
"nd. Maybe you can do better; if so, let me know!

Intermittency

For r just below the period-3 window, the system exhibits an interesting kind of 
chaos. Figure!10.4.3 shows a typical orbit for r ��3.8282.

x

1

nearly
chaos r =3.8282period-3

0
0 50

n
100 150

n

Figure 10.4.3

Part of the orbit looks like a stable 3-cycle, as indicated by the black dots. But this 
is spooky since the 3-cycle no longer exists! We’re seeing the ghost of the 3-cycle.
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37110.4 PERIODIC WINDOWS

We should not be surprised to see ghosts—they always occur near saddle-node 
bifurcations (Sections 4.3 and 8.1) and indeed, a tangent bifurcation is just a 
saddle-node bifurcation by another name. But the new wrinkle is that the orbit 
returns to the ghostly 3-cycle repeatedly, with intermittent bouts of chaos between 
visits. Accordingly, this phenomenon is known as intermittency (Pomeau and 
Manneville 1980).

Figure!10.4.4 shows the geometry underlying intermittency.
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Figure 10.4.4

In Figure!10.4.4a, notice the three narrow channels between the diagonal and the 
graph of f 3 ( x ) . These channels were formed in the aftermath of the tangent 
bifurcation, as the hills and valleys of f 3 ( x )  pulled away from the diagonal. Now 
focus on the channel in the small box of Figure!10.4.4a, enlarged in Figure!10.4.4b. 
The orbit takes many iterations to squeeze through the channel. Hence f 3 ( xn )!x!xn 
during the passage, and so the orbit looks like a 3-cycle; this explains why we see a 
ghost.

Eventually, the orbit escapes from the channel. Then it bounces around chaot-
ically until fate sends it back into a channel at some unpredictable later time and 
place.

Intermittency is not just a curiosity of the logistic map. It arises commonly in 
systems where the transition from periodic to chaotic behavior takes place by a 
saddle-node bifurcation of cycles. For instance, Exercise!10.4.8 shows that inter-
mittency can occur in the Lorenz equations. (In fact, it was discovered there; see 
Pomeau and Manneville 1980).

In experimental systems, intermittency appears as nearly periodic motion 
interrupted by occasional irregular bursts. The time between bursts is statistically 
distributed, much like a random variable, even though the system is completely 
deterministic. As the control parameter is moved farther away from the periodic 
window, the bursts become more frequent until the system is fully chaotic. This 
progression is known as the intermittency route to chaos.
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Figure! 10.4.5 shows an experimental example of the intermittency route to 
chaos in a laser.

0 5 10

Time s( )µ

Figure 10.4.5

The intensity of the emitted laser light is plotted as a function of time. In the lowest 
panel of Figure!10.4.5, the laser is pulsing periodically. A bifurcation to intermit-
tency occurs as the system’s control parameter (the tilt of the mirror in the laser 
cavity) is varied. Moving from bottom to top of Figure!10.4.5, we see that the cha-
otic bursts occur increasingly often.

For a nice review of intermittency in #uids and chemical reactions, see Bergé 
et al. (1984). Those authors also review two other types of intermittency (the kind 
considered here is Type I intermittency) and give a much more detailed treatment 
of intermittency in general.

Period-Doubling in the Window

We commented at the end of Section! 10.2 that a copy of the orbit diagram 
appears in miniature in the period-3 window. The explanation has to do with hills 
and valleys again. Just after the stable 3-cycle is created in the tangent bifurcation, 
the slope at the black dots in Figure!10.4.1 is close to��1. As we increase r, the hills 
rise and the valleys sink. The slope of f 3 ( x ) at the black dots decreases steadily 
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from ��1 and eventually reaches �1. When this occurs, a #ip bifurcation causes 
each of the black dots to split in two; the 3-cycle doubles its period and becomes a 
6-cycle. The same mechanism operates here as in the original period-doubling cas-
cade, but now produces orbits of period 3 •�2n. A similar period-doubling cascade 
can be found in all of the periodic windows.

10.5 Liapunov Exponent

We have seen that the logistic map can exhibit aperiodic orbits for certain param-
eter values, but how do we know that this is really chaos? To be called “chaotic,” 
a system should also show sensitive dependence on initial conditions, in the sense 
that neighboring orbits separate exponentially fast, on average. In Section!9.3 we 
quanti"ed sensitive dependence by de"ning the Liapunov exponent for a chaotic 
differental equation. Now we extend the de"nition to one-dimensional maps.

Here’s the intuition. Given some initial condition x0, consider a nearby point 
x0 ��E0, where the initial separation E 0 is extremely small. Let E n be the separation 
after n iterates. If | E n | x | E 0 | e

nM, then M is called the Liapunov exponent. A positive 
Liapunov exponent is a signature of chaos.

A more precise and computationally useful formula for M can be derived. By 
taking logarithms and noting that E n = f  n ( x0 ��E 0 )  � f  n ( x0 ) , we obtain
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where we’ve taken the limit E0 l 0 in the last step. The term inside the logarithm 
can be expanded by the chain rule:
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(We’ve already seen this formula in Example 9.4.1, where it was derived by heuris-
tic reasoning about multipliers, and in Example 10.3.3, for the special case n ��2.) 
Hence

M ≈

=

=

−

=

−

∏

∑

1

1
0

1

0

1

n
f x

n
f x

i
i

n

i
i

n

ln ( )

ln ( ) .

′

′

Strogatz-CROPPED2.pdf   387 5/23/2014   8:40:16 AM



374 ONE-DIMENSIONAL MAPS

If this expression has a limit as n l�d, we de"ne that limit to be the Liapunov 
exponent for the orbit starting at x0:

M=








+→ ∞

=

−

∑lim ln ( ) .
n n

f xi
i

n1

0

1

′

Note that M depends on x0. However, it is the same for all x0 in the basin of attrac-
tion of a given attractor. For stable "xed points and cycles, M is negative; for chaotic 
attractors, M is positive.

The next two examples deal with special cases where M can be found analytically.

EXAMPLE 10.5.1:

Suppose that  f  has a stable p-cycle containing the point x0. Show that the 
Liapunov exponent M ��0. If the cycle is superstable, show that M ���d.

Solution: As usual, we convert questions about p-cycles of  f  into questions 
about "xed points of  f  p. Since x0 is an element of a p-cycle, x0 is a "xed point of  f   p. 
By assumption, the cycle is stable; hence the multiplier ( ) ( ) .f xp ′ 0 1�  Therefore 
ln ( ) ( ) ln( ) ,f xp ′ 0 1 0< = a result that we’ll use in a moment.

Next observe that for a p-cycle,

M=

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since the same p terms keep appearing in the in"nite sum. Finally, using the chain 
rule in reverse, we obtain

1 1
00

0

1

p
f x

p
f xi

p

i
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ln ( ) ln ( ) ( ) ,′ ′= <
=

−

∑

as desired. If the cycle is superstable, then ( ) ( )f xp ′ 0 0�  by de"nition, and thus 

M= =−∞
1

0
p

ln( ) .  ■

The second example concerns the tent map, de"ned by

f x
rx x

r rx x
( )

,

,
=

≤ ≤

− ≤ ≤






0

1

1
2

1
2

for 0 b�r b�2 and 0 b�x b�1 (Figure!10.5.1).
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Figure 10.5.1

Because it is piecewise linear, the tent map is far easier to analyze than the logistic 
map.

EXAMPLE 10.5.2:

Show that M ��ln r for the tent map, independent of the initial condition x0.

Solution: Since f a ( x )  ��o r for all x, we "nd M=








→∞

=

−

∑lim ln ( )
n n

f xi
i

n1

0

1

′ ���ln r.■

Example 10.5.2 suggests that the tent map has chaotic solutions for all r ��1, since 
M ��ln r ��0. In fact, the dynamics of the tent map can be understood in detail, 
even in the chaotic regime; see Devaney (1989).

In general, one needs to use a computer to calculate Liapunov exponents. The 
next example outlines such a calculation for the logistic map.

EXAMPLE 10.5.3:

Describe a numerical scheme to compute M for the logistic map 
  f  ( x )  ��rx ( 1 � x ) . Graph the results as a function of the control parameter r, for 
3�b�r�b�4.

Solution: Fix some value of r. Then, starting from a random initial condition, 
iterate the map long enough to allow transients to decay, say 300 iterates or so. 
Next compute a large number of additional iterates, say 10,000. You only need to 
store the current value of xn, not all the previous iterates. Compute 
ln ( ) lnf x r rxn n′ = −2  and add it to the sum of the previous logarithms. The 
Liapunov exponent is then obtained by dividing the grand total by 10,000. Repeat 
this procedure for the next r, and so on. The end result should look like Figure!10.5.2.
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Figure 10.5.2 Olsen and Degn  ( 1985 ) , p. 175

Comparing this graph to the orbit diagram (Figure!10.2.7), we notice that M 
remains negative for r r< ≈∞ 3 57. ,  and approaches zero at the period-doubling 
bifurcations. The negative spikes correspond to the 2n-cycles. The onset of chaos is 
visible near r x 3.57, where M "rst becomes positive. For r ��3.57 the Liapunov 
exponent generally increases, except for the dips caused by the windows of peri-
odic behavior. Note the large dip due to the period-3 window near r ��3.83. ■

Actually, all the dips in Figure!10.5.2 should drop down to M ���d , because a 
superstable cycle is guaranteed to occur somewhere near the middle of each dip, 
and such cycles have M ���d, by Example 10.5.1. This part of the spike is too nar-
row to be resolved in Figure!10.5.2.

10.6 Universality and Experiments

This section deals with some of the most astonishing results in all of nonlinear 
dynamics. The ideas are best introduced by way of an example.

EXAMPLE 10.6.1:

Plot the graph of the sine map xn + 1 ��r sinQxn for 0 b�r b�1 and 0 b�x b�1, and 
compare it to the logistic map. Then plot the orbit diagrams for both maps, and list 
some similarities and differences.

Solution: The graph of the sine map is shown in Figure!10.6.1.
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Figure 10.6.1

It has the same shape as the graph of the logistic map. Both curves are smooth, 
concave down, and have a single maximum. Such maps are called unimodal.

Figure!10.6.2 shows the orbit diagrams for the sine map (top panel) and the 
logistic map (bottom panel). The resemblance is incredible. Note that both dia-
grams have the same vertical scale, but that the horizontal axis of the sine map 
diagram is scaled by a factor of 4. This normalization is appropriate because the 
maximum of r sinQx is r, whereas that of rx ( 1 � x )  is 1

4 r .
Figure!10.6.2 shows that the qualitative dynamics of the two maps are identical. 

They both undergo period-doubling routes to chaos, followed by periodic win-
dows interwoven with chaotic bands. Even more remarkably, the periodic win-
dows occur in the same order, and with the same relative sizes. For instance, the 
period-3 window is the largest in both cases, and the next largest windows preced-
ing it are period-5 and period-6.

But there are quantitative differences. For instance, the period-doubling bifur-
cations occur later in the logistic map, and the periodic windows are thinner. ■

Qualitative Universality: The U-sequence

Example 10.6.1 illustrates a powerful theorem due to Metropolis et al. (1973). 
They considered all unimodal maps of the form xn���1 ��r f  ( xn ) , where  f  ( x )  also 
satis"es  f  ( 0 )  ��f  ( 1 )  ��0. (For the precise conditions, see their original paper.) 
Metropolis et al. proved that as r is varied, the order in which stable periodic 
solutions appear is independent of the unimodal map being iterated. That is, the 
periodic attractors always occur in the same sequence, now called the universal or 
U-sequence. This amazing result implies that the algebraic form of  f  ( x )  is irrele-
vant; only its overall shape matters.

Up to period 6, the U-sequence is

1, 2, 2q2, 6, 5, 3, 2q3, 5, 6, 4, 6, 5, 6.
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Figure 10.6.2 Courtesy of Andy Christian

The beginning of this sequence is familiar: periods 1, 2, and 2 q 2 are the "rst 
stages in the period-doubling scenario. (The later period-doublings give periods 
greater than 6, so they are omitted here.) Next, periods 6, 5, 3 correspond to the 
large windows mentioned in the discussion of Figure!10.6.2. Period 2 q 3 is the 
"rst period-doubling of the period-3 cycle. The later cycles 5, 6, 4, 6, 5, 6 are less 
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familiar; they occur in tiny windows and easy to miss (see Exercise!10.6.5 for their 
locations in the logistic map).

The U-sequence has been found in experiments on the Belousov-Zhabotinsky 
chemical reaction. Simoyi et al. (1982) studied the reaction in a continuously stirred 
#ow reactor and found a regime in which periodic and chaotic states alternate as 
the #ow rate is increased. Within the experimental resolution, the periodic states 
occurred in the exact order predicted by the U-sequence. See Section!12.4 for more 
details of these experiments.

The U-sequence is qualitative; it dictates the order, but not the precise parameter 
values, at which periodic attractors occur. We turn now to Mitchell Feigenbaum’s 
celebrated discovery of quantitative universality in one-dimensional maps.

Quantitative Universality

You should read the dramatic story behind this work in Gleick (1987), and 
also see Feigenbaum (1980; reprinted in Cvitanovic 1989a) for his own reminis-
cences. The original technical papers are Feigenbaum (1978, 1979)—published 
only after being rejected by other journals. These papers are fairly heavy reading; 
see Feigenbaum (1980), Schuster (1989) and Cvitanovic (1989b) for more accessible 
expositions.

Here’s a capsule history. Around 1975, Feigenbaum began to study period-doubling 
in the logistic map. First he developed a complicated (and now forgotten) “generating 
function theory” to predict rn, the value of r where a 2n-cycle "rst appears. To check 
his theory numerically, and not being #uent with large computers, he programmed 
his handheld calculator to compute the "rst several rn. As the calculator chugged 
along, Feigenbaum had time to guess where the next bifurcation would occur. He 
noticed a simple rule: the rn converged geometrically, with the distance between suc-
cessive transitions shrinking by a constant factor of about 4.669.

Feigenbaum (1980) recounts what happened next:

I spent part of a day trying to "t the convergence rate value, 4.669, to 
the mathematical constants I knew. The task was fruitless, save for the 
fact that it made the number memorable.

At this point I was reminded by Paul Stein that period-doubling 
isn’t a unique property of the quadratic map but also occurs, for exam-
ple, in xn���1 ��r sin Qxn. However my generating function theory rested 
heavily on the fact that the nonlinearity was simply quadratic and not 
transcendental. Accordingly, my interest in the problem waned.

Perhaps a month later I decided to compute the rn’s in the transcen-
dental case numerically. This problem was even slower to compute 
than the quadratic one. Again, it became apparent that the rn’s con-
verged geometrically, and altogether amazingly, the convergence rate 
was the same 4.669 that I remembered by virtue of my efforts to "t it.
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In fact, the same convergence rate appears no matter what unimodal map is iter-
ated ! In this sense, the number 

E =
−
−

=→∞
−

+

lim . . . .n

r r
r r
n n

n n

1

1

4 669

is universal. It is a new mathematical constant, as basic to period-doubling as Q is 
to circles.

Figure! 10.6.3 schematically illustrates the meaning of E. Let % n ��rn � rn + 1 
denote the distance between consecutive bifurcation values. Then %n / % n + 1 l�E 
as n l�d.
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Figure 10.6.3

There is also universal scaling in the x-direction. It is harder to state precisely 
because the pitchforks have varying widths, even at the same value of r. (Look 
back at the orbit diagrams in Figure!10.6.2 to con"rm this.) To take account of this 
nonuniformity, we de"ne a standard x-scale as follows: Let xm denote the maxi-
mum of  f , and let dn denote the distance from xm to the nearest point in a 2n-cycle 
(Figure!10.6.3).

Then the ratio dn / dn + 1 tends to a universal limit as n l�d�:

d
d

n

n+

→ =−
1

2 5029B . . . . ,
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independent of the precise form of  f . Here the negative sign indicates that 
the nearest point in the 2n-cycle is alternately above and below xm, as shown in 
Figure!10.6.3. Thus the dn are alternately positive and negative.

Feigenbaum went on to develop a beautiful theory that explained why B and E 
are universal (Feigenbaum 1979). He borrowed the idea of renormalization from 
statistical physics, and thereby found an analogy between B, E and the universal 
exponents observed in experiments on second-order phase transitions in magnets, 
#uids, and other physical systems (Ma 1976). In Section!10.7, we give a brief look at 
this renormalization theory.

Experimental Tests

Since Feigenbaum’s work, sequences of period-doubling bifurcations have been 
measured in a variety of experimental systems. For instance, in the convection 
experiment of Libchaber et al. (1982), a box containing liquid mercury is heated 
from below. The control parameter is the Rayleigh number R, a dimensionless 
measure of the externally imposed temperature gradient from bottom to top. For 
R less than a critical value Rc, heat is conducted upward while the #uid remains 
motionless. But for R ��Rc, the motionless state becomes unstable and convection 
occurs—hot #uid rises on one side, loses its heat at the top, and descends on the 
other side, setting up a pattern of counterrotating cylindrical rolls (Figure!10.6.4).

cold

hot

Figure 10.6.4

For R just slightly above Rc, the rolls are straight and the motion is steady. 
Furthermore, at any "xed location in space, the temperature is constant. With 
more heating, another instability sets in. A wave propagates back and forth along 
each roll, causing the temperature to oscillate at each point.

In traditional experiments of this sort, one keeps turning up the heat, caus-
ing further instabilities to occur until eventually the roll structure is destroyed 
and the system becomes turbulent. Libchaber et al. (1982) wanted to be able to 
increase the heat without destabilizing the spatial structure. That’s why they chose 
mercury—then the roll structure could be stabilized by applying a dc magnetic 
"eld to the whole system. Mercury has a high electrical conductivity, so there is a 
strong tendency for the rolls to align with the "eld, thereby retaining their spatial 
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organization. There are further niceties in the experimental design, but they need 
not concern us; see Libchaber et al. (1982) or Bergé et al. (1984).

Now for the experimental results. Figure!10.6.5 shows that this system under-
goes a sequence of period-doublings as the Rayleigh number is increased.

R
cR

3.47

3.52

3.62

3.65

0 50 100
T s(   )

150 200

Figure 10.6.5 Libchaber et al.  ( 1982 ) , p.213

Each time series shows the temperature variations at one point in the #uid. For 
R Rc � 3 47. ,  the temperature varies periodically. This may be regarded as the 
basic period-1 state. When R is increased to R Rc � 3 52. ,  the successive tempera-
ture maxima are no longer equal; the odd peaks are a little higher than before, and 
the even peaks are a little lower. This is the period-2 state. Further increases in R 
generate additional period-doublings, as shown in the lower two time series in 
Figure!10.6.5.

By carefully measuring the values of R at the period-doubling bifurcations, 
Libchaber et al. (1982) arrived at a value of E ��4.4 o 0.1, in reasonable agreement 
with the theoretical result E x 4.699.

Table!10.6.1, adapted from Cvitanovic (1989b), summarizes the results from a 
few experiments on #uid convection and nonlinear electronic circuits. The experi-
mental estimates of E are shown along with the errors quoted by the experimental-
ists; thus 4.3 (8) means 4.3 o 0.8.

Strogatz-CROPPED2.pdf   396 5/23/2014   8:40:16 AM



38310.6 UNIVERSALITY AND EXPERIMENTS

Experiment
Number of period 
doublings E Authors

Hydrodynamic

water 4 4.3(8) Giglio et al. (1981)
mercury 4 4.4(1) Libchaber et al. (1982)

Electronic

diode 4 4.5(6) Linsay (1981)
diode 5 4.3(1) Testa et al. (1982)
transistor 4 4.7(3) Arecchi and Lisi (1982)
Josephson simul. 3 4.5(3) Yeh and Kao (1982)

Table 10.6.1

It is important to understand that these measurements are dif"cult. Since E!x!5, 
each successive bifurcation requires about a "vefold improvement in the exper-
imenter’s ability to measure the external control parameter. Also, experimental 
noise tends to blur the structure of high-period orbits, so it is hard to tell precisely 
when a bifurcation has occurred. In practice, one cannot measure more than about 
"ve period-doublings. Given these dif"culties, the agreement between theory and 
experiment is impressive.

Period-doubling has also been measured in laser, chemical, and acoustic sys-
tems, in addition to those listed here. See Cvitanovic (1989b) for references.

What Do 1-D Maps Have to Do with Science?

The predictive power of Feigenbaum’s theory may strike you as mysterious. 
How can the theory work, given that it includes none of the physics of real systems 
like convecting #uids or electronic circuits? And real systems often have tremen-
dously many degrees of freedom—how can all that complexity be captured by a 
one-dimensional map? Finally, real systems evolve in continuous time, so how can 
a theory based on discrete-time maps work so well?

To work toward the answer, let’s begin with a system that is simpler than a con-
vecting #uid, yet (seemingly) more complicated than a one-dimensional map. The 
system is a set of three differential equations concocted by Rössler (1976) to exhibit 
the simplest possible strange attractor. The Rössler system is

�
�
�

x y z
y x ay
z b z x c

=− −
= +
= + −( )

where a, b, and c are parameters. This system contains only one nonlinear term, 
zx, and is even simpler than the Lorenz system ( Chapter! 9), which has two 
nonlinearities.
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Figure!10.6.6 shows two-dimensional projections of the system’s attractor for 
different values of c (with a ��b ��0.2 held "xed).
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Figure 10.6.6 Olsen and Degn  ( 1985 ) , p.185

At c ��2.5 the attractor is a simple limit cycle. As c is increased to 3.5, the limit 
cycle goes around twice before closing, and its period is approximately twice that 
of the original cycle. This is what period-doubling looks like in a continuous-time 
system! In fact, somewhere between c ��2.5 and 3.5, a period-doubling bifurcation 
of cycles must have occurred. (As Figure!10.6.6 suggests, such a bifurcation can 
occur only in three or higher dimensions, since the limit cycle needs room to avoid 
crossing itself.) Another period-doubling bifurcation creates the four-loop cycle 
shown at c ��4. After an in"nite cascade of further period-doublings, one obtains 
the strange attractor shown at c ��5.

To compare these results to those obtained for one-dimensional maps, we use 
Lorenz’s trick for obtaining a map from a #ow (Section!9.4). For a given value of 
c, we record the successive local maxima of x ( t )  for a trajectory on the strange 
attractor. Then we plot xn���1 vs. xn, where xn denotes the nth local maximum. This 
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Lorenz map for c ��5 is shown in Figure!10.6.7. The data points fall very nearly on 
a one-dimensional curve. Note the uncanny resemblance to the logistic map!

14

5=c

0
0 14

x

x

m
ax

max

(n
+

1)

(n)

Figure 10.6.7 Olsen and Degn  ( 1985 ) , p.186

We can even compute an orbit diagram for the Rössler system. Now we allow 
all values of c, not just those where the system is chaotic. Above each c, we plot all 
the local maxima xn on the attractor for that value of c. The number of different 
maxima tells us the “period” of the attractor. For instance, at c ��3.5 the attractor 
is period-2 (Figure!10.6.6), and hence there are two local maxima of x ( t ) . Both of 
these points are graphed above c ��3.5 in Figure!10.6.8. We proceed in this way for 
all values of c, thereby sweeping out the orbit diagram.
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Figure 10.6.8 Olsen and Degn  ( 1985 ) , p.186

This orbit diagram allows us to keep track of the bifurcations in the Rössler sys-
tem. We see the period-doubling route to chaos and the large period-3 window—
all our old friends are here.

Now we can see why certain physical systems are governed by Feigenbaum’s 
universality theory—if the system’s Lorenz map is nearly one-dimensional and 
unimodal, then the theory applies. This is certainly the case for the Rössler sys-
tem, and probably for Libchaber’s convecting mercury. But not all systems have 
one-dimensional Lorenz maps. For the Lorenz map to be almost one-dimensional, 
the strange attractor has to be very #at, i.e., only slightly more than two-dimen-
sional. This requires that the system be highly dissipative; only two or three degrees 
of freedom are truly active, and the rest follow along slavishly. (Incidentally, that’s 
another reason why Libchaber et al. (1982) applied a magnetic "eld; it increases 
the damping in the system, and thereby favors a low-dimensional brand of chaos.) 

So while the theory works for some mildly chaotic systems, it does not apply to 
fully turbulent #uids or "brillating hearts, where there are many active degrees of 
freedom corresponding to complicated behavior in space as well as time. We are 
still a long way from understanding such systems.

10.7 Renormalization

In this section we give an intuitive introduction to Feigenbaum’s (1979) renormal-
ization theory for period-doubling. For nice expositions at a higher mathematical 
level than that presented here, see Feigenbaum (1980), Collet and Eckmann (1980), 
Schuster (1989), Drazin (1992), and Cvitanovic (1989b).

Strogatz-CROPPED2.pdf   400 5/23/2014   8:40:16 AM



38710.7 RENORMALIZATION

First we introduce some notation. Let  f  ( x, r )  denote a unimodal map that 
undergoes a period-doubling route to chaos as r increases, and suppose that xm is 
the maximum of  f . Let rn denote the value of r at which a 2n-cycle is born, and let 
Rn denote the value of r at which the 2n-cycle is superstable.

Feigenbaum phrased his analysis in terms of the superstable cycles, so let’s get 
some practice with them.

EXAMPLE 10.7.1:

Find R0 and R1 for the map  f  ( x, r )  ��r � x2.
Solution: At R0 the map has a superstable "xed point, by de"nition. The 

"xed point condition is x * ��R0 �  ( x * ) 2 and the superstability condition is 
M��� ( s f  / sx ) x���x * ��0. Since s f  / sx ��–2x, we must have x * ��0, i.e., the "xed 
point is the maximum of  f . Substituting x * ��0 into the "xed point condition 
yields R0���0.

At R1 the map has a superstable 2-cycle. Let p and q denote the points of the 
cycle. Superstability requires that the multiplier M �� ( �2p )  ( �2q )  ��0, so the point 
x ��0 must be one of the points in the 2-cycle. Then the period-2 condition 
f 2( 0, R1 )  = 0 implies R1 �  ( R1 ) 

2 ��0. Hence R1 ��1 (since the other root gives a 
"xed point, not a 2-cycle). ■

Example 10.7.1 illustrates a general rule: A superstable cycle of a unimodal 
map always contains xm as one of its points. Consequently, there is a simple 
graphical way to locate Rn (Figure!10.7.1). We draw a horizontal line at height 
xm ; then Rn occurs where this line intersects the !gtree portion of the orbit dia-
gram (Feigenbaum ��f igtree in German). Note that Rn lies between rn and rn + 1. 
Numerical experiments show that the spacing between successive Rn also shrinks 
by the universal factor E x 4.669.

The renormalization theory is based on the self-similarity of the "gtree—the 
twigs look like the earlier branches, except they are scaled down in both the x and 
r directions. This structure re#ects the endless repetition of the same dynamical 
processes; a 2n-cycle is born, then becomes superstable, and then loses stability in 
a period-doubling bifurcation.

To express the self-similarity mathematically, we compare  f  with its second 
iterate f 2  at corresponding values of r, and then “renormalize” one map into the 
other. Speci"cally, look at the graphs of  f  ( x, R0 )  and f 2( x, R1 )  (Figure!10.7.2, a 
and b).
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Figure 10.7.1

f f

xm

(a) (b)

(c)

xm

2
(x,R0 ) (x,R1)

Figure 10.7.2

This is a fair comparison because the maps have the same stability properties: xm is 
a superstable f ixed point f or both of them. Please notice that to obtain Figure!10.7.2b, 
we took the second iterate of f  and increased r from R0 to R1. This r-shifting is a 
basic part of the renormalization procedure.

The small box of Figure!10.7.2b is reproduced in Figure!10.7.2c. The key point is 
that Figure!10.7.2c looks practically identical to Figure!10.7.2a, except for a change 
of scale and a reversal of both axes. From the point of view of dynamics, the two 
maps are very similar—cobweb diagrams starting from corresponding points 
would look almost the same.

Now we need to convert these qualitative observations into formulas. A help-
ful "rst step is to translate the origin of x to xm, by rede"ning x as x � xm. This 
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rede"nition of x dictates that we also subtract xm from  f , since  f  ( x!n, r ) !���!xn���l. 
The translated graphs are shown in Figure!10.7.3a and 10.7.3b.

f (x,R0 ) f f
2 2(x,R1) , R1

x

iterate 2.5...−
rescale by
α

α
α

=

(a) (b) (c)

Figure 10.7.3

Next, to make Figure!10.7.3b look like Figure!10.7.3a, we blow it up by a factor 
| B�| > 1 in both directions, and also invert it by replacing  ( x, y )  by  ( �x, �y ) . Both 
operations can be accomplished in one step if we de"ne the scale factor B to be 
negative. As you are asked to show in Exercise!10.7.2, rescaling by B is equivalent 
to replacing f 2  ( x, R1 )  by B f x R2

1( , ).B Finally, the resemblance between 
Figure!10.7.3a and Figure!10.7.3c shows that

f x R f
x

R( , ) , .0
2

1≈






B

B

In summary,  f  has been renormalized by taking its second iterate, rescaling 
x xl B,  and shifting r to the next superstable value.

There is no reason to stop at f 2 . For instance, we can renormalize f 2  to gen-
erate f 4; it too has a superstable "xed point if we shift r to R2. The same reasoning 
as above yields

f
x

R f
x

R2
1

4
2 2B

B
B

, , .






≈









When expressed in terms of the original map  f  ( x, R0 ) , this equation becomes

f x R f
x

R( , ) , .0
2 4

2 2≈






B

B

After renormalizing n times we get

f x R f
x

Rn
n n

n

( , ) , .( )
0

2≈






B

B
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Feigenbaum found numerically that

lim , ( ),( )

n

n
n nf

x
R g x

n

→∞







=B

B
2

0   (1)

where g0 ( x )  is a universal function with a superstable "xed point. The limiting 
function exists only if B is chosen correctly, speci"cally, B ���2.5029. . . .

Here “universal” means that the limiting function g0 ( x )  is independent of the 
original  f  (almost). This seems incredible at "rst, but the form of (1) suggests the 
explanation: g0 ( x )  depends on  f  only through its behavior near x ��0, since that’s 
all that survives in the argument x nB  as n�l�d. With each renormalization, 
we’re blowing up a smaller and smaller neighborhood of the maximum of  f , so 
practically all information about the global shape of  f  is lost.

One caveat: The order of the maximum is never forgotten. Hence a more precise 
statement is that g0 ( x )  is universal for all  f  with a quadratic maximum (the generic 
case). A different g0 ( x )  is found for  f  ’s with a fourth-degree maximum, etc.

To obtain other universal functions gi! ( x ) , start with  f ( x, Ri )  instead of  f ( x, R0 ) :

g x f
x

Ri
n

n n in

n

( ) lim , .( )=






→∞ +B

B
2

Here gi ( x )  is a universal function with a superstable 2i-cycle. The case where we 
start with Ri ��Rd (at the onset of chaos) is the most interesting and important, 
since then

f x R f
x

R( , ) , .∞ ∞≈






B

B
2

For once, we don’t have to shift r when we renormalize! The limiting function 
gd ( x ) , usually called g ( x ) , satis"es

g x g
x

( ) .=





B
B

2  (2)

This is a functional equation for g ( x )  and the universal scale factor B. It is self-ref-
erential: g ( x )  is de"ned in terms of itself.

The functional equation is not complete until we specify boundary conditions 
on g ( x ) . After the shift of origin, all our unimodal  f ’s have a maximum at x ��0, 
so we require ga ( 0 )  ��0. Also, we can set g ( 0 )  ��1 without loss of generality. (This 
just de"nes the scale for x; if g ( x )  is a solution of  ( 2), so is ( ),g xN N  with the same 
B. See Exercise!10.7.3.)
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Now we solve for g ( x )  and B. At x ��0 the functional equation gives 
g ( 0 )  ��B!g ( g ( 0 )  ) . But g ( 0 )  ��1, so 1 ��Bg ( l ) . Hence,

B�1 1g ( ) ,

which shows that B is determined by g ( x ) . No one has ever found a closed form 
solution for g ( x ) , so we resort to a power series solution

g ( x )  ��1 ��c2x
2 ��c4x

4 ��. . .

 (which assumes that the maximum is quadratic). The coef"cients are determined 
by substituting the power series into (2) and matching like powers of x. Feigenbaum 
(1979) used a seven-term expansion, and found c2 x �1.5276, c4!x!0.1048, along 
with B x �2.5029. Thus the renormalization theory has succeeded in explaining 
the value of B observed numerically.

The theory also explains the value of E. Unfortunately, that part of the story 
requires more sophisticated apparatus than we are prepared to discuss (operators 
in function space, Frechet derivatives, etc.). Instead we turn now to a concrete 
example of renormalization. The calculations are only approximate, but they can 
be done explicitly, using algebra instead of functional equations.

Renormalization for Pedestrians

The following pedagogical calculation is intended to clarify the renormaliza-
tion process. As a bonus, it gives closed form approximations for B and E. Our 
treatment is modi"ed from May and Oster (1980) and Helleman (1980).

Let  f  ( x,N )  be any unimodal map that undergoes a period-doubling route to 
chaos. Suppose that the variables are de"ned such that the period-2 cycle is born 
at x ��0 when N ��0. Then for both x and N close to 0, the map is approximated by

2
1 (1 ) . . . ,n n nx x axN� �� � � �

since the eigenvalue is �1 at the bifurcation. (We are going to neglect all higher 
order terms in x and N; that’s why our results will be only approximate.) Without 
loss of generality we can set a ��1 by rescaling x x al .  So locally our map has 
the normal form

2
1 (1 ) . . . .n n nx x xN� �� � � �  (3)

Here’s the idea: for N ��0, there exist period-2 points, say p and q. As N increases, p 
and q themselves will eventually period-double. When this happens, the dynamics 
of f 2  near p will necessarily be approximated by a map with the same algebraic 
form as (3), since all maps have this form near a period-doubling bifurcation. Our 
strategy is to calculate the map governing the dynamics of f 2  near p, and renor-
malize it to look like (3). This de"nes a renormalization iteration, which in turn 
leads to a prediction of B and E.
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First, we "nd p and q. By de"nition of period-2, p is mapped to q and q to p. 
Hence (3) yields

p ��� ( 1 ��N ) q ��q2, q ��� ( 1 ��N ) p ��p2 .

By subtracting one of these equations from the other, and factoring out p � q, 
we "nd that p ��q ��N. Then multiplying the equations together and simplifying 
yields pq ��� N. Hence

2 24 4
, .

2 2
p q
N N N N N N� � � �

� �

Now shift the origin to p and look at the local dynamics. Let

2( ) (1 ) .f x x xN�� � �

Then p is a "xed point of f 2 . Expand p f pn n+ = ++I I1
2 ( )  in powers of the small 

deviation In. After some algebra (Exercise! 10.7.10) and neglecting higher order 
terms as usual, we get

2 2
1 (1 4 ) . . .n n nCI N N I I� � � � � �  (4)

where

2 24 3 4 .C N N N N� � � �  (5)

As promised, the I-map (4) has the same algebraic form as the original map (3)! We 
can renormalize (4) into (3) by rescaling I and by de"ning a new N. (Note: The need 
for both of these steps was anticipated in the abstract version of renormalization 
discussed earlier. We have to rescale the state variable I and shift the bifurcation 
parameter N.)

To rescale I, let �x Cn n� I . Then (4) becomes

2 2
1 (1 4 ) . . . .n n nx x xN N� � � � � �� � �  (6)

This matches (3) almost perfectly. All that remains is to de"ne a new parameter N�  
by 2(1 ) (1 4 ).N N N� � � � ��  Then (6) achieves the desired form

2
1 (1 ) . . .n n nx x xN� �� � � �� � ��  (7)

where the renormalized parameter N�  is given by

2 4 2.N N N� � ��  (8)
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When 0N��  the renormalized map (7) undergoes a #ip bifurcation. Equivalently, 
the 2-cycle for the original map loses stability and creates a 4-cycle. This brings us 
to the end of the "rst period-doubling.

EXAMPLE 10.7.2:

Using (8), calculate the value of N at which the original map (3) gives birth to a 
period-4 cycle. Compare your result to the value r2 1 6= +  found for the logistic 
map in Example 10.3.3.

Solution: The period-4 solution is born when 2 4 2 0N N N� � � �� . Solving 
this quadratic equation yields 2 6N�� � . (The other solution is negative and 
is not relevant.) Now recall that the origin of N was de"ned such that N ��0 at 
the birth of period-2, which occurs at r ��3 for the logistic map. Hence 
r2 3 2 6 1 6= + − + = +( ) , which recovers the result obtained in 
Example!10.3.3.!■

Because (7) has the same form as the original map, we can do the same analy-
sis all over again, now regarding (7) as the fundamental map. In other words, we 
can renormalize ad in"nitum! This allows us to bootstrap our way to the onset of 
chaos, using only the renormalization transformation (8).

Let Nk denote the parameter value at which the original map (3) gives birth 
to a 2k-cycle. By de"nition of N, we have 1 0N � ; by Example 10.7.2, 

2 2 6 0.449N �� � x . In general, the Nk satisfy

2
1 4 2k k kN N N� � � � . (9)

At "rst it looks like we have the subscripts backwards, but think about it, using 
Example 10.7.2 as a guide. To obtain N2, we set 10 ( )N N� ��  in (8) and then solved 
for N. Similarly, to obtain Nk, we set 1kN N ���  in (8) and then solve for N.

To convert (9) into a forward iteration, solve for Nk in terms of Nk�1:

12 6k kN N ��� �  . (10)

Exercise!10.7.11 asks you to give a cobweb analysis of (10), starting from the initial 
condition N1 ��0. You’ll "nd that Nk l N*, where N*���0 is a stable "xed point cor-
responding to the onset of chaos.

EXAMPLE 10.7.3:

Find N*.
Solution: It is slightly easier to work with (9). The "xed point satis"es 

N*!���! ( N* ) 2 ��4N* ��2, and is given by
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1
2* 3 17 0.56.N � � � x  (11)

Incidentally, this gives a remarkably accurate prediction of rd for the logistic map. 
Recall that N ��0 corresponds to the birth of period-2, which occurs at r!���3 for 
the logistic map. Thus N* corresponds to rd x 3.56 whereas the actual numerical 
result is rd x 3.57 ! ■

Finally we get to see how E and B make their entry. For k ���1, the Nk should 
converge geometrically to N* at a rate given by the universal constant E. Hence 
δ µ µ µ µ≈ − −−( *) ( *).k k1  As k l�d, this ratio tends to 0 0  and therefore may 
be evaluated by L’Hôpital’s rule. The result is

δ
µ
µ

µ
µ µ

≈

= +

−

=

d
d

k

k

1

2 4
*

*

where we have used (9) in calculating the derivative. Finally, we substitute for N* 
using (11) and obtain

E ≈ + ≈1 17 5 12. .

This estimate is about 10 percent larger than the true E x 4.67, which is not bad 
considering our approximations.

To "nd the approximate B, note that we used C as a rescaling parameter when 
we de"ned �x Cn n� I .  Hence C plays the role of B. Substitution of N* into (5) yields

C =
+

−
++










≈−

1 17
2

3
1 17

2
2 24

1 2/

. ,

which is also within 10 percent of the actual value B x �2.50.

EXERCISES FOR CHAPTER 10

Note: Many of these exercises ask you to use a computer. Feel free to write your 
own programs, or to use commercially available software. 

10.1 Fixed Points and Cobwebs
(Calculator experiments) Use a pocket calculator to explore the following maps. 
Start with some number and then keep pressing the appropriate function key; 
what happens? Then try a different number—is the eventual pattern the same? 
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If possible, explain your results mathematically, using a cobweb or some other 
argument.
10.1.1 x xn n+ =1   10.1.2 x xn n+ =1

3

10.1.3 xn���1 ��exp xn  10.1.4 xn���1 ��ln xn

10.1.5 xn���1 ��cot xn  10.1.6 xn���1 ��tan xn

10.1.7 xn���1 ��sinh xn  10.1.8 xn���1 ��tanh xn

10.1.9 Analyze the map xn���1 ��2xn /  ( 1 ��xn )  for both positive and negative xn.

10.1.10 Show that the map x xn n+ = +1 1 sin1
2  has a unique "xed point. Is it stable?

10.1.11 (Cubic map) Consider the map xn���1 ��3xn � xn
3 .

a) Find all the "xed points and classify their stability.
b) Draw a cobweb starting at x0 ��1.9.
c) Draw a cobweb starting at x0 ��2.1.
d) Try to explain the dramatic difference between the orbits found in parts (b) and 

(c). For instance, can you prove that the orbit in (b) will remain bounded for all 
n? Or that | xn | l�d in (c)?

10.1.12 (Newton’s method) Suppose you want to "nd the roots of an equation 
g ( x ) ��0. Then Newton’s method says you should consider the map xn���1 ��f  ( xn ) , 
where

f x x
g x
g xn n

n

n

( )
( )
( )

.= −
′

a) To calibrate the method, write down the “Newton map” xn���l ��f  ( xn )  for the 
equation g ( x )  ��x2 � 4 ��0.

b) Show that the Newton map has "xed points at x * ��±2.
c) Show that these "xed points are superstable.
d) Iterate the map numerically, starting from x0 ��1. Notice the extremely rapid 

convergence to the right answer!

10.1.13 (Newton’s method and superstability) Generalize Exercise!10.1.12 as fol-
lows. Show that (under appropriate circumstances, to be stated) the roots of an 
equation g ( x )  ��0 always correspond to superstable "xed points of the Newton 
map xn���O ��f  ( xn ) , where f x x g x g xn n n n( ) ( ) ( ).= − ′ (This explains why 
Newton’s method converges so fast—if it converges at all.)

10.1.14 Prove that x * ��0 is a globally stable "xed point for the map 
xn���1! ���!�sin!xn. (Hint: Draw the line xn���1 ���xn on your cobweb diagram, in 
addition to the usual line xn���1 ��xn.)
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10.2 Logistic Map: Numerics

10.2.1 Consider the logistic map for all real x and for any r ��1.
a) Show that if xn ��1 for some n, then subsequent iterations diverge toward �d. 

(For the application to population biology, this means the population goes 
extinct.)

b) Given the result of part (a), explain why it is sensible to restrict r and x to the 
intervals r � [0,4] and x � [0,1].

10.2.2 Use a cobweb to show that x * ��0 is globally stable for 0 b�r b�1 in the 
logistic map.

10.2.3 Compute the orbit diagram for the logistic map.

Plot the orbit diagram for each of the following maps. Be sure to use a large enough 
range for both r and x to include the main features of interest. Also, try different 
initial conditions, just in case it matters.

10.2.4 x x en n
r xn

+
− −=1

l( )  (Standard period-doubling route to chaos)

10.2.5 x en
rxn

+
−=1  (One period-doubling bifurcation and the show is over)

10.2.6 xn���1 ��r cos xn (Period-doubling and chaos galore)

10.2.7 xn���1 ��r tan xn (Nasty mess)

10.2.8 x rx xn n n+ = −1
3  (Attractors sometimes come in symmetric pairs)

10.3 Logistic Map: Analysis

10.3.1 (Superstable "xed point) Find the value of r at which the logistic map has 
a superstable "xed point.

10.3.2 (Superstable 2-cycle) Let p and q be points in a 2-cycle for the logistic map.
a) Show that if the cycle is superstable, then either p� 1

2  or q� 1
2 .  (In other 

words, the point where the map takes on its maximum must be one of the points 
in the 2-cycle.)

b) Find the value of r at which the logistic map has a superstable 2-cycle.

10.3.3 Analyze the long-term behavior of the map x rx xn n n+ = +1 1( ),2  where 
r ��0. Find and classify all "xed points as a function of r. Can there be periodic 
solutions? Chaos?

10.3.4 (Quadratic map) Consider the quadratic map x x cn n+ = +1
2 .

a) Find and classify all the "xed points as a function of c.
b) Find the values of c at which the "xed points bifurcate, and classify those 

bifurcations.
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c) For which values of c is there a stable 2-cycle? When is it superstable?
d) Plot a partial bifurcation diagram for the map. Indicate the "xed points, the 

2-cycles, and their stability.

10.3.5 (Conjugacy) Show that the logistic map xn���O ��rxn ( 1 � xn )  can be trans-
formed into the quadratic map y y cn n+ = +l

2  by a linear change of variables, 
xn ��ayn ��b, where a, b are to be determined.

(One says that the logistic and quadratic maps are “conjugate.” More generally, 
a conjugacy is a change of variables that transforms one map into another. If two 
maps are conjugate, they are equivalent as far as their dynamics are concerned; 
you just have to translate from one set of variables to the other. Strictly speaking, 
the transformation should be a homeomorphism, so that all topological features 
are preserved.)

10.3.6 (Cubic map) Consider the cubic map xn���O ��f  ( xn ) , where  f  ( xn )  ��rxn � xn
3 .

a) Find the "xed points. For which values of r do they exist? For which values are 
they stable?

b) To "nd the 2-cycles of the map, suppose that  f  ( p )  ��q and  f  ( q )  ��p. Show 
that p, q are roots of the equation x ( x2 � r ��1 )  ( x2 � r � 1 )  ( x4 � rx2 ��1 )  ��0 
and use this to "nd all the 2-cycles.

c) Determine the stability of the 2-cycles as a function of r.
d) Plot a partial bifurcation diagram, based on the information obtained.

10.3.7 (A chaotic map that can be analyzed completely) Consider the decimal 
shift map on the unit interval given by

xn + 1 ��10xn (mod 1).

As usual, “mod 1” means that we look only at the noninteger part of x. For exam-
ple, 2.63 (mod 1) ��0.63.
a) Draw the graph of the map.
b) Find all the "xed points. (Hint: Write xn in decimal form.)
c) Show that the map has periodic points of all periods, but that all of them are 

unstable. (For the "rst part, it suf"ces to give an explicit example of a period-p 
point, for each integer p ��1.)

d) Show that the map has in"nitely many aperiodic orbits.
e) By considering the rate of separation between two nearby orbits, show that the 

map has sensitive dependence on initial conditions.

10.3.8 (Dense orbit for the decimal shift map) Consider a map of the unit inter-
val into itself. An orbit {xn} is said to be “dense” if it eventually gets arbitrarily 
close to every point in the interval. Such an orbit has to hop around rather crazily! 
More precisely, given any F ��0 and any point p � [0,1], the orbit {xn} is dense if 
there is some "nite n such that | xn � p | ��F.

Explicitly construct a dense orbit for the decimal shift map xn + 1 ��10xn (mod!1).
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10.3.9 (Binary shift map) Show that the binary shift map xn���� ��2xn (mod 1) has 
sensitive dependence on initial conditions, in"nitely many periodic and aperiodic 
orbits, and a dense orbit. (Hint: Redo Exercises 10.3.7 and 10.3.8, but write xn as a 
binary number, not a decimal.)

10.3.10 (Exact solutions for the logistic map with r ��4) The previous exercise 
shows that the orbits of the binary shift map can be wild. Now we are going to see 
that this same wildness occurs in the logistic map when r ��4.
a) Let {Rn} be an orbit of the binary shift map Rn���l ��2Rn (mod 1), and de"ne a new 

sequence {xn} by xn ��sin2 ( QRn ) . Show that xn���1 ��4xn ( 1 � xn ) , no matter what 
R0 we started with. Hence any such orbit is an exact solution of the logistic map 
with r ��4 !

b) Graph the time series xn vs. n, for various choices of R0.

10.3.11 (Subcritical #ip) Let xn���� ��f  ( xn ) , where  f  ( x )  ��� ( 1 ��r ) x � x2 � 2x3.
a) Classify the linear stability of the "xed point x * ��0.
b) Show that a #ip bifurcation occurs at x * ��0 when r ��0.
c) By considering the "rst few terms in the Taylor series for f 2  ( x )  or otherwise, 

show that there is an unstable 2-cycle for r ��0, and that this cycle coalesces with 
x * ��0 as r l�0 from below.

d) What is the long-term behavior of orbits that start near x * ��0, both for r ��0 
and r ��0?

10.3.12 (Numerics of superstable cycles) Let Rn denote the value of r at which the 
logistic map has a superstable cycle of period 2n.
a) Write an implicit but exact formula for Rn in terms of the point x� 1

2  and the 
function  f  ( x, r )  ��rx ( 1 � x ) .

b) Using a computer and the result of part  ( a), "nd R2, R3, . . . ,R7 to "ve signi"cant 
"gures.

c) Evaluate 
R R
R R

6 5

7 6

�
�

.

10.3.13 (Tantalizing patterns) The orbit diagram of the logistic map (Figure!10.2.7) 
exhibits some striking features that are rarely discussed in books.
a) There are several smooth, dark tracks of points running through the chaotic 

part of the diagram. What are these curves? (Hint: Think about  f  ( xm, r ) , where 
xm � 1

2  is the point at which  f  is maximized.)
b) Can you "nd the exact value of r at the corner of the “big wedge”? (Hint: Several 

of the dark tracks in part (b) intersect at this corner.)

10.4 Periodic Windows

10.4.1 (Exponential map) Consider the map xn���� ��r exp xn for r ��0.
a) Analyze the map by drawing a cobweb.
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b) Show that a tangent bifurcation occurs at r e�1 .
c) Sketch the time series xn vs. n for r just above and just below r e�1 .

10.4.2 Analyze the map x rx xn n n+ = +1
2 2( ).l  Find and classify all the bifurca-

tions and draw the bifurcation diagram. Can this system exhibit intermittency?

10.4.3 (A superstable 3-cycle) The map x rxn n+ = −1 1 2  has a superstable 3-cycle 
at a certain value of r. Find a cubic equation for this r.

10.4.4 Approximate the value of r at which the logistic map has a superstable 
3-cycle. Please give a numerical approximation that is accurate to at least four 
places after the decimal point.

10.4.5 (Band merging and crisis) Show numerically that the period-doubling 
bifurcations of the 3-cycle for the logistic map accumulate near r ��3.8495. . .! , 
to form three small chaotic bands. Show that these chaotic bands merge near 
r!���3.857. . . to form a much larger attractor that nearly "lls an interval.

This discontinuous jump in the size of an attractor is an example of a crisis 
(Grebogi, Ott, and Yorke 1983a).

10.4.6 (A superstable cycle) Consider the logistic map with r ��3.7389149. Plot 
the cobweb diagram, starting from x0

1
2�  (the maximum of the map). You should 

"nd a superstable cycle. What is its period?

10.4.7 (Iteration patterns) Superstable cycles for the logistic map can be charac-
terized by a string of R’s and L’s, as follows. By convention, we start the cycle at 
x0

1
2� .  Then if the nth iterate xn lies to the right of x0

1
2� ,  the nth letter in the 

string is an R; otherwise it’s an L. (No letter is used if xn � 1
2 ,  since the superstable 

cycle is then complete.) The string is called the symbol sequence or iteration pattern 
for the superstable cycle (Metropolis et al. 1973).
a) Show that for the logistic map with r > +l 5,  the "rst two letters are always 

RL.
b) What is the iteration pattern for the orbit you found in Exercise!10.4.6?

10.4.8 (Intermittency in the Lorenz equations) Solve the Lorenz equations 
numerically for T ��10, b� 8

3 ,  and r near 166.
a) Show that if r ��166, all trajectories are attracted to a stable limit cycle. Plot 

both the xz projection of the cycle, and the time series x ( t ) .
b) Show that if r ��166.2, the trajectory looks like the old limit cycle for much of 

the time, but occasionally it is interrupted by chaotic bursts. This is the signa-
ture of intermittency.

c) Show that as r increases, the bursts become more frequent and last longer.

10.4.9 (Period-doubling in the Lorenz equations) Solve the Lorenz equations 
numerically for T ��10, b� 8

3 ,  and r ��148.5. You should "nd a stable limit cycle. 
Then repeat the experiment for r ��147.5 to see a period-doubled version of this 
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cycle. (When plotting your results, discard the initial transient, and use the xy pro-
jections of the attractors.)

10.4.10 (The birth of period 3) This is a hard exercise. The goal is to show that the 
period-3 cycle of the logistic map is born in a tangent bifurcation at 
r = + =l 3 82848 . . . . .  Here are a few vague hints. There are four unknowns: the 
three period-3 points a, b, c and the bifurcation value r. There are also four equa-
tions:  f  ( a )  ��b,  f  ( b )  ��c,  f  ( c )  ��a, and the tangent bifurcation condition. Try 
to eliminate a, b, c (which we don’t care about anyway) and get an equation for r 
alone. It may help to shift coordinates so that the map has its maximum at x ��0 
rather than x� 1

2 .  Also, you may want to change variables again to symmetric 
polynomials involving sums of products of a, b, c. See Saha and Strogatz (1995) for 
one solution, probably not the most elegant one!

10.4.11 (Repeated exponentiation) Let a� 0  be an arbitrary positive real num-
ber, and consider the following sequence: 

x a

x a

x a

a

aa

1

2

3

�

�

� ( )

 

and so on, where the general term is x an
xn

+ =1 . Analyze the long-term behavior of 
the sequence xn{ }  as n→∞ , given that x a1 � , and then discuss how that long-
term behavior depends on a. For instance, show that for certain values of a, the 
terms xn  tend to some limiting value. How does that limit depend on a ? For 
which values of a  is the long-term behavior more complicated? What happens 
then? 

After you "nish exploring these questions on your own, you may want to con-
sult Knoebel (1981) and Rippon (1983) for a taste of the extensive history surround-
ing iterated exponentials, going all the way back to Euler (1777).

10.5 Liapunov Exponent

10.5.1 Calculate the Liapunov exponent for the linear map xn���1 ��rxn.

10.5.2 Calculate the Liapunov exponent for the decimal shift map xn���1 ��10xn 
(mod 1).

10.5.3 Analyze the dynamics of the tent map for r b�1 .

10.5.4 (No windows for the tent map) Prove that, in contrast to the logistic map, 
the tent map does not have periodic windows interspersed with chaos.

10.5.5 Plot the orbit diagram for the tent map.
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10.5.6 Using a computer, compute and plot the Liapunov exponent as a function 
of r for the sine map xn���1 ��r sin Qxn, for 0 b�xn b�1 and 0 b�r b�1.

10.5.7 The graph in Figure!10.5.2 suggests that M ��0 at each period-doubling 
bifurcation value rn. Show analytically that this is correct.

10.6 Universality and Experiments
The "rst two exercises deal with the sine map xn���1 ��r sin Qxn, where 0 ��r b�1 and 
x � [0,1]. The goal is to learn about some of the practical problems that come up 
when one tries to estimate E numerically.

10.6.1 (Naive approach)
a) At each of 200 equally spaced r values, plot x700 through x1000 vertically above 

r, starting from some random initial condition x0. Check your orbit diagram 
against Figure!10.6.2 to be sure your program is working.

b) Now go to "ner resolution near the period-doubling bifurcations, and estimate 
rn, for n ��1, 2, . . . , 6. Try to achieve "ve signi"cant "gures of accuracy.

c) Use the numbers from (b) to estimate the Feigenbaum ratio 
r r
r r
n n

n n

−
−
−

+

1

1

.

(Note: To get accurate estimates in part (b), you need to be clever, or careful, or 
both. As you probably found, a straightforward approach is hampered by “critical 
slowing down”—the convergence to a cycle becomes unbearably slow when that 
cycle is on the verge of period-doubling. This makes it hard to decide precisely 
where the bifurcation occurs. To achieve the desired accuracy, you may have to 
use double precision arithmetic, and about 104 iterates. But maybe you can "nd a 
shortcut by reformulating the problem.)

10.6.2 (Superstable cycles to the rescue) The “critical slowing down” encoun-
tered in the previous problem is avoided if we compute Rn instead of rn. Here Rn 
denotes the value of r at which the sine map has a superstable cycle of period 2n.
a) Explain why it should be possible to compute Rn more easily and accurately 

than rn.
b) Compute the "rst six Rn ’s and use them to estimate E.

If you’re interested in knowing the best way to compute E, see Briggs (1991) for 
the state of the art.

10.6.3 (Qualitative universality of patterns) The U-sequence dictates the order-
ing of the windows, but it actually says more: it dictates the iteration pattern within 
each window. (See Exercise! 10.4.7 for the de"nition of iteration patterns.) For 
instance, consider the large period-6 window for the logistic and sine maps, visible 
in Figure!10.6.2.
a) For both maps, plot the cobweb for the corresponding superstable 6-cycle, 

given that it occurs at r ��3.6275575 for the logistic map and r ��0.8811406 for 
the sine map. (This cycle acts as a representative for the whole window.)

b) Find the iteration pattern for both cycles, and con"rm that they match.
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10.6.4 (Period 4) Consider the iteration patterns of all possible period-4 orbits 
for the logistic map, or any other unimodal map governed by the U-sequence.
a) Show that only two patterns are possible for period-4 orbits: RLL and RLR.
b) Show that the period-4 orbit with pattern RLL always occurs after RLR, i.e., at 

a larger value of r.

10.6.5 (Unfamiliar later cycles) The "nal superstable cycles of periods 5, 6, 4, 6, 
5, 6 in the logistic map occur at approximately the following values of r: 3.9057065, 
3.9375364, 3.9602701, 3.9777664, 3.9902670, 3.9975831 (Metropolis et al. 1973). 
Notice that they’re all near the end of the orbit diagram. They have tiny windows 
around them and tend to be overlooked.
a) Plot the cobwebs for these cycles.
b) Did you "nd it hard to obtain the cycles of periods 5 and 6? If so, can you 

explain why this trouble occurred?

10.6.6 (A trick for locating superstable cycles) Hao and Zheng (1989) give an 
amusing algorithm for "nding a superstable cycle with a speci"ed iteration pat-
tern. The idea works for any unimodal map, but for convenience, consider the map 
x r xn n+ = −1

2 ,  for 0 b�r b�2. De"ne two functions R y r y L y r y( ) , ( ) .= − =− −  
These are the right and left branches of the inverse map.
a) For instance, suppose we want to "nd the r corresponding to the superstable 

5-cycle with pattern RLLR. Then Hao and Zheng show that this amounts to 
solving the equation r ��RLLR ( 0 ) . Show that when this equation is written out 
explicitly, it becomes

r r r r r= + + − .

b) Solve this equation numerically by iterating the map

r r r r rn n n n n+ = + + −1 ,

starting from any reasonable guess, e.g., r0 ��2 . Show numerically that rn con-
verges rapidly to 1.860782522. . . .
c) Verify that the answer to (b) yields a cycle with the desired pattern.

10.7 Renormalization

10.7.1 (Hands on the functional equation) The functional equation 
g ( x ) !���!Bg2 ( x / B )  arose in our renormalization analysis of period-doubling. Let’s 
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approximate its solution by brute force, assuming that g ( x )  is even and has a qua-
dratic maximum at x ��0.
a) Suppose g ( x )  x 1 ��c2x

2 for small x. Solve for c2 and B. (Neglect O ( x4 )  terms.)
b) Now assume g ( x )  x 1 ��c2x

2 ��c4x
4, and use Mathematica, Maple, Macsyma 

(or hand calculation) to solve for B, c2, c4. Compare your approximate results to 
the “exact” values B x �2.5029 . . . , c2 x �1.527 . . . , c4 x 0.1048 . . . .

10.7.2 Given a map yn���1 ��f  (yn ) , rewrite the map in terms of a rescaled variable 
xn ��Byn. Use this to show that rescaling and inversion converts f 2  ( x, R1 )  into 
B f 2 ( x / B, R1 ) , as claimed in the text.

10.7.3 Show that if g is a solution of the functional equation, so is Ng ( x / N ) , with 
the same B.

10.7.4 (Wildness of the universal function g (x ) ) Near the origin g ( x )  is roughly 
parabolic, but elsewhere it must be rather wild. In fact, the function g ( x )  has 
in"nitely many wiggles as x ranges over the real line. Verify these statements by 
demonstrating that g ( x )  crosses the lines y ��±x in"nitely many times. (Hint: 
Show that if x * is a "xed point of g ( x ) , then so is Bx *.)

10.7.5 (Crudest possible estimate of B ) Let  f  ( x, r )  ��r � x2.
a) Write down explicit expressions for  f  ( x, R0 )  and B f 2 ( x / B, R1 ) .
b) The two functions in (a) are supposed to resemble each other near the origin, 

if B is chosen correctly. (That’s the idea behind Figure!10.7.3.) Show the O ( x2 )  
coef"cients of the two functions agree if B ���2.

10.7.6 (Improved estimate of B) Redo Exercise! 10.7.5 to one higher order: 
Let  f  ( x, r )  ��r � x2 again, but now compare B f 2( x / B, R1 )  to B2 f 4 ( x / B2 , R2 )  
and match the coef"cients of the lowest powers of x. What value of B is obtained 
in this way?

10.7.7 (Quartic maxima) Develop the renormalization theory for functions with 
a fourth-degree maximum, e.g.,  f  ( x, r )  ��r � x4. What approximate value of B is 
predicted by the methods of Exercises 10.7.1 and 10.7.5? Estimate the "rst few terms 
in the power series for the universal function g ( x ) . By numerical experimentation, 
estimate the new value of E for the quartic case.

See Briggs (1991) for precise values of B and E for this fourth-degree case, as well 
as for all other integer degrees between 2 and 12.

10.7.8 (Renormalization approach to intermittency: algebraic version) Consider 
the map xn���1 ��f  ( xn, r ) , where  f  ( xn, r )  ���r ��x � x2. This is the normal form 
for any map close to a tangent bifurcation.
a) Show that the map undergoes a tangent bifurcation at the origin when r ��0.
b) Suppose r is small and positive. By drawing a cobweb, show that a typical orbit 

takes many iterations to pass through the bottleneck at the origin.
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c) Let N ( r )  denote the typical number of iterations of  f  required for an orbit to 
get through the bottleneck. Our goal is to see how N ( r )  scales with r as r l�0. 
We use a renormalization idea: Near the origin, f 2 looks like a rescaled version 
of  f , and hence it too has a bottleneck there. Show that it takes approximately 
1
2 N r( )  iterations for orbits of f 2  to pass through the bottleneck.

d) Expand f 2( x,r )  and keep only the terms through O ( x2 ) . Rescale x and r to put 
this new map into the desired normal form  F  ( X,R )  x �R ��X � X!2. Show 
that this renormalization implies the recursive relation

1
2 N r( ) !x�N ( 4r ) .

e) Show that the equation in (d) has solutions N ( r )  ��arb and solve for b.

10.7.9 (Renormalization approach to intermittency: functional version) Show 
that if the renormalization procedure in Exercise!10.7.8 is done exactly, we are led 
to the functional equation

g ( x )  ��Bg2 ( x / B ) 

(just as in the case of period-doubling!) but with new boundary conditions appro-
priate to the tangent bifurcation:

g ( 0 )  ��0, ga ( 0 )  ��l.

Unlike the period-doubling case, this functional equation can be solved explicitly 
(Hirsch et al. 1982).
a) Verify that a solution is B ��2, g ( x )  ��x /  ( 1 ��ax ) , with a arbitrary.
b) Explain why B ��2 is almost obvious, in retrospect. (Hint: Draw cobwebs for 

both g and g2 for an orbit passing through the bottleneck. Both cobwebs look 
like staircases; compare the lengths of their steps.)

10.7.10 Fill in the missing algebraic steps in the concrete renormalization calcula-
tion for period-doubling. Let  f  ( x )  ���( 1 ��N ) x ��x2. Expand p ��In���l ��f   

2 ( p ��In )  
in powers of the small deviation In, using the fact that p is a "xed point of f 2 . 
Thereby con"rm that (10.7.4) and (10.7.5) are correct.

10.7.11 Give a cobweb analysis of (10.7.10), starting from the initial condition 
N1 ��0. Show that Nk l�N*, where N* ��0 is a stable "xed point corresponding to 
the onset of chaos.
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